196 lines
5.6 KiB
C
196 lines
5.6 KiB
C
/* Generic implementation of the UNPACK intrinsic
|
|
Copyright 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
|
|
Contributed by Paul Brook <paul@nowt.org>
|
|
|
|
This file is part of the GNU Fortran 95 runtime library (libgfortran).
|
|
|
|
Libgfortran is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2 of the License, or (at your option) any later version.
|
|
|
|
In addition to the permissions in the GNU General Public License, the
|
|
Free Software Foundation gives you unlimited permission to link the
|
|
compiled version of this file into combinations with other programs,
|
|
and to distribute those combinations without any restriction coming
|
|
from the use of this file. (The General Public License restrictions
|
|
do apply in other respects; for example, they cover modification of
|
|
the file, and distribution when not linked into a combine
|
|
executable.)
|
|
|
|
Ligbfortran is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public
|
|
License along with libgfortran; see the file COPYING. If not,
|
|
write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
Boston, MA 02111-1307, USA. */
|
|
|
|
#include "config.h"
|
|
#include <stdlib.h>
|
|
#include <assert.h>
|
|
#include <string.h>
|
|
#include "libgfortran.h"
|
|
|
|
extern void unpack1 (gfc_array_char *, const gfc_array_char *,
|
|
const gfc_array_l4 *, const gfc_array_char *);
|
|
iexport_proto(unpack1);
|
|
|
|
void
|
|
unpack1 (gfc_array_char *ret, const gfc_array_char *vector,
|
|
const gfc_array_l4 *mask, const gfc_array_char *field)
|
|
{
|
|
/* r.* indicates the return array. */
|
|
index_type rstride[GFC_MAX_DIMENSIONS];
|
|
index_type rstride0;
|
|
index_type rs;
|
|
char *rptr;
|
|
/* v.* indicates the vector array. */
|
|
index_type vstride0;
|
|
char *vptr;
|
|
/* f.* indicates the field array. */
|
|
index_type fstride[GFC_MAX_DIMENSIONS];
|
|
index_type fstride0;
|
|
const char *fptr;
|
|
/* m.* indicates the mask array. */
|
|
index_type mstride[GFC_MAX_DIMENSIONS];
|
|
index_type mstride0;
|
|
const GFC_LOGICAL_4 *mptr;
|
|
|
|
index_type count[GFC_MAX_DIMENSIONS];
|
|
index_type extent[GFC_MAX_DIMENSIONS];
|
|
index_type n;
|
|
index_type dim;
|
|
index_type size;
|
|
index_type fsize;
|
|
|
|
size = GFC_DESCRIPTOR_SIZE (ret);
|
|
/* A field element size of 0 actually means this is a scalar. */
|
|
fsize = GFC_DESCRIPTOR_SIZE (field);
|
|
if (ret->data == NULL)
|
|
{
|
|
/* The front end has signalled that we need to populate the
|
|
return array descriptor. */
|
|
dim = GFC_DESCRIPTOR_RANK (mask);
|
|
rs = 1;
|
|
for (n = 0; n < dim; n++)
|
|
{
|
|
count[n] = 0;
|
|
ret->dim[n].stride = rs;
|
|
ret->dim[n].lbound = 0;
|
|
ret->dim[n].ubound = mask->dim[n].ubound - mask->dim[n].lbound;
|
|
extent[n] = ret->dim[n].ubound + 1;
|
|
rstride[n] = ret->dim[n].stride * size;
|
|
fstride[n] = field->dim[n].stride * fsize;
|
|
mstride[n] = mask->dim[n].stride;
|
|
rs *= extent[n];
|
|
}
|
|
ret->base = 0;
|
|
ret->data = internal_malloc_size (rs * size);
|
|
}
|
|
else
|
|
{
|
|
dim = GFC_DESCRIPTOR_RANK (ret);
|
|
for (n = 0; n < dim; n++)
|
|
{
|
|
count[n] = 0;
|
|
extent[n] = ret->dim[n].ubound + 1 - ret->dim[n].lbound;
|
|
rstride[n] = ret->dim[n].stride * size;
|
|
fstride[n] = field->dim[n].stride * fsize;
|
|
mstride[n] = mask->dim[n].stride;
|
|
}
|
|
if (rstride[0] == 0)
|
|
rstride[0] = size;
|
|
}
|
|
if (fstride[0] == 0)
|
|
fstride[0] = fsize;
|
|
if (mstride[0] == 0)
|
|
mstride[0] = 1;
|
|
|
|
vstride0 = vector->dim[0].stride * size;
|
|
if (vstride0 == 0)
|
|
vstride0 = size;
|
|
rstride0 = rstride[0];
|
|
fstride0 = fstride[0];
|
|
mstride0 = mstride[0];
|
|
rptr = ret->data;
|
|
fptr = field->data;
|
|
mptr = mask->data;
|
|
vptr = vector->data;
|
|
|
|
/* Use the same loop for both logical types. */
|
|
if (GFC_DESCRIPTOR_SIZE (mask) != 4)
|
|
{
|
|
if (GFC_DESCRIPTOR_SIZE (mask) != 8)
|
|
runtime_error ("Funny sized logical array");
|
|
for (n = 0; n < dim; n++)
|
|
mstride[n] <<= 1;
|
|
mstride0 <<= 1;
|
|
mptr = GFOR_POINTER_L8_TO_L4 (mptr);
|
|
}
|
|
|
|
while (rptr)
|
|
{
|
|
if (*mptr)
|
|
{
|
|
/* From vector. */
|
|
memcpy (rptr, vptr, size);
|
|
vptr += vstride0;
|
|
}
|
|
else
|
|
{
|
|
/* From field. */
|
|
memcpy (rptr, fptr, size);
|
|
}
|
|
/* Advance to the next element. */
|
|
rptr += rstride0;
|
|
fptr += fstride0;
|
|
mptr += mstride0;
|
|
count[0]++;
|
|
n = 0;
|
|
while (count[n] == extent[n])
|
|
{
|
|
/* When we get to the end of a dimension, reset it and increment
|
|
the next dimension. */
|
|
count[n] = 0;
|
|
/* We could precalculate these products, but this is a less
|
|
frequently used path so proabably not worth it. */
|
|
rptr -= rstride[n] * extent[n];
|
|
fptr -= fstride[n] * extent[n];
|
|
mptr -= mstride[n] * extent[n];
|
|
n++;
|
|
if (n >= dim)
|
|
{
|
|
/* Break out of the loop. */
|
|
rptr = NULL;
|
|
break;
|
|
}
|
|
else
|
|
{
|
|
count[n]++;
|
|
rptr += rstride[n];
|
|
fptr += fstride[n];
|
|
mptr += mstride[n];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
iexport(unpack1);
|
|
|
|
extern void unpack0 (gfc_array_char *, const gfc_array_char *,
|
|
const gfc_array_l4 *, char *);
|
|
export_proto(unpack0);
|
|
|
|
void
|
|
unpack0 (gfc_array_char *ret, const gfc_array_char *vector,
|
|
const gfc_array_l4 *mask, char *field)
|
|
{
|
|
gfc_array_char tmp;
|
|
|
|
tmp.dtype = 0;
|
|
tmp.data = field;
|
|
unpack1 (ret, vector, mask, &tmp);
|
|
}
|