gcc/libsanitizer/sanitizer_common/sanitizer_coverage_fuchsia.cc
Jakub Jelinek 5d3805fca3 ubsan.c (ubsan_expand_null_ifn): Use _v1 suffixed type mismatch builtins...
* ubsan.c (ubsan_expand_null_ifn): Use _v1 suffixed type mismatch
	builtins, store max (log2 (align), 0) into uchar field instead of
	align into uptr field.
	(ubsan_expand_objsize_ifn): Use _v1 suffixed type mismatch builtins,
	store uchar 0 field instead of uptr 0 field.
	(instrument_nonnull_return): Use _v1 suffixed nonnull return builtin,
	instead of passing one address of struct with 2 locations pass
	two addresses of structs with 1 location each.
	* sanitizer.def (BUILT_IN_UBSAN_HANDLE_TYPE_MISMATCH,
	BUILT_IN_UBSAN_HANDLE_TYPE_MISMATCH_ABORT,
	BUILT_IN_UBSAN_HANDLE_NONNULL_RETURN,
	BUILT_IN_UBSAN_HANDLE_NONNULL_RETURN_ABORT): Removed.
	(BUILT_IN_UBSAN_HANDLE_TYPE_MISMATCH_V1,
	BUILT_IN_UBSAN_HANDLE_TYPE_MISMATCH_V1_ABORT,
	BUILT_IN_UBSAN_HANDLE_NONNULL_RETURN_V1,
	BUILT_IN_UBSAN_HANDLE_NONNULL_RETURN_V1_ABORT): New builtins.

	* c-c++-common/ubsan/float-cast-overflow-1.c: Drop value keyword
	from expected output regexps.
	* c-c++-common/ubsan/float-cast-overflow-2.c: Likewise.
	* c-c++-common/ubsan/float-cast-overflow-3.c: Likewise.
	* c-c++-common/ubsan/float-cast-overflow-4.c: Likewise.
	* c-c++-common/ubsan/float-cast-overflow-5.c: Likewise.
	* c-c++-common/ubsan/float-cast-overflow-6.c: Likewise.
	* c-c++-common/ubsan/float-cast-overflow-8.c: Likewise.
	* c-c++-common/ubsan/float-cast-overflow-9.c: Likewise.
	* c-c++-common/ubsan/float-cast-overflow-10.c: Likewise.
	* g++.dg/ubsan/float-cast-overflow-bf.C: Likewise.
	* gcc.dg/ubsan/float-cast-overflow-bf.c: Likewise.
	* g++.dg/asan/default-options-1.C (__asan_default_options): Add
	used attribute.
	* g++.dg/asan/asan_test.C: Run with ASAN_OPTIONS=handle_segv=2
	in the environment.

	* All source files: Merge from upstream 315899.
        * asan/Makefile.am (nodist_saninclude_HEADERS): Add
	include/sanitizer/tsan_interface.h.
        * asan/libtool-version: Bump the libasan SONAME.
	* lsan/Makefile.am (sanitizer_lsan_files): Add lsan_common_mac.cc.
	(lsan_files): Add lsan_linux.cc, lsan_mac.cc and lsan_malloc_mac.cc.
        * sanitizer_common/Makefile.am (sanitizer_common_files): Add
	sancov_flags.cc, sanitizer_allocator_checks.cc,
	sanitizer_coverage_libcdep_new.cc, sanitizer_errno.cc,
	sanitizer_file.cc, sanitizer_mac_libcdep.cc and
	sanitizer_stoptheworld_mac.cc.  Remove sanitizer_coverage_libcdep.cc
	and sanitizer_coverage_mapping_libcdep.cc.
        * tsan/Makefile.am (tsan_files): Add tsan_external.cc.
	* ubsan/Makefile.am (DEFS): Add -DUBSAN_CAN_USE_CXXABI=1.
	(ubsan_files): Add ubsan_init_standalone.cc and
	ubsan_signals_standalone.cc.
	* ubsan/libtool-version: Bump the libubsan SONAME.
        * asan/Makefile.in: Regenerate.
        * lsan/Makefile.in: Regenerate.
        * sanitizer_common/Makefile.in: Regenerate.
        * tsan/Makefile.in: Regenerate.
	* ubsan/Makefile.in: Regenerate.

From-SVN: r253887
2017-10-19 13:23:59 +02:00

239 lines
9.5 KiB
C++

//===-- sanitizer_coverage_fuchsia.cc ------------------------------------===//
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===---------------------------------------------------------------------===//
//
// Sanitizer Coverage Controller for Trace PC Guard, Fuchsia-specific version.
//
// This Fuchsia-specific implementation uses the same basic scheme and the
// same simple '.sancov' file format as the generic implementation. The
// difference is that we just produce a single blob of output for the whole
// program, not a separate one per DSO. We do not sort the PC table and do
// not prune the zeros, so the resulting file is always as large as it
// would be to report 100% coverage. Implicit tracing information about
// the address ranges of DSOs allows offline tools to split the one big
// blob into separate files that the 'sancov' tool can understand.
//
// Unlike the traditional implementation that uses an atexit hook to write
// out data files at the end, the results on Fuchsia do not go into a file
// per se. The 'coverage_dir' option is ignored. Instead, they are stored
// directly into a shared memory object (a Zircon VMO). At exit, that VMO
// is handed over to a system service that's responsible for getting the
// data out to somewhere that it can be fed into the sancov tool (where and
// how is not our problem).
#include "sanitizer_platform.h"
#if SANITIZER_FUCHSIA
#include "sanitizer_atomic.h"
#include "sanitizer_common.h"
#include "sanitizer_internal_defs.h"
#include <zircon/process.h>
#include <zircon/sanitizer.h>
#include <zircon/syscalls.h>
using namespace __sanitizer; // NOLINT
namespace __sancov {
namespace {
// TODO(mcgrathr): Move the constant into a header shared with other impls.
constexpr u64 Magic64 = 0xC0BFFFFFFFFFFF64ULL;
static_assert(SANITIZER_WORDSIZE == 64, "Fuchsia is always LP64");
constexpr const char kSancovSinkName[] = "sancov";
// Collects trace-pc guard coverage.
// This class relies on zero-initialization.
class TracePcGuardController {
public:
// For each PC location being tracked, there is a u32 reserved in global
// data called the "guard". At startup, we assign each guard slot a
// unique index into the big results array. Later during runtime, the
// first call to TracePcGuard (below) will store the corresponding PC at
// that index in the array. (Each later call with the same guard slot is
// presumed to be from the same PC.) Then it clears the guard slot back
// to zero, which tells the compiler not to bother calling in again. At
// the end of the run, we have a big array where each element is either
// zero or is a tracked PC location that was hit in the trace.
// This is called from global constructors. Each translation unit has a
// contiguous array of guard slots, and a constructor that calls here
// with the bounds of its array. Those constructors are allowed to call
// here more than once for the same array. Usually all of these
// constructors run in the initial thread, but it's possible that a
// dlopen call on a secondary thread will run constructors that get here.
void InitTracePcGuard(u32 *start, u32 *end) {
if (end > start && *start == 0 && common_flags()->coverage) {
// Complete the setup before filling in any guards with indices.
// This avoids the possibility of code called from Setup reentering
// TracePcGuard.
u32 idx = Setup(end - start);
for (u32 *p = start; p < end; ++p) {
*p = idx++;
}
}
}
void TracePcGuard(u32 *guard, uptr pc) {
atomic_uint32_t *guard_ptr = reinterpret_cast<atomic_uint32_t *>(guard);
u32 idx = atomic_exchange(guard_ptr, 0, memory_order_relaxed);
if (idx > 0) array_[idx] = pc;
}
void Dump() {
BlockingMutexLock locked(&setup_lock_);
if (array_) {
CHECK_NE(vmo_, ZX_HANDLE_INVALID);
// Publish the VMO to the system, where it can be collected and
// analyzed after this process exits. This always consumes the VMO
// handle. Any failure is just logged and not indicated to us.
__sanitizer_publish_data(kSancovSinkName, vmo_);
vmo_ = ZX_HANDLE_INVALID;
// This will route to __sanitizer_log_write, which will ensure that
// information about shared libraries is written out. This message
// uses the `dumpfile` symbolizer markup element to highlight the
// dump. See the explanation for this in:
// https://fuchsia.googlesource.com/zircon/+/master/docs/symbolizer_markup.md
Printf("SanitizerCoverage: {{{dumpfile:%s:%s}}} with up to %u PCs\n",
kSancovSinkName, vmo_name_, next_index_ - 1);
}
}
private:
// We map in the largest possible view into the VMO: one word
// for every possible 32-bit index value. This avoids the need
// to change the mapping when increasing the size of the VMO.
// We can always spare the 32G of address space.
static constexpr size_t MappingSize = sizeof(uptr) << 32;
BlockingMutex setup_lock_;
uptr *array_;
u32 next_index_;
zx_handle_t vmo_;
char vmo_name_[ZX_MAX_NAME_LEN];
size_t DataSize() const { return next_index_ * sizeof(uintptr_t); }
u32 Setup(u32 num_guards) {
BlockingMutexLock locked(&setup_lock_);
DCHECK(common_flags()->coverage);
if (next_index_ == 0) {
CHECK_EQ(vmo_, ZX_HANDLE_INVALID);
CHECK_EQ(array_, nullptr);
// The first sample goes at [1] to reserve [0] for the magic number.
next_index_ = 1 + num_guards;
zx_status_t status = _zx_vmo_create(DataSize(), 0, &vmo_);
CHECK_EQ(status, ZX_OK);
// Give the VMO a name including our process KOID so it's easy to spot.
internal_snprintf(vmo_name_, sizeof(vmo_name_), "%s.%zu", kSancovSinkName,
internal_getpid());
_zx_object_set_property(vmo_, ZX_PROP_NAME, vmo_name_,
internal_strlen(vmo_name_));
// Map the largest possible view we might need into the VMO. Later
// we might need to increase the VMO's size before we can use larger
// indices, but we'll never move the mapping address so we don't have
// any multi-thread synchronization issues with that.
uintptr_t mapping;
status =
_zx_vmar_map(_zx_vmar_root_self(), 0, vmo_, 0, MappingSize,
ZX_VM_FLAG_PERM_READ | ZX_VM_FLAG_PERM_WRITE, &mapping);
CHECK_EQ(status, ZX_OK);
// Hereafter other threads are free to start storing into
// elements [1, next_index_) of the big array.
array_ = reinterpret_cast<uptr *>(mapping);
// Store the magic number.
// Hereafter, the VMO serves as the contents of the '.sancov' file.
array_[0] = Magic64;
return 1;
} else {
// The VMO is already mapped in, but it's not big enough to use the
// new indices. So increase the size to cover the new maximum index.
CHECK_NE(vmo_, ZX_HANDLE_INVALID);
CHECK_NE(array_, nullptr);
uint32_t first_index = next_index_;
next_index_ += num_guards;
zx_status_t status = _zx_vmo_set_size(vmo_, DataSize());
CHECK_EQ(status, ZX_OK);
return first_index;
}
}
};
static TracePcGuardController pc_guard_controller;
} // namespace
} // namespace __sancov
namespace __sanitizer {
void InitializeCoverage(bool enabled, const char *dir) {
CHECK_EQ(enabled, common_flags()->coverage);
CHECK_EQ(dir, common_flags()->coverage_dir);
static bool coverage_enabled = false;
if (!coverage_enabled) {
coverage_enabled = enabled;
Atexit(__sanitizer_cov_dump);
AddDieCallback(__sanitizer_cov_dump);
}
}
} // namespace __sanitizer
extern "C" {
SANITIZER_INTERFACE_ATTRIBUTE void __sanitizer_dump_coverage( // NOLINT
const uptr *pcs, uptr len) {
UNIMPLEMENTED();
}
SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_pc_guard, u32 *guard) {
if (!*guard) return;
__sancov::pc_guard_controller.TracePcGuard(guard, GET_CALLER_PC() - 1);
}
SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_pc_guard_init,
u32 *start, u32 *end) {
if (start == end || *start) return;
__sancov::pc_guard_controller.InitTracePcGuard(start, end);
}
SANITIZER_INTERFACE_ATTRIBUTE void __sanitizer_dump_trace_pc_guard_coverage() {
__sancov::pc_guard_controller.Dump();
}
SANITIZER_INTERFACE_ATTRIBUTE void __sanitizer_cov_dump() {
__sanitizer_dump_trace_pc_guard_coverage();
}
// Default empty implementations (weak). Users should redefine them.
SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_cmp, void) {}
SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_cmp1, void) {}
SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_cmp2, void) {}
SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_cmp4, void) {}
SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_cmp8, void) {}
SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_const_cmp1, void) {}
SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_const_cmp2, void) {}
SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_const_cmp4, void) {}
SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_const_cmp8, void) {}
SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_switch, void) {}
SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_div4, void) {}
SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_div8, void) {}
SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_gep, void) {}
SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_pc_indir, void) {}
} // extern "C"
#endif // !SANITIZER_FUCHSIA