5133f00ef8
From-SVN: r171076
1488 lines
38 KiB
Go
1488 lines
38 KiB
Go
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
// Package regexp implements a simple regular expression library.
|
|
//
|
|
// The syntax of the regular expressions accepted is:
|
|
//
|
|
// regexp:
|
|
// concatenation { '|' concatenation }
|
|
// concatenation:
|
|
// { closure }
|
|
// closure:
|
|
// term [ '*' | '+' | '?' ]
|
|
// term:
|
|
// '^'
|
|
// '$'
|
|
// '.'
|
|
// character
|
|
// '[' [ '^' ] { character-range } ']'
|
|
// '(' regexp ')'
|
|
// character-range:
|
|
// character [ '-' character ]
|
|
//
|
|
// All characters are UTF-8-encoded code points. Backslashes escape special
|
|
// characters, including inside character classes. The standard Go character
|
|
// escapes are also recognized: \a \b \f \n \r \t \v.
|
|
//
|
|
// There are 16 methods of Regexp that match a regular expression and identify
|
|
// the matched text. Their names are matched by this regular expression:
|
|
//
|
|
// Find(All)?(String)?(Submatch)?(Index)?
|
|
//
|
|
// If 'All' is present, the routine matches successive non-overlapping
|
|
// matches of the entire expression. Empty matches abutting a preceding
|
|
// match are ignored. The return value is a slice containing the successive
|
|
// return values of the corresponding non-'All' routine. These routines take
|
|
// an extra integer argument, n; if n >= 0, the function returns at most n
|
|
// matches/submatches.
|
|
//
|
|
// If 'String' is present, the argument is a string; otherwise it is a slice
|
|
// of bytes; return values are adjusted as appropriate.
|
|
//
|
|
// If 'Submatch' is present, the return value is a slice identifying the
|
|
// successive submatches of the expression. Submatches are matches of
|
|
// parenthesized subexpressions within the regular expression, numbered from
|
|
// left to right in order of opening parenthesis. Submatch 0 is the match of
|
|
// the entire expression, submatch 1 the match of the first parenthesized
|
|
// subexpression, and so on.
|
|
//
|
|
// If 'Index' is present, matches and submatches are identified by byte index
|
|
// pairs within the input string: result[2*n:2*n+1] identifies the indexes of
|
|
// the nth submatch. The pair for n==0 identifies the match of the entire
|
|
// expression. If 'Index' is not present, the match is identified by the
|
|
// text of the match/submatch. If an index is negative, it means that
|
|
// subexpression did not match any string in the input.
|
|
//
|
|
// There is also a subset of the methods that can be applied to text read
|
|
// from a RuneReader:
|
|
//
|
|
// MatchReader, FindReaderIndex, FindReaderSubmatchIndex
|
|
//
|
|
// This set may grow. Note that regular expression matches may need to
|
|
// examine text beyond the text returned by a match, so the methods that
|
|
// match text from a RuneReader may read arbitrarily far into the input
|
|
// before returning.
|
|
//
|
|
// (There are a few other methods that do not match this pattern.)
|
|
//
|
|
package regexp
|
|
|
|
import (
|
|
"bytes"
|
|
"io"
|
|
"os"
|
|
"strings"
|
|
"utf8"
|
|
)
|
|
|
|
var debug = false
|
|
|
|
// Error is the local type for a parsing error.
|
|
type Error string
|
|
|
|
func (e Error) String() string {
|
|
return string(e)
|
|
}
|
|
|
|
// Error codes returned by failures to parse an expression.
|
|
var (
|
|
ErrInternal = Error("internal error")
|
|
ErrUnmatchedLpar = Error("unmatched '('")
|
|
ErrUnmatchedRpar = Error("unmatched ')'")
|
|
ErrUnmatchedLbkt = Error("unmatched '['")
|
|
ErrUnmatchedRbkt = Error("unmatched ']'")
|
|
ErrBadRange = Error("bad range in character class")
|
|
ErrExtraneousBackslash = Error("extraneous backslash")
|
|
ErrBadClosure = Error("repeated closure (**, ++, etc.)")
|
|
ErrBareClosure = Error("closure applies to nothing")
|
|
ErrBadBackslash = Error("illegal backslash escape")
|
|
)
|
|
|
|
const (
|
|
iStart = iota // beginning of program
|
|
iEnd // end of program: success
|
|
iBOT // '^' beginning of text
|
|
iEOT // '$' end of text
|
|
iChar // 'a' regular character
|
|
iCharClass // [a-z] character class
|
|
iAny // '.' any character including newline
|
|
iNotNL // [^\n] special case: any character but newline
|
|
iBra // '(' parenthesized expression: 2*braNum for left, 2*braNum+1 for right
|
|
iAlt // '|' alternation
|
|
iNop // do nothing; makes it easy to link without patching
|
|
)
|
|
|
|
// An instruction executed by the NFA
|
|
type instr struct {
|
|
kind int // the type of this instruction: iChar, iAny, etc.
|
|
index int // used only in debugging; could be eliminated
|
|
next *instr // the instruction to execute after this one
|
|
// Special fields valid only for some items.
|
|
char int // iChar
|
|
braNum int // iBra, iEbra
|
|
cclass *charClass // iCharClass
|
|
left *instr // iAlt, other branch
|
|
}
|
|
|
|
func (i *instr) print() {
|
|
switch i.kind {
|
|
case iStart:
|
|
print("start")
|
|
case iEnd:
|
|
print("end")
|
|
case iBOT:
|
|
print("bot")
|
|
case iEOT:
|
|
print("eot")
|
|
case iChar:
|
|
print("char ", string(i.char))
|
|
case iCharClass:
|
|
i.cclass.print()
|
|
case iAny:
|
|
print("any")
|
|
case iNotNL:
|
|
print("notnl")
|
|
case iBra:
|
|
if i.braNum&1 == 0 {
|
|
print("bra", i.braNum/2)
|
|
} else {
|
|
print("ebra", i.braNum/2)
|
|
}
|
|
case iAlt:
|
|
print("alt(", i.left.index, ")")
|
|
case iNop:
|
|
print("nop")
|
|
}
|
|
}
|
|
|
|
// Regexp is the representation of a compiled regular expression.
|
|
// The public interface is entirely through methods.
|
|
type Regexp struct {
|
|
expr string // the original expression
|
|
prefix string // initial plain text string
|
|
prefixBytes []byte // initial plain text bytes
|
|
inst []*instr
|
|
start *instr // first instruction of machine
|
|
prefixStart *instr // where to start if there is a prefix
|
|
nbra int // number of brackets in expression, for subexpressions
|
|
}
|
|
|
|
type charClass struct {
|
|
negate bool // is character class negated? ([^a-z])
|
|
// slice of int, stored pairwise: [a-z] is (a,z); x is (x,x):
|
|
ranges []int
|
|
cmin, cmax int
|
|
}
|
|
|
|
func (cclass *charClass) print() {
|
|
print("charclass")
|
|
if cclass.negate {
|
|
print(" (negated)")
|
|
}
|
|
for i := 0; i < len(cclass.ranges); i += 2 {
|
|
l := cclass.ranges[i]
|
|
r := cclass.ranges[i+1]
|
|
if l == r {
|
|
print(" [", string(l), "]")
|
|
} else {
|
|
print(" [", string(l), "-", string(r), "]")
|
|
}
|
|
}
|
|
}
|
|
|
|
func (cclass *charClass) addRange(a, b int) {
|
|
// range is a through b inclusive
|
|
cclass.ranges = append(cclass.ranges, a, b)
|
|
if a < cclass.cmin {
|
|
cclass.cmin = a
|
|
}
|
|
if b > cclass.cmax {
|
|
cclass.cmax = b
|
|
}
|
|
}
|
|
|
|
func (cclass *charClass) matches(c int) bool {
|
|
if c < cclass.cmin || c > cclass.cmax {
|
|
return cclass.negate
|
|
}
|
|
ranges := cclass.ranges
|
|
for i := 0; i < len(ranges); i = i + 2 {
|
|
if ranges[i] <= c && c <= ranges[i+1] {
|
|
return !cclass.negate
|
|
}
|
|
}
|
|
return cclass.negate
|
|
}
|
|
|
|
func newCharClass() *instr {
|
|
i := &instr{kind: iCharClass}
|
|
i.cclass = new(charClass)
|
|
i.cclass.ranges = make([]int, 0, 4)
|
|
i.cclass.cmin = 0x10FFFF + 1 // MaxRune + 1
|
|
i.cclass.cmax = -1
|
|
return i
|
|
}
|
|
|
|
func (re *Regexp) add(i *instr) *instr {
|
|
i.index = len(re.inst)
|
|
re.inst = append(re.inst, i)
|
|
return i
|
|
}
|
|
|
|
type parser struct {
|
|
re *Regexp
|
|
nlpar int // number of unclosed lpars
|
|
pos int
|
|
ch int
|
|
}
|
|
|
|
func (p *parser) error(err Error) {
|
|
panic(err)
|
|
}
|
|
|
|
const endOfText = -1
|
|
|
|
func (p *parser) c() int { return p.ch }
|
|
|
|
func (p *parser) nextc() int {
|
|
if p.pos >= len(p.re.expr) {
|
|
p.ch = endOfText
|
|
} else {
|
|
c, w := utf8.DecodeRuneInString(p.re.expr[p.pos:])
|
|
p.ch = c
|
|
p.pos += w
|
|
}
|
|
return p.ch
|
|
}
|
|
|
|
func newParser(re *Regexp) *parser {
|
|
p := new(parser)
|
|
p.re = re
|
|
p.nextc() // load p.ch
|
|
return p
|
|
}
|
|
|
|
func special(c int) bool {
|
|
for _, r := range `\.+*?()|[]^$` {
|
|
if c == r {
|
|
return true
|
|
}
|
|
}
|
|
return false
|
|
}
|
|
|
|
func ispunct(c int) bool {
|
|
for _, r := range "!\"#$%&'()*+,-./:;<=>?@[\\]^_`{|}~" {
|
|
if c == r {
|
|
return true
|
|
}
|
|
}
|
|
return false
|
|
}
|
|
|
|
var escapes = []byte("abfnrtv")
|
|
var escaped = []byte("\a\b\f\n\r\t\v")
|
|
|
|
func escape(c int) int {
|
|
for i, b := range escapes {
|
|
if int(b) == c {
|
|
return i
|
|
}
|
|
}
|
|
return -1
|
|
}
|
|
|
|
func (p *parser) checkBackslash() int {
|
|
c := p.c()
|
|
if c == '\\' {
|
|
c = p.nextc()
|
|
switch {
|
|
case c == endOfText:
|
|
p.error(ErrExtraneousBackslash)
|
|
case ispunct(c):
|
|
// c is as delivered
|
|
case escape(c) >= 0:
|
|
c = int(escaped[escape(c)])
|
|
default:
|
|
p.error(ErrBadBackslash)
|
|
}
|
|
}
|
|
return c
|
|
}
|
|
|
|
func (p *parser) charClass() *instr {
|
|
i := newCharClass()
|
|
cc := i.cclass
|
|
if p.c() == '^' {
|
|
cc.negate = true
|
|
p.nextc()
|
|
}
|
|
left := -1
|
|
for {
|
|
switch c := p.c(); c {
|
|
case ']', endOfText:
|
|
if left >= 0 {
|
|
p.error(ErrBadRange)
|
|
}
|
|
// Is it [^\n]?
|
|
if cc.negate && len(cc.ranges) == 2 &&
|
|
cc.ranges[0] == '\n' && cc.ranges[1] == '\n' {
|
|
nl := &instr{kind: iNotNL}
|
|
p.re.add(nl)
|
|
return nl
|
|
}
|
|
// Special common case: "[a]" -> "a"
|
|
if !cc.negate && len(cc.ranges) == 2 && cc.ranges[0] == cc.ranges[1] {
|
|
c := &instr{kind: iChar, char: cc.ranges[0]}
|
|
p.re.add(c)
|
|
return c
|
|
}
|
|
p.re.add(i)
|
|
return i
|
|
case '-': // do this before backslash processing
|
|
p.error(ErrBadRange)
|
|
default:
|
|
c = p.checkBackslash()
|
|
p.nextc()
|
|
switch {
|
|
case left < 0: // first of pair
|
|
if p.c() == '-' { // range
|
|
p.nextc()
|
|
left = c
|
|
} else { // single char
|
|
cc.addRange(c, c)
|
|
}
|
|
case left <= c: // second of pair
|
|
cc.addRange(left, c)
|
|
left = -1
|
|
default:
|
|
p.error(ErrBadRange)
|
|
}
|
|
}
|
|
}
|
|
panic("unreachable")
|
|
}
|
|
|
|
func (p *parser) term() (start, end *instr) {
|
|
switch c := p.c(); c {
|
|
case '|', endOfText:
|
|
return nil, nil
|
|
case '*', '+', '?':
|
|
p.error(ErrBareClosure)
|
|
case ')':
|
|
if p.nlpar == 0 {
|
|
p.error(ErrUnmatchedRpar)
|
|
}
|
|
return nil, nil
|
|
case ']':
|
|
p.error(ErrUnmatchedRbkt)
|
|
case '^':
|
|
p.nextc()
|
|
start = p.re.add(&instr{kind: iBOT})
|
|
return start, start
|
|
case '$':
|
|
p.nextc()
|
|
start = p.re.add(&instr{kind: iEOT})
|
|
return start, start
|
|
case '.':
|
|
p.nextc()
|
|
start = p.re.add(&instr{kind: iAny})
|
|
return start, start
|
|
case '[':
|
|
p.nextc()
|
|
start = p.charClass()
|
|
if p.c() != ']' {
|
|
p.error(ErrUnmatchedLbkt)
|
|
}
|
|
p.nextc()
|
|
return start, start
|
|
case '(':
|
|
p.nextc()
|
|
p.nlpar++
|
|
p.re.nbra++ // increment first so first subexpr is \1
|
|
nbra := p.re.nbra
|
|
start, end = p.regexp()
|
|
if p.c() != ')' {
|
|
p.error(ErrUnmatchedLpar)
|
|
}
|
|
p.nlpar--
|
|
p.nextc()
|
|
bra := &instr{kind: iBra, braNum: 2 * nbra}
|
|
p.re.add(bra)
|
|
ebra := &instr{kind: iBra, braNum: 2*nbra + 1}
|
|
p.re.add(ebra)
|
|
if start == nil {
|
|
if end == nil {
|
|
p.error(ErrInternal)
|
|
return
|
|
}
|
|
start = ebra
|
|
} else {
|
|
end.next = ebra
|
|
}
|
|
bra.next = start
|
|
return bra, ebra
|
|
default:
|
|
c = p.checkBackslash()
|
|
p.nextc()
|
|
start = &instr{kind: iChar, char: c}
|
|
p.re.add(start)
|
|
return start, start
|
|
}
|
|
panic("unreachable")
|
|
}
|
|
|
|
func (p *parser) closure() (start, end *instr) {
|
|
start, end = p.term()
|
|
if start == nil {
|
|
return
|
|
}
|
|
switch p.c() {
|
|
case '*':
|
|
// (start,end)*:
|
|
alt := &instr{kind: iAlt}
|
|
p.re.add(alt)
|
|
end.next = alt // after end, do alt
|
|
alt.left = start // alternate brach: return to start
|
|
start = alt // alt becomes new (start, end)
|
|
end = alt
|
|
case '+':
|
|
// (start,end)+:
|
|
alt := &instr{kind: iAlt}
|
|
p.re.add(alt)
|
|
end.next = alt // after end, do alt
|
|
alt.left = start // alternate brach: return to start
|
|
end = alt // start is unchanged; end is alt
|
|
case '?':
|
|
// (start,end)?:
|
|
alt := &instr{kind: iAlt}
|
|
p.re.add(alt)
|
|
nop := &instr{kind: iNop}
|
|
p.re.add(nop)
|
|
alt.left = start // alternate branch is start
|
|
alt.next = nop // follow on to nop
|
|
end.next = nop // after end, go to nop
|
|
start = alt // start is now alt
|
|
end = nop // end is nop pointed to by both branches
|
|
default:
|
|
return
|
|
}
|
|
switch p.nextc() {
|
|
case '*', '+', '?':
|
|
p.error(ErrBadClosure)
|
|
}
|
|
return
|
|
}
|
|
|
|
func (p *parser) concatenation() (start, end *instr) {
|
|
for {
|
|
nstart, nend := p.closure()
|
|
switch {
|
|
case nstart == nil: // end of this concatenation
|
|
if start == nil { // this is the empty string
|
|
nop := p.re.add(&instr{kind: iNop})
|
|
return nop, nop
|
|
}
|
|
return
|
|
case start == nil: // this is first element of concatenation
|
|
start, end = nstart, nend
|
|
default:
|
|
end.next = nstart
|
|
end = nend
|
|
}
|
|
}
|
|
panic("unreachable")
|
|
}
|
|
|
|
func (p *parser) regexp() (start, end *instr) {
|
|
start, end = p.concatenation()
|
|
for {
|
|
switch p.c() {
|
|
default:
|
|
return
|
|
case '|':
|
|
p.nextc()
|
|
nstart, nend := p.concatenation()
|
|
alt := &instr{kind: iAlt}
|
|
p.re.add(alt)
|
|
alt.left = start
|
|
alt.next = nstart
|
|
nop := &instr{kind: iNop}
|
|
p.re.add(nop)
|
|
end.next = nop
|
|
nend.next = nop
|
|
start, end = alt, nop
|
|
}
|
|
}
|
|
panic("unreachable")
|
|
}
|
|
|
|
func unNop(i *instr) *instr {
|
|
for i.kind == iNop {
|
|
i = i.next
|
|
}
|
|
return i
|
|
}
|
|
|
|
func (re *Regexp) eliminateNops() {
|
|
for _, inst := range re.inst {
|
|
if inst.kind == iEnd {
|
|
continue
|
|
}
|
|
inst.next = unNop(inst.next)
|
|
if inst.kind == iAlt {
|
|
inst.left = unNop(inst.left)
|
|
}
|
|
}
|
|
}
|
|
|
|
func (re *Regexp) dump() {
|
|
print("prefix <", re.prefix, ">\n")
|
|
for _, inst := range re.inst {
|
|
print(inst.index, ": ")
|
|
inst.print()
|
|
if inst.kind != iEnd {
|
|
print(" -> ", inst.next.index)
|
|
}
|
|
print("\n")
|
|
}
|
|
}
|
|
|
|
func (re *Regexp) doParse() {
|
|
p := newParser(re)
|
|
start := &instr{kind: iStart}
|
|
re.add(start)
|
|
s, e := p.regexp()
|
|
start.next = s
|
|
re.start = start
|
|
e.next = re.add(&instr{kind: iEnd})
|
|
|
|
if debug {
|
|
re.dump()
|
|
println()
|
|
}
|
|
|
|
re.eliminateNops()
|
|
if debug {
|
|
re.dump()
|
|
println()
|
|
}
|
|
re.setPrefix()
|
|
if debug {
|
|
re.dump()
|
|
println()
|
|
}
|
|
}
|
|
|
|
// Extract regular text from the beginning of the pattern,
|
|
// possibly after a leading iBOT.
|
|
// That text can be used by doExecute to speed up matching.
|
|
func (re *Regexp) setPrefix() {
|
|
var b []byte
|
|
var utf = make([]byte, utf8.UTFMax)
|
|
var inst *instr
|
|
// First instruction is start; skip that. Also skip any initial iBOT.
|
|
inst = re.inst[0].next
|
|
for inst.kind == iBOT {
|
|
inst = inst.next
|
|
}
|
|
Loop:
|
|
for ; inst.kind != iEnd; inst = inst.next {
|
|
// stop if this is not a char
|
|
if inst.kind != iChar {
|
|
break
|
|
}
|
|
// stop if this char can be followed by a match for an empty string,
|
|
// which includes closures, ^, and $.
|
|
switch inst.next.kind {
|
|
case iBOT, iEOT, iAlt:
|
|
break Loop
|
|
}
|
|
n := utf8.EncodeRune(utf, inst.char)
|
|
b = append(b, utf[0:n]...)
|
|
}
|
|
// point prefixStart instruction to first non-CHAR after prefix
|
|
re.prefixStart = inst
|
|
re.prefixBytes = b
|
|
re.prefix = string(b)
|
|
}
|
|
|
|
// String returns the source text used to compile the regular expression.
|
|
func (re *Regexp) String() string {
|
|
return re.expr
|
|
}
|
|
|
|
// Compile parses a regular expression and returns, if successful, a Regexp
|
|
// object that can be used to match against text.
|
|
func Compile(str string) (regexp *Regexp, error os.Error) {
|
|
regexp = new(Regexp)
|
|
// doParse will panic if there is a parse error.
|
|
defer func() {
|
|
if e := recover(); e != nil {
|
|
regexp = nil
|
|
error = e.(Error) // Will re-panic if error was not an Error, e.g. nil-pointer exception
|
|
}
|
|
}()
|
|
regexp.expr = str
|
|
regexp.inst = make([]*instr, 0, 10)
|
|
regexp.doParse()
|
|
return
|
|
}
|
|
|
|
// MustCompile is like Compile but panics if the expression cannot be parsed.
|
|
// It simplifies safe initialization of global variables holding compiled regular
|
|
// expressions.
|
|
func MustCompile(str string) *Regexp {
|
|
regexp, error := Compile(str)
|
|
if error != nil {
|
|
panic(`regexp: compiling "` + str + `": ` + error.String())
|
|
}
|
|
return regexp
|
|
}
|
|
|
|
// NumSubexp returns the number of parenthesized subexpressions in this Regexp.
|
|
func (re *Regexp) NumSubexp() int { return re.nbra }
|
|
|
|
// The match arena allows us to reduce the garbage generated by tossing
|
|
// match vectors away as we execute. Matches are ref counted and returned
|
|
// to a free list when no longer active. Increases a simple benchmark by 22X.
|
|
type matchArena struct {
|
|
head *matchVec
|
|
len int // length of match vector
|
|
pos int
|
|
atBOT bool // whether we're at beginning of text
|
|
atEOT bool // whether we're at end of text
|
|
}
|
|
|
|
type matchVec struct {
|
|
m []int // pairs of bracketing submatches. 0th is start,end
|
|
ref int
|
|
next *matchVec
|
|
}
|
|
|
|
func (a *matchArena) new() *matchVec {
|
|
if a.head == nil {
|
|
const N = 10
|
|
block := make([]matchVec, N)
|
|
for i := 0; i < N; i++ {
|
|
b := &block[i]
|
|
b.next = a.head
|
|
a.head = b
|
|
}
|
|
}
|
|
m := a.head
|
|
a.head = m.next
|
|
m.ref = 0
|
|
if m.m == nil {
|
|
m.m = make([]int, a.len)
|
|
}
|
|
return m
|
|
}
|
|
|
|
func (a *matchArena) free(m *matchVec) {
|
|
m.ref--
|
|
if m.ref == 0 {
|
|
m.next = a.head
|
|
a.head = m
|
|
}
|
|
}
|
|
|
|
func (a *matchArena) copy(m *matchVec) *matchVec {
|
|
m1 := a.new()
|
|
copy(m1.m, m.m)
|
|
return m1
|
|
}
|
|
|
|
func (a *matchArena) noMatch() *matchVec {
|
|
m := a.new()
|
|
for i := range m.m {
|
|
m.m[i] = -1 // no match seen; catches cases like "a(b)?c" on "ac"
|
|
}
|
|
m.ref = 1
|
|
return m
|
|
}
|
|
|
|
type state struct {
|
|
inst *instr // next instruction to execute
|
|
prefixed bool // this match began with a fixed prefix
|
|
match *matchVec
|
|
}
|
|
|
|
// Append new state to to-do list. Leftmost-longest wins so avoid
|
|
// adding a state that's already active. The matchVec will be inc-ref'ed
|
|
// if it is assigned to a state.
|
|
func (a *matchArena) addState(s []state, inst *instr, prefixed bool, match *matchVec) []state {
|
|
switch inst.kind {
|
|
case iBOT:
|
|
if a.atBOT {
|
|
s = a.addState(s, inst.next, prefixed, match)
|
|
}
|
|
return s
|
|
case iEOT:
|
|
if a.atEOT {
|
|
s = a.addState(s, inst.next, prefixed, match)
|
|
}
|
|
return s
|
|
case iBra:
|
|
match.m[inst.braNum] = a.pos
|
|
s = a.addState(s, inst.next, prefixed, match)
|
|
return s
|
|
}
|
|
l := len(s)
|
|
// States are inserted in order so it's sufficient to see if we have the same
|
|
// instruction; no need to see if existing match is earlier (it is).
|
|
for i := 0; i < l; i++ {
|
|
if s[i].inst == inst {
|
|
return s
|
|
}
|
|
}
|
|
s = append(s, state{inst, prefixed, match})
|
|
match.ref++
|
|
if inst.kind == iAlt {
|
|
s = a.addState(s, inst.left, prefixed, a.copy(match))
|
|
// give other branch a copy of this match vector
|
|
s = a.addState(s, inst.next, prefixed, a.copy(match))
|
|
}
|
|
return s
|
|
}
|
|
|
|
// input abstracts different representations of the input text. It provides
|
|
// one-character lookahead.
|
|
type input interface {
|
|
step(pos int) (rune int, width int) // advance one rune
|
|
canCheckPrefix() bool // can we look ahead without losing info?
|
|
hasPrefix(re *Regexp) bool
|
|
index(re *Regexp, pos int) int
|
|
}
|
|
|
|
// inputString scans a string.
|
|
type inputString struct {
|
|
str string
|
|
}
|
|
|
|
func newInputString(str string) *inputString {
|
|
return &inputString{str: str}
|
|
}
|
|
|
|
func (i *inputString) step(pos int) (int, int) {
|
|
if pos < len(i.str) {
|
|
return utf8.DecodeRuneInString(i.str[pos:len(i.str)])
|
|
}
|
|
return endOfText, 0
|
|
}
|
|
|
|
func (i *inputString) canCheckPrefix() bool {
|
|
return true
|
|
}
|
|
|
|
func (i *inputString) hasPrefix(re *Regexp) bool {
|
|
return strings.HasPrefix(i.str, re.prefix)
|
|
}
|
|
|
|
func (i *inputString) index(re *Regexp, pos int) int {
|
|
return strings.Index(i.str[pos:], re.prefix)
|
|
}
|
|
|
|
// inputBytes scans a byte slice.
|
|
type inputBytes struct {
|
|
str []byte
|
|
}
|
|
|
|
func newInputBytes(str []byte) *inputBytes {
|
|
return &inputBytes{str: str}
|
|
}
|
|
|
|
func (i *inputBytes) step(pos int) (int, int) {
|
|
if pos < len(i.str) {
|
|
return utf8.DecodeRune(i.str[pos:len(i.str)])
|
|
}
|
|
return endOfText, 0
|
|
}
|
|
|
|
func (i *inputBytes) canCheckPrefix() bool {
|
|
return true
|
|
}
|
|
|
|
func (i *inputBytes) hasPrefix(re *Regexp) bool {
|
|
return bytes.HasPrefix(i.str, re.prefixBytes)
|
|
}
|
|
|
|
func (i *inputBytes) index(re *Regexp, pos int) int {
|
|
return bytes.Index(i.str[pos:], re.prefixBytes)
|
|
}
|
|
|
|
// inputReader scans a RuneReader.
|
|
type inputReader struct {
|
|
r io.RuneReader
|
|
atEOT bool
|
|
pos int
|
|
}
|
|
|
|
func newInputReader(r io.RuneReader) *inputReader {
|
|
return &inputReader{r: r}
|
|
}
|
|
|
|
func (i *inputReader) step(pos int) (int, int) {
|
|
if !i.atEOT && pos != i.pos {
|
|
return endOfText, 0
|
|
|
|
}
|
|
r, w, err := i.r.ReadRune()
|
|
if err != nil {
|
|
i.atEOT = true
|
|
return endOfText, 0
|
|
}
|
|
i.pos += w
|
|
return r, w
|
|
}
|
|
|
|
func (i *inputReader) canCheckPrefix() bool {
|
|
return false
|
|
}
|
|
|
|
func (i *inputReader) hasPrefix(re *Regexp) bool {
|
|
return false
|
|
}
|
|
|
|
func (i *inputReader) index(re *Regexp, pos int) int {
|
|
return -1
|
|
}
|
|
|
|
// Search match starting from pos bytes into the input.
|
|
func (re *Regexp) doExecute(i input, pos int) []int {
|
|
var s [2][]state
|
|
s[0] = make([]state, 0, 10)
|
|
s[1] = make([]state, 0, 10)
|
|
in, out := 0, 1
|
|
var final state
|
|
found := false
|
|
anchored := re.inst[0].next.kind == iBOT
|
|
if anchored && pos > 0 {
|
|
return nil
|
|
}
|
|
// fast check for initial plain substring
|
|
if i.canCheckPrefix() && re.prefix != "" {
|
|
advance := 0
|
|
if anchored {
|
|
if !i.hasPrefix(re) {
|
|
return nil
|
|
}
|
|
} else {
|
|
advance = i.index(re, pos)
|
|
if advance == -1 {
|
|
return nil
|
|
}
|
|
}
|
|
pos += advance
|
|
}
|
|
// We look one character ahead so we can match $, which checks whether
|
|
// we are at EOT.
|
|
nextChar, nextWidth := i.step(pos)
|
|
arena := &matchArena{
|
|
len: 2 * (re.nbra + 1),
|
|
pos: pos,
|
|
atBOT: pos == 0,
|
|
atEOT: nextChar == endOfText,
|
|
}
|
|
for c, startPos := 0, pos; c != endOfText; {
|
|
if !found && (pos == startPos || !anchored) {
|
|
// prime the pump if we haven't seen a match yet
|
|
match := arena.noMatch()
|
|
match.m[0] = pos
|
|
s[out] = arena.addState(s[out], re.start.next, false, match)
|
|
arena.free(match) // if addState saved it, ref was incremented
|
|
} else if len(s[out]) == 0 {
|
|
// machine has completed
|
|
break
|
|
}
|
|
in, out = out, in // old out state is new in state
|
|
// clear out old state
|
|
old := s[out]
|
|
for _, state := range old {
|
|
arena.free(state.match)
|
|
}
|
|
s[out] = old[0:0] // truncate state vector
|
|
c = nextChar
|
|
thisPos := pos
|
|
pos += nextWidth
|
|
nextChar, nextWidth = i.step(pos)
|
|
arena.atEOT = nextChar == endOfText
|
|
arena.atBOT = false
|
|
arena.pos = pos
|
|
for _, st := range s[in] {
|
|
switch st.inst.kind {
|
|
case iBOT:
|
|
case iEOT:
|
|
case iChar:
|
|
if c == st.inst.char {
|
|
s[out] = arena.addState(s[out], st.inst.next, st.prefixed, st.match)
|
|
}
|
|
case iCharClass:
|
|
if st.inst.cclass.matches(c) {
|
|
s[out] = arena.addState(s[out], st.inst.next, st.prefixed, st.match)
|
|
}
|
|
case iAny:
|
|
if c != endOfText {
|
|
s[out] = arena.addState(s[out], st.inst.next, st.prefixed, st.match)
|
|
}
|
|
case iNotNL:
|
|
if c != endOfText && c != '\n' {
|
|
s[out] = arena.addState(s[out], st.inst.next, st.prefixed, st.match)
|
|
}
|
|
case iBra:
|
|
case iAlt:
|
|
case iEnd:
|
|
// choose leftmost longest
|
|
if !found || // first
|
|
st.match.m[0] < final.match.m[0] || // leftmost
|
|
(st.match.m[0] == final.match.m[0] && thisPos > final.match.m[1]) { // longest
|
|
if final.match != nil {
|
|
arena.free(final.match)
|
|
}
|
|
final = st
|
|
final.match.ref++
|
|
final.match.m[1] = thisPos
|
|
}
|
|
found = true
|
|
default:
|
|
st.inst.print()
|
|
panic("unknown instruction in execute")
|
|
}
|
|
}
|
|
}
|
|
if final.match == nil {
|
|
return nil
|
|
}
|
|
// if match found, back up start of match by width of prefix.
|
|
if final.prefixed && len(final.match.m) > 0 {
|
|
final.match.m[0] -= len(re.prefix)
|
|
}
|
|
return final.match.m
|
|
}
|
|
|
|
// LiteralPrefix returns a literal string that must begin any match
|
|
// of the regular expression re. It returns the boolean true if the
|
|
// literal string comprises the entire regular expression.
|
|
func (re *Regexp) LiteralPrefix() (prefix string, complete bool) {
|
|
c := make([]int, len(re.inst)-2) // minus start and end.
|
|
// First instruction is start; skip that.
|
|
i := 0
|
|
for inst := re.inst[0].next; inst.kind != iEnd; inst = inst.next {
|
|
// stop if this is not a char
|
|
if inst.kind != iChar {
|
|
return string(c[:i]), false
|
|
}
|
|
c[i] = inst.char
|
|
i++
|
|
}
|
|
return string(c[:i]), true
|
|
}
|
|
|
|
// MatchReader returns whether the Regexp matches the text read by the
|
|
// RuneReader. The return value is a boolean: true for match, false for no
|
|
// match.
|
|
func (re *Regexp) MatchReader(r io.RuneReader) bool {
|
|
return len(re.doExecute(newInputReader(r), 0)) > 0
|
|
}
|
|
|
|
// MatchString returns whether the Regexp matches the string s.
|
|
// The return value is a boolean: true for match, false for no match.
|
|
func (re *Regexp) MatchString(s string) bool { return len(re.doExecute(newInputString(s), 0)) > 0 }
|
|
|
|
// Match returns whether the Regexp matches the byte slice b.
|
|
// The return value is a boolean: true for match, false for no match.
|
|
func (re *Regexp) Match(b []byte) bool { return len(re.doExecute(newInputBytes(b), 0)) > 0 }
|
|
|
|
// MatchReader checks whether a textual regular expression matches the text
|
|
// read by the RuneReader. More complicated queries need to use Compile and
|
|
// the full Regexp interface.
|
|
func MatchReader(pattern string, r io.RuneReader) (matched bool, error os.Error) {
|
|
re, err := Compile(pattern)
|
|
if err != nil {
|
|
return false, err
|
|
}
|
|
return re.MatchReader(r), nil
|
|
}
|
|
|
|
// MatchString checks whether a textual regular expression
|
|
// matches a string. More complicated queries need
|
|
// to use Compile and the full Regexp interface.
|
|
func MatchString(pattern string, s string) (matched bool, error os.Error) {
|
|
re, err := Compile(pattern)
|
|
if err != nil {
|
|
return false, err
|
|
}
|
|
return re.MatchString(s), nil
|
|
}
|
|
|
|
// Match checks whether a textual regular expression
|
|
// matches a byte slice. More complicated queries need
|
|
// to use Compile and the full Regexp interface.
|
|
func Match(pattern string, b []byte) (matched bool, error os.Error) {
|
|
re, err := Compile(pattern)
|
|
if err != nil {
|
|
return false, err
|
|
}
|
|
return re.Match(b), nil
|
|
}
|
|
|
|
// ReplaceAllString returns a copy of src in which all matches for the Regexp
|
|
// have been replaced by repl. No support is provided for expressions
|
|
// (e.g. \1 or $1) in the replacement string.
|
|
func (re *Regexp) ReplaceAllString(src, repl string) string {
|
|
return re.ReplaceAllStringFunc(src, func(string) string { return repl })
|
|
}
|
|
|
|
// ReplaceAllStringFunc returns a copy of src in which all matches for the
|
|
// Regexp have been replaced by the return value of of function repl (whose
|
|
// first argument is the matched string). No support is provided for
|
|
// expressions (e.g. \1 or $1) in the replacement string.
|
|
func (re *Regexp) ReplaceAllStringFunc(src string, repl func(string) string) string {
|
|
lastMatchEnd := 0 // end position of the most recent match
|
|
searchPos := 0 // position where we next look for a match
|
|
buf := new(bytes.Buffer)
|
|
for searchPos <= len(src) {
|
|
a := re.doExecute(newInputString(src), searchPos)
|
|
if len(a) == 0 {
|
|
break // no more matches
|
|
}
|
|
|
|
// Copy the unmatched characters before this match.
|
|
io.WriteString(buf, src[lastMatchEnd:a[0]])
|
|
|
|
// Now insert a copy of the replacement string, but not for a
|
|
// match of the empty string immediately after another match.
|
|
// (Otherwise, we get double replacement for patterns that
|
|
// match both empty and nonempty strings.)
|
|
if a[1] > lastMatchEnd || a[0] == 0 {
|
|
io.WriteString(buf, repl(src[a[0]:a[1]]))
|
|
}
|
|
lastMatchEnd = a[1]
|
|
|
|
// Advance past this match; always advance at least one character.
|
|
_, width := utf8.DecodeRuneInString(src[searchPos:])
|
|
if searchPos+width > a[1] {
|
|
searchPos += width
|
|
} else if searchPos+1 > a[1] {
|
|
// This clause is only needed at the end of the input
|
|
// string. In that case, DecodeRuneInString returns width=0.
|
|
searchPos++
|
|
} else {
|
|
searchPos = a[1]
|
|
}
|
|
}
|
|
|
|
// Copy the unmatched characters after the last match.
|
|
io.WriteString(buf, src[lastMatchEnd:])
|
|
|
|
return buf.String()
|
|
}
|
|
|
|
// ReplaceAll returns a copy of src in which all matches for the Regexp
|
|
// have been replaced by repl. No support is provided for expressions
|
|
// (e.g. \1 or $1) in the replacement text.
|
|
func (re *Regexp) ReplaceAll(src, repl []byte) []byte {
|
|
return re.ReplaceAllFunc(src, func([]byte) []byte { return repl })
|
|
}
|
|
|
|
// ReplaceAllFunc returns a copy of src in which all matches for the
|
|
// Regexp have been replaced by the return value of of function repl (whose
|
|
// first argument is the matched []byte). No support is provided for
|
|
// expressions (e.g. \1 or $1) in the replacement string.
|
|
func (re *Regexp) ReplaceAllFunc(src []byte, repl func([]byte) []byte) []byte {
|
|
lastMatchEnd := 0 // end position of the most recent match
|
|
searchPos := 0 // position where we next look for a match
|
|
buf := new(bytes.Buffer)
|
|
for searchPos <= len(src) {
|
|
a := re.doExecute(newInputBytes(src), searchPos)
|
|
if len(a) == 0 {
|
|
break // no more matches
|
|
}
|
|
|
|
// Copy the unmatched characters before this match.
|
|
buf.Write(src[lastMatchEnd:a[0]])
|
|
|
|
// Now insert a copy of the replacement string, but not for a
|
|
// match of the empty string immediately after another match.
|
|
// (Otherwise, we get double replacement for patterns that
|
|
// match both empty and nonempty strings.)
|
|
if a[1] > lastMatchEnd || a[0] == 0 {
|
|
buf.Write(repl(src[a[0]:a[1]]))
|
|
}
|
|
lastMatchEnd = a[1]
|
|
|
|
// Advance past this match; always advance at least one character.
|
|
_, width := utf8.DecodeRune(src[searchPos:])
|
|
if searchPos+width > a[1] {
|
|
searchPos += width
|
|
} else if searchPos+1 > a[1] {
|
|
// This clause is only needed at the end of the input
|
|
// string. In that case, DecodeRuneInString returns width=0.
|
|
searchPos++
|
|
} else {
|
|
searchPos = a[1]
|
|
}
|
|
}
|
|
|
|
// Copy the unmatched characters after the last match.
|
|
buf.Write(src[lastMatchEnd:])
|
|
|
|
return buf.Bytes()
|
|
}
|
|
|
|
// QuoteMeta returns a string that quotes all regular expression metacharacters
|
|
// inside the argument text; the returned string is a regular expression matching
|
|
// the literal text. For example, QuoteMeta(`[foo]`) returns `\[foo\]`.
|
|
func QuoteMeta(s string) string {
|
|
b := make([]byte, 2*len(s))
|
|
|
|
// A byte loop is correct because all metacharacters are ASCII.
|
|
j := 0
|
|
for i := 0; i < len(s); i++ {
|
|
if special(int(s[i])) {
|
|
b[j] = '\\'
|
|
j++
|
|
}
|
|
b[j] = s[i]
|
|
j++
|
|
}
|
|
return string(b[0:j])
|
|
}
|
|
|
|
// Find matches in slice b if b is non-nil, otherwise find matches in string s.
|
|
func (re *Regexp) allMatches(s string, b []byte, n int, deliver func([]int)) {
|
|
var end int
|
|
if b == nil {
|
|
end = len(s)
|
|
} else {
|
|
end = len(b)
|
|
}
|
|
|
|
for pos, i, prevMatchEnd := 0, 0, -1; i < n && pos <= end; {
|
|
var in input
|
|
if b == nil {
|
|
in = newInputString(s)
|
|
} else {
|
|
in = newInputBytes(b)
|
|
}
|
|
matches := re.doExecute(in, pos)
|
|
if len(matches) == 0 {
|
|
break
|
|
}
|
|
|
|
accept := true
|
|
if matches[1] == pos {
|
|
// We've found an empty match.
|
|
if matches[0] == prevMatchEnd {
|
|
// We don't allow an empty match right
|
|
// after a previous match, so ignore it.
|
|
accept = false
|
|
}
|
|
var width int
|
|
// TODO: use step()
|
|
if b == nil {
|
|
_, width = utf8.DecodeRuneInString(s[pos:end])
|
|
} else {
|
|
_, width = utf8.DecodeRune(b[pos:end])
|
|
}
|
|
if width > 0 {
|
|
pos += width
|
|
} else {
|
|
pos = end + 1
|
|
}
|
|
} else {
|
|
pos = matches[1]
|
|
}
|
|
prevMatchEnd = matches[1]
|
|
|
|
if accept {
|
|
deliver(matches)
|
|
i++
|
|
}
|
|
}
|
|
}
|
|
|
|
// Find returns a slice holding the text of the leftmost match in b of the regular expression.
|
|
// A return value of nil indicates no match.
|
|
func (re *Regexp) Find(b []byte) []byte {
|
|
a := re.doExecute(newInputBytes(b), 0)
|
|
if a == nil {
|
|
return nil
|
|
}
|
|
return b[a[0]:a[1]]
|
|
}
|
|
|
|
// FindIndex returns a two-element slice of integers defining the location of
|
|
// the leftmost match in b of the regular expression. The match itself is at
|
|
// b[loc[0]:loc[1]].
|
|
// A return value of nil indicates no match.
|
|
func (re *Regexp) FindIndex(b []byte) (loc []int) {
|
|
a := re.doExecute(newInputBytes(b), 0)
|
|
if a == nil {
|
|
return nil
|
|
}
|
|
return a[0:2]
|
|
}
|
|
|
|
// FindString returns a string holding the text of the leftmost match in s of the regular
|
|
// expression. If there is no match, the return value is an empty string,
|
|
// but it will also be empty if the regular expression successfully matches
|
|
// an empty string. Use FindStringIndex or FindStringSubmatch if it is
|
|
// necessary to distinguish these cases.
|
|
func (re *Regexp) FindString(s string) string {
|
|
a := re.doExecute(newInputString(s), 0)
|
|
if a == nil {
|
|
return ""
|
|
}
|
|
return s[a[0]:a[1]]
|
|
}
|
|
|
|
// FindStringIndex returns a two-element slice of integers defining the
|
|
// location of the leftmost match in s of the regular expression. The match
|
|
// itself is at s[loc[0]:loc[1]].
|
|
// A return value of nil indicates no match.
|
|
func (re *Regexp) FindStringIndex(s string) []int {
|
|
a := re.doExecute(newInputString(s), 0)
|
|
if a == nil {
|
|
return nil
|
|
}
|
|
return a[0:2]
|
|
}
|
|
|
|
// FindReaderIndex returns a two-element slice of integers defining the
|
|
// location of the leftmost match of the regular expression in text read from
|
|
// the RuneReader. The match itself is at s[loc[0]:loc[1]]. A return
|
|
// value of nil indicates no match.
|
|
func (re *Regexp) FindReaderIndex(r io.RuneReader) []int {
|
|
a := re.doExecute(newInputReader(r), 0)
|
|
if a == nil {
|
|
return nil
|
|
}
|
|
return a[0:2]
|
|
}
|
|
|
|
// FindSubmatch returns a slice of slices holding the text of the leftmost
|
|
// match of the regular expression in b and the matches, if any, of its
|
|
// subexpressions, as defined by the 'Submatch' descriptions in the package
|
|
// comment.
|
|
// A return value of nil indicates no match.
|
|
func (re *Regexp) FindSubmatch(b []byte) [][]byte {
|
|
a := re.doExecute(newInputBytes(b), 0)
|
|
if a == nil {
|
|
return nil
|
|
}
|
|
ret := make([][]byte, len(a)/2)
|
|
for i := range ret {
|
|
if a[2*i] >= 0 {
|
|
ret[i] = b[a[2*i]:a[2*i+1]]
|
|
}
|
|
}
|
|
return ret
|
|
}
|
|
|
|
// FindSubmatchIndex returns a slice holding the index pairs identifying the
|
|
// leftmost match of the regular expression in b and the matches, if any, of
|
|
// its subexpressions, as defined by the 'Submatch' and 'Index' descriptions
|
|
// in the package comment.
|
|
// A return value of nil indicates no match.
|
|
func (re *Regexp) FindSubmatchIndex(b []byte) []int {
|
|
return re.doExecute(newInputBytes(b), 0)
|
|
}
|
|
|
|
// FindStringSubmatch returns a slice of strings holding the text of the
|
|
// leftmost match of the regular expression in s and the matches, if any, of
|
|
// its subexpressions, as defined by the 'Submatch' description in the
|
|
// package comment.
|
|
// A return value of nil indicates no match.
|
|
func (re *Regexp) FindStringSubmatch(s string) []string {
|
|
a := re.doExecute(newInputString(s), 0)
|
|
if a == nil {
|
|
return nil
|
|
}
|
|
ret := make([]string, len(a)/2)
|
|
for i := range ret {
|
|
if a[2*i] >= 0 {
|
|
ret[i] = s[a[2*i]:a[2*i+1]]
|
|
}
|
|
}
|
|
return ret
|
|
}
|
|
|
|
// FindStringSubmatchIndex returns a slice holding the index pairs
|
|
// identifying the leftmost match of the regular expression in s and the
|
|
// matches, if any, of its subexpressions, as defined by the 'Submatch' and
|
|
// 'Index' descriptions in the package comment.
|
|
// A return value of nil indicates no match.
|
|
func (re *Regexp) FindStringSubmatchIndex(s string) []int {
|
|
return re.doExecute(newInputString(s), 0)
|
|
}
|
|
|
|
// FindReaderSubmatchIndex returns a slice holding the index pairs
|
|
// identifying the leftmost match of the regular expression of text read by
|
|
// the RuneReader, and the matches, if any, of its subexpressions, as defined
|
|
// by the 'Submatch' and 'Index' descriptions in the package comment. A
|
|
// return value of nil indicates no match.
|
|
func (re *Regexp) FindReaderSubmatchIndex(r io.RuneReader) []int {
|
|
return re.doExecute(newInputReader(r), 0)
|
|
}
|
|
|
|
const startSize = 10 // The size at which to start a slice in the 'All' routines.
|
|
|
|
// FindAll is the 'All' version of Find; it returns a slice of all successive
|
|
// matches of the expression, as defined by the 'All' description in the
|
|
// package comment.
|
|
// A return value of nil indicates no match.
|
|
func (re *Regexp) FindAll(b []byte, n int) [][]byte {
|
|
if n < 0 {
|
|
n = len(b) + 1
|
|
}
|
|
result := make([][]byte, 0, startSize)
|
|
re.allMatches("", b, n, func(match []int) {
|
|
result = append(result, b[match[0]:match[1]])
|
|
})
|
|
if len(result) == 0 {
|
|
return nil
|
|
}
|
|
return result
|
|
}
|
|
|
|
// FindAllIndex is the 'All' version of FindIndex; it returns a slice of all
|
|
// successive matches of the expression, as defined by the 'All' description
|
|
// in the package comment.
|
|
// A return value of nil indicates no match.
|
|
func (re *Regexp) FindAllIndex(b []byte, n int) [][]int {
|
|
if n < 0 {
|
|
n = len(b) + 1
|
|
}
|
|
result := make([][]int, 0, startSize)
|
|
re.allMatches("", b, n, func(match []int) {
|
|
result = append(result, match[0:2])
|
|
})
|
|
if len(result) == 0 {
|
|
return nil
|
|
}
|
|
return result
|
|
}
|
|
|
|
// FindAllString is the 'All' version of FindString; it returns a slice of all
|
|
// successive matches of the expression, as defined by the 'All' description
|
|
// in the package comment.
|
|
// A return value of nil indicates no match.
|
|
func (re *Regexp) FindAllString(s string, n int) []string {
|
|
if n < 0 {
|
|
n = len(s) + 1
|
|
}
|
|
result := make([]string, 0, startSize)
|
|
re.allMatches(s, nil, n, func(match []int) {
|
|
result = append(result, s[match[0]:match[1]])
|
|
})
|
|
if len(result) == 0 {
|
|
return nil
|
|
}
|
|
return result
|
|
}
|
|
|
|
// FindAllStringIndex is the 'All' version of FindStringIndex; it returns a
|
|
// slice of all successive matches of the expression, as defined by the 'All'
|
|
// description in the package comment.
|
|
// A return value of nil indicates no match.
|
|
func (re *Regexp) FindAllStringIndex(s string, n int) [][]int {
|
|
if n < 0 {
|
|
n = len(s) + 1
|
|
}
|
|
result := make([][]int, 0, startSize)
|
|
re.allMatches(s, nil, n, func(match []int) {
|
|
result = append(result, match[0:2])
|
|
})
|
|
if len(result) == 0 {
|
|
return nil
|
|
}
|
|
return result
|
|
}
|
|
|
|
// FindAllSubmatch is the 'All' version of FindSubmatch; it returns a slice
|
|
// of all successive matches of the expression, as defined by the 'All'
|
|
// description in the package comment.
|
|
// A return value of nil indicates no match.
|
|
func (re *Regexp) FindAllSubmatch(b []byte, n int) [][][]byte {
|
|
if n < 0 {
|
|
n = len(b) + 1
|
|
}
|
|
result := make([][][]byte, 0, startSize)
|
|
re.allMatches("", b, n, func(match []int) {
|
|
slice := make([][]byte, len(match)/2)
|
|
for j := range slice {
|
|
if match[2*j] >= 0 {
|
|
slice[j] = b[match[2*j]:match[2*j+1]]
|
|
}
|
|
}
|
|
result = append(result, slice)
|
|
})
|
|
if len(result) == 0 {
|
|
return nil
|
|
}
|
|
return result
|
|
}
|
|
|
|
// FindAllSubmatchIndex is the 'All' version of FindSubmatchIndex; it returns
|
|
// a slice of all successive matches of the expression, as defined by the
|
|
// 'All' description in the package comment.
|
|
// A return value of nil indicates no match.
|
|
func (re *Regexp) FindAllSubmatchIndex(b []byte, n int) [][]int {
|
|
if n < 0 {
|
|
n = len(b) + 1
|
|
}
|
|
result := make([][]int, 0, startSize)
|
|
re.allMatches("", b, n, func(match []int) {
|
|
result = append(result, match)
|
|
})
|
|
if len(result) == 0 {
|
|
return nil
|
|
}
|
|
return result
|
|
}
|
|
|
|
// FindAllStringSubmatch is the 'All' version of FindStringSubmatch; it
|
|
// returns a slice of all successive matches of the expression, as defined by
|
|
// the 'All' description in the package comment.
|
|
// A return value of nil indicates no match.
|
|
func (re *Regexp) FindAllStringSubmatch(s string, n int) [][]string {
|
|
if n < 0 {
|
|
n = len(s) + 1
|
|
}
|
|
result := make([][]string, 0, startSize)
|
|
re.allMatches(s, nil, n, func(match []int) {
|
|
slice := make([]string, len(match)/2)
|
|
for j := range slice {
|
|
if match[2*j] >= 0 {
|
|
slice[j] = s[match[2*j]:match[2*j+1]]
|
|
}
|
|
}
|
|
result = append(result, slice)
|
|
})
|
|
if len(result) == 0 {
|
|
return nil
|
|
}
|
|
return result
|
|
}
|
|
|
|
// FindAllStringSubmatchIndex is the 'All' version of
|
|
// FindStringSubmatchIndex; it returns a slice of all successive matches of
|
|
// the expression, as defined by the 'All' description in the package
|
|
// comment.
|
|
// A return value of nil indicates no match.
|
|
func (re *Regexp) FindAllStringSubmatchIndex(s string, n int) [][]int {
|
|
if n < 0 {
|
|
n = len(s) + 1
|
|
}
|
|
result := make([][]int, 0, startSize)
|
|
re.allMatches(s, nil, n, func(match []int) {
|
|
result = append(result, match)
|
|
})
|
|
if len(result) == 0 {
|
|
return nil
|
|
}
|
|
return result
|
|
}
|