80927a562e
PR fortran/40643 PR fortran/31067 * trans-intrinsic.c (gfc_conv_intrinsic_minmaxloc, gfc_conv_intrinsic_minmaxval): Handle Infinities and NaNs properly, optimize. * trans-array.c (gfc_trans_scalarized_loop_end): No longer static. * trans-array.h (gfc_trans_scalarized_loop_end): New prototype. * libgfortran.h (GFC_REAL_4_INFINITY, GFC_REAL_8_INFINITY, GFC_REAL_10_INFINITY, GFC_REAL_16_INFINITY, GFC_REAL_4_QUIET_NAN, GFC_REAL_8_QUIET_NAN, GFC_REAL_10_QUIET_NAN, GFC_REAL_16_QUIET_NAN): Define. * m4/iparm.m4 (atype_inf, atype_nan): Define. * m4/ifunction.m4: Formatting. * m4/iforeach.m4: Likewise. (START_FOREACH_FUNCTION): Initialize dest to all 1s, not all 0s. (START_FOREACH_BLOCK, FINISH_FOREACH_FUNCTION, FINISH_MASKED_FOREACH_FUNCTION): Run foreach block inside a loop until count[0] == extent[0]. * m4/minval.m4: Formatting. Handle NaNs and infinities. Optimize. * m4/maxval.m4: Likewise. * m4/minloc0.m4: Likewise. * m4/maxloc0.m4: Likewise. * m4/minloc1.m4: Likewise. * m4/maxloc1.m4: Likewise. * generated/maxloc0_16_i16.c: Regenerated. * generated/maxloc0_16_i1.c: Likewise. * generated/maxloc0_16_i2.c: Likewise. * generated/maxloc0_16_i4.c: Likewise. * generated/maxloc0_16_i8.c: Likewise. * generated/maxloc0_16_r10.c: Likewise. * generated/maxloc0_16_r16.c: Likewise. * generated/maxloc0_16_r4.c: Likewise. * generated/maxloc0_16_r8.c: Likewise. * generated/maxloc0_4_i16.c: Likewise. * generated/maxloc0_4_i1.c: Likewise. * generated/maxloc0_4_i2.c: Likewise. * generated/maxloc0_4_i4.c: Likewise. * generated/maxloc0_4_i8.c: Likewise. * generated/maxloc0_4_r10.c: Likewise. * generated/maxloc0_4_r16.c: Likewise. * generated/maxloc0_4_r4.c: Likewise. * generated/maxloc0_4_r8.c: Likewise. * generated/maxloc0_8_i16.c: Likewise. * generated/maxloc0_8_i1.c: Likewise. * generated/maxloc0_8_i2.c: Likewise. * generated/maxloc0_8_i4.c: Likewise. * generated/maxloc0_8_i8.c: Likewise. * generated/maxloc0_8_r10.c: Likewise. * generated/maxloc0_8_r16.c: Likewise. * generated/maxloc0_8_r4.c: Likewise. * generated/maxloc0_8_r8.c: Likewise. * generated/maxloc1_16_i16.c: Likewise. * generated/maxloc1_16_i1.c: Likewise. * generated/maxloc1_16_i2.c: Likewise. * generated/maxloc1_16_i4.c: Likewise. * generated/maxloc1_16_i8.c: Likewise. * generated/maxloc1_16_r10.c: Likewise. * generated/maxloc1_16_r16.c: Likewise. * generated/maxloc1_16_r4.c: Likewise. * generated/maxloc1_16_r8.c: Likewise. * generated/maxloc1_4_i16.c: Likewise. * generated/maxloc1_4_i1.c: Likewise. * generated/maxloc1_4_i2.c: Likewise. * generated/maxloc1_4_i4.c: Likewise. * generated/maxloc1_4_i8.c: Likewise. * generated/maxloc1_4_r10.c: Likewise. * generated/maxloc1_4_r16.c: Likewise. * generated/maxloc1_4_r4.c: Likewise. * generated/maxloc1_4_r8.c: Likewise. * generated/maxloc1_8_i16.c: Likewise. * generated/maxloc1_8_i1.c: Likewise. * generated/maxloc1_8_i2.c: Likewise. * generated/maxloc1_8_i4.c: Likewise. * generated/maxloc1_8_i8.c: Likewise. * generated/maxloc1_8_r10.c: Likewise. * generated/maxloc1_8_r16.c: Likewise. * generated/maxloc1_8_r4.c: Likewise. * generated/maxloc1_8_r8.c: Likewise. * generated/maxval_i16.c: Likewise. * generated/maxval_i1.c: Likewise. * generated/maxval_i2.c: Likewise. * generated/maxval_i4.c: Likewise. * generated/maxval_i8.c: Likewise. * generated/maxval_r10.c: Likewise. * generated/maxval_r16.c: Likewise. * generated/maxval_r4.c: Likewise. * generated/maxval_r8.c: Likewise. * generated/minloc0_16_i16.c: Likewise. * generated/minloc0_16_i1.c: Likewise. * generated/minloc0_16_i2.c: Likewise. * generated/minloc0_16_i4.c: Likewise. * generated/minloc0_16_i8.c: Likewise. * generated/minloc0_16_r10.c: Likewise. * generated/minloc0_16_r16.c: Likewise. * generated/minloc0_16_r4.c: Likewise. * generated/minloc0_16_r8.c: Likewise. * generated/minloc0_4_i16.c: Likewise. * generated/minloc0_4_i1.c: Likewise. * generated/minloc0_4_i2.c: Likewise. * generated/minloc0_4_i4.c: Likewise. * generated/minloc0_4_i8.c: Likewise. * generated/minloc0_4_r10.c: Likewise. * generated/minloc0_4_r16.c: Likewise. * generated/minloc0_4_r4.c: Likewise. * generated/minloc0_4_r8.c: Likewise. * generated/minloc0_8_i16.c: Likewise. * generated/minloc0_8_i1.c: Likewise. * generated/minloc0_8_i2.c: Likewise. * generated/minloc0_8_i4.c: Likewise. * generated/minloc0_8_i8.c: Likewise. * generated/minloc0_8_r10.c: Likewise. * generated/minloc0_8_r16.c: Likewise. * generated/minloc0_8_r4.c: Likewise. * generated/minloc0_8_r8.c: Likewise. * generated/minloc1_16_i16.c: Likewise. * generated/minloc1_16_i1.c: Likewise. * generated/minloc1_16_i2.c: Likewise. * generated/minloc1_16_i4.c: Likewise. * generated/minloc1_16_i8.c: Likewise. * generated/minloc1_16_r10.c: Likewise. * generated/minloc1_16_r16.c: Likewise. * generated/minloc1_16_r4.c: Likewise. * generated/minloc1_16_r8.c: Likewise. * generated/minloc1_4_i16.c: Likewise. * generated/minloc1_4_i1.c: Likewise. * generated/minloc1_4_i2.c: Likewise. * generated/minloc1_4_i4.c: Likewise. * generated/minloc1_4_i8.c: Likewise. * generated/minloc1_4_r10.c: Likewise. * generated/minloc1_4_r16.c: Likewise. * generated/minloc1_4_r4.c: Likewise. * generated/minloc1_4_r8.c: Likewise. * generated/minloc1_8_i16.c: Likewise. * generated/minloc1_8_i1.c: Likewise. * generated/minloc1_8_i2.c: Likewise. * generated/minloc1_8_i4.c: Likewise. * generated/minloc1_8_i8.c: Likewise. * generated/minloc1_8_r10.c: Likewise. * generated/minloc1_8_r16.c: Likewise. * generated/minloc1_8_r4.c: Likewise. * generated/minloc1_8_r8.c: Likewise. * generated/minval_i16.c: Likewise. * generated/minval_i1.c: Likewise. * generated/minval_i2.c: Likewise. * generated/minval_i4.c: Likewise. * generated/minval_i8.c: Likewise. * generated/minval_r10.c: Likewise. * generated/minval_r16.c: Likewise. * generated/minval_r4.c: Likewise. * generated/minval_r8.c: Likewise. * generated/product_c10.c: Likewise. * generated/product_c16.c: Likewise. * generated/product_c4.c: Likewise. * generated/product_c8.c: Likewise. * generated/product_i16.c: Likewise. * generated/product_i1.c: Likewise. * generated/product_i2.c: Likewise. * generated/product_i4.c: Likewise. * generated/product_i8.c: Likewise. * generated/product_r10.c: Likewise. * generated/product_r16.c: Likewise. * generated/product_r4.c: Likewise. * generated/product_r8.c: Likewise. * generated/sum_c10.c: Likewise. * generated/sum_c16.c: Likewise. * generated/sum_c4.c: Likewise. * generated/sum_c8.c: Likewise. * generated/sum_i16.c: Likewise. * generated/sum_i1.c: Likewise. * generated/sum_i2.c: Likewise. * generated/sum_i4.c: Likewise. * generated/sum_i8.c: Likewise. * generated/sum_r10.c: Likewise. * generated/sum_r16.c: Likewise. * generated/sum_r4.c: Likewise. * generated/sum_r8.c: Likewise. * gfortran.dg/maxlocval_2.f90: New test. * gfortran.dg/maxlocval_3.f90: New test. * gfortran.dg/maxlocval_4.f90: New test. * gfortran.dg/minlocval_1.f90: New test. * gfortran.dg/minlocval_2.f90: New test. * gfortran.dg/minlocval_3.f90: New test. * gfortran.dg/minlocval_4.f90: New test. From-SVN: r150041
512 lines
12 KiB
C
512 lines
12 KiB
C
/* Implementation of the PRODUCT intrinsic
|
|
Copyright 2002, 2007, 2009 Free Software Foundation, Inc.
|
|
Contributed by Paul Brook <paul@nowt.org>
|
|
|
|
This file is part of the GNU Fortran 95 runtime library (libgfortran).
|
|
|
|
Libgfortran is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 3 of the License, or (at your option) any later version.
|
|
|
|
Libgfortran is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
Under Section 7 of GPL version 3, you are granted additional
|
|
permissions described in the GCC Runtime Library Exception, version
|
|
3.1, as published by the Free Software Foundation.
|
|
|
|
You should have received a copy of the GNU General Public License and
|
|
a copy of the GCC Runtime Library Exception along with this program;
|
|
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#include "libgfortran.h"
|
|
#include <stdlib.h>
|
|
#include <assert.h>
|
|
|
|
|
|
#if defined (HAVE_GFC_COMPLEX_4) && defined (HAVE_GFC_COMPLEX_4)
|
|
|
|
|
|
extern void product_c4 (gfc_array_c4 * const restrict,
|
|
gfc_array_c4 * const restrict, const index_type * const restrict);
|
|
export_proto(product_c4);
|
|
|
|
void
|
|
product_c4 (gfc_array_c4 * const restrict retarray,
|
|
gfc_array_c4 * const restrict array,
|
|
const index_type * const restrict pdim)
|
|
{
|
|
index_type count[GFC_MAX_DIMENSIONS];
|
|
index_type extent[GFC_MAX_DIMENSIONS];
|
|
index_type sstride[GFC_MAX_DIMENSIONS];
|
|
index_type dstride[GFC_MAX_DIMENSIONS];
|
|
const GFC_COMPLEX_4 * restrict base;
|
|
GFC_COMPLEX_4 * restrict dest;
|
|
index_type rank;
|
|
index_type n;
|
|
index_type len;
|
|
index_type delta;
|
|
index_type dim;
|
|
int continue_loop;
|
|
|
|
/* Make dim zero based to avoid confusion. */
|
|
dim = (*pdim) - 1;
|
|
rank = GFC_DESCRIPTOR_RANK (array) - 1;
|
|
|
|
len = GFC_DESCRIPTOR_EXTENT(array,dim);
|
|
if (len < 0)
|
|
len = 0;
|
|
delta = GFC_DESCRIPTOR_STRIDE(array,dim);
|
|
|
|
for (n = 0; n < dim; n++)
|
|
{
|
|
sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n);
|
|
extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
|
|
|
|
if (extent[n] < 0)
|
|
extent[n] = 0;
|
|
}
|
|
for (n = dim; n < rank; n++)
|
|
{
|
|
sstride[n] = GFC_DESCRIPTOR_STRIDE(array, n + 1);
|
|
extent[n] = GFC_DESCRIPTOR_EXTENT(array, n + 1);
|
|
|
|
if (extent[n] < 0)
|
|
extent[n] = 0;
|
|
}
|
|
|
|
if (retarray->data == NULL)
|
|
{
|
|
size_t alloc_size, str;
|
|
|
|
for (n = 0; n < rank; n++)
|
|
{
|
|
if (n == 0)
|
|
str = 1;
|
|
else
|
|
str = GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1];
|
|
|
|
GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str);
|
|
|
|
}
|
|
|
|
retarray->offset = 0;
|
|
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
|
|
|
|
alloc_size = sizeof (GFC_COMPLEX_4) * GFC_DESCRIPTOR_STRIDE(retarray,rank-1)
|
|
* extent[rank-1];
|
|
|
|
if (alloc_size == 0)
|
|
{
|
|
/* Make sure we have a zero-sized array. */
|
|
GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1);
|
|
return;
|
|
|
|
}
|
|
else
|
|
retarray->data = internal_malloc_size (alloc_size);
|
|
}
|
|
else
|
|
{
|
|
if (rank != GFC_DESCRIPTOR_RANK (retarray))
|
|
runtime_error ("rank of return array incorrect in"
|
|
" PRODUCT intrinsic: is %ld, should be %ld",
|
|
(long int) (GFC_DESCRIPTOR_RANK (retarray)),
|
|
(long int) rank);
|
|
|
|
if (unlikely (compile_options.bounds_check))
|
|
bounds_ifunction_return ((array_t *) retarray, extent,
|
|
"return value", "PRODUCT");
|
|
}
|
|
|
|
for (n = 0; n < rank; n++)
|
|
{
|
|
count[n] = 0;
|
|
dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n);
|
|
if (extent[n] <= 0)
|
|
len = 0;
|
|
}
|
|
|
|
base = array->data;
|
|
dest = retarray->data;
|
|
|
|
continue_loop = 1;
|
|
while (continue_loop)
|
|
{
|
|
const GFC_COMPLEX_4 * restrict src;
|
|
GFC_COMPLEX_4 result;
|
|
src = base;
|
|
{
|
|
|
|
result = 1;
|
|
if (len <= 0)
|
|
*dest = 1;
|
|
else
|
|
{
|
|
for (n = 0; n < len; n++, src += delta)
|
|
{
|
|
|
|
result *= *src;
|
|
}
|
|
*dest = result;
|
|
}
|
|
}
|
|
/* Advance to the next element. */
|
|
count[0]++;
|
|
base += sstride[0];
|
|
dest += dstride[0];
|
|
n = 0;
|
|
while (count[n] == extent[n])
|
|
{
|
|
/* When we get to the end of a dimension, reset it and increment
|
|
the next dimension. */
|
|
count[n] = 0;
|
|
/* We could precalculate these products, but this is a less
|
|
frequently used path so probably not worth it. */
|
|
base -= sstride[n] * extent[n];
|
|
dest -= dstride[n] * extent[n];
|
|
n++;
|
|
if (n == rank)
|
|
{
|
|
/* Break out of the look. */
|
|
continue_loop = 0;
|
|
break;
|
|
}
|
|
else
|
|
{
|
|
count[n]++;
|
|
base += sstride[n];
|
|
dest += dstride[n];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
extern void mproduct_c4 (gfc_array_c4 * const restrict,
|
|
gfc_array_c4 * const restrict, const index_type * const restrict,
|
|
gfc_array_l1 * const restrict);
|
|
export_proto(mproduct_c4);
|
|
|
|
void
|
|
mproduct_c4 (gfc_array_c4 * const restrict retarray,
|
|
gfc_array_c4 * const restrict array,
|
|
const index_type * const restrict pdim,
|
|
gfc_array_l1 * const restrict mask)
|
|
{
|
|
index_type count[GFC_MAX_DIMENSIONS];
|
|
index_type extent[GFC_MAX_DIMENSIONS];
|
|
index_type sstride[GFC_MAX_DIMENSIONS];
|
|
index_type dstride[GFC_MAX_DIMENSIONS];
|
|
index_type mstride[GFC_MAX_DIMENSIONS];
|
|
GFC_COMPLEX_4 * restrict dest;
|
|
const GFC_COMPLEX_4 * restrict base;
|
|
const GFC_LOGICAL_1 * restrict mbase;
|
|
int rank;
|
|
int dim;
|
|
index_type n;
|
|
index_type len;
|
|
index_type delta;
|
|
index_type mdelta;
|
|
int mask_kind;
|
|
|
|
dim = (*pdim) - 1;
|
|
rank = GFC_DESCRIPTOR_RANK (array) - 1;
|
|
|
|
len = GFC_DESCRIPTOR_EXTENT(array,dim);
|
|
if (len <= 0)
|
|
return;
|
|
|
|
mbase = mask->data;
|
|
|
|
mask_kind = GFC_DESCRIPTOR_SIZE (mask);
|
|
|
|
if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
|
|
#ifdef HAVE_GFC_LOGICAL_16
|
|
|| mask_kind == 16
|
|
#endif
|
|
)
|
|
mbase = GFOR_POINTER_TO_L1 (mbase, mask_kind);
|
|
else
|
|
runtime_error ("Funny sized logical array");
|
|
|
|
delta = GFC_DESCRIPTOR_STRIDE(array,dim);
|
|
mdelta = GFC_DESCRIPTOR_STRIDE_BYTES(mask,dim);
|
|
|
|
for (n = 0; n < dim; n++)
|
|
{
|
|
sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n);
|
|
mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask,n);
|
|
extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
|
|
|
|
if (extent[n] < 0)
|
|
extent[n] = 0;
|
|
|
|
}
|
|
for (n = dim; n < rank; n++)
|
|
{
|
|
sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n + 1);
|
|
mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask, n + 1);
|
|
extent[n] = GFC_DESCRIPTOR_EXTENT(array, n + 1);
|
|
|
|
if (extent[n] < 0)
|
|
extent[n] = 0;
|
|
}
|
|
|
|
if (retarray->data == NULL)
|
|
{
|
|
size_t alloc_size, str;
|
|
|
|
for (n = 0; n < rank; n++)
|
|
{
|
|
if (n == 0)
|
|
str = 1;
|
|
else
|
|
str= GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1];
|
|
|
|
GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str);
|
|
|
|
}
|
|
|
|
alloc_size = sizeof (GFC_COMPLEX_4) * GFC_DESCRIPTOR_STRIDE(retarray,rank-1)
|
|
* extent[rank-1];
|
|
|
|
retarray->offset = 0;
|
|
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
|
|
|
|
if (alloc_size == 0)
|
|
{
|
|
/* Make sure we have a zero-sized array. */
|
|
GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1);
|
|
return;
|
|
}
|
|
else
|
|
retarray->data = internal_malloc_size (alloc_size);
|
|
|
|
}
|
|
else
|
|
{
|
|
if (rank != GFC_DESCRIPTOR_RANK (retarray))
|
|
runtime_error ("rank of return array incorrect in PRODUCT intrinsic");
|
|
|
|
if (unlikely (compile_options.bounds_check))
|
|
{
|
|
bounds_ifunction_return ((array_t *) retarray, extent,
|
|
"return value", "PRODUCT");
|
|
bounds_equal_extents ((array_t *) mask, (array_t *) array,
|
|
"MASK argument", "PRODUCT");
|
|
}
|
|
}
|
|
|
|
for (n = 0; n < rank; n++)
|
|
{
|
|
count[n] = 0;
|
|
dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n);
|
|
if (extent[n] <= 0)
|
|
return;
|
|
}
|
|
|
|
dest = retarray->data;
|
|
base = array->data;
|
|
|
|
while (base)
|
|
{
|
|
const GFC_COMPLEX_4 * restrict src;
|
|
const GFC_LOGICAL_1 * restrict msrc;
|
|
GFC_COMPLEX_4 result;
|
|
src = base;
|
|
msrc = mbase;
|
|
{
|
|
|
|
result = 1;
|
|
if (len <= 0)
|
|
*dest = 1;
|
|
else
|
|
{
|
|
for (n = 0; n < len; n++, src += delta, msrc += mdelta)
|
|
{
|
|
|
|
if (*msrc)
|
|
result *= *src;
|
|
}
|
|
*dest = result;
|
|
}
|
|
}
|
|
/* Advance to the next element. */
|
|
count[0]++;
|
|
base += sstride[0];
|
|
mbase += mstride[0];
|
|
dest += dstride[0];
|
|
n = 0;
|
|
while (count[n] == extent[n])
|
|
{
|
|
/* When we get to the end of a dimension, reset it and increment
|
|
the next dimension. */
|
|
count[n] = 0;
|
|
/* We could precalculate these products, but this is a less
|
|
frequently used path so probably not worth it. */
|
|
base -= sstride[n] * extent[n];
|
|
mbase -= mstride[n] * extent[n];
|
|
dest -= dstride[n] * extent[n];
|
|
n++;
|
|
if (n == rank)
|
|
{
|
|
/* Break out of the look. */
|
|
base = NULL;
|
|
break;
|
|
}
|
|
else
|
|
{
|
|
count[n]++;
|
|
base += sstride[n];
|
|
mbase += mstride[n];
|
|
dest += dstride[n];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
extern void sproduct_c4 (gfc_array_c4 * const restrict,
|
|
gfc_array_c4 * const restrict, const index_type * const restrict,
|
|
GFC_LOGICAL_4 *);
|
|
export_proto(sproduct_c4);
|
|
|
|
void
|
|
sproduct_c4 (gfc_array_c4 * const restrict retarray,
|
|
gfc_array_c4 * const restrict array,
|
|
const index_type * const restrict pdim,
|
|
GFC_LOGICAL_4 * mask)
|
|
{
|
|
index_type count[GFC_MAX_DIMENSIONS];
|
|
index_type extent[GFC_MAX_DIMENSIONS];
|
|
index_type sstride[GFC_MAX_DIMENSIONS];
|
|
index_type dstride[GFC_MAX_DIMENSIONS];
|
|
GFC_COMPLEX_4 * restrict dest;
|
|
index_type rank;
|
|
index_type n;
|
|
index_type dim;
|
|
|
|
|
|
if (*mask)
|
|
{
|
|
product_c4 (retarray, array, pdim);
|
|
return;
|
|
}
|
|
/* Make dim zero based to avoid confusion. */
|
|
dim = (*pdim) - 1;
|
|
rank = GFC_DESCRIPTOR_RANK (array) - 1;
|
|
|
|
for (n = 0; n < dim; n++)
|
|
{
|
|
sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n);
|
|
extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
|
|
|
|
if (extent[n] <= 0)
|
|
extent[n] = 0;
|
|
}
|
|
|
|
for (n = dim; n < rank; n++)
|
|
{
|
|
sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n + 1);
|
|
extent[n] =
|
|
GFC_DESCRIPTOR_EXTENT(array,n + 1);
|
|
|
|
if (extent[n] <= 0)
|
|
extent[n] = 0;
|
|
}
|
|
|
|
if (retarray->data == NULL)
|
|
{
|
|
size_t alloc_size, str;
|
|
|
|
for (n = 0; n < rank; n++)
|
|
{
|
|
if (n == 0)
|
|
str = 1;
|
|
else
|
|
str = GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1];
|
|
|
|
GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str);
|
|
|
|
}
|
|
|
|
retarray->offset = 0;
|
|
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
|
|
|
|
alloc_size = sizeof (GFC_COMPLEX_4) * GFC_DESCRIPTOR_STRIDE(retarray,rank-1)
|
|
* extent[rank-1];
|
|
|
|
if (alloc_size == 0)
|
|
{
|
|
/* Make sure we have a zero-sized array. */
|
|
GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1);
|
|
return;
|
|
}
|
|
else
|
|
retarray->data = internal_malloc_size (alloc_size);
|
|
}
|
|
else
|
|
{
|
|
if (rank != GFC_DESCRIPTOR_RANK (retarray))
|
|
runtime_error ("rank of return array incorrect in"
|
|
" PRODUCT intrinsic: is %ld, should be %ld",
|
|
(long int) (GFC_DESCRIPTOR_RANK (retarray)),
|
|
(long int) rank);
|
|
|
|
if (unlikely (compile_options.bounds_check))
|
|
{
|
|
for (n=0; n < rank; n++)
|
|
{
|
|
index_type ret_extent;
|
|
|
|
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,n);
|
|
if (extent[n] != ret_extent)
|
|
runtime_error ("Incorrect extent in return value of"
|
|
" PRODUCT intrinsic in dimension %ld:"
|
|
" is %ld, should be %ld", (long int) n + 1,
|
|
(long int) ret_extent, (long int) extent[n]);
|
|
}
|
|
}
|
|
}
|
|
|
|
for (n = 0; n < rank; n++)
|
|
{
|
|
count[n] = 0;
|
|
dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n);
|
|
}
|
|
|
|
dest = retarray->data;
|
|
|
|
while(1)
|
|
{
|
|
*dest = 1;
|
|
count[0]++;
|
|
dest += dstride[0];
|
|
n = 0;
|
|
while (count[n] == extent[n])
|
|
{
|
|
/* When we get to the end of a dimension, reset it and increment
|
|
the next dimension. */
|
|
count[n] = 0;
|
|
/* We could precalculate these products, but this is a less
|
|
frequently used path so probably not worth it. */
|
|
dest -= dstride[n] * extent[n];
|
|
n++;
|
|
if (n == rank)
|
|
return;
|
|
else
|
|
{
|
|
count[n]++;
|
|
dest += dstride[n];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif
|