gcc/libsanitizer/tsan/tsan_rtl_mutex.cc
Kostya Serebryany b4ab7d34f5 libsanitizer merge from upstream r175049
From-SVN: r196009
2013-02-13 10:46:01 +00:00

301 lines
9.9 KiB
C++

//===-- tsan_rtl_mutex.cc -------------------------------------------------===//
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is a part of ThreadSanitizer (TSan), a race detector.
//
//===----------------------------------------------------------------------===//
#include "tsan_rtl.h"
#include "tsan_flags.h"
#include "tsan_sync.h"
#include "tsan_report.h"
#include "tsan_symbolize.h"
#include "tsan_platform.h"
namespace __tsan {
void MutexCreate(ThreadState *thr, uptr pc, uptr addr,
bool rw, bool recursive, bool linker_init) {
Context *ctx = CTX();
CHECK_GT(thr->in_rtl, 0);
DPrintf("#%d: MutexCreate %zx\n", thr->tid, addr);
StatInc(thr, StatMutexCreate);
if (!linker_init && IsAppMem(addr)) {
CHECK(!thr->is_freeing);
thr->is_freeing = true;
MemoryWrite(thr, pc, addr, kSizeLog1);
thr->is_freeing = false;
}
SyncVar *s = ctx->synctab.GetOrCreateAndLock(thr, pc, addr, true);
s->is_rw = rw;
s->is_recursive = recursive;
s->is_linker_init = linker_init;
s->mtx.Unlock();
}
void MutexDestroy(ThreadState *thr, uptr pc, uptr addr) {
Context *ctx = CTX();
CHECK_GT(thr->in_rtl, 0);
DPrintf("#%d: MutexDestroy %zx\n", thr->tid, addr);
StatInc(thr, StatMutexDestroy);
#ifndef TSAN_GO
// Global mutexes not marked as LINKER_INITIALIZED
// cause tons of not interesting reports, so just ignore it.
if (IsGlobalVar(addr))
return;
#endif
SyncVar *s = ctx->synctab.GetAndRemove(thr, pc, addr);
if (s == 0)
return;
if (IsAppMem(addr)) {
CHECK(!thr->is_freeing);
thr->is_freeing = true;
MemoryWrite(thr, pc, addr, kSizeLog1);
thr->is_freeing = false;
}
if (flags()->report_destroy_locked
&& s->owner_tid != SyncVar::kInvalidTid
&& !s->is_broken) {
s->is_broken = true;
Lock l(&ctx->thread_mtx);
ScopedReport rep(ReportTypeMutexDestroyLocked);
rep.AddMutex(s);
StackTrace trace;
trace.ObtainCurrent(thr, pc);
rep.AddStack(&trace);
FastState last(s->last_lock);
RestoreStack(last.tid(), last.epoch(), &trace, 0);
rep.AddStack(&trace);
rep.AddLocation(s->addr, 1);
OutputReport(ctx, rep);
}
thr->mset.Remove(s->GetId());
DestroyAndFree(s);
}
void MutexLock(ThreadState *thr, uptr pc, uptr addr) {
CHECK_GT(thr->in_rtl, 0);
DPrintf("#%d: MutexLock %zx\n", thr->tid, addr);
if (IsAppMem(addr))
MemoryReadAtomic(thr, pc, addr, kSizeLog1);
SyncVar *s = CTX()->synctab.GetOrCreateAndLock(thr, pc, addr, true);
thr->fast_state.IncrementEpoch();
TraceAddEvent(thr, thr->fast_state, EventTypeLock, s->GetId());
if (s->owner_tid == SyncVar::kInvalidTid) {
CHECK_EQ(s->recursion, 0);
s->owner_tid = thr->tid;
s->last_lock = thr->fast_state.raw();
} else if (s->owner_tid == thr->tid) {
CHECK_GT(s->recursion, 0);
} else {
Printf("ThreadSanitizer WARNING: double lock\n");
PrintCurrentStack(thr, pc);
}
if (s->recursion == 0) {
StatInc(thr, StatMutexLock);
thr->clock.set(thr->tid, thr->fast_state.epoch());
thr->clock.acquire(&s->clock);
StatInc(thr, StatSyncAcquire);
thr->clock.acquire(&s->read_clock);
StatInc(thr, StatSyncAcquire);
} else if (!s->is_recursive) {
StatInc(thr, StatMutexRecLock);
}
s->recursion++;
thr->mset.Add(s->GetId(), true, thr->fast_state.epoch());
s->mtx.Unlock();
}
void MutexUnlock(ThreadState *thr, uptr pc, uptr addr) {
CHECK_GT(thr->in_rtl, 0);
DPrintf("#%d: MutexUnlock %zx\n", thr->tid, addr);
if (IsAppMem(addr))
MemoryReadAtomic(thr, pc, addr, kSizeLog1);
SyncVar *s = CTX()->synctab.GetOrCreateAndLock(thr, pc, addr, true);
thr->fast_state.IncrementEpoch();
TraceAddEvent(thr, thr->fast_state, EventTypeUnlock, s->GetId());
if (s->recursion == 0) {
if (!s->is_broken) {
s->is_broken = true;
Printf("ThreadSanitizer WARNING: unlock of unlocked mutex\n");
PrintCurrentStack(thr, pc);
}
} else if (s->owner_tid != thr->tid) {
if (!s->is_broken) {
s->is_broken = true;
Printf("ThreadSanitizer WARNING: mutex unlock by another thread\n");
PrintCurrentStack(thr, pc);
}
} else {
s->recursion--;
if (s->recursion == 0) {
StatInc(thr, StatMutexUnlock);
s->owner_tid = SyncVar::kInvalidTid;
thr->clock.set(thr->tid, thr->fast_state.epoch());
thr->fast_synch_epoch = thr->fast_state.epoch();
thr->clock.ReleaseStore(&s->clock);
StatInc(thr, StatSyncRelease);
} else {
StatInc(thr, StatMutexRecUnlock);
}
}
thr->mset.Del(s->GetId(), true);
s->mtx.Unlock();
}
void MutexReadLock(ThreadState *thr, uptr pc, uptr addr) {
CHECK_GT(thr->in_rtl, 0);
DPrintf("#%d: MutexReadLock %zx\n", thr->tid, addr);
StatInc(thr, StatMutexReadLock);
if (IsAppMem(addr))
MemoryReadAtomic(thr, pc, addr, kSizeLog1);
SyncVar *s = CTX()->synctab.GetOrCreateAndLock(thr, pc, addr, false);
thr->fast_state.IncrementEpoch();
TraceAddEvent(thr, thr->fast_state, EventTypeRLock, s->GetId());
if (s->owner_tid != SyncVar::kInvalidTid) {
Printf("ThreadSanitizer WARNING: read lock of a write locked mutex\n");
PrintCurrentStack(thr, pc);
}
thr->clock.set(thr->tid, thr->fast_state.epoch());
thr->clock.acquire(&s->clock);
s->last_lock = thr->fast_state.raw();
StatInc(thr, StatSyncAcquire);
thr->mset.Add(s->GetId(), false, thr->fast_state.epoch());
s->mtx.ReadUnlock();
}
void MutexReadUnlock(ThreadState *thr, uptr pc, uptr addr) {
CHECK_GT(thr->in_rtl, 0);
DPrintf("#%d: MutexReadUnlock %zx\n", thr->tid, addr);
StatInc(thr, StatMutexReadUnlock);
if (IsAppMem(addr))
MemoryReadAtomic(thr, pc, addr, kSizeLog1);
SyncVar *s = CTX()->synctab.GetOrCreateAndLock(thr, pc, addr, true);
thr->fast_state.IncrementEpoch();
TraceAddEvent(thr, thr->fast_state, EventTypeRUnlock, s->GetId());
if (s->owner_tid != SyncVar::kInvalidTid) {
Printf("ThreadSanitizer WARNING: read unlock of a write "
"locked mutex\n");
PrintCurrentStack(thr, pc);
}
thr->clock.set(thr->tid, thr->fast_state.epoch());
thr->fast_synch_epoch = thr->fast_state.epoch();
thr->clock.release(&s->read_clock);
StatInc(thr, StatSyncRelease);
s->mtx.Unlock();
thr->mset.Del(s->GetId(), false);
}
void MutexReadOrWriteUnlock(ThreadState *thr, uptr pc, uptr addr) {
CHECK_GT(thr->in_rtl, 0);
DPrintf("#%d: MutexReadOrWriteUnlock %zx\n", thr->tid, addr);
if (IsAppMem(addr))
MemoryReadAtomic(thr, pc, addr, kSizeLog1);
SyncVar *s = CTX()->synctab.GetOrCreateAndLock(thr, pc, addr, true);
bool write = true;
if (s->owner_tid == SyncVar::kInvalidTid) {
// Seems to be read unlock.
write = false;
StatInc(thr, StatMutexReadUnlock);
thr->fast_state.IncrementEpoch();
TraceAddEvent(thr, thr->fast_state, EventTypeRUnlock, s->GetId());
thr->clock.set(thr->tid, thr->fast_state.epoch());
thr->fast_synch_epoch = thr->fast_state.epoch();
thr->clock.release(&s->read_clock);
StatInc(thr, StatSyncRelease);
} else if (s->owner_tid == thr->tid) {
// Seems to be write unlock.
thr->fast_state.IncrementEpoch();
TraceAddEvent(thr, thr->fast_state, EventTypeUnlock, s->GetId());
CHECK_GT(s->recursion, 0);
s->recursion--;
if (s->recursion == 0) {
StatInc(thr, StatMutexUnlock);
s->owner_tid = SyncVar::kInvalidTid;
// FIXME: Refactor me, plz.
// The sequence of events is quite tricky and doubled in several places.
// First, it's a bug to increment the epoch w/o writing to the trace.
// Then, the acquire/release logic can be factored out as well.
thr->clock.set(thr->tid, thr->fast_state.epoch());
thr->fast_synch_epoch = thr->fast_state.epoch();
thr->clock.ReleaseStore(&s->clock);
StatInc(thr, StatSyncRelease);
} else {
StatInc(thr, StatMutexRecUnlock);
}
} else if (!s->is_broken) {
s->is_broken = true;
Printf("ThreadSanitizer WARNING: mutex unlock by another thread\n");
PrintCurrentStack(thr, pc);
}
thr->mset.Del(s->GetId(), write);
s->mtx.Unlock();
}
void Acquire(ThreadState *thr, uptr pc, uptr addr) {
CHECK_GT(thr->in_rtl, 0);
DPrintf("#%d: Acquire %zx\n", thr->tid, addr);
SyncVar *s = CTX()->synctab.GetOrCreateAndLock(thr, pc, addr, false);
thr->clock.set(thr->tid, thr->fast_state.epoch());
thr->clock.acquire(&s->clock);
StatInc(thr, StatSyncAcquire);
s->mtx.ReadUnlock();
}
void AcquireGlobal(ThreadState *thr, uptr pc) {
Context *ctx = CTX();
Lock l(&ctx->thread_mtx);
for (unsigned i = 0; i < kMaxTid; i++) {
ThreadContext *tctx = ctx->threads[i];
if (tctx == 0)
continue;
if (tctx->status == ThreadStatusRunning)
thr->clock.set(i, tctx->thr->fast_state.epoch());
else
thr->clock.set(i, tctx->epoch1);
}
}
void Release(ThreadState *thr, uptr pc, uptr addr) {
CHECK_GT(thr->in_rtl, 0);
DPrintf("#%d: Release %zx\n", thr->tid, addr);
SyncVar *s = CTX()->synctab.GetOrCreateAndLock(thr, pc, addr, true);
thr->clock.set(thr->tid, thr->fast_state.epoch());
thr->clock.release(&s->clock);
StatInc(thr, StatSyncRelease);
s->mtx.Unlock();
}
void ReleaseStore(ThreadState *thr, uptr pc, uptr addr) {
CHECK_GT(thr->in_rtl, 0);
DPrintf("#%d: ReleaseStore %zx\n", thr->tid, addr);
SyncVar *s = CTX()->synctab.GetOrCreateAndLock(thr, pc, addr, true);
thr->clock.set(thr->tid, thr->fast_state.epoch());
thr->clock.ReleaseStore(&s->clock);
StatInc(thr, StatSyncRelease);
s->mtx.Unlock();
}
#ifndef TSAN_GO
void AfterSleep(ThreadState *thr, uptr pc) {
Context *ctx = CTX();
thr->last_sleep_stack_id = CurrentStackId(thr, pc);
Lock l(&ctx->thread_mtx);
for (unsigned i = 0; i < kMaxTid; i++) {
ThreadContext *tctx = ctx->threads[i];
if (tctx == 0)
continue;
if (tctx->status == ThreadStatusRunning)
thr->last_sleep_clock.set(i, tctx->thr->fast_state.epoch());
else
thr->last_sleep_clock.set(i, tctx->epoch1);
}
}
#endif
} // namespace __tsan