589 lines
18 KiB
Go
589 lines
18 KiB
Go
// Copyright 2017 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
//go:generate go run make_tables.go
|
|
|
|
// Package bits implements bit counting and manipulation
|
|
// functions for the predeclared unsigned integer types.
|
|
package bits
|
|
|
|
const uintSize = 32 << (^uint(0) >> 32 & 1) // 32 or 64
|
|
|
|
// UintSize is the size of a uint in bits.
|
|
const UintSize = uintSize
|
|
|
|
// --- LeadingZeros ---
|
|
|
|
// LeadingZeros returns the number of leading zero bits in x; the result is UintSize for x == 0.
|
|
func LeadingZeros(x uint) int { return UintSize - Len(x) }
|
|
|
|
// LeadingZeros8 returns the number of leading zero bits in x; the result is 8 for x == 0.
|
|
func LeadingZeros8(x uint8) int { return 8 - Len8(x) }
|
|
|
|
// LeadingZeros16 returns the number of leading zero bits in x; the result is 16 for x == 0.
|
|
func LeadingZeros16(x uint16) int { return 16 - Len16(x) }
|
|
|
|
// LeadingZeros32 returns the number of leading zero bits in x; the result is 32 for x == 0.
|
|
func LeadingZeros32(x uint32) int { return 32 - Len32(x) }
|
|
|
|
// LeadingZeros64 returns the number of leading zero bits in x; the result is 64 for x == 0.
|
|
func LeadingZeros64(x uint64) int { return 64 - Len64(x) }
|
|
|
|
// --- TrailingZeros ---
|
|
|
|
// See http://supertech.csail.mit.edu/papers/debruijn.pdf
|
|
const deBruijn32 = 0x077CB531
|
|
|
|
var deBruijn32tab = [32]byte{
|
|
0, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8,
|
|
31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9,
|
|
}
|
|
|
|
const deBruijn64 = 0x03f79d71b4ca8b09
|
|
|
|
var deBruijn64tab = [64]byte{
|
|
0, 1, 56, 2, 57, 49, 28, 3, 61, 58, 42, 50, 38, 29, 17, 4,
|
|
62, 47, 59, 36, 45, 43, 51, 22, 53, 39, 33, 30, 24, 18, 12, 5,
|
|
63, 55, 48, 27, 60, 41, 37, 16, 46, 35, 44, 21, 52, 32, 23, 11,
|
|
54, 26, 40, 15, 34, 20, 31, 10, 25, 14, 19, 9, 13, 8, 7, 6,
|
|
}
|
|
|
|
// TrailingZeros returns the number of trailing zero bits in x; the result is UintSize for x == 0.
|
|
func TrailingZeros(x uint) int {
|
|
if UintSize == 32 {
|
|
return TrailingZeros32(uint32(x))
|
|
}
|
|
return TrailingZeros64(uint64(x))
|
|
}
|
|
|
|
// TrailingZeros8 returns the number of trailing zero bits in x; the result is 8 for x == 0.
|
|
func TrailingZeros8(x uint8) int {
|
|
return int(ntz8tab[x])
|
|
}
|
|
|
|
// TrailingZeros16 returns the number of trailing zero bits in x; the result is 16 for x == 0.
|
|
func TrailingZeros16(x uint16) int {
|
|
if x == 0 {
|
|
return 16
|
|
}
|
|
// see comment in TrailingZeros64
|
|
return int(deBruijn32tab[uint32(x&-x)*deBruijn32>>(32-5)])
|
|
}
|
|
|
|
// TrailingZeros32 returns the number of trailing zero bits in x; the result is 32 for x == 0.
|
|
func TrailingZeros32(x uint32) int {
|
|
if x == 0 {
|
|
return 32
|
|
}
|
|
// see comment in TrailingZeros64
|
|
return int(deBruijn32tab[(x&-x)*deBruijn32>>(32-5)])
|
|
}
|
|
|
|
// TrailingZeros64 returns the number of trailing zero bits in x; the result is 64 for x == 0.
|
|
func TrailingZeros64(x uint64) int {
|
|
if x == 0 {
|
|
return 64
|
|
}
|
|
// If popcount is fast, replace code below with return popcount(^x & (x - 1)).
|
|
//
|
|
// x & -x leaves only the right-most bit set in the word. Let k be the
|
|
// index of that bit. Since only a single bit is set, the value is two
|
|
// to the power of k. Multiplying by a power of two is equivalent to
|
|
// left shifting, in this case by k bits. The de Bruijn (64 bit) constant
|
|
// is such that all six bit, consecutive substrings are distinct.
|
|
// Therefore, if we have a left shifted version of this constant we can
|
|
// find by how many bits it was shifted by looking at which six bit
|
|
// substring ended up at the top of the word.
|
|
// (Knuth, volume 4, section 7.3.1)
|
|
return int(deBruijn64tab[(x&-x)*deBruijn64>>(64-6)])
|
|
}
|
|
|
|
// --- OnesCount ---
|
|
|
|
const m0 = 0x5555555555555555 // 01010101 ...
|
|
const m1 = 0x3333333333333333 // 00110011 ...
|
|
const m2 = 0x0f0f0f0f0f0f0f0f // 00001111 ...
|
|
const m3 = 0x00ff00ff00ff00ff // etc.
|
|
const m4 = 0x0000ffff0000ffff
|
|
|
|
// OnesCount returns the number of one bits ("population count") in x.
|
|
func OnesCount(x uint) int {
|
|
if UintSize == 32 {
|
|
return OnesCount32(uint32(x))
|
|
}
|
|
return OnesCount64(uint64(x))
|
|
}
|
|
|
|
// OnesCount8 returns the number of one bits ("population count") in x.
|
|
func OnesCount8(x uint8) int {
|
|
return int(pop8tab[x])
|
|
}
|
|
|
|
// OnesCount16 returns the number of one bits ("population count") in x.
|
|
func OnesCount16(x uint16) int {
|
|
return int(pop8tab[x>>8] + pop8tab[x&0xff])
|
|
}
|
|
|
|
// OnesCount32 returns the number of one bits ("population count") in x.
|
|
func OnesCount32(x uint32) int {
|
|
return int(pop8tab[x>>24] + pop8tab[x>>16&0xff] + pop8tab[x>>8&0xff] + pop8tab[x&0xff])
|
|
}
|
|
|
|
// OnesCount64 returns the number of one bits ("population count") in x.
|
|
func OnesCount64(x uint64) int {
|
|
// Implementation: Parallel summing of adjacent bits.
|
|
// See "Hacker's Delight", Chap. 5: Counting Bits.
|
|
// The following pattern shows the general approach:
|
|
//
|
|
// x = x>>1&(m0&m) + x&(m0&m)
|
|
// x = x>>2&(m1&m) + x&(m1&m)
|
|
// x = x>>4&(m2&m) + x&(m2&m)
|
|
// x = x>>8&(m3&m) + x&(m3&m)
|
|
// x = x>>16&(m4&m) + x&(m4&m)
|
|
// x = x>>32&(m5&m) + x&(m5&m)
|
|
// return int(x)
|
|
//
|
|
// Masking (& operations) can be left away when there's no
|
|
// danger that a field's sum will carry over into the next
|
|
// field: Since the result cannot be > 64, 8 bits is enough
|
|
// and we can ignore the masks for the shifts by 8 and up.
|
|
// Per "Hacker's Delight", the first line can be simplified
|
|
// more, but it saves at best one instruction, so we leave
|
|
// it alone for clarity.
|
|
const m = 1<<64 - 1
|
|
x = x>>1&(m0&m) + x&(m0&m)
|
|
x = x>>2&(m1&m) + x&(m1&m)
|
|
x = (x>>4 + x) & (m2 & m)
|
|
x += x >> 8
|
|
x += x >> 16
|
|
x += x >> 32
|
|
return int(x) & (1<<7 - 1)
|
|
}
|
|
|
|
// --- RotateLeft ---
|
|
|
|
// RotateLeft returns the value of x rotated left by (k mod UintSize) bits.
|
|
// To rotate x right by k bits, call RotateLeft(x, -k).
|
|
//
|
|
// This function's execution time does not depend on the inputs.
|
|
func RotateLeft(x uint, k int) uint {
|
|
if UintSize == 32 {
|
|
return uint(RotateLeft32(uint32(x), k))
|
|
}
|
|
return uint(RotateLeft64(uint64(x), k))
|
|
}
|
|
|
|
// RotateLeft8 returns the value of x rotated left by (k mod 8) bits.
|
|
// To rotate x right by k bits, call RotateLeft8(x, -k).
|
|
//
|
|
// This function's execution time does not depend on the inputs.
|
|
func RotateLeft8(x uint8, k int) uint8 {
|
|
const n = 8
|
|
s := uint(k) & (n - 1)
|
|
return x<<s | x>>(n-s)
|
|
}
|
|
|
|
// RotateLeft16 returns the value of x rotated left by (k mod 16) bits.
|
|
// To rotate x right by k bits, call RotateLeft16(x, -k).
|
|
//
|
|
// This function's execution time does not depend on the inputs.
|
|
func RotateLeft16(x uint16, k int) uint16 {
|
|
const n = 16
|
|
s := uint(k) & (n - 1)
|
|
return x<<s | x>>(n-s)
|
|
}
|
|
|
|
// RotateLeft32 returns the value of x rotated left by (k mod 32) bits.
|
|
// To rotate x right by k bits, call RotateLeft32(x, -k).
|
|
//
|
|
// This function's execution time does not depend on the inputs.
|
|
func RotateLeft32(x uint32, k int) uint32 {
|
|
const n = 32
|
|
s := uint(k) & (n - 1)
|
|
return x<<s | x>>(n-s)
|
|
}
|
|
|
|
// RotateLeft64 returns the value of x rotated left by (k mod 64) bits.
|
|
// To rotate x right by k bits, call RotateLeft64(x, -k).
|
|
//
|
|
// This function's execution time does not depend on the inputs.
|
|
func RotateLeft64(x uint64, k int) uint64 {
|
|
const n = 64
|
|
s := uint(k) & (n - 1)
|
|
return x<<s | x>>(n-s)
|
|
}
|
|
|
|
// --- Reverse ---
|
|
|
|
// Reverse returns the value of x with its bits in reversed order.
|
|
func Reverse(x uint) uint {
|
|
if UintSize == 32 {
|
|
return uint(Reverse32(uint32(x)))
|
|
}
|
|
return uint(Reverse64(uint64(x)))
|
|
}
|
|
|
|
// Reverse8 returns the value of x with its bits in reversed order.
|
|
func Reverse8(x uint8) uint8 {
|
|
return rev8tab[x]
|
|
}
|
|
|
|
// Reverse16 returns the value of x with its bits in reversed order.
|
|
func Reverse16(x uint16) uint16 {
|
|
return uint16(rev8tab[x>>8]) | uint16(rev8tab[x&0xff])<<8
|
|
}
|
|
|
|
// Reverse32 returns the value of x with its bits in reversed order.
|
|
func Reverse32(x uint32) uint32 {
|
|
const m = 1<<32 - 1
|
|
x = x>>1&(m0&m) | x&(m0&m)<<1
|
|
x = x>>2&(m1&m) | x&(m1&m)<<2
|
|
x = x>>4&(m2&m) | x&(m2&m)<<4
|
|
return ReverseBytes32(x)
|
|
}
|
|
|
|
// Reverse64 returns the value of x with its bits in reversed order.
|
|
func Reverse64(x uint64) uint64 {
|
|
const m = 1<<64 - 1
|
|
x = x>>1&(m0&m) | x&(m0&m)<<1
|
|
x = x>>2&(m1&m) | x&(m1&m)<<2
|
|
x = x>>4&(m2&m) | x&(m2&m)<<4
|
|
return ReverseBytes64(x)
|
|
}
|
|
|
|
// --- ReverseBytes ---
|
|
|
|
// ReverseBytes returns the value of x with its bytes in reversed order.
|
|
//
|
|
// This function's execution time does not depend on the inputs.
|
|
func ReverseBytes(x uint) uint {
|
|
if UintSize == 32 {
|
|
return uint(ReverseBytes32(uint32(x)))
|
|
}
|
|
return uint(ReverseBytes64(uint64(x)))
|
|
}
|
|
|
|
// ReverseBytes16 returns the value of x with its bytes in reversed order.
|
|
//
|
|
// This function's execution time does not depend on the inputs.
|
|
func ReverseBytes16(x uint16) uint16 {
|
|
return x>>8 | x<<8
|
|
}
|
|
|
|
// ReverseBytes32 returns the value of x with its bytes in reversed order.
|
|
//
|
|
// This function's execution time does not depend on the inputs.
|
|
func ReverseBytes32(x uint32) uint32 {
|
|
const m = 1<<32 - 1
|
|
x = x>>8&(m3&m) | x&(m3&m)<<8
|
|
return x>>16 | x<<16
|
|
}
|
|
|
|
// ReverseBytes64 returns the value of x with its bytes in reversed order.
|
|
//
|
|
// This function's execution time does not depend on the inputs.
|
|
func ReverseBytes64(x uint64) uint64 {
|
|
const m = 1<<64 - 1
|
|
x = x>>8&(m3&m) | x&(m3&m)<<8
|
|
x = x>>16&(m4&m) | x&(m4&m)<<16
|
|
return x>>32 | x<<32
|
|
}
|
|
|
|
// --- Len ---
|
|
|
|
// Len returns the minimum number of bits required to represent x; the result is 0 for x == 0.
|
|
func Len(x uint) int {
|
|
if UintSize == 32 {
|
|
return Len32(uint32(x))
|
|
}
|
|
return Len64(uint64(x))
|
|
}
|
|
|
|
// Len8 returns the minimum number of bits required to represent x; the result is 0 for x == 0.
|
|
func Len8(x uint8) int {
|
|
return int(len8tab[x])
|
|
}
|
|
|
|
// Len16 returns the minimum number of bits required to represent x; the result is 0 for x == 0.
|
|
func Len16(x uint16) (n int) {
|
|
if x >= 1<<8 {
|
|
x >>= 8
|
|
n = 8
|
|
}
|
|
return n + int(len8tab[x])
|
|
}
|
|
|
|
// Len32 returns the minimum number of bits required to represent x; the result is 0 for x == 0.
|
|
func Len32(x uint32) (n int) {
|
|
if x >= 1<<16 {
|
|
x >>= 16
|
|
n = 16
|
|
}
|
|
if x >= 1<<8 {
|
|
x >>= 8
|
|
n += 8
|
|
}
|
|
return n + int(len8tab[x])
|
|
}
|
|
|
|
// Len64 returns the minimum number of bits required to represent x; the result is 0 for x == 0.
|
|
func Len64(x uint64) (n int) {
|
|
if x >= 1<<32 {
|
|
x >>= 32
|
|
n = 32
|
|
}
|
|
if x >= 1<<16 {
|
|
x >>= 16
|
|
n += 16
|
|
}
|
|
if x >= 1<<8 {
|
|
x >>= 8
|
|
n += 8
|
|
}
|
|
return n + int(len8tab[x])
|
|
}
|
|
|
|
// --- Add with carry ---
|
|
|
|
// Add returns the sum with carry of x, y and carry: sum = x + y + carry.
|
|
// The carry input must be 0 or 1; otherwise the behavior is undefined.
|
|
// The carryOut output is guaranteed to be 0 or 1.
|
|
//
|
|
// This function's execution time does not depend on the inputs.
|
|
func Add(x, y, carry uint) (sum, carryOut uint) {
|
|
if UintSize == 32 {
|
|
s32, c32 := Add32(uint32(x), uint32(y), uint32(carry))
|
|
return uint(s32), uint(c32)
|
|
}
|
|
s64, c64 := Add64(uint64(x), uint64(y), uint64(carry))
|
|
return uint(s64), uint(c64)
|
|
}
|
|
|
|
// Add32 returns the sum with carry of x, y and carry: sum = x + y + carry.
|
|
// The carry input must be 0 or 1; otherwise the behavior is undefined.
|
|
// The carryOut output is guaranteed to be 0 or 1.
|
|
//
|
|
// This function's execution time does not depend on the inputs.
|
|
func Add32(x, y, carry uint32) (sum, carryOut uint32) {
|
|
sum64 := uint64(x) + uint64(y) + uint64(carry)
|
|
sum = uint32(sum64)
|
|
carryOut = uint32(sum64 >> 32)
|
|
return
|
|
}
|
|
|
|
// Add64 returns the sum with carry of x, y and carry: sum = x + y + carry.
|
|
// The carry input must be 0 or 1; otherwise the behavior is undefined.
|
|
// The carryOut output is guaranteed to be 0 or 1.
|
|
//
|
|
// This function's execution time does not depend on the inputs.
|
|
func Add64(x, y, carry uint64) (sum, carryOut uint64) {
|
|
sum = x + y + carry
|
|
// The sum will overflow if both top bits are set (x & y) or if one of them
|
|
// is (x | y), and a carry from the lower place happened. If such a carry
|
|
// happens, the top bit will be 1 + 0 + 1 = 0 (&^ sum).
|
|
carryOut = ((x & y) | ((x | y) &^ sum)) >> 63
|
|
return
|
|
}
|
|
|
|
// --- Subtract with borrow ---
|
|
|
|
// Sub returns the difference of x, y and borrow: diff = x - y - borrow.
|
|
// The borrow input must be 0 or 1; otherwise the behavior is undefined.
|
|
// The borrowOut output is guaranteed to be 0 or 1.
|
|
//
|
|
// This function's execution time does not depend on the inputs.
|
|
func Sub(x, y, borrow uint) (diff, borrowOut uint) {
|
|
if UintSize == 32 {
|
|
d32, b32 := Sub32(uint32(x), uint32(y), uint32(borrow))
|
|
return uint(d32), uint(b32)
|
|
}
|
|
d64, b64 := Sub64(uint64(x), uint64(y), uint64(borrow))
|
|
return uint(d64), uint(b64)
|
|
}
|
|
|
|
// Sub32 returns the difference of x, y and borrow, diff = x - y - borrow.
|
|
// The borrow input must be 0 or 1; otherwise the behavior is undefined.
|
|
// The borrowOut output is guaranteed to be 0 or 1.
|
|
//
|
|
// This function's execution time does not depend on the inputs.
|
|
func Sub32(x, y, borrow uint32) (diff, borrowOut uint32) {
|
|
diff = x - y - borrow
|
|
// The difference will underflow if the top bit of x is not set and the top
|
|
// bit of y is set (^x & y) or if they are the same (^(x ^ y)) and a borrow
|
|
// from the lower place happens. If that borrow happens, the result will be
|
|
// 1 - 1 - 1 = 0 - 0 - 1 = 1 (& diff).
|
|
borrowOut = ((^x & y) | (^(x ^ y) & diff)) >> 31
|
|
return
|
|
}
|
|
|
|
// Sub64 returns the difference of x, y and borrow: diff = x - y - borrow.
|
|
// The borrow input must be 0 or 1; otherwise the behavior is undefined.
|
|
// The borrowOut output is guaranteed to be 0 or 1.
|
|
//
|
|
// This function's execution time does not depend on the inputs.
|
|
func Sub64(x, y, borrow uint64) (diff, borrowOut uint64) {
|
|
diff = x - y - borrow
|
|
// See Sub32 for the bit logic.
|
|
borrowOut = ((^x & y) | (^(x ^ y) & diff)) >> 63
|
|
return
|
|
}
|
|
|
|
// --- Full-width multiply ---
|
|
|
|
// Mul returns the full-width product of x and y: (hi, lo) = x * y
|
|
// with the product bits' upper half returned in hi and the lower
|
|
// half returned in lo.
|
|
//
|
|
// This function's execution time does not depend on the inputs.
|
|
func Mul(x, y uint) (hi, lo uint) {
|
|
if UintSize == 32 {
|
|
h, l := Mul32(uint32(x), uint32(y))
|
|
return uint(h), uint(l)
|
|
}
|
|
h, l := Mul64(uint64(x), uint64(y))
|
|
return uint(h), uint(l)
|
|
}
|
|
|
|
// Mul32 returns the 64-bit product of x and y: (hi, lo) = x * y
|
|
// with the product bits' upper half returned in hi and the lower
|
|
// half returned in lo.
|
|
//
|
|
// This function's execution time does not depend on the inputs.
|
|
func Mul32(x, y uint32) (hi, lo uint32) {
|
|
tmp := uint64(x) * uint64(y)
|
|
hi, lo = uint32(tmp>>32), uint32(tmp)
|
|
return
|
|
}
|
|
|
|
// Mul64 returns the 128-bit product of x and y: (hi, lo) = x * y
|
|
// with the product bits' upper half returned in hi and the lower
|
|
// half returned in lo.
|
|
//
|
|
// This function's execution time does not depend on the inputs.
|
|
func Mul64(x, y uint64) (hi, lo uint64) {
|
|
const mask32 = 1<<32 - 1
|
|
x0 := x & mask32
|
|
x1 := x >> 32
|
|
y0 := y & mask32
|
|
y1 := y >> 32
|
|
w0 := x0 * y0
|
|
t := x1*y0 + w0>>32
|
|
w1 := t & mask32
|
|
w2 := t >> 32
|
|
w1 += x0 * y1
|
|
hi = x1*y1 + w2 + w1>>32
|
|
lo = x * y
|
|
return
|
|
}
|
|
|
|
// --- Full-width divide ---
|
|
|
|
// Div returns the quotient and remainder of (hi, lo) divided by y:
|
|
// quo = (hi, lo)/y, rem = (hi, lo)%y with the dividend bits' upper
|
|
// half in parameter hi and the lower half in parameter lo.
|
|
// Div panics for y == 0 (division by zero) or y <= hi (quotient overflow).
|
|
func Div(hi, lo, y uint) (quo, rem uint) {
|
|
if UintSize == 32 {
|
|
q, r := Div32(uint32(hi), uint32(lo), uint32(y))
|
|
return uint(q), uint(r)
|
|
}
|
|
q, r := Div64(uint64(hi), uint64(lo), uint64(y))
|
|
return uint(q), uint(r)
|
|
}
|
|
|
|
// Div32 returns the quotient and remainder of (hi, lo) divided by y:
|
|
// quo = (hi, lo)/y, rem = (hi, lo)%y with the dividend bits' upper
|
|
// half in parameter hi and the lower half in parameter lo.
|
|
// Div32 panics for y == 0 (division by zero) or y <= hi (quotient overflow).
|
|
func Div32(hi, lo, y uint32) (quo, rem uint32) {
|
|
if y != 0 && y <= hi {
|
|
panic(getOverflowError())
|
|
}
|
|
z := uint64(hi)<<32 | uint64(lo)
|
|
quo, rem = uint32(z/uint64(y)), uint32(z%uint64(y))
|
|
return
|
|
}
|
|
|
|
// Div64 returns the quotient and remainder of (hi, lo) divided by y:
|
|
// quo = (hi, lo)/y, rem = (hi, lo)%y with the dividend bits' upper
|
|
// half in parameter hi and the lower half in parameter lo.
|
|
// Div64 panics for y == 0 (division by zero) or y <= hi (quotient overflow).
|
|
func Div64(hi, lo, y uint64) (quo, rem uint64) {
|
|
const (
|
|
two32 = 1 << 32
|
|
mask32 = two32 - 1
|
|
)
|
|
if y == 0 {
|
|
panic(getDivideError())
|
|
}
|
|
if y <= hi {
|
|
panic(getOverflowError())
|
|
}
|
|
|
|
s := uint(LeadingZeros64(y))
|
|
y <<= s
|
|
|
|
yn1 := y >> 32
|
|
yn0 := y & mask32
|
|
un32 := hi<<s | lo>>(64-s)
|
|
un10 := lo << s
|
|
un1 := un10 >> 32
|
|
un0 := un10 & mask32
|
|
q1 := un32 / yn1
|
|
rhat := un32 - q1*yn1
|
|
|
|
for q1 >= two32 || q1*yn0 > two32*rhat+un1 {
|
|
q1--
|
|
rhat += yn1
|
|
if rhat >= two32 {
|
|
break
|
|
}
|
|
}
|
|
|
|
un21 := un32*two32 + un1 - q1*y
|
|
q0 := un21 / yn1
|
|
rhat = un21 - q0*yn1
|
|
|
|
for q0 >= two32 || q0*yn0 > two32*rhat+un0 {
|
|
q0--
|
|
rhat += yn1
|
|
if rhat >= two32 {
|
|
break
|
|
}
|
|
}
|
|
|
|
return q1*two32 + q0, (un21*two32 + un0 - q0*y) >> s
|
|
}
|
|
|
|
// Rem returns the remainder of (hi, lo) divided by y. Rem panics for
|
|
// y == 0 (division by zero) but, unlike Div, it doesn't panic on a
|
|
// quotient overflow.
|
|
func Rem(hi, lo, y uint) uint {
|
|
if UintSize == 32 {
|
|
return uint(Rem32(uint32(hi), uint32(lo), uint32(y)))
|
|
}
|
|
return uint(Rem64(uint64(hi), uint64(lo), uint64(y)))
|
|
}
|
|
|
|
// Rem32 returns the remainder of (hi, lo) divided by y. Rem32 panics
|
|
// for y == 0 (division by zero) but, unlike Div32, it doesn't panic
|
|
// on a quotient overflow.
|
|
func Rem32(hi, lo, y uint32) uint32 {
|
|
return uint32((uint64(hi)<<32 | uint64(lo)) % uint64(y))
|
|
}
|
|
|
|
// Rem64 returns the remainder of (hi, lo) divided by y. Rem64 panics
|
|
// for y == 0 (division by zero) but, unlike Div64, it doesn't panic
|
|
// on a quotient overflow.
|
|
func Rem64(hi, lo, y uint64) uint64 {
|
|
// We scale down hi so that hi < y, then use Div64 to compute the
|
|
// rem with the guarantee that it won't panic on quotient overflow.
|
|
// Given that
|
|
// hi ≡ hi%y (mod y)
|
|
// we have
|
|
// hi<<64 + lo ≡ (hi%y)<<64 + lo (mod y)
|
|
_, rem := Div64(hi%y, lo, y)
|
|
return rem
|
|
}
|