gcc/libgo/go/reflect/value.go
Ian Lance Taylor 8039ca76a5 Update to current version of Go library.
From-SVN: r171427
2011-03-24 23:46:17 +00:00

1317 lines
32 KiB
Go

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package reflect
import (
"math"
"runtime"
"unsafe"
)
const ptrSize = uintptr(unsafe.Sizeof((*byte)(nil)))
const cannotSet = "cannot set value obtained from unexported struct field"
type addr unsafe.Pointer
// TODO: This will have to go away when
// the new gc goes in.
func memmove(adst, asrc addr, n uintptr) {
dst := uintptr(adst)
src := uintptr(asrc)
switch {
case src < dst && src+n > dst:
// byte copy backward
// careful: i is unsigned
for i := n; i > 0; {
i--
*(*byte)(addr(dst + i)) = *(*byte)(addr(src + i))
}
case (n|src|dst)&(ptrSize-1) != 0:
// byte copy forward
for i := uintptr(0); i < n; i++ {
*(*byte)(addr(dst + i)) = *(*byte)(addr(src + i))
}
default:
// word copy forward
for i := uintptr(0); i < n; i += ptrSize {
*(*uintptr)(addr(dst + i)) = *(*uintptr)(addr(src + i))
}
}
}
// Value is the common interface to reflection values.
// The implementations of Value (e.g., ArrayValue, StructValue)
// have additional type-specific methods.
type Value interface {
// Type returns the value's type.
Type() Type
// Interface returns the value as an interface{}.
Interface() interface{}
// CanSet returns true if the value can be changed.
// Values obtained by the use of non-exported struct fields
// can be used in Get but not Set.
// If CanSet returns false, calling the type-specific Set will panic.
CanSet() bool
// SetValue assigns v to the value; v must have the same type as the value.
SetValue(v Value)
// CanAddr returns true if the value's address can be obtained with Addr.
// Such values are called addressable. A value is addressable if it is
// an element of a slice, an element of an addressable array,
// a field of an addressable struct, the result of dereferencing a pointer,
// or the result of a call to NewValue, MakeChan, MakeMap, or MakeZero.
// If CanAddr returns false, calling Addr will panic.
CanAddr() bool
// Addr returns the address of the value.
// If the value is not addressable, Addr panics.
// Addr is typically used to obtain a pointer to a struct field or slice element
// in order to call a method that requires a pointer receiver.
Addr() *PtrValue
// UnsafeAddr returns a pointer to the underlying data.
// It is for advanced clients that also import the "unsafe" package.
UnsafeAddr() uintptr
// Method returns a FuncValue corresponding to the value's i'th method.
// The arguments to a Call on the returned FuncValue
// should not include a receiver; the FuncValue will use
// the value as the receiver.
Method(i int) *FuncValue
getAddr() addr
}
// flags for value
const (
canSet uint32 = 1 << iota // can set value (write to *v.addr)
canAddr // can take address of value
canStore // can store through value (write to **v.addr)
)
// value is the common implementation of most values.
// It is embedded in other, public struct types, but always
// with a unique tag like "uint" or "float" so that the client cannot
// convert from, say, *UintValue to *FloatValue.
type value struct {
typ Type
addr addr
flag uint32
}
func (v *value) Type() Type { return v.typ }
func (v *value) Addr() *PtrValue {
if !v.CanAddr() {
panic("reflect: cannot take address of value")
}
a := v.addr
flag := canSet
if v.CanSet() {
flag |= canStore
}
// We could safely set canAddr here too -
// the caller would get the address of a -
// but it doesn't match the Go model.
// The language doesn't let you say &&v.
return newValue(PtrTo(v.typ), addr(&a), flag).(*PtrValue)
}
func (v *value) UnsafeAddr() uintptr { return uintptr(v.addr) }
func (v *value) getAddr() addr { return v.addr }
func (v *value) Interface() interface{} {
if typ, ok := v.typ.(*InterfaceType); ok {
// There are two different representations of interface values,
// one if the interface type has methods and one if it doesn't.
// These two representations require different expressions
// to extract correctly.
if typ.NumMethod() == 0 {
// Extract as interface value without methods.
return *(*interface{})(v.addr)
}
// Extract from v.addr as interface value with methods.
return *(*interface {
m()
})(v.addr)
}
return unsafe.Unreflect(v.typ, unsafe.Pointer(v.addr))
}
func (v *value) CanSet() bool { return v.flag&canSet != 0 }
func (v *value) CanAddr() bool { return v.flag&canAddr != 0 }
/*
* basic types
*/
// BoolValue represents a bool value.
type BoolValue struct {
value "bool"
}
// Get returns the underlying bool value.
func (v *BoolValue) Get() bool { return *(*bool)(v.addr) }
// Set sets v to the value x.
func (v *BoolValue) Set(x bool) {
if !v.CanSet() {
panic(cannotSet)
}
*(*bool)(v.addr) = x
}
// Set sets v to the value x.
func (v *BoolValue) SetValue(x Value) { v.Set(x.(*BoolValue).Get()) }
// FloatValue represents a float value.
type FloatValue struct {
value "float"
}
// Get returns the underlying int value.
func (v *FloatValue) Get() float64 {
switch v.typ.Kind() {
case Float32:
return float64(*(*float32)(v.addr))
case Float64:
return *(*float64)(v.addr)
}
panic("reflect: invalid float kind")
}
// Set sets v to the value x.
func (v *FloatValue) Set(x float64) {
if !v.CanSet() {
panic(cannotSet)
}
switch v.typ.Kind() {
default:
panic("reflect: invalid float kind")
case Float32:
*(*float32)(v.addr) = float32(x)
case Float64:
*(*float64)(v.addr) = x
}
}
// Overflow returns true if x cannot be represented by the type of v.
func (v *FloatValue) Overflow(x float64) bool {
if v.typ.Size() == 8 {
return false
}
if x < 0 {
x = -x
}
return math.MaxFloat32 < x && x <= math.MaxFloat64
}
// Set sets v to the value x.
func (v *FloatValue) SetValue(x Value) { v.Set(x.(*FloatValue).Get()) }
// ComplexValue represents a complex value.
type ComplexValue struct {
value "complex"
}
// Get returns the underlying complex value.
func (v *ComplexValue) Get() complex128 {
switch v.typ.Kind() {
case Complex64:
return complex128(*(*complex64)(v.addr))
case Complex128:
return *(*complex128)(v.addr)
}
panic("reflect: invalid complex kind")
}
// Set sets v to the value x.
func (v *ComplexValue) Set(x complex128) {
if !v.CanSet() {
panic(cannotSet)
}
switch v.typ.Kind() {
default:
panic("reflect: invalid complex kind")
case Complex64:
*(*complex64)(v.addr) = complex64(x)
case Complex128:
*(*complex128)(v.addr) = x
}
}
// Set sets v to the value x.
func (v *ComplexValue) SetValue(x Value) { v.Set(x.(*ComplexValue).Get()) }
// IntValue represents an int value.
type IntValue struct {
value "int"
}
// Get returns the underlying int value.
func (v *IntValue) Get() int64 {
switch v.typ.Kind() {
case Int:
return int64(*(*int)(v.addr))
case Int8:
return int64(*(*int8)(v.addr))
case Int16:
return int64(*(*int16)(v.addr))
case Int32:
return int64(*(*int32)(v.addr))
case Int64:
return *(*int64)(v.addr)
}
panic("reflect: invalid int kind")
}
// Set sets v to the value x.
func (v *IntValue) Set(x int64) {
if !v.CanSet() {
panic(cannotSet)
}
switch v.typ.Kind() {
default:
panic("reflect: invalid int kind")
case Int:
*(*int)(v.addr) = int(x)
case Int8:
*(*int8)(v.addr) = int8(x)
case Int16:
*(*int16)(v.addr) = int16(x)
case Int32:
*(*int32)(v.addr) = int32(x)
case Int64:
*(*int64)(v.addr) = x
}
}
// Set sets v to the value x.
func (v *IntValue) SetValue(x Value) { v.Set(x.(*IntValue).Get()) }
// Overflow returns true if x cannot be represented by the type of v.
func (v *IntValue) Overflow(x int64) bool {
bitSize := uint(v.typ.Bits())
trunc := (x << (64 - bitSize)) >> (64 - bitSize)
return x != trunc
}
// StringHeader is the runtime representation of a string.
type StringHeader struct {
Data uintptr
Len int
}
// StringValue represents a string value.
type StringValue struct {
value "string"
}
// Get returns the underlying string value.
func (v *StringValue) Get() string { return *(*string)(v.addr) }
// Set sets v to the value x.
func (v *StringValue) Set(x string) {
if !v.CanSet() {
panic(cannotSet)
}
*(*string)(v.addr) = x
}
// Set sets v to the value x.
func (v *StringValue) SetValue(x Value) { v.Set(x.(*StringValue).Get()) }
// UintValue represents a uint value.
type UintValue struct {
value "uint"
}
// Get returns the underlying uuint value.
func (v *UintValue) Get() uint64 {
switch v.typ.Kind() {
case Uint:
return uint64(*(*uint)(v.addr))
case Uint8:
return uint64(*(*uint8)(v.addr))
case Uint16:
return uint64(*(*uint16)(v.addr))
case Uint32:
return uint64(*(*uint32)(v.addr))
case Uint64:
return *(*uint64)(v.addr)
case Uintptr:
return uint64(*(*uintptr)(v.addr))
}
panic("reflect: invalid uint kind")
}
// Set sets v to the value x.
func (v *UintValue) Set(x uint64) {
if !v.CanSet() {
panic(cannotSet)
}
switch v.typ.Kind() {
default:
panic("reflect: invalid uint kind")
case Uint:
*(*uint)(v.addr) = uint(x)
case Uint8:
*(*uint8)(v.addr) = uint8(x)
case Uint16:
*(*uint16)(v.addr) = uint16(x)
case Uint32:
*(*uint32)(v.addr) = uint32(x)
case Uint64:
*(*uint64)(v.addr) = x
case Uintptr:
*(*uintptr)(v.addr) = uintptr(x)
}
}
// Overflow returns true if x cannot be represented by the type of v.
func (v *UintValue) Overflow(x uint64) bool {
bitSize := uint(v.typ.Bits())
trunc := (x << (64 - bitSize)) >> (64 - bitSize)
return x != trunc
}
// Set sets v to the value x.
func (v *UintValue) SetValue(x Value) { v.Set(x.(*UintValue).Get()) }
// UnsafePointerValue represents an unsafe.Pointer value.
type UnsafePointerValue struct {
value "unsafe.Pointer"
}
// Get returns the underlying uintptr value.
// Get returns uintptr, not unsafe.Pointer, so that
// programs that do not import "unsafe" cannot
// obtain a value of unsafe.Pointer type from "reflect".
func (v *UnsafePointerValue) Get() uintptr { return uintptr(*(*unsafe.Pointer)(v.addr)) }
// Set sets v to the value x.
func (v *UnsafePointerValue) Set(x unsafe.Pointer) {
if !v.CanSet() {
panic(cannotSet)
}
*(*unsafe.Pointer)(v.addr) = x
}
// Set sets v to the value x.
func (v *UnsafePointerValue) SetValue(x Value) {
v.Set(unsafe.Pointer(x.(*UnsafePointerValue).Get()))
}
func typesMustMatch(t1, t2 Type) {
if t1 != t2 {
panic("type mismatch: " + t1.String() + " != " + t2.String())
}
}
/*
* array
*/
// ArrayOrSliceValue is the common interface
// implemented by both ArrayValue and SliceValue.
type ArrayOrSliceValue interface {
Value
Len() int
Cap() int
Elem(i int) Value
addr() addr
}
// grow grows the slice s so that it can hold extra more values, allocating
// more capacity if needed. It also returns the old and new slice lengths.
func grow(s *SliceValue, extra int) (*SliceValue, int, int) {
i0 := s.Len()
i1 := i0 + extra
if i1 < i0 {
panic("append: slice overflow")
}
m := s.Cap()
if i1 <= m {
return s.Slice(0, i1), i0, i1
}
if m == 0 {
m = extra
} else {
for m < i1 {
if i0 < 1024 {
m += m
} else {
m += m / 4
}
}
}
t := MakeSlice(s.Type().(*SliceType), i1, m)
Copy(t, s)
return t, i0, i1
}
// Append appends the values x to a slice s and returns the resulting slice.
// Each x must have the same type as s' element type.
func Append(s *SliceValue, x ...Value) *SliceValue {
s, i0, i1 := grow(s, len(x))
for i, j := i0, 0; i < i1; i, j = i+1, j+1 {
s.Elem(i).SetValue(x[j])
}
return s
}
// AppendSlice appends a slice t to a slice s and returns the resulting slice.
// The slices s and t must have the same element type.
func AppendSlice(s, t *SliceValue) *SliceValue {
s, i0, i1 := grow(s, t.Len())
Copy(s.Slice(i0, i1), t)
return s
}
// Copy copies the contents of src into dst until either
// dst has been filled or src has been exhausted.
// It returns the number of elements copied.
// The arrays dst and src must have the same element type.
func Copy(dst, src ArrayOrSliceValue) int {
// TODO: This will have to move into the runtime
// once the real gc goes in.
de := dst.Type().(ArrayOrSliceType).Elem()
se := src.Type().(ArrayOrSliceType).Elem()
typesMustMatch(de, se)
n := dst.Len()
if xn := src.Len(); n > xn {
n = xn
}
memmove(dst.addr(), src.addr(), uintptr(n)*de.Size())
return n
}
// An ArrayValue represents an array.
type ArrayValue struct {
value "array"
}
// Len returns the length of the array.
func (v *ArrayValue) Len() int { return v.typ.(*ArrayType).Len() }
// Cap returns the capacity of the array (equal to Len()).
func (v *ArrayValue) Cap() int { return v.typ.(*ArrayType).Len() }
// addr returns the base address of the data in the array.
func (v *ArrayValue) addr() addr { return v.value.addr }
// Set assigns x to v.
// The new value x must have the same type as v.
func (v *ArrayValue) Set(x *ArrayValue) {
if !v.CanSet() {
panic(cannotSet)
}
typesMustMatch(v.typ, x.typ)
Copy(v, x)
}
// Set sets v to the value x.
func (v *ArrayValue) SetValue(x Value) { v.Set(x.(*ArrayValue)) }
// Elem returns the i'th element of v.
func (v *ArrayValue) Elem(i int) Value {
typ := v.typ.(*ArrayType).Elem()
n := v.Len()
if i < 0 || i >= n {
panic("array index out of bounds")
}
p := addr(uintptr(v.addr()) + uintptr(i)*typ.Size())
return newValue(typ, p, v.flag)
}
/*
* slice
*/
// runtime representation of slice
type SliceHeader struct {
Data uintptr
Len int
Cap int
}
// A SliceValue represents a slice.
type SliceValue struct {
value "slice"
}
func (v *SliceValue) slice() *SliceHeader { return (*SliceHeader)(v.value.addr) }
// IsNil returns whether v is a nil slice.
func (v *SliceValue) IsNil() bool { return v.slice().Data == 0 }
// Len returns the length of the slice.
func (v *SliceValue) Len() int { return int(v.slice().Len) }
// Cap returns the capacity of the slice.
func (v *SliceValue) Cap() int { return int(v.slice().Cap) }
// addr returns the base address of the data in the slice.
func (v *SliceValue) addr() addr { return addr(v.slice().Data) }
// SetLen changes the length of v.
// The new length n must be between 0 and the capacity, inclusive.
func (v *SliceValue) SetLen(n int) {
s := v.slice()
if n < 0 || n > int(s.Cap) {
panic("reflect: slice length out of range in SetLen")
}
s.Len = n
}
// Set assigns x to v.
// The new value x must have the same type as v.
func (v *SliceValue) Set(x *SliceValue) {
if !v.CanSet() {
panic(cannotSet)
}
typesMustMatch(v.typ, x.typ)
*v.slice() = *x.slice()
}
// Set sets v to the value x.
func (v *SliceValue) SetValue(x Value) { v.Set(x.(*SliceValue)) }
// Get returns the uintptr address of the v.Cap()'th element. This gives
// the same result for all slices of the same array.
// It is mainly useful for printing.
func (v *SliceValue) Get() uintptr {
typ := v.typ.(*SliceType)
return uintptr(v.addr()) + uintptr(v.Cap())*typ.Elem().Size()
}
// Slice returns a sub-slice of the slice v.
func (v *SliceValue) Slice(beg, end int) *SliceValue {
cap := v.Cap()
if beg < 0 || end < beg || end > cap {
panic("slice index out of bounds")
}
typ := v.typ.(*SliceType)
s := new(SliceHeader)
s.Data = uintptr(v.addr()) + uintptr(beg)*typ.Elem().Size()
s.Len = end - beg
s.Cap = cap - beg
// Like the result of Addr, we treat Slice as an
// unaddressable temporary, so don't set canAddr.
flag := canSet
if v.flag&canStore != 0 {
flag |= canStore
}
return newValue(typ, addr(s), flag).(*SliceValue)
}
// Elem returns the i'th element of v.
func (v *SliceValue) Elem(i int) Value {
typ := v.typ.(*SliceType).Elem()
n := v.Len()
if i < 0 || i >= n {
panic("reflect: slice index out of range")
}
p := addr(uintptr(v.addr()) + uintptr(i)*typ.Size())
flag := canAddr
if v.flag&canStore != 0 {
flag |= canSet | canStore
}
return newValue(typ, p, flag)
}
// MakeSlice creates a new zero-initialized slice value
// for the specified slice type, length, and capacity.
func MakeSlice(typ *SliceType, len, cap int) *SliceValue {
s := &SliceHeader{
Data: uintptr(unsafe.NewArray(typ.Elem(), cap)),
Len: len,
Cap: cap,
}
return newValue(typ, addr(s), canAddr|canSet|canStore).(*SliceValue)
}
/*
* chan
*/
// A ChanValue represents a chan.
type ChanValue struct {
value "chan"
}
// IsNil returns whether v is a nil channel.
func (v *ChanValue) IsNil() bool { return *(*uintptr)(v.addr) == 0 }
// Set assigns x to v.
// The new value x must have the same type as v.
func (v *ChanValue) Set(x *ChanValue) {
if !v.CanSet() {
panic(cannotSet)
}
typesMustMatch(v.typ, x.typ)
*(*uintptr)(v.addr) = *(*uintptr)(x.addr)
}
// Set sets v to the value x.
func (v *ChanValue) SetValue(x Value) { v.Set(x.(*ChanValue)) }
// Get returns the uintptr value of v.
// It is mainly useful for printing.
func (v *ChanValue) Get() uintptr { return *(*uintptr)(v.addr) }
// implemented in ../pkg/runtime/reflect.cgo
func makechan(typ *runtime.ChanType, size uint32) (ch *byte)
func chansend(ch, val *byte, selected *bool)
func chanrecv(ch, val *byte, selected *bool, ok *bool)
func chanclose(ch *byte)
func chanlen(ch *byte) int32
func chancap(ch *byte) int32
// Close closes the channel.
func (v *ChanValue) Close() {
ch := *(**byte)(v.addr)
chanclose(ch)
}
func (v *ChanValue) Len() int {
ch := *(**byte)(v.addr)
return int(chanlen(ch))
}
func (v *ChanValue) Cap() int {
ch := *(**byte)(v.addr)
return int(chancap(ch))
}
// internal send; non-blocking if selected != nil
func (v *ChanValue) send(x Value, selected *bool) {
t := v.Type().(*ChanType)
if t.Dir()&SendDir == 0 {
panic("send on recv-only channel")
}
typesMustMatch(t.Elem(), x.Type())
ch := *(**byte)(v.addr)
chansend(ch, (*byte)(x.getAddr()), selected)
}
// internal recv; non-blocking if selected != nil
func (v *ChanValue) recv(selected *bool) (Value, bool) {
t := v.Type().(*ChanType)
if t.Dir()&RecvDir == 0 {
panic("recv on send-only channel")
}
ch := *(**byte)(v.addr)
x := MakeZero(t.Elem())
var ok bool
chanrecv(ch, (*byte)(x.getAddr()), selected, &ok)
return x, ok
}
// Send sends x on the channel v.
func (v *ChanValue) Send(x Value) { v.send(x, nil) }
// Recv receives and returns a value from the channel v.
// The receive blocks until a value is ready.
// The boolean value ok is true if the value x corresponds to a send
// on the channel, false if it is a zero value received because the channel is closed.
func (v *ChanValue) Recv() (x Value, ok bool) {
return v.recv(nil)
}
// TrySend attempts to sends x on the channel v but will not block.
// It returns true if the value was sent, false otherwise.
func (v *ChanValue) TrySend(x Value) bool {
var selected bool
v.send(x, &selected)
return selected
}
// TryRecv attempts to receive a value from the channel v but will not block.
// If the receive cannot finish without blocking, TryRecv instead returns x == nil.
// If the receive can finish without blocking, TryRecv returns x != nil.
// The boolean value ok is true if the value x corresponds to a send
// on the channel, false if it is a zero value received because the channel is closed.
func (v *ChanValue) TryRecv() (x Value, ok bool) {
var selected bool
x, ok = v.recv(&selected)
if !selected {
return nil, false
}
return x, ok
}
// MakeChan creates a new channel with the specified type and buffer size.
func MakeChan(typ *ChanType, buffer int) *ChanValue {
if buffer < 0 {
panic("MakeChan: negative buffer size")
}
if typ.Dir() != BothDir {
panic("MakeChan: unidirectional channel type")
}
v := MakeZero(typ).(*ChanValue)
*(**byte)(v.addr) = makechan((*runtime.ChanType)(unsafe.Pointer(typ)), uint32(buffer))
return v
}
/*
* func
*/
// A FuncValue represents a function value.
type FuncValue struct {
value "func"
first *value
isInterface bool
}
// IsNil returns whether v is a nil function.
func (v *FuncValue) IsNil() bool { return *(*uintptr)(v.addr) == 0 }
// Get returns the uintptr value of v.
// It is mainly useful for printing.
func (v *FuncValue) Get() uintptr { return *(*uintptr)(v.addr) }
// Set assigns x to v.
// The new value x must have the same type as v.
func (v *FuncValue) Set(x *FuncValue) {
if !v.CanSet() {
panic(cannotSet)
}
typesMustMatch(v.typ, x.typ)
*(*uintptr)(v.addr) = *(*uintptr)(x.addr)
}
// Set sets v to the value x.
func (v *FuncValue) SetValue(x Value) { v.Set(x.(*FuncValue)) }
// Method returns a FuncValue corresponding to v's i'th method.
// The arguments to a Call on the returned FuncValue
// should not include a receiver; the FuncValue will use v
// as the receiver.
func (v *value) Method(i int) *FuncValue {
t := v.Type().uncommon()
if t == nil || i < 0 || i >= len(t.methods) {
return nil
}
p := &t.methods[i]
fn := p.tfn
fv := &FuncValue{value: value{runtimeToType(p.typ), addr(&fn), 0}, first: v, isInterface: false}
return fv
}
// implemented in ../pkg/runtime/*/asm.s
func call(typ *FuncType, fnaddr *byte, isInterface bool, params *addr, results *addr)
// Interface returns the fv as an interface value.
// If fv is a method obtained by invoking Value.Method
// (as opposed to Type.Method), Interface cannot return an
// interface value, so it panics.
func (fv *FuncValue) Interface() interface{} {
if fv.first != nil {
panic("FuncValue: cannot create interface value for method with bound receiver")
}
return fv.value.Interface()
}
// Call calls the function fv with input parameters in.
// It returns the function's output parameters as Values.
func (fv *FuncValue) Call(in []Value) []Value {
t := fv.Type().(*FuncType)
nin := len(in)
if fv.first != nil && !fv.isInterface {
nin++
}
if nin != t.NumIn() {
panic("FuncValue: wrong argument count")
}
if fv.first != nil && fv.isInterface {
nin++
}
nout := t.NumOut()
params := make([]addr, nin)
delta := 0
off := 0
if v := fv.first; v != nil {
// Hard-wired first argument.
if fv.isInterface {
// v is a single uninterpreted word
params[0] = v.getAddr()
} else {
// v is a real value
tv := v.Type()
// This is a method, so we need to always pass
// a pointer.
vAddr := v.getAddr()
if ptv, ok := tv.(*PtrType); ok {
typesMustMatch(t.In(0), tv)
} else {
p := addr(new(addr))
*(*addr)(p) = vAddr
vAddr = p
typesMustMatch(t.In(0).(*PtrType).Elem(), tv)
}
params[0] = vAddr
delta = 1
}
off = 1
}
for i, v := range in {
tv := v.Type()
tf := t.In(i + delta)
// If this is really a method, and we are explicitly
// passing the object, then we need to pass the address
// of the object instead. Unfortunately, we don't
// have any way to know that this is a method, so we just
// check the type. FIXME: This is ugly.
vAddr := v.getAddr()
if i == 0 && tf != tv {
if ptf, ok := tf.(*PtrType); ok {
p := addr(new(addr))
*(*addr)(p) = vAddr
vAddr = p
tf = ptf.Elem()
}
}
typesMustMatch(tf, tv)
params[i+off] = vAddr
}
ret := make([]Value, nout)
results := make([]addr, nout)
for i := 0; i < nout; i++ {
tv := t.Out(i)
v := MakeZero(tv)
results[i] = v.getAddr()
ret[i] = v
}
call(t, *(**byte)(fv.addr), fv.isInterface, &params[0], &results[0])
return ret
}
/*
* interface
*/
// An InterfaceValue represents an interface value.
type InterfaceValue struct {
value "interface"
}
// IsNil returns whether v is a nil interface value.
func (v *InterfaceValue) IsNil() bool { return v.Interface() == nil }
// No single uinptr Get because v.Interface() is available.
// Get returns the two words that represent an interface in the runtime.
// Those words are useful only when playing unsafe games.
func (v *InterfaceValue) Get() [2]uintptr {
return *(*[2]uintptr)(v.addr)
}
// Elem returns the concrete value stored in the interface value v.
func (v *InterfaceValue) Elem() Value { return NewValue(v.Interface()) }
// ../runtime/reflect.cgo
func setiface(typ *InterfaceType, x *interface{}, addr addr)
// Set assigns x to v.
func (v *InterfaceValue) Set(x Value) {
var i interface{}
if x != nil {
i = x.Interface()
}
if !v.CanSet() {
panic(cannotSet)
}
// Two different representations; see comment in Get.
// Empty interface is easy.
t := v.typ.(*InterfaceType)
if t.NumMethod() == 0 {
*(*interface{})(v.addr) = i
return
}
// Non-empty interface requires a runtime check.
setiface(t, &i, v.addr)
}
// Set sets v to the value x.
func (v *InterfaceValue) SetValue(x Value) { v.Set(x) }
// Method returns a FuncValue corresponding to v's i'th method.
// The arguments to a Call on the returned FuncValue
// should not include a receiver; the FuncValue will use v
// as the receiver.
func (v *InterfaceValue) Method(i int) *FuncValue {
t := v.Type().(*InterfaceType)
if t == nil || i < 0 || i >= len(t.methods) {
return nil
}
p := &t.methods[i]
// Interface is two words: itable, data.
tab := *(**[10000]addr)(v.addr)
data := &value{Typeof((*byte)(nil)), addr(uintptr(v.addr) + ptrSize), 0}
fn := tab[i+1]
fv := &FuncValue{value: value{runtimeToType(p.typ), addr(&fn), 0}, first: data, isInterface: true}
return fv
}
/*
* map
*/
// A MapValue represents a map value.
type MapValue struct {
value "map"
}
// IsNil returns whether v is a nil map value.
func (v *MapValue) IsNil() bool { return *(*uintptr)(v.addr) == 0 }
// Set assigns x to v.
// The new value x must have the same type as v.
func (v *MapValue) Set(x *MapValue) {
if !v.CanSet() {
panic(cannotSet)
}
if x == nil {
*(**uintptr)(v.addr) = nil
return
}
typesMustMatch(v.typ, x.typ)
*(*uintptr)(v.addr) = *(*uintptr)(x.addr)
}
// Set sets v to the value x.
func (v *MapValue) SetValue(x Value) {
if x == nil {
v.Set(nil)
return
}
v.Set(x.(*MapValue))
}
// Get returns the uintptr value of v.
// It is mainly useful for printing.
func (v *MapValue) Get() uintptr { return *(*uintptr)(v.addr) }
// implemented in ../pkg/runtime/reflect.cgo
func mapaccess(m, key, val *byte) bool
func mapassign(m, key, val *byte)
func maplen(m *byte) int32
func mapiterinit(m *byte) *byte
func mapiternext(it *byte)
func mapiterkey(it *byte, key *byte) bool
func makemap(t *runtime.MapType) *byte
// Elem returns the value associated with key in the map v.
// It returns nil if key is not found in the map.
func (v *MapValue) Elem(key Value) Value {
t := v.Type().(*MapType)
typesMustMatch(t.Key(), key.Type())
m := *(**byte)(v.addr)
if m == nil {
return nil
}
newval := MakeZero(t.Elem())
if !mapaccess(m, (*byte)(key.getAddr()), (*byte)(newval.getAddr())) {
return nil
}
return newval
}
// SetElem sets the value associated with key in the map v to val.
// If val is nil, Put deletes the key from map.
func (v *MapValue) SetElem(key, val Value) {
t := v.Type().(*MapType)
typesMustMatch(t.Key(), key.Type())
var vaddr *byte
if val != nil {
typesMustMatch(t.Elem(), val.Type())
vaddr = (*byte)(val.getAddr())
}
m := *(**byte)(v.addr)
mapassign(m, (*byte)(key.getAddr()), vaddr)
}
// Len returns the number of keys in the map v.
func (v *MapValue) Len() int {
m := *(**byte)(v.addr)
if m == nil {
return 0
}
return int(maplen(m))
}
// Keys returns a slice containing all the keys present in the map,
// in unspecified order.
func (v *MapValue) Keys() []Value {
tk := v.Type().(*MapType).Key()
m := *(**byte)(v.addr)
mlen := int32(0)
if m != nil {
mlen = maplen(m)
}
it := mapiterinit(m)
a := make([]Value, mlen)
var i int
for i = 0; i < len(a); i++ {
k := MakeZero(tk)
if !mapiterkey(it, (*byte)(k.getAddr())) {
break
}
a[i] = k
mapiternext(it)
}
return a[0:i]
}
// MakeMap creates a new map of the specified type.
func MakeMap(typ *MapType) *MapValue {
v := MakeZero(typ).(*MapValue)
*(**byte)(v.addr) = makemap((*runtime.MapType)(unsafe.Pointer(typ)))
return v
}
/*
* ptr
*/
// A PtrValue represents a pointer.
type PtrValue struct {
value "ptr"
}
// IsNil returns whether v is a nil pointer.
func (v *PtrValue) IsNil() bool { return *(*uintptr)(v.addr) == 0 }
// Get returns the uintptr value of v.
// It is mainly useful for printing.
func (v *PtrValue) Get() uintptr { return *(*uintptr)(v.addr) }
// Set assigns x to v.
// The new value x must have the same type as v, and x.Elem().CanSet() must be true.
func (v *PtrValue) Set(x *PtrValue) {
if x == nil {
*(**uintptr)(v.addr) = nil
return
}
if !v.CanSet() {
panic(cannotSet)
}
if x.flag&canStore == 0 {
panic("cannot copy pointer obtained from unexported struct field")
}
typesMustMatch(v.typ, x.typ)
// TODO: This will have to move into the runtime
// once the new gc goes in
*(*uintptr)(v.addr) = *(*uintptr)(x.addr)
}
// Set sets v to the value x.
func (v *PtrValue) SetValue(x Value) {
if x == nil {
v.Set(nil)
return
}
v.Set(x.(*PtrValue))
}
// PointTo changes v to point to x.
// If x is a nil Value, PointTo sets v to nil.
func (v *PtrValue) PointTo(x Value) {
if x == nil {
*(**uintptr)(v.addr) = nil
return
}
if !x.CanSet() {
panic("cannot set x; cannot point to x")
}
typesMustMatch(v.typ.(*PtrType).Elem(), x.Type())
// TODO: This will have to move into the runtime
// once the new gc goes in.
*(*uintptr)(v.addr) = x.UnsafeAddr()
}
// Elem returns the value that v points to.
// If v is a nil pointer, Elem returns a nil Value.
func (v *PtrValue) Elem() Value {
if v.IsNil() {
return nil
}
flag := canAddr
if v.flag&canStore != 0 {
flag |= canSet | canStore
}
return newValue(v.typ.(*PtrType).Elem(), *(*addr)(v.addr), flag)
}
// Indirect returns the value that v points to.
// If v is a nil pointer, Indirect returns a nil Value.
// If v is not a pointer, Indirect returns v.
func Indirect(v Value) Value {
if pv, ok := v.(*PtrValue); ok {
return pv.Elem()
}
return v
}
/*
* struct
*/
// A StructValue represents a struct value.
type StructValue struct {
value "struct"
}
// Set assigns x to v.
// The new value x must have the same type as v.
func (v *StructValue) Set(x *StructValue) {
// TODO: This will have to move into the runtime
// once the gc goes in.
if !v.CanSet() {
panic(cannotSet)
}
typesMustMatch(v.typ, x.typ)
memmove(v.addr, x.addr, v.typ.Size())
}
// Set sets v to the value x.
func (v *StructValue) SetValue(x Value) { v.Set(x.(*StructValue)) }
// Field returns the i'th field of the struct.
func (v *StructValue) Field(i int) Value {
t := v.typ.(*StructType)
if i < 0 || i >= t.NumField() {
return nil
}
f := t.Field(i)
flag := v.flag
if f.PkgPath != "" {
// unexported field
flag &^= canSet | canStore
}
return newValue(f.Type, addr(uintptr(v.addr)+f.Offset), flag)
}
// FieldByIndex returns the nested field corresponding to index.
func (t *StructValue) FieldByIndex(index []int) (v Value) {
v = t
for i, x := range index {
if i > 0 {
if p, ok := v.(*PtrValue); ok {
v = p.Elem()
}
if s, ok := v.(*StructValue); ok {
t = s
} else {
v = nil
return
}
}
v = t.Field(x)
}
return
}
// FieldByName returns the struct field with the given name.
// The result is nil if no field was found.
func (t *StructValue) FieldByName(name string) Value {
if f, ok := t.Type().(*StructType).FieldByName(name); ok {
return t.FieldByIndex(f.Index)
}
return nil
}
// FieldByNameFunc returns the struct field with a name that satisfies the
// match function.
// The result is nil if no field was found.
func (t *StructValue) FieldByNameFunc(match func(string) bool) Value {
if f, ok := t.Type().(*StructType).FieldByNameFunc(match); ok {
return t.FieldByIndex(f.Index)
}
return nil
}
// NumField returns the number of fields in the struct.
func (v *StructValue) NumField() int { return v.typ.(*StructType).NumField() }
/*
* constructors
*/
// NewValue returns a new Value initialized to the concrete value
// stored in the interface i. NewValue(nil) returns nil.
func NewValue(i interface{}) Value {
if i == nil {
return nil
}
t, a := unsafe.Reflect(i)
return newValue(canonicalize(toType(t)), addr(a), canSet|canAddr|canStore)
}
func newValue(typ Type, addr addr, flag uint32) Value {
v := value{typ, addr, flag}
switch typ.(type) {
case *ArrayType:
return &ArrayValue{v}
case *BoolType:
return &BoolValue{v}
case *ChanType:
return &ChanValue{v}
case *FloatType:
return &FloatValue{v}
case *FuncType:
return &FuncValue{value: v}
case *ComplexType:
return &ComplexValue{v}
case *IntType:
return &IntValue{v}
case *InterfaceType:
return &InterfaceValue{v}
case *MapType:
return &MapValue{v}
case *PtrType:
return &PtrValue{v}
case *SliceType:
return &SliceValue{v}
case *StringType:
return &StringValue{v}
case *StructType:
return &StructValue{v}
case *UintType:
return &UintValue{v}
case *UnsafePointerType:
return &UnsafePointerValue{v}
}
panic("newValue" + typ.String())
}
// MakeZero returns a zero Value for the specified Type.
func MakeZero(typ Type) Value {
if typ == nil {
return nil
}
return newValue(typ, addr(unsafe.New(typ)), canSet|canAddr|canStore)
}