146 lines
3.4 KiB
C
146 lines
3.4 KiB
C
/* Complex exponential functions
|
|
Copyright 2002, 2004 Free Software Foundation, Inc.
|
|
Contributed by Paul Brook <paul@nowt.org>
|
|
|
|
This file is part of the GNU Fortran 95 runtime library (libgfortran).
|
|
|
|
Libgfortran is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2 of the License, or (at your option) any later version.
|
|
|
|
In addition to the permissions in the GNU General Public License, the
|
|
Free Software Foundation gives you unlimited permission to link the
|
|
compiled version of this file into combinations with other programs,
|
|
and to distribute those combinations without any restriction coming
|
|
from the use of this file. (The General Public License restrictions
|
|
do apply in other respects; for example, they cover modification of
|
|
the file, and distribution when not linked into a combine
|
|
executable.)
|
|
|
|
Libgfortran is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public
|
|
License along with libgfortran; see the file COPYING. If not,
|
|
write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
Boston, MA 02111-1307, USA. */
|
|
#include <math.h>
|
|
#include "libgfortran.h"
|
|
|
|
|
|
/* z = a + ib */
|
|
/* Absolute value. */
|
|
GFC_REAL_8
|
|
cabs (GFC_COMPLEX_8 z)
|
|
{
|
|
return hypot (REALPART (z), IMAGPART (z));
|
|
}
|
|
|
|
/* Complex argument. The angle made with the +ve real axis.
|
|
Range -pi-pi. */
|
|
GFC_REAL_8
|
|
carg (GFC_COMPLEX_8 z)
|
|
{
|
|
GFC_REAL_8 arg;
|
|
|
|
return atan2 (IMAGPART (z), REALPART (z));
|
|
}
|
|
|
|
/* exp(z) = exp(a)*(cos(b) + isin(b)) */
|
|
GFC_COMPLEX_8
|
|
cexp (GFC_COMPLEX_8 z)
|
|
{
|
|
GFC_REAL_8 a;
|
|
GFC_REAL_8 b;
|
|
GFC_COMPLEX_8 v;
|
|
|
|
a = REALPART (z);
|
|
b = IMAGPART (z);
|
|
COMPLEX_ASSIGN (v, cos (b), sin (b));
|
|
return exp (a) * v;
|
|
}
|
|
|
|
/* log(z) = log (cabs(z)) + i*carg(z) */
|
|
GFC_COMPLEX_8
|
|
clog (GFC_COMPLEX_8 z)
|
|
{
|
|
GFC_COMPLEX_8 v;
|
|
|
|
COMPLEX_ASSIGN (v, log (cabs (z)), carg (z));
|
|
return v;
|
|
}
|
|
|
|
/* log10(z) = log10 (cabs(z)) + i*carg(z) */
|
|
GFC_COMPLEX_8
|
|
clog10 (GFC_COMPLEX_8 z)
|
|
{
|
|
GFC_COMPLEX_8 v;
|
|
|
|
COMPLEX_ASSIGN (v, log10 (cabs (z)), carg (z));
|
|
return v;
|
|
}
|
|
|
|
/* pow(base, power) = cexp (power * clog (base)) */
|
|
GFC_COMPLEX_8
|
|
cpow (GFC_COMPLEX_8 base, GFC_COMPLEX_8 power)
|
|
{
|
|
return cexp (power * clog (base));
|
|
}
|
|
|
|
/* sqrt(z). Algorithm pulled from glibc. */
|
|
GFC_COMPLEX_8
|
|
csqrt (GFC_COMPLEX_8 z)
|
|
{
|
|
GFC_REAL_8 re;
|
|
GFC_REAL_8 im;
|
|
GFC_COMPLEX_8 v;
|
|
|
|
re = REALPART (z);
|
|
im = IMAGPART (z);
|
|
if (im == 0.0)
|
|
{
|
|
if (re < 0.0)
|
|
{
|
|
COMPLEX_ASSIGN (v, 0.0, copysign (sqrt (-re), im));
|
|
}
|
|
else
|
|
{
|
|
COMPLEX_ASSIGN (v, fabs (sqrt (re)),
|
|
copysign (0.0, im));
|
|
}
|
|
}
|
|
else if (re == 0.0)
|
|
{
|
|
GFC_REAL_8 r;
|
|
|
|
r = sqrt (0.5 * fabs (im));
|
|
|
|
COMPLEX_ASSIGN (v, copysign (r, im), r);
|
|
}
|
|
else
|
|
{
|
|
GFC_REAL_8 d, r, s;
|
|
|
|
d = hypot (re, im);
|
|
/* Use the identity 2 Re res Im res = Im x
|
|
to avoid cancellation error in d +/- Re x. */
|
|
if (re > 0)
|
|
{
|
|
r = sqrt (0.5 * d + 0.5 * re);
|
|
s = (0.5 * im) / r;
|
|
}
|
|
else
|
|
{
|
|
s = sqrt (0.5 * d - 0.5 * re);
|
|
r = fabs ((0.5 * im) / s);
|
|
}
|
|
|
|
COMPLEX_ASSIGN (v, r, copysign (s, im));
|
|
}
|
|
return v;
|
|
}
|
|
|