6599da043e
From-SVN: r14877
675 lines
20 KiB
C++
675 lines
20 KiB
C++
/*
|
|
* Copyright (c) 1996-1997
|
|
* Silicon Graphics Computer Systems, Inc.
|
|
*
|
|
* Permission to use, copy, modify, distribute and sell this software
|
|
* and its documentation for any purpose is hereby granted without fee,
|
|
* provided that the above copyright notice appear in all copies and
|
|
* that both that copyright notice and this permission notice appear
|
|
* in supporting documentation. Silicon Graphics makes no
|
|
* representations about the suitability of this software for any
|
|
* purpose. It is provided "as is" without express or implied warranty.
|
|
*/
|
|
|
|
#ifndef __ALLOC_H
|
|
#define __ALLOC_H
|
|
|
|
#include <stl_config.h>
|
|
|
|
#ifdef __SUNPRO_CC
|
|
# define __PRIVATE public
|
|
// Extra access restrictions prevent us from really making some things
|
|
// private.
|
|
#else
|
|
# define __PRIVATE private
|
|
#endif
|
|
|
|
#ifdef __STL_STATIC_TEMPLATE_MEMBER_BUG
|
|
# define __USE_MALLOC
|
|
#endif
|
|
|
|
|
|
// This implements some standard node allocators. These are
|
|
// NOT the same as the allocators in the C++ draft standard or in
|
|
// in the original STL. They do not encapsulate different pointer
|
|
// types; indeed we assume that there is only one pointer type.
|
|
// The allocation primitives are intended to allocate individual objects,
|
|
// not larger arenas as with the original STL allocators.
|
|
|
|
#if 0
|
|
# include <new>
|
|
# define __THROW_BAD_ALLOC throw bad_alloc
|
|
#elif !defined(__THROW_BAD_ALLOC)
|
|
# include <iostream.h>
|
|
# define __THROW_BAD_ALLOC cerr << "out of memory" << endl; exit(1)
|
|
#endif
|
|
|
|
#ifndef __ALLOC
|
|
# define __ALLOC alloc
|
|
#endif
|
|
#ifdef __STL_WIN32THREADS
|
|
# include <windows.h>
|
|
// This must precede stl_config.h
|
|
#endif
|
|
|
|
#include <stddef.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <assert.h>
|
|
#ifndef __RESTRICT
|
|
# define __RESTRICT
|
|
#endif
|
|
|
|
#if !defined(_PTHREADS) && !defined(_NOTHREADS) \
|
|
&& !defined(__STL_SGI_THREADS) && !defined(__STL_WIN32THREADS)
|
|
# define _NOTHREADS
|
|
#endif
|
|
|
|
# ifdef _PTHREADS
|
|
// POSIX Threads
|
|
// This is dubious, since this is likely to be a high contention
|
|
// lock. Performance may not be adequate.
|
|
# include <pthread.h>
|
|
# define __NODE_ALLOCATOR_LOCK \
|
|
if (threads) pthread_mutex_lock(&__node_allocator_lock)
|
|
# define __NODE_ALLOCATOR_UNLOCK \
|
|
if (threads) pthread_mutex_unlock(&__node_allocator_lock)
|
|
# define __NODE_ALLOCATOR_THREADS true
|
|
# define __VOLATILE volatile // Needed at -O3 on SGI
|
|
# endif
|
|
# ifdef __STL_WIN32THREADS
|
|
// The lock needs to be initialized by constructing an allocator
|
|
// objects of the right type. We do that here explicitly for alloc.
|
|
# define __NODE_ALLOCATOR_LOCK \
|
|
EnterCriticalSection(&__node_allocator_lock)
|
|
# define __NODE_ALLOCATOR_UNLOCK \
|
|
LeaveCriticalSection(&__node_allocator_lock)
|
|
# define __NODE_ALLOCATOR_THREADS true
|
|
# define __VOLATILE volatile // may not be needed
|
|
# endif /* WIN32THREADS */
|
|
# ifdef __STL_SGI_THREADS
|
|
// This should work without threads, with sproc threads, or with
|
|
// pthreads. It is suboptimal in all cases.
|
|
// It is unlikely to even compile on nonSGI machines.
|
|
# include <malloc.h>
|
|
# define __NODE_ALLOCATOR_LOCK if (threads && __us_rsthread_malloc) \
|
|
{ __lock(&__node_allocator_lock); }
|
|
# define __NODE_ALLOCATOR_UNLOCK if (threads && __us_rsthread_malloc) \
|
|
{ __unlock(&__node_allocator_lock); }
|
|
# define __NODE_ALLOCATOR_THREADS true
|
|
# define __VOLATILE volatile // Needed at -O3 on SGI
|
|
# endif
|
|
# ifdef _NOTHREADS
|
|
// Thread-unsafe
|
|
# define __NODE_ALLOCATOR_LOCK
|
|
# define __NODE_ALLOCATOR_UNLOCK
|
|
# define __NODE_ALLOCATOR_THREADS false
|
|
# define __VOLATILE
|
|
# endif
|
|
|
|
#if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32)
|
|
#pragma set woff 1174
|
|
#endif
|
|
|
|
// Malloc-based allocator. Typically slower than default alloc below.
|
|
// Typically thread-safe and more storage efficient.
|
|
#ifdef __STL_STATIC_TEMPLATE_MEMBER_BUG
|
|
# ifdef __DECLARE_GLOBALS_HERE
|
|
void (* __malloc_alloc_oom_handler)() = 0;
|
|
// g++ 2.7.2 does not handle static template data members.
|
|
# else
|
|
extern void (* __malloc_alloc_oom_handler)();
|
|
# endif
|
|
#endif
|
|
|
|
template <int inst>
|
|
class __malloc_alloc_template {
|
|
|
|
private:
|
|
|
|
static void *oom_malloc(size_t);
|
|
|
|
static void *oom_realloc(void *, size_t);
|
|
|
|
#ifndef __STL_STATIC_TEMPLATE_MEMBER_BUG
|
|
static void (* __malloc_alloc_oom_handler)();
|
|
#endif
|
|
|
|
public:
|
|
|
|
static void * allocate(size_t n)
|
|
{
|
|
void *result = malloc(n);
|
|
if (0 == result) result = oom_malloc(n);
|
|
return result;
|
|
}
|
|
|
|
static void deallocate(void *p, size_t /* n */)
|
|
{
|
|
free(p);
|
|
}
|
|
|
|
static void * reallocate(void *p, size_t /* old_sz */, size_t new_sz)
|
|
{
|
|
void * result = realloc(p, new_sz);
|
|
if (0 == result) result = oom_realloc(p, new_sz);
|
|
return result;
|
|
}
|
|
|
|
static void (* set_malloc_handler(void (*f)()))()
|
|
{
|
|
void (* old)() = __malloc_alloc_oom_handler;
|
|
__malloc_alloc_oom_handler = f;
|
|
return(old);
|
|
}
|
|
|
|
};
|
|
|
|
// malloc_alloc out-of-memory handling
|
|
|
|
#ifndef __STL_STATIC_TEMPLATE_MEMBER_BUG
|
|
template <int inst>
|
|
void (* __malloc_alloc_template<inst>::__malloc_alloc_oom_handler)() = 0;
|
|
#endif
|
|
|
|
template <int inst>
|
|
void * __malloc_alloc_template<inst>::oom_malloc(size_t n)
|
|
{
|
|
void (* my_malloc_handler)();
|
|
void *result;
|
|
|
|
for (;;) {
|
|
my_malloc_handler = __malloc_alloc_oom_handler;
|
|
if (0 == my_malloc_handler) { __THROW_BAD_ALLOC; }
|
|
(*my_malloc_handler)();
|
|
result = malloc(n);
|
|
if (result) return(result);
|
|
}
|
|
}
|
|
|
|
template <int inst>
|
|
void * __malloc_alloc_template<inst>::oom_realloc(void *p, size_t n)
|
|
{
|
|
void (* my_malloc_handler)();
|
|
void *result;
|
|
|
|
for (;;) {
|
|
my_malloc_handler = __malloc_alloc_oom_handler;
|
|
if (0 == my_malloc_handler) { __THROW_BAD_ALLOC; }
|
|
(*my_malloc_handler)();
|
|
result = realloc(p, n);
|
|
if (result) return(result);
|
|
}
|
|
}
|
|
|
|
typedef __malloc_alloc_template<0> malloc_alloc;
|
|
|
|
template<class T, class Alloc>
|
|
class simple_alloc {
|
|
|
|
public:
|
|
static T *allocate(size_t n)
|
|
{ return 0 == n? 0 : (T*) Alloc::allocate(n * sizeof (T)); }
|
|
static T *allocate(void)
|
|
{ return (T*) Alloc::allocate(sizeof (T)); }
|
|
static void deallocate(T *p, size_t n)
|
|
{ if (0 != n) Alloc::deallocate(p, n * sizeof (T)); }
|
|
static void deallocate(T *p)
|
|
{ Alloc::deallocate(p, sizeof (T)); }
|
|
};
|
|
|
|
// Allocator adaptor to check size arguments for debugging.
|
|
// Reports errors using assert. Checking can be disabled with
|
|
// NDEBUG, but it's far better to just use the underlying allocator
|
|
// instead when no checking is desired.
|
|
// There is some evidence that this can confuse Purify.
|
|
template <class Alloc>
|
|
class debug_alloc {
|
|
|
|
private:
|
|
|
|
enum {extra = 8}; // Size of space used to store size. Note
|
|
// that this must be large enough to preserve
|
|
// alignment.
|
|
|
|
public:
|
|
|
|
static void * allocate(size_t n)
|
|
{
|
|
char *result = (char *)Alloc::allocate(n + extra);
|
|
*(size_t *)result = n;
|
|
return result + extra;
|
|
}
|
|
|
|
static void deallocate(void *p, size_t n)
|
|
{
|
|
char * real_p = (char *)p - extra;
|
|
assert(*(size_t *)real_p == n);
|
|
Alloc::deallocate(real_p, n + extra);
|
|
}
|
|
|
|
static void * reallocate(void *p, size_t old_sz, size_t new_sz)
|
|
{
|
|
char * real_p = (char *)p - extra;
|
|
assert(*(size_t *)real_p == old_sz);
|
|
char * result = (char *)
|
|
Alloc::reallocate(real_p, old_sz + extra, new_sz + extra);
|
|
*(size_t *)result = new_sz;
|
|
return result + extra;
|
|
}
|
|
|
|
|
|
};
|
|
|
|
|
|
# ifdef __USE_MALLOC
|
|
|
|
typedef malloc_alloc alloc;
|
|
typedef malloc_alloc single_client_alloc;
|
|
|
|
# else
|
|
|
|
|
|
// Default node allocator.
|
|
// With a reasonable compiler, this should be roughly as fast as the
|
|
// original STL class-specific allocators, but with less fragmentation.
|
|
// Default_alloc_template parameters are experimental and MAY
|
|
// DISAPPEAR in the future. Clients should just use alloc for now.
|
|
//
|
|
// Important implementation properties:
|
|
// 1. If the client request an object of size > __MAX_BYTES, the resulting
|
|
// object will be obtained directly from malloc.
|
|
// 2. In all other cases, we allocate an object of size exactly
|
|
// ROUND_UP(requested_size). Thus the client has enough size
|
|
// information that we can return the object to the proper free list
|
|
// without permanently losing part of the object.
|
|
//
|
|
|
|
// The first template parameter specifies whether more than one thread
|
|
// may use this allocator. It is safe to allocate an object from
|
|
// one instance of a default_alloc and deallocate it with another
|
|
// one. This effectively transfers its ownership to the second one.
|
|
// This may have undesirable effects on reference locality.
|
|
// The second parameter is unreferenced and serves only to allow the
|
|
// creation of multiple default_alloc instances.
|
|
// Node that containers built on different allocator instances have
|
|
// different types, limiting the utility of this approach.
|
|
#ifdef __SUNPRO_CC
|
|
// breaks if we make these template class members:
|
|
enum {__ALIGN = 8};
|
|
enum {__MAX_BYTES = 128};
|
|
enum {__NFREELISTS = __MAX_BYTES/__ALIGN};
|
|
#endif
|
|
|
|
template <bool threads, int inst>
|
|
class __default_alloc_template {
|
|
|
|
private:
|
|
// Really we should use static const int x = N
|
|
// instead of enum { x = N }, but few compilers accept the former.
|
|
# ifndef __SUNPRO_CC
|
|
enum {__ALIGN = 8};
|
|
enum {__MAX_BYTES = 128};
|
|
enum {__NFREELISTS = __MAX_BYTES/__ALIGN};
|
|
# endif
|
|
static size_t ROUND_UP(size_t bytes) {
|
|
return (((bytes) + __ALIGN-1) & ~(__ALIGN - 1));
|
|
}
|
|
__PRIVATE:
|
|
union obj {
|
|
union obj * free_list_link;
|
|
char client_data[1]; /* The client sees this. */
|
|
};
|
|
private:
|
|
# ifdef __SUNPRO_CC
|
|
static obj * __VOLATILE free_list[];
|
|
// Specifying a size results in duplicate def for 4.1
|
|
# else
|
|
static obj * __VOLATILE free_list[__NFREELISTS];
|
|
# endif
|
|
static size_t FREELIST_INDEX(size_t bytes) {
|
|
return (((bytes) + __ALIGN-1)/__ALIGN - 1);
|
|
}
|
|
|
|
// Returns an object of size n, and optionally adds to size n free list.
|
|
static void *refill(size_t n);
|
|
// Allocates a chunk for nobjs of size size. nobjs may be reduced
|
|
// if it is inconvenient to allocate the requested number.
|
|
static char *chunk_alloc(size_t size, int &nobjs);
|
|
|
|
// Chunk allocation state.
|
|
static char *start_free;
|
|
static char *end_free;
|
|
static size_t heap_size;
|
|
|
|
# ifdef __STL_SGI_THREADS
|
|
static volatile unsigned long __node_allocator_lock;
|
|
static void __lock(volatile unsigned long *);
|
|
static inline void __unlock(volatile unsigned long *);
|
|
# endif
|
|
|
|
# ifdef _PTHREADS
|
|
static pthread_mutex_t __node_allocator_lock;
|
|
# endif
|
|
|
|
# ifdef __STL_WIN32THREADS
|
|
static CRITICAL_SECTION __node_allocator_lock;
|
|
static bool __node_allocator_lock_initialized;
|
|
|
|
public:
|
|
__default_alloc_template() {
|
|
// This assumes the first constructor is called before threads
|
|
// are started.
|
|
if (!__node_allocator_lock_initialized) {
|
|
InitializeCriticalSection(&__node_allocator_lock);
|
|
__node_allocator_lock_initialized = true;
|
|
}
|
|
}
|
|
private:
|
|
# endif
|
|
|
|
class lock {
|
|
public:
|
|
lock() { __NODE_ALLOCATOR_LOCK; }
|
|
~lock() { __NODE_ALLOCATOR_UNLOCK; }
|
|
};
|
|
friend class lock;
|
|
|
|
public:
|
|
|
|
/* n must be > 0 */
|
|
static void * allocate(size_t n)
|
|
{
|
|
obj * __VOLATILE * my_free_list;
|
|
obj * __RESTRICT result;
|
|
|
|
if (n > __MAX_BYTES) {
|
|
return(malloc_alloc::allocate(n));
|
|
}
|
|
my_free_list = free_list + FREELIST_INDEX(n);
|
|
// Acquire the lock here with a constructor call.
|
|
// This ensures that it is released in exit or during stack
|
|
// unwinding.
|
|
/*REFERENCED*/
|
|
lock lock_instance;
|
|
result = *my_free_list;
|
|
if (result == 0) {
|
|
void *r = refill(ROUND_UP(n));
|
|
return r;
|
|
}
|
|
*my_free_list = result -> free_list_link;
|
|
return (result);
|
|
};
|
|
|
|
/* p may not be 0 */
|
|
static void deallocate(void *p, size_t n)
|
|
{
|
|
obj *q = (obj *)p;
|
|
obj * __VOLATILE * my_free_list;
|
|
|
|
if (n > __MAX_BYTES) {
|
|
malloc_alloc::deallocate(p, n);
|
|
return;
|
|
}
|
|
my_free_list = free_list + FREELIST_INDEX(n);
|
|
// acquire lock
|
|
/*REFERENCED*/
|
|
lock lock_instance;
|
|
q -> free_list_link = *my_free_list;
|
|
*my_free_list = q;
|
|
// lock is released here
|
|
}
|
|
|
|
static void * reallocate(void *p, size_t old_sz, size_t new_sz);
|
|
|
|
} ;
|
|
|
|
typedef __default_alloc_template<__NODE_ALLOCATOR_THREADS, 0> alloc;
|
|
typedef __default_alloc_template<false, 0> single_client_alloc;
|
|
|
|
|
|
|
|
/* We allocate memory in large chunks in order to avoid fragmenting */
|
|
/* the malloc heap too much. */
|
|
/* We assume that size is properly aligned. */
|
|
/* We hold the allocation lock. */
|
|
template <bool threads, int inst>
|
|
char*
|
|
__default_alloc_template<threads, inst>::chunk_alloc(size_t size, int& nobjs)
|
|
{
|
|
char * result;
|
|
size_t total_bytes = size * nobjs;
|
|
size_t bytes_left = end_free - start_free;
|
|
|
|
if (bytes_left >= total_bytes) {
|
|
result = start_free;
|
|
start_free += total_bytes;
|
|
return(result);
|
|
} else if (bytes_left >= size) {
|
|
nobjs = bytes_left/size;
|
|
total_bytes = size * nobjs;
|
|
result = start_free;
|
|
start_free += total_bytes;
|
|
return(result);
|
|
} else {
|
|
size_t bytes_to_get = 2 * total_bytes + ROUND_UP(heap_size >> 4);
|
|
// Try to make use of the left-over piece.
|
|
if (bytes_left > 0) {
|
|
obj * __VOLATILE * my_free_list =
|
|
free_list + FREELIST_INDEX(bytes_left);
|
|
|
|
((obj *)start_free) -> free_list_link = *my_free_list;
|
|
*my_free_list = (obj *)start_free;
|
|
}
|
|
start_free = (char *)malloc(bytes_to_get);
|
|
if (0 == start_free) {
|
|
int i;
|
|
obj * __VOLATILE * my_free_list, *p;
|
|
// Try to make do with what we have. That can't
|
|
// hurt. We do not try smaller requests, since that tends
|
|
// to result in disaster on multi-process machines.
|
|
for (i = size; i <= __MAX_BYTES; i += __ALIGN) {
|
|
my_free_list = free_list + FREELIST_INDEX(i);
|
|
p = *my_free_list;
|
|
if (0 != p) {
|
|
*my_free_list = p -> free_list_link;
|
|
start_free = (char *)p;
|
|
end_free = start_free + i;
|
|
return(chunk_alloc(size, nobjs));
|
|
// Any leftover piece will eventually make it to the
|
|
// right free list.
|
|
}
|
|
}
|
|
start_free = (char *)malloc_alloc::allocate(bytes_to_get);
|
|
// This should either throw an
|
|
// exception or remedy the situation. Thus we assume it
|
|
// succeeded.
|
|
}
|
|
heap_size += bytes_to_get;
|
|
end_free = start_free + bytes_to_get;
|
|
return(chunk_alloc(size, nobjs));
|
|
}
|
|
}
|
|
|
|
|
|
/* Returns an object of size n, and optionally adds to size n free list.*/
|
|
/* We assume that n is properly aligned. */
|
|
/* We hold the allocation lock. */
|
|
template <bool threads, int inst>
|
|
void* __default_alloc_template<threads, inst>::refill(size_t n)
|
|
{
|
|
int nobjs = 20;
|
|
char * chunk = chunk_alloc(n, nobjs);
|
|
obj * __VOLATILE * my_free_list;
|
|
obj * result;
|
|
obj * current_obj, * next_obj;
|
|
int i;
|
|
|
|
if (1 == nobjs) return(chunk);
|
|
my_free_list = free_list + FREELIST_INDEX(n);
|
|
|
|
/* Build free list in chunk */
|
|
result = (obj *)chunk;
|
|
*my_free_list = next_obj = (obj *)(chunk + n);
|
|
for (i = 1; ; i++) {
|
|
current_obj = next_obj;
|
|
next_obj = (obj *)((char *)next_obj + n);
|
|
if (nobjs - 1 == i) {
|
|
current_obj -> free_list_link = 0;
|
|
break;
|
|
} else {
|
|
current_obj -> free_list_link = next_obj;
|
|
}
|
|
}
|
|
return(result);
|
|
}
|
|
|
|
template <bool threads, int inst>
|
|
void*
|
|
__default_alloc_template<threads, inst>::reallocate(void *p,
|
|
size_t old_sz,
|
|
size_t new_sz)
|
|
{
|
|
void * result;
|
|
size_t copy_sz;
|
|
|
|
if (old_sz > __MAX_BYTES && new_sz > __MAX_BYTES) {
|
|
return(realloc(p, new_sz));
|
|
}
|
|
if (ROUND_UP(old_sz) == ROUND_UP(new_sz)) return(p);
|
|
result = allocate(new_sz);
|
|
copy_sz = new_sz > old_sz? old_sz : new_sz;
|
|
memcpy(result, p, copy_sz);
|
|
deallocate(p, old_sz);
|
|
return(result);
|
|
}
|
|
|
|
#ifdef _PTHREADS
|
|
template <bool threads, int inst>
|
|
pthread_mutex_t
|
|
__default_alloc_template<threads, inst>::__node_allocator_lock
|
|
= PTHREAD_MUTEX_INITIALIZER;
|
|
#endif
|
|
|
|
#ifdef __STL_WIN32THREADS
|
|
template <bool threads, int inst> CRITICAL_SECTION
|
|
__default_alloc_template<threads, inst>::__node_allocator_lock;
|
|
|
|
template <bool threads, int inst> bool
|
|
__default_alloc_template<threads, inst>::__node_allocator_lock_initialized
|
|
= false;
|
|
#endif
|
|
|
|
#ifdef __STL_SGI_THREADS
|
|
#include <mutex.h>
|
|
#include <time.h>
|
|
// Somewhat generic lock implementations. We need only test-and-set
|
|
// and some way to sleep. These should work with both SGI pthreads
|
|
// and sproc threads. They may be useful on other systems.
|
|
template <bool threads, int inst>
|
|
volatile unsigned long
|
|
__default_alloc_template<threads, inst>::__node_allocator_lock = 0;
|
|
|
|
#if __mips < 3 || !(defined (_ABIN32) || defined(_ABI64)) || defined(__GNUC__)
|
|
# define __test_and_set(l,v) test_and_set(l,v)
|
|
#endif
|
|
|
|
template <bool threads, int inst>
|
|
void
|
|
__default_alloc_template<threads, inst>::__lock(volatile unsigned long *lock)
|
|
{
|
|
const unsigned low_spin_max = 30; // spin cycles if we suspect uniprocessor
|
|
const unsigned high_spin_max = 1000; // spin cycles for multiprocessor
|
|
static unsigned spin_max = low_spin_max;
|
|
unsigned my_spin_max;
|
|
static unsigned last_spins = 0;
|
|
unsigned my_last_spins;
|
|
static struct timespec ts = {0, 1000};
|
|
unsigned junk;
|
|
# define __ALLOC_PAUSE junk *= junk; junk *= junk; junk *= junk; junk *= junk
|
|
int i;
|
|
|
|
if (!__test_and_set((unsigned long *)lock, 1)) {
|
|
return;
|
|
}
|
|
my_spin_max = spin_max;
|
|
my_last_spins = last_spins;
|
|
for (i = 0; i < my_spin_max; i++) {
|
|
if (i < my_last_spins/2 || *lock) {
|
|
__ALLOC_PAUSE;
|
|
continue;
|
|
}
|
|
if (!__test_and_set((unsigned long *)lock, 1)) {
|
|
// got it!
|
|
// Spinning worked. Thus we're probably not being scheduled
|
|
// against the other process with which we were contending.
|
|
// Thus it makes sense to spin longer the next time.
|
|
last_spins = i;
|
|
spin_max = high_spin_max;
|
|
return;
|
|
}
|
|
}
|
|
// We are probably being scheduled against the other process. Sleep.
|
|
spin_max = low_spin_max;
|
|
for (;;) {
|
|
if (!__test_and_set((unsigned long *)lock, 1)) {
|
|
return;
|
|
}
|
|
nanosleep(&ts, 0);
|
|
}
|
|
}
|
|
|
|
template <bool threads, int inst>
|
|
inline void
|
|
__default_alloc_template<threads, inst>::__unlock(volatile unsigned long *lock)
|
|
{
|
|
# if defined(__GNUC__) && __mips >= 3
|
|
asm("sync");
|
|
*lock = 0;
|
|
# elif __mips >= 3 && (defined (_ABIN32) || defined(_ABI64))
|
|
__lock_release(lock);
|
|
# else
|
|
*lock = 0;
|
|
// This is not sufficient on many multiprocessors, since
|
|
// writes to protected variables and the lock may be reordered.
|
|
# endif
|
|
}
|
|
#endif
|
|
|
|
template <bool threads, int inst>
|
|
char *__default_alloc_template<threads, inst>::start_free = 0;
|
|
|
|
template <bool threads, int inst>
|
|
char *__default_alloc_template<threads, inst>::end_free = 0;
|
|
|
|
template <bool threads, int inst>
|
|
size_t __default_alloc_template<threads, inst>::heap_size = 0;
|
|
|
|
template <bool threads, int inst>
|
|
__default_alloc_template<threads, inst>::obj * __VOLATILE
|
|
__default_alloc_template<threads, inst> ::free_list[
|
|
# ifdef __SUNPRO_CC
|
|
__NFREELISTS
|
|
# else
|
|
__default_alloc_template<threads, inst>::__NFREELISTS
|
|
# endif
|
|
] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, };
|
|
// The 16 zeros are necessary to make version 4.1 of the SunPro
|
|
// compiler happy. Otherwise it appears to allocate too little
|
|
// space for the array.
|
|
|
|
# ifdef __STL_WIN32THREADS
|
|
// Create one to get critical section initialized.
|
|
// We do this onece per file, but only the first constructor
|
|
// does anything.
|
|
static alloc __node_allocator_dummy_instance;
|
|
# endif
|
|
|
|
#endif /* ! __USE_MALLOC */
|
|
|
|
#if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32)
|
|
#pragma reset woff 1174
|
|
#endif
|
|
|
|
#endif /* __NODE_ALLOC_H */
|