gcc/libgfortran/intrinsics/c99_functions.c
Tobias Schlüter bf4d99cf13 re PR libfortran/16137 (Fortran compiler unable to produce executables as libfortran depends on C99 math functions)
PR libfortran/16137
* config.h.in (HAVE_POWF): Undefine.
* configure.ac: Check for 'powf' in library.
* configure: Regenerate.
* intrinsics/c99_functions.c (powf): New function.

From-SVN: r88128
2004-09-26 16:52:04 +02:00

326 lines
5.4 KiB
C

/* Implementation of various C99 functions
Copyright (C) 2004 Free Software Foundation, Inc.
This file is part of the GNU Fortran 95 runtime library (libgfortran).
Libgfortran is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
Libgfortran is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with libgfortran; see the file COPYING.LIB. If not,
write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#include "config.h"
#include <sys/types.h>
#include <float.h>
#include <math.h>
#include "libgfortran.h"
#ifndef HAVE_ACOSF
float
acosf(float x)
{
return (float) acos(x);
}
#endif
#ifndef HAVE_ASINF
float
asinf(float x)
{
return (float) asin(x);
}
#endif
#ifndef HAVE_ATAN2F
float
atan2f(float y, float x)
{
return (float) atan2(y, x);
}
#endif
#ifndef HAVE_ATANF
float
atanf(float x)
{
return (float) atan(x);
}
#endif
#ifndef HAVE_CEILF
float
ceilf(float x)
{
return (float) ceil(x);
}
#endif
#ifndef HAVE_COPYSIGNF
float
copysignf(float x, float y)
{
return (float) copysign(x, y);
}
#endif
#ifndef HAVE_COSF
float
cosf(float x)
{
return (float) cos(x);
}
#endif
#ifndef HAVE_COSHF
float
coshf(float x)
{
return (float) cosh(x);
}
#endif
#ifndef HAVE_EXPF
float
expf(float x)
{
return (float) exp(x);
}
#endif
#ifndef HAVE_FLOORF
float
floorf(float x)
{
return (float) floor(x);
}
#endif
#ifndef HAVE_FREXPF
float
frexpf(float x, int *exp)
{
return (float) frexp(x, exp);
}
#endif
#ifndef HAVE_HYPOTF
float
hypotf(float x, float y)
{
return (float) hypot(x, y);
}
#endif
#ifndef HAVE_LOGF
float
logf(float x)
{
return (float) log(x);
}
#endif
#ifndef HAVE_LOG10F
float
log10f(float x)
{
return (float) log10(x);
}
#endif
#ifndef HAVE_SCALBNF
float
scalbnf(float x, int y)
{
return (float) scalbn(x, y);
}
#endif
#ifndef HAVE_SINF
float
sinf(float x)
{
return (float) sin(x);
}
#endif
#ifndef HAVE_SINHF
float
sinhf(float x)
{
return (float) sinh(x);
}
#endif
#ifndef HAVE_SQRTF
float
sqrtf(float x)
{
return (float) sqrt(x);
}
#endif
#ifndef HAVE_TANF
float
tanf(float x)
{
return (float) tan(x);
}
#endif
#ifndef HAVE_TANHF
float
tanhf(float x)
{
return (float) tanh(x);
}
#endif
#ifndef HAVE_NEXTAFTERF
/* This is a portable implementation of nextafterf that is intended to be
independent of the floating point format or its in memory representation.
This implementation works correctly with denormalized values. */
float
nextafterf(float x, float y)
{
/* This variable is marked volatile to avoid excess precision problems
on some platforms, including IA-32. */
volatile float delta;
float absx, denorm_min;
if (isnan(x) || isnan(y))
return x + y;
if (x == y)
return x;
/* absx = fabsf (x); */
absx = (x < 0.0) ? -x : x;
/* __FLT_DENORM_MIN__ is non-zero iff the target supports denormals. */
if (__FLT_DENORM_MIN__ == 0.0f)
denorm_min = __FLT_MIN__;
else
denorm_min = __FLT_DENORM_MIN__;
if (absx < __FLT_MIN__)
delta = denorm_min;
else
{
float frac;
int exp;
/* Discard the fraction from x. */
frac = frexpf (absx, &exp);
delta = scalbnf (0.5f, exp);
/* Scale x by the epsilon of the representation. By rights we should
have been able to combine this with scalbnf, but some targets don't
get that correct with denormals. */
delta *= __FLT_EPSILON__;
/* If we're going to be reducing the absolute value of X, and doing so
would reduce the exponent of X, then the delta to be applied is
one exponent smaller. */
if (frac == 0.5f && (y < x) == (x > 0))
delta *= 0.5f;
/* If that underflows to zero, then we're back to the minimum. */
if (delta == 0.0f)
delta = denorm_min;
}
if (y < x)
delta = -delta;
return x + delta;
}
#endif
#ifndef HAVE_POWF
float
powf(float x, float y)
{
return (float) pow(x, y);
}
#endif
/* Note that if HAVE_FPCLASSIFY is not defined, then NaN is not handled */
/* Algorithm by Steven G. Kargl. */
#ifndef HAVE_ROUND
/* Round to nearest integral value. If the argument is halfway between two
integral values then round away from zero. */
double
round(double x)
{
double t;
#ifdef HAVE_FPCLASSIFY
int i;
i = fpclassify(x);
if (i == FP_INFINITE || i == FP_NAN)
return (x);
#endif
if (x >= 0.0)
{
t = ceil(x);
if (t - x > 0.5)
t -= 1.0;
return (t);
}
else
{
t = ceil(-x);
if (t + x > 0.5)
t -= 1.0;
return (-t);
}
}
#endif
#ifndef HAVE_ROUNDF
/* Round to nearest integral value. If the argument is halfway between two
integral values then round away from zero. */
float
roundf(float x)
{
float t;
#ifdef HAVE_FPCLASSIFY
int i;
i = fpclassify(x);
if (i == FP_INFINITE || i == FP_NAN)
return (x);
#endif
if (x >= 0.0)
{
t = ceilf(x);
if (t - x > 0.5)
t -= 1.0;
return (t);
}
else
{
t = ceilf(-x);
if (t + x > 0.5)
t -= 1.0;
return (-t);
}
}
#endif