gcc/libgo/go/image/geom.go
Ian Lance Taylor 7a9389330e Add Go frontend, libgo library, and Go testsuite.
gcc/:
	* gcc.c (default_compilers): Add entry for ".go".
	* common.opt: Add -static-libgo as a driver option.
	* doc/install.texi (Configuration): Mention libgo as an option for
	--enable-shared.  Mention go as an option for --enable-languages.
	* doc/invoke.texi (Overall Options): Mention .go as a file name
	suffix.  Mention go as a -x option.
	* doc/frontends.texi (G++ and GCC): Mention Go as a supported
	language.
	* doc/sourcebuild.texi (Top Level): Mention libgo.
	* doc/standards.texi (Standards): Add section on Go language.
	Move references for other languages into their own section.
	* doc/contrib.texi (Contributors): Mention that I contributed the
	Go frontend.
gcc/testsuite/:
	* lib/go.exp: New file.
	* lib/go-dg.exp: New file.
	* lib/go-torture.exp: New file.
	* lib/target-supports.exp (check_compile): Match // Go.

From-SVN: r167407
2010-12-03 04:34:57 +00:00

224 lines
5.0 KiB
Go

// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package image
import (
"strconv"
)
// A Point is an X, Y coordinate pair. The axes increase right and down.
type Point struct {
X, Y int
}
// String returns a string representation of p like "(3,4)".
func (p Point) String() string {
return "(" + strconv.Itoa(p.X) + "," + strconv.Itoa(p.Y) + ")"
}
// Add returns the vector p+q.
func (p Point) Add(q Point) Point {
return Point{p.X + q.X, p.Y + q.Y}
}
// Sub returns the vector p-q.
func (p Point) Sub(q Point) Point {
return Point{p.X - q.X, p.Y - q.Y}
}
// Mul returns the vector p*k.
func (p Point) Mul(k int) Point {
return Point{p.X * k, p.Y * k}
}
// Div returns the vector p/k.
func (p Point) Div(k int) Point {
return Point{p.X / k, p.Y / k}
}
// Mod returns the point q in r such that p.X-q.X is a multiple of r's width
// and p.Y-q.Y is a multiple of r's height.
func (p Point) Mod(r Rectangle) Point {
w, h := r.Dx(), r.Dy()
p = p.Sub(r.Min)
p.X = p.X % w
if p.X < 0 {
p.X += w
}
p.Y = p.Y % h
if p.Y < 0 {
p.Y += h
}
return p.Add(r.Min)
}
// Eq returns whether p and q are equal.
func (p Point) Eq(q Point) bool {
return p.X == q.X && p.Y == q.Y
}
// ZP is the zero Point.
var ZP Point
// Pt is shorthand for Point{X, Y}.
func Pt(X, Y int) Point {
return Point{X, Y}
}
// A Rectangle contains the points with Min.X <= X < Max.X, Min.Y <= Y < Max.Y.
// It is well-formed if Min.X <= Max.X and likewise for Y. Points are always
// well-formed. A rectangle's methods always return well-formed outputs for
// well-formed inputs.
type Rectangle struct {
Min, Max Point
}
// String returns a string representation of r like "(3,4)-(6,5)".
func (r Rectangle) String() string {
return r.Min.String() + "-" + r.Max.String()
}
// Dx returns r's width.
func (r Rectangle) Dx() int {
return r.Max.X - r.Min.X
}
// Dy returns r's height.
func (r Rectangle) Dy() int {
return r.Max.Y - r.Min.Y
}
// Size returns r's width and height.
func (r Rectangle) Size() Point {
return Point{
r.Max.X - r.Min.X,
r.Max.Y - r.Min.Y,
}
}
// Add returns the rectangle r translated by p.
func (r Rectangle) Add(p Point) Rectangle {
return Rectangle{
Point{r.Min.X + p.X, r.Min.Y + p.Y},
Point{r.Max.X + p.X, r.Max.Y + p.Y},
}
}
// Add returns the rectangle r translated by -p.
func (r Rectangle) Sub(p Point) Rectangle {
return Rectangle{
Point{r.Min.X - p.X, r.Min.Y - p.Y},
Point{r.Max.X - p.X, r.Max.Y - p.Y},
}
}
// Inset returns the rectangle r inset by n, which may be negative. If either
// of r's dimensions is less than 2*n then an empty rectangle near the center
// of r will be returned.
func (r Rectangle) Inset(n int) Rectangle {
if r.Dx() < 2*n {
r.Min.X = (r.Min.X + r.Max.X) / 2
r.Max.X = r.Min.X
} else {
r.Min.X += n
r.Max.X -= n
}
if r.Dy() < 2*n {
r.Min.Y = (r.Min.Y + r.Max.Y) / 2
r.Max.Y = r.Min.Y
} else {
r.Min.Y += n
r.Max.Y -= n
}
return r
}
// Intersect returns the largest rectangle contained by both r and s. If the
// two rectangles do not overlap then the zero rectangle will be returned.
func (r Rectangle) Intersect(s Rectangle) Rectangle {
if r.Min.X < s.Min.X {
r.Min.X = s.Min.X
}
if r.Min.Y < s.Min.Y {
r.Min.Y = s.Min.Y
}
if r.Max.X > s.Max.X {
r.Max.X = s.Max.X
}
if r.Max.Y > s.Max.Y {
r.Max.Y = s.Max.Y
}
if r.Min.X > r.Max.X || r.Min.Y > r.Max.Y {
return ZR
}
return r
}
// Union returns the smallest rectangle that contains both r and s.
func (r Rectangle) Union(s Rectangle) Rectangle {
if r.Min.X > s.Min.X {
r.Min.X = s.Min.X
}
if r.Min.Y > s.Min.Y {
r.Min.Y = s.Min.Y
}
if r.Max.X < s.Max.X {
r.Max.X = s.Max.X
}
if r.Max.Y < s.Max.Y {
r.Max.Y = s.Max.Y
}
return r
}
// Empty returns whether the rectangle contains no points.
func (r Rectangle) Empty() bool {
return r.Min.X >= r.Max.X || r.Min.Y >= r.Max.Y
}
// Eq returns whether r and s are equal.
func (r Rectangle) Eq(s Rectangle) bool {
return r.Min.X == s.Min.X && r.Min.Y == s.Min.Y &&
r.Max.X == s.Max.X && r.Max.Y == s.Max.Y
}
// Overlaps returns whether r and s have a non-empty intersection.
func (r Rectangle) Overlaps(s Rectangle) bool {
return r.Min.X < s.Max.X && s.Min.X < r.Max.X &&
r.Min.Y < s.Max.Y && s.Min.Y < r.Max.Y
}
// Contains returns whether r contains p.
func (r Rectangle) Contains(p Point) bool {
return p.X >= r.Min.X && p.X < r.Max.X &&
p.Y >= r.Min.Y && p.Y < r.Max.Y
}
// Canon returns the canonical version of r. The returned rectangle has minimum
// and maximum coordinates swapped if necessary so that it is well-formed.
func (r Rectangle) Canon() Rectangle {
if r.Max.X < r.Min.X {
r.Min.X, r.Max.X = r.Max.X, r.Min.X
}
if r.Max.Y < r.Min.Y {
r.Min.Y, r.Max.Y = r.Max.Y, r.Min.Y
}
return r
}
// ZR is the zero Rectangle.
var ZR Rectangle
// Rect is shorthand for Rectangle{Pt(x0, y0), Pt(x1, y1)}.
func Rect(x0, y0, x1, y1 int) Rectangle {
if x0 > x1 {
x0, x1 = x1, x0
}
if y0 > y1 {
y0, y1 = y1, y0
}
return Rectangle{Point{x0, y0}, Point{x1, y1}}
}