ac1dca3cab
From-SVN: r206295
4117 lines
99 KiB
ArmAsm
4117 lines
99 KiB
ArmAsm
/* libgcc routines for 68000 w/o floating-point hardware.
|
|
Copyright (C) 1994-2014 Free Software Foundation, Inc.
|
|
|
|
This file is part of GCC.
|
|
|
|
GCC is free software; you can redistribute it and/or modify it
|
|
under the terms of the GNU General Public License as published by the
|
|
Free Software Foundation; either version 3, or (at your option) any
|
|
later version.
|
|
|
|
This file is distributed in the hope that it will be useful, but
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
General Public License for more details.
|
|
|
|
Under Section 7 of GPL version 3, you are granted additional
|
|
permissions described in the GCC Runtime Library Exception, version
|
|
3.1, as published by the Free Software Foundation.
|
|
|
|
You should have received a copy of the GNU General Public License and
|
|
a copy of the GCC Runtime Library Exception along with this program;
|
|
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
/* Use this one for any 680x0; assumes no floating point hardware.
|
|
The trailing " '" appearing on some lines is for ANSI preprocessors. Yuk.
|
|
Some of this code comes from MINIX, via the folks at ericsson.
|
|
D. V. Henkel-Wallace (gumby@cygnus.com) Fete Bastille, 1992
|
|
*/
|
|
|
|
/* These are predefined by new versions of GNU cpp. */
|
|
|
|
#ifndef __USER_LABEL_PREFIX__
|
|
#define __USER_LABEL_PREFIX__ _
|
|
#endif
|
|
|
|
#ifndef __REGISTER_PREFIX__
|
|
#define __REGISTER_PREFIX__
|
|
#endif
|
|
|
|
#ifndef __IMMEDIATE_PREFIX__
|
|
#define __IMMEDIATE_PREFIX__ #
|
|
#endif
|
|
|
|
/* ANSI concatenation macros. */
|
|
|
|
#define CONCAT1(a, b) CONCAT2(a, b)
|
|
#define CONCAT2(a, b) a ## b
|
|
|
|
/* Use the right prefix for global labels. */
|
|
|
|
#define SYM(x) CONCAT1 (__USER_LABEL_PREFIX__, x)
|
|
|
|
/* Note that X is a function. */
|
|
|
|
#ifdef __ELF__
|
|
#define FUNC(x) .type SYM(x),function
|
|
#else
|
|
/* The .proc pseudo-op is accepted, but ignored, by GAS. We could just
|
|
define this to the empty string for non-ELF systems, but defining it
|
|
to .proc means that the information is available to the assembler if
|
|
the need arises. */
|
|
#define FUNC(x) .proc
|
|
#endif
|
|
|
|
/* Use the right prefix for registers. */
|
|
|
|
#define REG(x) CONCAT1 (__REGISTER_PREFIX__, x)
|
|
|
|
/* Use the right prefix for immediate values. */
|
|
|
|
#define IMM(x) CONCAT1 (__IMMEDIATE_PREFIX__, x)
|
|
|
|
#define d0 REG (d0)
|
|
#define d1 REG (d1)
|
|
#define d2 REG (d2)
|
|
#define d3 REG (d3)
|
|
#define d4 REG (d4)
|
|
#define d5 REG (d5)
|
|
#define d6 REG (d6)
|
|
#define d7 REG (d7)
|
|
#define a0 REG (a0)
|
|
#define a1 REG (a1)
|
|
#define a2 REG (a2)
|
|
#define a3 REG (a3)
|
|
#define a4 REG (a4)
|
|
#define a5 REG (a5)
|
|
#define a6 REG (a6)
|
|
#define fp REG (fp)
|
|
#define sp REG (sp)
|
|
#define pc REG (pc)
|
|
|
|
/* Provide a few macros to allow for PIC code support.
|
|
* With PIC, data is stored A5 relative so we've got to take a bit of special
|
|
* care to ensure that all loads of global data is via A5. PIC also requires
|
|
* jumps and subroutine calls to be PC relative rather than absolute. We cheat
|
|
* a little on this and in the PIC case, we use short offset branches and
|
|
* hope that the final object code is within range (which it should be).
|
|
*/
|
|
#ifndef __PIC__
|
|
|
|
/* Non PIC (absolute/relocatable) versions */
|
|
|
|
.macro PICCALL addr
|
|
jbsr \addr
|
|
.endm
|
|
|
|
.macro PICJUMP addr
|
|
jmp \addr
|
|
.endm
|
|
|
|
.macro PICLEA sym, reg
|
|
lea \sym, \reg
|
|
.endm
|
|
|
|
.macro PICPEA sym, areg
|
|
pea \sym
|
|
.endm
|
|
|
|
#else /* __PIC__ */
|
|
|
|
# if defined (__uClinux__)
|
|
|
|
/* Versions for uClinux */
|
|
|
|
# if defined(__ID_SHARED_LIBRARY__)
|
|
|
|
/* -mid-shared-library versions */
|
|
|
|
.macro PICLEA sym, reg
|
|
movel a5@(_current_shared_library_a5_offset_), \reg
|
|
movel \sym@GOT(\reg), \reg
|
|
.endm
|
|
|
|
.macro PICPEA sym, areg
|
|
movel a5@(_current_shared_library_a5_offset_), \areg
|
|
movel \sym@GOT(\areg), sp@-
|
|
.endm
|
|
|
|
.macro PICCALL addr
|
|
PICLEA \addr,a0
|
|
jsr a0@
|
|
.endm
|
|
|
|
.macro PICJUMP addr
|
|
PICLEA \addr,a0
|
|
jmp a0@
|
|
.endm
|
|
|
|
# else /* !__ID_SHARED_LIBRARY__ */
|
|
|
|
/* Versions for -msep-data */
|
|
|
|
.macro PICLEA sym, reg
|
|
movel \sym@GOT(a5), \reg
|
|
.endm
|
|
|
|
.macro PICPEA sym, areg
|
|
movel \sym@GOT(a5), sp@-
|
|
.endm
|
|
|
|
.macro PICCALL addr
|
|
#if defined (__mcoldfire__) && !defined (__mcfisab__) && !defined (__mcfisac__)
|
|
lea \addr-.-8,a0
|
|
jsr pc@(a0)
|
|
#else
|
|
jbsr \addr
|
|
#endif
|
|
.endm
|
|
|
|
.macro PICJUMP addr
|
|
/* ISA C has no bra.l instruction, and since this assembly file
|
|
gets assembled into multiple object files, we avoid the
|
|
bra instruction entirely. */
|
|
#if defined (__mcoldfire__) && !defined (__mcfisab__)
|
|
lea \addr-.-8,a0
|
|
jmp pc@(a0)
|
|
#else
|
|
bra \addr
|
|
#endif
|
|
.endm
|
|
|
|
# endif
|
|
|
|
# else /* !__uClinux__ */
|
|
|
|
/* Versions for Linux */
|
|
|
|
.macro PICLEA sym, reg
|
|
movel #_GLOBAL_OFFSET_TABLE_@GOTPC, \reg
|
|
lea (-6, pc, \reg), \reg
|
|
movel \sym@GOT(\reg), \reg
|
|
.endm
|
|
|
|
.macro PICPEA sym, areg
|
|
movel #_GLOBAL_OFFSET_TABLE_@GOTPC, \areg
|
|
lea (-6, pc, \areg), \areg
|
|
movel \sym@GOT(\areg), sp@-
|
|
.endm
|
|
|
|
.macro PICCALL addr
|
|
#if defined (__mcoldfire__) && !defined (__mcfisab__) && !defined (__mcfisac__)
|
|
lea \addr-.-8,a0
|
|
jsr pc@(a0)
|
|
#else
|
|
jbsr \addr
|
|
#endif
|
|
.endm
|
|
|
|
.macro PICJUMP addr
|
|
/* ISA C has no bra.l instruction, and since this assembly file
|
|
gets assembled into multiple object files, we avoid the
|
|
bra instruction entirely. */
|
|
#if defined (__mcoldfire__) && !defined (__mcfisab__)
|
|
lea \addr-.-8,a0
|
|
jmp pc@(a0)
|
|
#else
|
|
bra \addr
|
|
#endif
|
|
.endm
|
|
|
|
# endif
|
|
#endif /* __PIC__ */
|
|
|
|
|
|
#ifdef L_floatex
|
|
|
|
| This is an attempt at a decent floating point (single, double and
|
|
| extended double) code for the GNU C compiler. It should be easy to
|
|
| adapt to other compilers (but beware of the local labels!).
|
|
|
|
| Starting date: 21 October, 1990
|
|
|
|
| It is convenient to introduce the notation (s,e,f) for a floating point
|
|
| number, where s=sign, e=exponent, f=fraction. We will call a floating
|
|
| point number fpn to abbreviate, independently of the precision.
|
|
| Let MAX_EXP be in each case the maximum exponent (255 for floats, 1023
|
|
| for doubles and 16383 for long doubles). We then have the following
|
|
| different cases:
|
|
| 1. Normalized fpns have 0 < e < MAX_EXP. They correspond to
|
|
| (-1)^s x 1.f x 2^(e-bias-1).
|
|
| 2. Denormalized fpns have e=0. They correspond to numbers of the form
|
|
| (-1)^s x 0.f x 2^(-bias).
|
|
| 3. +/-INFINITY have e=MAX_EXP, f=0.
|
|
| 4. Quiet NaN (Not a Number) have all bits set.
|
|
| 5. Signaling NaN (Not a Number) have s=0, e=MAX_EXP, f=1.
|
|
|
|
|=============================================================================
|
|
| exceptions
|
|
|=============================================================================
|
|
|
|
| This is the floating point condition code register (_fpCCR):
|
|
|
|
|
| struct {
|
|
| short _exception_bits;
|
|
| short _trap_enable_bits;
|
|
| short _sticky_bits;
|
|
| short _rounding_mode;
|
|
| short _format;
|
|
| short _last_operation;
|
|
| union {
|
|
| float sf;
|
|
| double df;
|
|
| } _operand1;
|
|
| union {
|
|
| float sf;
|
|
| double df;
|
|
| } _operand2;
|
|
| } _fpCCR;
|
|
|
|
.data
|
|
.even
|
|
|
|
.globl SYM (_fpCCR)
|
|
|
|
SYM (_fpCCR):
|
|
__exception_bits:
|
|
.word 0
|
|
__trap_enable_bits:
|
|
.word 0
|
|
__sticky_bits:
|
|
.word 0
|
|
__rounding_mode:
|
|
.word ROUND_TO_NEAREST
|
|
__format:
|
|
.word NIL
|
|
__last_operation:
|
|
.word NOOP
|
|
__operand1:
|
|
.long 0
|
|
.long 0
|
|
__operand2:
|
|
.long 0
|
|
.long 0
|
|
|
|
| Offsets:
|
|
EBITS = __exception_bits - SYM (_fpCCR)
|
|
TRAPE = __trap_enable_bits - SYM (_fpCCR)
|
|
STICK = __sticky_bits - SYM (_fpCCR)
|
|
ROUND = __rounding_mode - SYM (_fpCCR)
|
|
FORMT = __format - SYM (_fpCCR)
|
|
LASTO = __last_operation - SYM (_fpCCR)
|
|
OPER1 = __operand1 - SYM (_fpCCR)
|
|
OPER2 = __operand2 - SYM (_fpCCR)
|
|
|
|
| The following exception types are supported:
|
|
INEXACT_RESULT = 0x0001
|
|
UNDERFLOW = 0x0002
|
|
OVERFLOW = 0x0004
|
|
DIVIDE_BY_ZERO = 0x0008
|
|
INVALID_OPERATION = 0x0010
|
|
|
|
| The allowed rounding modes are:
|
|
UNKNOWN = -1
|
|
ROUND_TO_NEAREST = 0 | round result to nearest representable value
|
|
ROUND_TO_ZERO = 1 | round result towards zero
|
|
ROUND_TO_PLUS = 2 | round result towards plus infinity
|
|
ROUND_TO_MINUS = 3 | round result towards minus infinity
|
|
|
|
| The allowed values of format are:
|
|
NIL = 0
|
|
SINGLE_FLOAT = 1
|
|
DOUBLE_FLOAT = 2
|
|
LONG_FLOAT = 3
|
|
|
|
| The allowed values for the last operation are:
|
|
NOOP = 0
|
|
ADD = 1
|
|
MULTIPLY = 2
|
|
DIVIDE = 3
|
|
NEGATE = 4
|
|
COMPARE = 5
|
|
EXTENDSFDF = 6
|
|
TRUNCDFSF = 7
|
|
|
|
|=============================================================================
|
|
| __clear_sticky_bits
|
|
|=============================================================================
|
|
|
|
| The sticky bits are normally not cleared (thus the name), whereas the
|
|
| exception type and exception value reflect the last computation.
|
|
| This routine is provided to clear them (you can also write to _fpCCR,
|
|
| since it is globally visible).
|
|
|
|
.globl SYM (__clear_sticky_bit)
|
|
|
|
.text
|
|
.even
|
|
|
|
| void __clear_sticky_bits(void);
|
|
SYM (__clear_sticky_bit):
|
|
PICLEA SYM (_fpCCR),a0
|
|
#ifndef __mcoldfire__
|
|
movew IMM (0),a0@(STICK)
|
|
#else
|
|
clr.w a0@(STICK)
|
|
#endif
|
|
rts
|
|
|
|
|=============================================================================
|
|
| $_exception_handler
|
|
|=============================================================================
|
|
|
|
.globl $_exception_handler
|
|
|
|
.text
|
|
.even
|
|
|
|
| This is the common exit point if an exception occurs.
|
|
| NOTE: it is NOT callable from C!
|
|
| It expects the exception type in d7, the format (SINGLE_FLOAT,
|
|
| DOUBLE_FLOAT or LONG_FLOAT) in d6, and the last operation code in d5.
|
|
| It sets the corresponding exception and sticky bits, and the format.
|
|
| Depending on the format if fills the corresponding slots for the
|
|
| operands which produced the exception (all this information is provided
|
|
| so if you write your own exception handlers you have enough information
|
|
| to deal with the problem).
|
|
| Then checks to see if the corresponding exception is trap-enabled,
|
|
| in which case it pushes the address of _fpCCR and traps through
|
|
| trap FPTRAP (15 for the moment).
|
|
|
|
FPTRAP = 15
|
|
|
|
$_exception_handler:
|
|
PICLEA SYM (_fpCCR),a0
|
|
movew d7,a0@(EBITS) | set __exception_bits
|
|
#ifndef __mcoldfire__
|
|
orw d7,a0@(STICK) | and __sticky_bits
|
|
#else
|
|
movew a0@(STICK),d4
|
|
orl d7,d4
|
|
movew d4,a0@(STICK)
|
|
#endif
|
|
movew d6,a0@(FORMT) | and __format
|
|
movew d5,a0@(LASTO) | and __last_operation
|
|
|
|
| Now put the operands in place:
|
|
#ifndef __mcoldfire__
|
|
cmpw IMM (SINGLE_FLOAT),d6
|
|
#else
|
|
cmpl IMM (SINGLE_FLOAT),d6
|
|
#endif
|
|
beq 1f
|
|
movel a6@(8),a0@(OPER1)
|
|
movel a6@(12),a0@(OPER1+4)
|
|
movel a6@(16),a0@(OPER2)
|
|
movel a6@(20),a0@(OPER2+4)
|
|
bra 2f
|
|
1: movel a6@(8),a0@(OPER1)
|
|
movel a6@(12),a0@(OPER2)
|
|
2:
|
|
| And check whether the exception is trap-enabled:
|
|
#ifndef __mcoldfire__
|
|
andw a0@(TRAPE),d7 | is exception trap-enabled?
|
|
#else
|
|
clrl d6
|
|
movew a0@(TRAPE),d6
|
|
andl d6,d7
|
|
#endif
|
|
beq 1f | no, exit
|
|
PICPEA SYM (_fpCCR),a1 | yes, push address of _fpCCR
|
|
trap IMM (FPTRAP) | and trap
|
|
#ifndef __mcoldfire__
|
|
1: moveml sp@+,d2-d7 | restore data registers
|
|
#else
|
|
1: moveml sp@,d2-d7
|
|
| XXX if frame pointer is ever removed, stack pointer must
|
|
| be adjusted here.
|
|
#endif
|
|
unlk a6 | and return
|
|
rts
|
|
#endif /* L_floatex */
|
|
|
|
#ifdef L_mulsi3
|
|
.text
|
|
FUNC(__mulsi3)
|
|
.globl SYM (__mulsi3)
|
|
SYM (__mulsi3):
|
|
movew sp@(4), d0 /* x0 -> d0 */
|
|
muluw sp@(10), d0 /* x0*y1 */
|
|
movew sp@(6), d1 /* x1 -> d1 */
|
|
muluw sp@(8), d1 /* x1*y0 */
|
|
#ifndef __mcoldfire__
|
|
addw d1, d0
|
|
#else
|
|
addl d1, d0
|
|
#endif
|
|
swap d0
|
|
clrw d0
|
|
movew sp@(6), d1 /* x1 -> d1 */
|
|
muluw sp@(10), d1 /* x1*y1 */
|
|
addl d1, d0
|
|
|
|
rts
|
|
#endif /* L_mulsi3 */
|
|
|
|
#ifdef L_udivsi3
|
|
.text
|
|
FUNC(__udivsi3)
|
|
.globl SYM (__udivsi3)
|
|
SYM (__udivsi3):
|
|
#ifndef __mcoldfire__
|
|
movel d2, sp@-
|
|
movel sp@(12), d1 /* d1 = divisor */
|
|
movel sp@(8), d0 /* d0 = dividend */
|
|
|
|
cmpl IMM (0x10000), d1 /* divisor >= 2 ^ 16 ? */
|
|
jcc L3 /* then try next algorithm */
|
|
movel d0, d2
|
|
clrw d2
|
|
swap d2
|
|
divu d1, d2 /* high quotient in lower word */
|
|
movew d2, d0 /* save high quotient */
|
|
swap d0
|
|
movew sp@(10), d2 /* get low dividend + high rest */
|
|
divu d1, d2 /* low quotient */
|
|
movew d2, d0
|
|
jra L6
|
|
|
|
L3: movel d1, d2 /* use d2 as divisor backup */
|
|
L4: lsrl IMM (1), d1 /* shift divisor */
|
|
lsrl IMM (1), d0 /* shift dividend */
|
|
cmpl IMM (0x10000), d1 /* still divisor >= 2 ^ 16 ? */
|
|
jcc L4
|
|
divu d1, d0 /* now we have 16-bit divisor */
|
|
andl IMM (0xffff), d0 /* mask out divisor, ignore remainder */
|
|
|
|
/* Multiply the 16-bit tentative quotient with the 32-bit divisor. Because of
|
|
the operand ranges, this might give a 33-bit product. If this product is
|
|
greater than the dividend, the tentative quotient was too large. */
|
|
movel d2, d1
|
|
mulu d0, d1 /* low part, 32 bits */
|
|
swap d2
|
|
mulu d0, d2 /* high part, at most 17 bits */
|
|
swap d2 /* align high part with low part */
|
|
tstw d2 /* high part 17 bits? */
|
|
jne L5 /* if 17 bits, quotient was too large */
|
|
addl d2, d1 /* add parts */
|
|
jcs L5 /* if sum is 33 bits, quotient was too large */
|
|
cmpl sp@(8), d1 /* compare the sum with the dividend */
|
|
jls L6 /* if sum > dividend, quotient was too large */
|
|
L5: subql IMM (1), d0 /* adjust quotient */
|
|
|
|
L6: movel sp@+, d2
|
|
rts
|
|
|
|
#else /* __mcoldfire__ */
|
|
|
|
/* ColdFire implementation of non-restoring division algorithm from
|
|
Hennessy & Patterson, Appendix A. */
|
|
link a6,IMM (-12)
|
|
moveml d2-d4,sp@
|
|
movel a6@(8),d0
|
|
movel a6@(12),d1
|
|
clrl d2 | clear p
|
|
moveq IMM (31),d4
|
|
L1: addl d0,d0 | shift reg pair (p,a) one bit left
|
|
addxl d2,d2
|
|
movl d2,d3 | subtract b from p, store in tmp.
|
|
subl d1,d3
|
|
jcs L2 | if no carry,
|
|
bset IMM (0),d0 | set the low order bit of a to 1,
|
|
movl d3,d2 | and store tmp in p.
|
|
L2: subql IMM (1),d4
|
|
jcc L1
|
|
moveml sp@,d2-d4 | restore data registers
|
|
unlk a6 | and return
|
|
rts
|
|
#endif /* __mcoldfire__ */
|
|
|
|
#endif /* L_udivsi3 */
|
|
|
|
#ifdef L_divsi3
|
|
.text
|
|
FUNC(__divsi3)
|
|
.globl SYM (__divsi3)
|
|
SYM (__divsi3):
|
|
movel d2, sp@-
|
|
|
|
moveq IMM (1), d2 /* sign of result stored in d2 (=1 or =-1) */
|
|
movel sp@(12), d1 /* d1 = divisor */
|
|
jpl L1
|
|
negl d1
|
|
#ifndef __mcoldfire__
|
|
negb d2 /* change sign because divisor <0 */
|
|
#else
|
|
negl d2 /* change sign because divisor <0 */
|
|
#endif
|
|
L1: movel sp@(8), d0 /* d0 = dividend */
|
|
jpl L2
|
|
negl d0
|
|
#ifndef __mcoldfire__
|
|
negb d2
|
|
#else
|
|
negl d2
|
|
#endif
|
|
|
|
L2: movel d1, sp@-
|
|
movel d0, sp@-
|
|
PICCALL SYM (__udivsi3) /* divide abs(dividend) by abs(divisor) */
|
|
addql IMM (8), sp
|
|
|
|
tstb d2
|
|
jpl L3
|
|
negl d0
|
|
|
|
L3: movel sp@+, d2
|
|
rts
|
|
#endif /* L_divsi3 */
|
|
|
|
#ifdef L_umodsi3
|
|
.text
|
|
FUNC(__umodsi3)
|
|
.globl SYM (__umodsi3)
|
|
SYM (__umodsi3):
|
|
movel sp@(8), d1 /* d1 = divisor */
|
|
movel sp@(4), d0 /* d0 = dividend */
|
|
movel d1, sp@-
|
|
movel d0, sp@-
|
|
PICCALL SYM (__udivsi3)
|
|
addql IMM (8), sp
|
|
movel sp@(8), d1 /* d1 = divisor */
|
|
#ifndef __mcoldfire__
|
|
movel d1, sp@-
|
|
movel d0, sp@-
|
|
PICCALL SYM (__mulsi3) /* d0 = (a/b)*b */
|
|
addql IMM (8), sp
|
|
#else
|
|
mulsl d1,d0
|
|
#endif
|
|
movel sp@(4), d1 /* d1 = dividend */
|
|
subl d0, d1 /* d1 = a - (a/b)*b */
|
|
movel d1, d0
|
|
rts
|
|
#endif /* L_umodsi3 */
|
|
|
|
#ifdef L_modsi3
|
|
.text
|
|
FUNC(__modsi3)
|
|
.globl SYM (__modsi3)
|
|
SYM (__modsi3):
|
|
movel sp@(8), d1 /* d1 = divisor */
|
|
movel sp@(4), d0 /* d0 = dividend */
|
|
movel d1, sp@-
|
|
movel d0, sp@-
|
|
PICCALL SYM (__divsi3)
|
|
addql IMM (8), sp
|
|
movel sp@(8), d1 /* d1 = divisor */
|
|
#ifndef __mcoldfire__
|
|
movel d1, sp@-
|
|
movel d0, sp@-
|
|
PICCALL SYM (__mulsi3) /* d0 = (a/b)*b */
|
|
addql IMM (8), sp
|
|
#else
|
|
mulsl d1,d0
|
|
#endif
|
|
movel sp@(4), d1 /* d1 = dividend */
|
|
subl d0, d1 /* d1 = a - (a/b)*b */
|
|
movel d1, d0
|
|
rts
|
|
#endif /* L_modsi3 */
|
|
|
|
|
|
#ifdef L_double
|
|
|
|
.globl SYM (_fpCCR)
|
|
.globl $_exception_handler
|
|
|
|
QUIET_NaN = 0xffffffff
|
|
|
|
D_MAX_EXP = 0x07ff
|
|
D_BIAS = 1022
|
|
DBL_MAX_EXP = D_MAX_EXP - D_BIAS
|
|
DBL_MIN_EXP = 1 - D_BIAS
|
|
DBL_MANT_DIG = 53
|
|
|
|
INEXACT_RESULT = 0x0001
|
|
UNDERFLOW = 0x0002
|
|
OVERFLOW = 0x0004
|
|
DIVIDE_BY_ZERO = 0x0008
|
|
INVALID_OPERATION = 0x0010
|
|
|
|
DOUBLE_FLOAT = 2
|
|
|
|
NOOP = 0
|
|
ADD = 1
|
|
MULTIPLY = 2
|
|
DIVIDE = 3
|
|
NEGATE = 4
|
|
COMPARE = 5
|
|
EXTENDSFDF = 6
|
|
TRUNCDFSF = 7
|
|
|
|
UNKNOWN = -1
|
|
ROUND_TO_NEAREST = 0 | round result to nearest representable value
|
|
ROUND_TO_ZERO = 1 | round result towards zero
|
|
ROUND_TO_PLUS = 2 | round result towards plus infinity
|
|
ROUND_TO_MINUS = 3 | round result towards minus infinity
|
|
|
|
| Entry points:
|
|
|
|
.globl SYM (__adddf3)
|
|
.globl SYM (__subdf3)
|
|
.globl SYM (__muldf3)
|
|
.globl SYM (__divdf3)
|
|
.globl SYM (__negdf2)
|
|
.globl SYM (__cmpdf2)
|
|
.globl SYM (__cmpdf2_internal)
|
|
.hidden SYM (__cmpdf2_internal)
|
|
|
|
.text
|
|
.even
|
|
|
|
| These are common routines to return and signal exceptions.
|
|
|
|
Ld$den:
|
|
| Return and signal a denormalized number
|
|
orl d7,d0
|
|
movew IMM (INEXACT_RESULT+UNDERFLOW),d7
|
|
moveq IMM (DOUBLE_FLOAT),d6
|
|
PICJUMP $_exception_handler
|
|
|
|
Ld$infty:
|
|
Ld$overflow:
|
|
| Return a properly signed INFINITY and set the exception flags
|
|
movel IMM (0x7ff00000),d0
|
|
movel IMM (0),d1
|
|
orl d7,d0
|
|
movew IMM (INEXACT_RESULT+OVERFLOW),d7
|
|
moveq IMM (DOUBLE_FLOAT),d6
|
|
PICJUMP $_exception_handler
|
|
|
|
Ld$underflow:
|
|
| Return 0 and set the exception flags
|
|
movel IMM (0),d0
|
|
movel d0,d1
|
|
movew IMM (INEXACT_RESULT+UNDERFLOW),d7
|
|
moveq IMM (DOUBLE_FLOAT),d6
|
|
PICJUMP $_exception_handler
|
|
|
|
Ld$inop:
|
|
| Return a quiet NaN and set the exception flags
|
|
movel IMM (QUIET_NaN),d0
|
|
movel d0,d1
|
|
movew IMM (INEXACT_RESULT+INVALID_OPERATION),d7
|
|
moveq IMM (DOUBLE_FLOAT),d6
|
|
PICJUMP $_exception_handler
|
|
|
|
Ld$div$0:
|
|
| Return a properly signed INFINITY and set the exception flags
|
|
movel IMM (0x7ff00000),d0
|
|
movel IMM (0),d1
|
|
orl d7,d0
|
|
movew IMM (INEXACT_RESULT+DIVIDE_BY_ZERO),d7
|
|
moveq IMM (DOUBLE_FLOAT),d6
|
|
PICJUMP $_exception_handler
|
|
|
|
|=============================================================================
|
|
|=============================================================================
|
|
| double precision routines
|
|
|=============================================================================
|
|
|=============================================================================
|
|
|
|
| A double precision floating point number (double) has the format:
|
|
|
|
|
| struct _double {
|
|
| unsigned int sign : 1; /* sign bit */
|
|
| unsigned int exponent : 11; /* exponent, shifted by 126 */
|
|
| unsigned int fraction : 52; /* fraction */
|
|
| } double;
|
|
|
|
|
| Thus sizeof(double) = 8 (64 bits).
|
|
|
|
|
| All the routines are callable from C programs, and return the result
|
|
| in the register pair d0-d1. They also preserve all registers except
|
|
| d0-d1 and a0-a1.
|
|
|
|
|=============================================================================
|
|
| __subdf3
|
|
|=============================================================================
|
|
|
|
| double __subdf3(double, double);
|
|
FUNC(__subdf3)
|
|
SYM (__subdf3):
|
|
bchg IMM (31),sp@(12) | change sign of second operand
|
|
| and fall through, so we always add
|
|
|=============================================================================
|
|
| __adddf3
|
|
|=============================================================================
|
|
|
|
| double __adddf3(double, double);
|
|
FUNC(__adddf3)
|
|
SYM (__adddf3):
|
|
#ifndef __mcoldfire__
|
|
link a6,IMM (0) | everything will be done in registers
|
|
moveml d2-d7,sp@- | save all data registers and a2 (but d0-d1)
|
|
#else
|
|
link a6,IMM (-24)
|
|
moveml d2-d7,sp@
|
|
#endif
|
|
movel a6@(8),d0 | get first operand
|
|
movel a6@(12),d1 |
|
|
movel a6@(16),d2 | get second operand
|
|
movel a6@(20),d3 |
|
|
|
|
movel d0,d7 | get d0's sign bit in d7 '
|
|
addl d1,d1 | check and clear sign bit of a, and gain one
|
|
addxl d0,d0 | bit of extra precision
|
|
beq Ladddf$b | if zero return second operand
|
|
|
|
movel d2,d6 | save sign in d6
|
|
addl d3,d3 | get rid of sign bit and gain one bit of
|
|
addxl d2,d2 | extra precision
|
|
beq Ladddf$a | if zero return first operand
|
|
|
|
andl IMM (0x80000000),d7 | isolate a's sign bit '
|
|
swap d6 | and also b's sign bit '
|
|
#ifndef __mcoldfire__
|
|
andw IMM (0x8000),d6 |
|
|
orw d6,d7 | and combine them into d7, so that a's sign '
|
|
| bit is in the high word and b's is in the '
|
|
| low word, so d6 is free to be used
|
|
#else
|
|
andl IMM (0x8000),d6
|
|
orl d6,d7
|
|
#endif
|
|
movel d7,a0 | now save d7 into a0, so d7 is free to
|
|
| be used also
|
|
|
|
| Get the exponents and check for denormalized and/or infinity.
|
|
|
|
movel IMM (0x001fffff),d6 | mask for the fraction
|
|
movel IMM (0x00200000),d7 | mask to put hidden bit back
|
|
|
|
movel d0,d4 |
|
|
andl d6,d0 | get fraction in d0
|
|
notl d6 | make d6 into mask for the exponent
|
|
andl d6,d4 | get exponent in d4
|
|
beq Ladddf$a$den | branch if a is denormalized
|
|
cmpl d6,d4 | check for INFINITY or NaN
|
|
beq Ladddf$nf |
|
|
orl d7,d0 | and put hidden bit back
|
|
Ladddf$1:
|
|
swap d4 | shift right exponent so that it starts
|
|
#ifndef __mcoldfire__
|
|
lsrw IMM (5),d4 | in bit 0 and not bit 20
|
|
#else
|
|
lsrl IMM (5),d4 | in bit 0 and not bit 20
|
|
#endif
|
|
| Now we have a's exponent in d4 and fraction in d0-d1 '
|
|
movel d2,d5 | save b to get exponent
|
|
andl d6,d5 | get exponent in d5
|
|
beq Ladddf$b$den | branch if b is denormalized
|
|
cmpl d6,d5 | check for INFINITY or NaN
|
|
beq Ladddf$nf
|
|
notl d6 | make d6 into mask for the fraction again
|
|
andl d6,d2 | and get fraction in d2
|
|
orl d7,d2 | and put hidden bit back
|
|
Ladddf$2:
|
|
swap d5 | shift right exponent so that it starts
|
|
#ifndef __mcoldfire__
|
|
lsrw IMM (5),d5 | in bit 0 and not bit 20
|
|
#else
|
|
lsrl IMM (5),d5 | in bit 0 and not bit 20
|
|
#endif
|
|
|
|
| Now we have b's exponent in d5 and fraction in d2-d3. '
|
|
|
|
| The situation now is as follows: the signs are combined in a0, the
|
|
| numbers are in d0-d1 (a) and d2-d3 (b), and the exponents in d4 (a)
|
|
| and d5 (b). To do the rounding correctly we need to keep all the
|
|
| bits until the end, so we need to use d0-d1-d2-d3 for the first number
|
|
| and d4-d5-d6-d7 for the second. To do this we store (temporarily) the
|
|
| exponents in a2-a3.
|
|
|
|
#ifndef __mcoldfire__
|
|
moveml a2-a3,sp@- | save the address registers
|
|
#else
|
|
movel a2,sp@-
|
|
movel a3,sp@-
|
|
movel a4,sp@-
|
|
#endif
|
|
|
|
movel d4,a2 | save the exponents
|
|
movel d5,a3 |
|
|
|
|
movel IMM (0),d7 | and move the numbers around
|
|
movel d7,d6 |
|
|
movel d3,d5 |
|
|
movel d2,d4 |
|
|
movel d7,d3 |
|
|
movel d7,d2 |
|
|
|
|
| Here we shift the numbers until the exponents are the same, and put
|
|
| the largest exponent in a2.
|
|
#ifndef __mcoldfire__
|
|
exg d4,a2 | get exponents back
|
|
exg d5,a3 |
|
|
cmpw d4,d5 | compare the exponents
|
|
#else
|
|
movel d4,a4 | get exponents back
|
|
movel a2,d4
|
|
movel a4,a2
|
|
movel d5,a4
|
|
movel a3,d5
|
|
movel a4,a3
|
|
cmpl d4,d5 | compare the exponents
|
|
#endif
|
|
beq Ladddf$3 | if equal don't shift '
|
|
bhi 9f | branch if second exponent is higher
|
|
|
|
| Here we have a's exponent larger than b's, so we have to shift b. We do
|
|
| this by using as counter d2:
|
|
1: movew d4,d2 | move largest exponent to d2
|
|
#ifndef __mcoldfire__
|
|
subw d5,d2 | and subtract second exponent
|
|
exg d4,a2 | get back the longs we saved
|
|
exg d5,a3 |
|
|
#else
|
|
subl d5,d2 | and subtract second exponent
|
|
movel d4,a4 | get back the longs we saved
|
|
movel a2,d4
|
|
movel a4,a2
|
|
movel d5,a4
|
|
movel a3,d5
|
|
movel a4,a3
|
|
#endif
|
|
| if difference is too large we don't shift (actually, we can just exit) '
|
|
#ifndef __mcoldfire__
|
|
cmpw IMM (DBL_MANT_DIG+2),d2
|
|
#else
|
|
cmpl IMM (DBL_MANT_DIG+2),d2
|
|
#endif
|
|
bge Ladddf$b$small
|
|
#ifndef __mcoldfire__
|
|
cmpw IMM (32),d2 | if difference >= 32, shift by longs
|
|
#else
|
|
cmpl IMM (32),d2 | if difference >= 32, shift by longs
|
|
#endif
|
|
bge 5f
|
|
2:
|
|
#ifndef __mcoldfire__
|
|
cmpw IMM (16),d2 | if difference >= 16, shift by words
|
|
#else
|
|
cmpl IMM (16),d2 | if difference >= 16, shift by words
|
|
#endif
|
|
bge 6f
|
|
bra 3f | enter dbra loop
|
|
|
|
4:
|
|
#ifndef __mcoldfire__
|
|
lsrl IMM (1),d4
|
|
roxrl IMM (1),d5
|
|
roxrl IMM (1),d6
|
|
roxrl IMM (1),d7
|
|
#else
|
|
lsrl IMM (1),d7
|
|
btst IMM (0),d6
|
|
beq 10f
|
|
bset IMM (31),d7
|
|
10: lsrl IMM (1),d6
|
|
btst IMM (0),d5
|
|
beq 11f
|
|
bset IMM (31),d6
|
|
11: lsrl IMM (1),d5
|
|
btst IMM (0),d4
|
|
beq 12f
|
|
bset IMM (31),d5
|
|
12: lsrl IMM (1),d4
|
|
#endif
|
|
3:
|
|
#ifndef __mcoldfire__
|
|
dbra d2,4b
|
|
#else
|
|
subql IMM (1),d2
|
|
bpl 4b
|
|
#endif
|
|
movel IMM (0),d2
|
|
movel d2,d3
|
|
bra Ladddf$4
|
|
5:
|
|
movel d6,d7
|
|
movel d5,d6
|
|
movel d4,d5
|
|
movel IMM (0),d4
|
|
#ifndef __mcoldfire__
|
|
subw IMM (32),d2
|
|
#else
|
|
subl IMM (32),d2
|
|
#endif
|
|
bra 2b
|
|
6:
|
|
movew d6,d7
|
|
swap d7
|
|
movew d5,d6
|
|
swap d6
|
|
movew d4,d5
|
|
swap d5
|
|
movew IMM (0),d4
|
|
swap d4
|
|
#ifndef __mcoldfire__
|
|
subw IMM (16),d2
|
|
#else
|
|
subl IMM (16),d2
|
|
#endif
|
|
bra 3b
|
|
|
|
9:
|
|
#ifndef __mcoldfire__
|
|
exg d4,d5
|
|
movew d4,d6
|
|
subw d5,d6 | keep d5 (largest exponent) in d4
|
|
exg d4,a2
|
|
exg d5,a3
|
|
#else
|
|
movel d5,d6
|
|
movel d4,d5
|
|
movel d6,d4
|
|
subl d5,d6
|
|
movel d4,a4
|
|
movel a2,d4
|
|
movel a4,a2
|
|
movel d5,a4
|
|
movel a3,d5
|
|
movel a4,a3
|
|
#endif
|
|
| if difference is too large we don't shift (actually, we can just exit) '
|
|
#ifndef __mcoldfire__
|
|
cmpw IMM (DBL_MANT_DIG+2),d6
|
|
#else
|
|
cmpl IMM (DBL_MANT_DIG+2),d6
|
|
#endif
|
|
bge Ladddf$a$small
|
|
#ifndef __mcoldfire__
|
|
cmpw IMM (32),d6 | if difference >= 32, shift by longs
|
|
#else
|
|
cmpl IMM (32),d6 | if difference >= 32, shift by longs
|
|
#endif
|
|
bge 5f
|
|
2:
|
|
#ifndef __mcoldfire__
|
|
cmpw IMM (16),d6 | if difference >= 16, shift by words
|
|
#else
|
|
cmpl IMM (16),d6 | if difference >= 16, shift by words
|
|
#endif
|
|
bge 6f
|
|
bra 3f | enter dbra loop
|
|
|
|
4:
|
|
#ifndef __mcoldfire__
|
|
lsrl IMM (1),d0
|
|
roxrl IMM (1),d1
|
|
roxrl IMM (1),d2
|
|
roxrl IMM (1),d3
|
|
#else
|
|
lsrl IMM (1),d3
|
|
btst IMM (0),d2
|
|
beq 10f
|
|
bset IMM (31),d3
|
|
10: lsrl IMM (1),d2
|
|
btst IMM (0),d1
|
|
beq 11f
|
|
bset IMM (31),d2
|
|
11: lsrl IMM (1),d1
|
|
btst IMM (0),d0
|
|
beq 12f
|
|
bset IMM (31),d1
|
|
12: lsrl IMM (1),d0
|
|
#endif
|
|
3:
|
|
#ifndef __mcoldfire__
|
|
dbra d6,4b
|
|
#else
|
|
subql IMM (1),d6
|
|
bpl 4b
|
|
#endif
|
|
movel IMM (0),d7
|
|
movel d7,d6
|
|
bra Ladddf$4
|
|
5:
|
|
movel d2,d3
|
|
movel d1,d2
|
|
movel d0,d1
|
|
movel IMM (0),d0
|
|
#ifndef __mcoldfire__
|
|
subw IMM (32),d6
|
|
#else
|
|
subl IMM (32),d6
|
|
#endif
|
|
bra 2b
|
|
6:
|
|
movew d2,d3
|
|
swap d3
|
|
movew d1,d2
|
|
swap d2
|
|
movew d0,d1
|
|
swap d1
|
|
movew IMM (0),d0
|
|
swap d0
|
|
#ifndef __mcoldfire__
|
|
subw IMM (16),d6
|
|
#else
|
|
subl IMM (16),d6
|
|
#endif
|
|
bra 3b
|
|
Ladddf$3:
|
|
#ifndef __mcoldfire__
|
|
exg d4,a2
|
|
exg d5,a3
|
|
#else
|
|
movel d4,a4
|
|
movel a2,d4
|
|
movel a4,a2
|
|
movel d5,a4
|
|
movel a3,d5
|
|
movel a4,a3
|
|
#endif
|
|
Ladddf$4:
|
|
| Now we have the numbers in d0--d3 and d4--d7, the exponent in a2, and
|
|
| the signs in a4.
|
|
|
|
| Here we have to decide whether to add or subtract the numbers:
|
|
#ifndef __mcoldfire__
|
|
exg d7,a0 | get the signs
|
|
exg d6,a3 | a3 is free to be used
|
|
#else
|
|
movel d7,a4
|
|
movel a0,d7
|
|
movel a4,a0
|
|
movel d6,a4
|
|
movel a3,d6
|
|
movel a4,a3
|
|
#endif
|
|
movel d7,d6 |
|
|
movew IMM (0),d7 | get a's sign in d7 '
|
|
swap d6 |
|
|
movew IMM (0),d6 | and b's sign in d6 '
|
|
eorl d7,d6 | compare the signs
|
|
bmi Lsubdf$0 | if the signs are different we have
|
|
| to subtract
|
|
#ifndef __mcoldfire__
|
|
exg d7,a0 | else we add the numbers
|
|
exg d6,a3 |
|
|
#else
|
|
movel d7,a4
|
|
movel a0,d7
|
|
movel a4,a0
|
|
movel d6,a4
|
|
movel a3,d6
|
|
movel a4,a3
|
|
#endif
|
|
addl d7,d3 |
|
|
addxl d6,d2 |
|
|
addxl d5,d1 |
|
|
addxl d4,d0 |
|
|
|
|
movel a2,d4 | return exponent to d4
|
|
movel a0,d7 |
|
|
andl IMM (0x80000000),d7 | d7 now has the sign
|
|
|
|
#ifndef __mcoldfire__
|
|
moveml sp@+,a2-a3
|
|
#else
|
|
movel sp@+,a4
|
|
movel sp@+,a3
|
|
movel sp@+,a2
|
|
#endif
|
|
|
|
| Before rounding normalize so bit #DBL_MANT_DIG is set (we will consider
|
|
| the case of denormalized numbers in the rounding routine itself).
|
|
| As in the addition (not in the subtraction!) we could have set
|
|
| one more bit we check this:
|
|
btst IMM (DBL_MANT_DIG+1),d0
|
|
beq 1f
|
|
#ifndef __mcoldfire__
|
|
lsrl IMM (1),d0
|
|
roxrl IMM (1),d1
|
|
roxrl IMM (1),d2
|
|
roxrl IMM (1),d3
|
|
addw IMM (1),d4
|
|
#else
|
|
lsrl IMM (1),d3
|
|
btst IMM (0),d2
|
|
beq 10f
|
|
bset IMM (31),d3
|
|
10: lsrl IMM (1),d2
|
|
btst IMM (0),d1
|
|
beq 11f
|
|
bset IMM (31),d2
|
|
11: lsrl IMM (1),d1
|
|
btst IMM (0),d0
|
|
beq 12f
|
|
bset IMM (31),d1
|
|
12: lsrl IMM (1),d0
|
|
addl IMM (1),d4
|
|
#endif
|
|
1:
|
|
lea pc@(Ladddf$5),a0 | to return from rounding routine
|
|
PICLEA SYM (_fpCCR),a1 | check the rounding mode
|
|
#ifdef __mcoldfire__
|
|
clrl d6
|
|
#endif
|
|
movew a1@(6),d6 | rounding mode in d6
|
|
beq Lround$to$nearest
|
|
#ifndef __mcoldfire__
|
|
cmpw IMM (ROUND_TO_PLUS),d6
|
|
#else
|
|
cmpl IMM (ROUND_TO_PLUS),d6
|
|
#endif
|
|
bhi Lround$to$minus
|
|
blt Lround$to$zero
|
|
bra Lround$to$plus
|
|
Ladddf$5:
|
|
| Put back the exponent and check for overflow
|
|
#ifndef __mcoldfire__
|
|
cmpw IMM (0x7ff),d4 | is the exponent big?
|
|
#else
|
|
cmpl IMM (0x7ff),d4 | is the exponent big?
|
|
#endif
|
|
bge 1f
|
|
bclr IMM (DBL_MANT_DIG-1),d0
|
|
#ifndef __mcoldfire__
|
|
lslw IMM (4),d4 | put exponent back into position
|
|
#else
|
|
lsll IMM (4),d4 | put exponent back into position
|
|
#endif
|
|
swap d0 |
|
|
#ifndef __mcoldfire__
|
|
orw d4,d0 |
|
|
#else
|
|
orl d4,d0 |
|
|
#endif
|
|
swap d0 |
|
|
bra Ladddf$ret
|
|
1:
|
|
moveq IMM (ADD),d5
|
|
bra Ld$overflow
|
|
|
|
Lsubdf$0:
|
|
| Here we do the subtraction.
|
|
#ifndef __mcoldfire__
|
|
exg d7,a0 | put sign back in a0
|
|
exg d6,a3 |
|
|
#else
|
|
movel d7,a4
|
|
movel a0,d7
|
|
movel a4,a0
|
|
movel d6,a4
|
|
movel a3,d6
|
|
movel a4,a3
|
|
#endif
|
|
subl d7,d3 |
|
|
subxl d6,d2 |
|
|
subxl d5,d1 |
|
|
subxl d4,d0 |
|
|
beq Ladddf$ret$1 | if zero just exit
|
|
bpl 1f | if positive skip the following
|
|
movel a0,d7 |
|
|
bchg IMM (31),d7 | change sign bit in d7
|
|
movel d7,a0 |
|
|
negl d3 |
|
|
negxl d2 |
|
|
negxl d1 | and negate result
|
|
negxl d0 |
|
|
1:
|
|
movel a2,d4 | return exponent to d4
|
|
movel a0,d7
|
|
andl IMM (0x80000000),d7 | isolate sign bit
|
|
#ifndef __mcoldfire__
|
|
moveml sp@+,a2-a3 |
|
|
#else
|
|
movel sp@+,a4
|
|
movel sp@+,a3
|
|
movel sp@+,a2
|
|
#endif
|
|
|
|
| Before rounding normalize so bit #DBL_MANT_DIG is set (we will consider
|
|
| the case of denormalized numbers in the rounding routine itself).
|
|
| As in the addition (not in the subtraction!) we could have set
|
|
| one more bit we check this:
|
|
btst IMM (DBL_MANT_DIG+1),d0
|
|
beq 1f
|
|
#ifndef __mcoldfire__
|
|
lsrl IMM (1),d0
|
|
roxrl IMM (1),d1
|
|
roxrl IMM (1),d2
|
|
roxrl IMM (1),d3
|
|
addw IMM (1),d4
|
|
#else
|
|
lsrl IMM (1),d3
|
|
btst IMM (0),d2
|
|
beq 10f
|
|
bset IMM (31),d3
|
|
10: lsrl IMM (1),d2
|
|
btst IMM (0),d1
|
|
beq 11f
|
|
bset IMM (31),d2
|
|
11: lsrl IMM (1),d1
|
|
btst IMM (0),d0
|
|
beq 12f
|
|
bset IMM (31),d1
|
|
12: lsrl IMM (1),d0
|
|
addl IMM (1),d4
|
|
#endif
|
|
1:
|
|
lea pc@(Lsubdf$1),a0 | to return from rounding routine
|
|
PICLEA SYM (_fpCCR),a1 | check the rounding mode
|
|
#ifdef __mcoldfire__
|
|
clrl d6
|
|
#endif
|
|
movew a1@(6),d6 | rounding mode in d6
|
|
beq Lround$to$nearest
|
|
#ifndef __mcoldfire__
|
|
cmpw IMM (ROUND_TO_PLUS),d6
|
|
#else
|
|
cmpl IMM (ROUND_TO_PLUS),d6
|
|
#endif
|
|
bhi Lround$to$minus
|
|
blt Lround$to$zero
|
|
bra Lround$to$plus
|
|
Lsubdf$1:
|
|
| Put back the exponent and sign (we don't have overflow). '
|
|
bclr IMM (DBL_MANT_DIG-1),d0
|
|
#ifndef __mcoldfire__
|
|
lslw IMM (4),d4 | put exponent back into position
|
|
#else
|
|
lsll IMM (4),d4 | put exponent back into position
|
|
#endif
|
|
swap d0 |
|
|
#ifndef __mcoldfire__
|
|
orw d4,d0 |
|
|
#else
|
|
orl d4,d0 |
|
|
#endif
|
|
swap d0 |
|
|
bra Ladddf$ret
|
|
|
|
| If one of the numbers was too small (difference of exponents >=
|
|
| DBL_MANT_DIG+1) we return the other (and now we don't have to '
|
|
| check for finiteness or zero).
|
|
Ladddf$a$small:
|
|
#ifndef __mcoldfire__
|
|
moveml sp@+,a2-a3
|
|
#else
|
|
movel sp@+,a4
|
|
movel sp@+,a3
|
|
movel sp@+,a2
|
|
#endif
|
|
movel a6@(16),d0
|
|
movel a6@(20),d1
|
|
PICLEA SYM (_fpCCR),a0
|
|
movew IMM (0),a0@
|
|
#ifndef __mcoldfire__
|
|
moveml sp@+,d2-d7 | restore data registers
|
|
#else
|
|
moveml sp@,d2-d7
|
|
| XXX if frame pointer is ever removed, stack pointer must
|
|
| be adjusted here.
|
|
#endif
|
|
unlk a6 | and return
|
|
rts
|
|
|
|
Ladddf$b$small:
|
|
#ifndef __mcoldfire__
|
|
moveml sp@+,a2-a3
|
|
#else
|
|
movel sp@+,a4
|
|
movel sp@+,a3
|
|
movel sp@+,a2
|
|
#endif
|
|
movel a6@(8),d0
|
|
movel a6@(12),d1
|
|
PICLEA SYM (_fpCCR),a0
|
|
movew IMM (0),a0@
|
|
#ifndef __mcoldfire__
|
|
moveml sp@+,d2-d7 | restore data registers
|
|
#else
|
|
moveml sp@,d2-d7
|
|
| XXX if frame pointer is ever removed, stack pointer must
|
|
| be adjusted here.
|
|
#endif
|
|
unlk a6 | and return
|
|
rts
|
|
|
|
Ladddf$a$den:
|
|
movel d7,d4 | d7 contains 0x00200000
|
|
bra Ladddf$1
|
|
|
|
Ladddf$b$den:
|
|
movel d7,d5 | d7 contains 0x00200000
|
|
notl d6
|
|
bra Ladddf$2
|
|
|
|
Ladddf$b:
|
|
| Return b (if a is zero)
|
|
movel d2,d0
|
|
movel d3,d1
|
|
bne 1f | Check if b is -0
|
|
cmpl IMM (0x80000000),d0
|
|
bne 1f
|
|
andl IMM (0x80000000),d7 | Use the sign of a
|
|
clrl d0
|
|
bra Ladddf$ret
|
|
Ladddf$a:
|
|
movel a6@(8),d0
|
|
movel a6@(12),d1
|
|
1:
|
|
moveq IMM (ADD),d5
|
|
| Check for NaN and +/-INFINITY.
|
|
movel d0,d7 |
|
|
andl IMM (0x80000000),d7 |
|
|
bclr IMM (31),d0 |
|
|
cmpl IMM (0x7ff00000),d0 |
|
|
bge 2f |
|
|
movel d0,d0 | check for zero, since we don't '
|
|
bne Ladddf$ret | want to return -0 by mistake
|
|
bclr IMM (31),d7 |
|
|
bra Ladddf$ret |
|
|
2:
|
|
andl IMM (0x000fffff),d0 | check for NaN (nonzero fraction)
|
|
orl d1,d0 |
|
|
bne Ld$inop |
|
|
bra Ld$infty |
|
|
|
|
Ladddf$ret$1:
|
|
#ifndef __mcoldfire__
|
|
moveml sp@+,a2-a3 | restore regs and exit
|
|
#else
|
|
movel sp@+,a4
|
|
movel sp@+,a3
|
|
movel sp@+,a2
|
|
#endif
|
|
|
|
Ladddf$ret:
|
|
| Normal exit.
|
|
PICLEA SYM (_fpCCR),a0
|
|
movew IMM (0),a0@
|
|
orl d7,d0 | put sign bit back
|
|
#ifndef __mcoldfire__
|
|
moveml sp@+,d2-d7
|
|
#else
|
|
moveml sp@,d2-d7
|
|
| XXX if frame pointer is ever removed, stack pointer must
|
|
| be adjusted here.
|
|
#endif
|
|
unlk a6
|
|
rts
|
|
|
|
Ladddf$ret$den:
|
|
| Return a denormalized number.
|
|
#ifndef __mcoldfire__
|
|
lsrl IMM (1),d0 | shift right once more
|
|
roxrl IMM (1),d1 |
|
|
#else
|
|
lsrl IMM (1),d1
|
|
btst IMM (0),d0
|
|
beq 10f
|
|
bset IMM (31),d1
|
|
10: lsrl IMM (1),d0
|
|
#endif
|
|
bra Ladddf$ret
|
|
|
|
Ladddf$nf:
|
|
moveq IMM (ADD),d5
|
|
| This could be faster but it is not worth the effort, since it is not
|
|
| executed very often. We sacrifice speed for clarity here.
|
|
movel a6@(8),d0 | get the numbers back (remember that we
|
|
movel a6@(12),d1 | did some processing already)
|
|
movel a6@(16),d2 |
|
|
movel a6@(20),d3 |
|
|
movel IMM (0x7ff00000),d4 | useful constant (INFINITY)
|
|
movel d0,d7 | save sign bits
|
|
movel d2,d6 |
|
|
bclr IMM (31),d0 | clear sign bits
|
|
bclr IMM (31),d2 |
|
|
| We know that one of them is either NaN of +/-INFINITY
|
|
| Check for NaN (if either one is NaN return NaN)
|
|
cmpl d4,d0 | check first a (d0)
|
|
bhi Ld$inop | if d0 > 0x7ff00000 or equal and
|
|
bne 2f
|
|
tstl d1 | d1 > 0, a is NaN
|
|
bne Ld$inop |
|
|
2: cmpl d4,d2 | check now b (d1)
|
|
bhi Ld$inop |
|
|
bne 3f
|
|
tstl d3 |
|
|
bne Ld$inop |
|
|
3:
|
|
| Now comes the check for +/-INFINITY. We know that both are (maybe not
|
|
| finite) numbers, but we have to check if both are infinite whether we
|
|
| are adding or subtracting them.
|
|
eorl d7,d6 | to check sign bits
|
|
bmi 1f
|
|
andl IMM (0x80000000),d7 | get (common) sign bit
|
|
bra Ld$infty
|
|
1:
|
|
| We know one (or both) are infinite, so we test for equality between the
|
|
| two numbers (if they are equal they have to be infinite both, so we
|
|
| return NaN).
|
|
cmpl d2,d0 | are both infinite?
|
|
bne 1f | if d0 <> d2 they are not equal
|
|
cmpl d3,d1 | if d0 == d2 test d3 and d1
|
|
beq Ld$inop | if equal return NaN
|
|
1:
|
|
andl IMM (0x80000000),d7 | get a's sign bit '
|
|
cmpl d4,d0 | test now for infinity
|
|
beq Ld$infty | if a is INFINITY return with this sign
|
|
bchg IMM (31),d7 | else we know b is INFINITY and has
|
|
bra Ld$infty | the opposite sign
|
|
|
|
|=============================================================================
|
|
| __muldf3
|
|
|=============================================================================
|
|
|
|
| double __muldf3(double, double);
|
|
FUNC(__muldf3)
|
|
SYM (__muldf3):
|
|
#ifndef __mcoldfire__
|
|
link a6,IMM (0)
|
|
moveml d2-d7,sp@-
|
|
#else
|
|
link a6,IMM (-24)
|
|
moveml d2-d7,sp@
|
|
#endif
|
|
movel a6@(8),d0 | get a into d0-d1
|
|
movel a6@(12),d1 |
|
|
movel a6@(16),d2 | and b into d2-d3
|
|
movel a6@(20),d3 |
|
|
movel d0,d7 | d7 will hold the sign of the product
|
|
eorl d2,d7 |
|
|
andl IMM (0x80000000),d7 |
|
|
movel d7,a0 | save sign bit into a0
|
|
movel IMM (0x7ff00000),d7 | useful constant (+INFINITY)
|
|
movel d7,d6 | another (mask for fraction)
|
|
notl d6 |
|
|
bclr IMM (31),d0 | get rid of a's sign bit '
|
|
movel d0,d4 |
|
|
orl d1,d4 |
|
|
beq Lmuldf$a$0 | branch if a is zero
|
|
movel d0,d4 |
|
|
bclr IMM (31),d2 | get rid of b's sign bit '
|
|
movel d2,d5 |
|
|
orl d3,d5 |
|
|
beq Lmuldf$b$0 | branch if b is zero
|
|
movel d2,d5 |
|
|
cmpl d7,d0 | is a big?
|
|
bhi Lmuldf$inop | if a is NaN return NaN
|
|
beq Lmuldf$a$nf | we still have to check d1 and b ...
|
|
cmpl d7,d2 | now compare b with INFINITY
|
|
bhi Lmuldf$inop | is b NaN?
|
|
beq Lmuldf$b$nf | we still have to check d3 ...
|
|
| Here we have both numbers finite and nonzero (and with no sign bit).
|
|
| Now we get the exponents into d4 and d5.
|
|
andl d7,d4 | isolate exponent in d4
|
|
beq Lmuldf$a$den | if exponent zero, have denormalized
|
|
andl d6,d0 | isolate fraction
|
|
orl IMM (0x00100000),d0 | and put hidden bit back
|
|
swap d4 | I like exponents in the first byte
|
|
#ifndef __mcoldfire__
|
|
lsrw IMM (4),d4 |
|
|
#else
|
|
lsrl IMM (4),d4 |
|
|
#endif
|
|
Lmuldf$1:
|
|
andl d7,d5 |
|
|
beq Lmuldf$b$den |
|
|
andl d6,d2 |
|
|
orl IMM (0x00100000),d2 | and put hidden bit back
|
|
swap d5 |
|
|
#ifndef __mcoldfire__
|
|
lsrw IMM (4),d5 |
|
|
#else
|
|
lsrl IMM (4),d5 |
|
|
#endif
|
|
Lmuldf$2: |
|
|
#ifndef __mcoldfire__
|
|
addw d5,d4 | add exponents
|
|
subw IMM (D_BIAS+1),d4 | and subtract bias (plus one)
|
|
#else
|
|
addl d5,d4 | add exponents
|
|
subl IMM (D_BIAS+1),d4 | and subtract bias (plus one)
|
|
#endif
|
|
|
|
| We are now ready to do the multiplication. The situation is as follows:
|
|
| both a and b have bit 52 ( bit 20 of d0 and d2) set (even if they were
|
|
| denormalized to start with!), which means that in the product bit 104
|
|
| (which will correspond to bit 8 of the fourth long) is set.
|
|
|
|
| Here we have to do the product.
|
|
| To do it we have to juggle the registers back and forth, as there are not
|
|
| enough to keep everything in them. So we use the address registers to keep
|
|
| some intermediate data.
|
|
|
|
#ifndef __mcoldfire__
|
|
moveml a2-a3,sp@- | save a2 and a3 for temporary use
|
|
#else
|
|
movel a2,sp@-
|
|
movel a3,sp@-
|
|
movel a4,sp@-
|
|
#endif
|
|
movel IMM (0),a2 | a2 is a null register
|
|
movel d4,a3 | and a3 will preserve the exponent
|
|
|
|
| First, shift d2-d3 so bit 20 becomes bit 31:
|
|
#ifndef __mcoldfire__
|
|
rorl IMM (5),d2 | rotate d2 5 places right
|
|
swap d2 | and swap it
|
|
rorl IMM (5),d3 | do the same thing with d3
|
|
swap d3 |
|
|
movew d3,d6 | get the rightmost 11 bits of d3
|
|
andw IMM (0x07ff),d6 |
|
|
orw d6,d2 | and put them into d2
|
|
andw IMM (0xf800),d3 | clear those bits in d3
|
|
#else
|
|
moveq IMM (11),d7 | left shift d2 11 bits
|
|
lsll d7,d2
|
|
movel d3,d6 | get a copy of d3
|
|
lsll d7,d3 | left shift d3 11 bits
|
|
andl IMM (0xffe00000),d6 | get the top 11 bits of d3
|
|
moveq IMM (21),d7 | right shift them 21 bits
|
|
lsrl d7,d6
|
|
orl d6,d2 | stick them at the end of d2
|
|
#endif
|
|
|
|
movel d2,d6 | move b into d6-d7
|
|
movel d3,d7 | move a into d4-d5
|
|
movel d0,d4 | and clear d0-d1-d2-d3 (to put result)
|
|
movel d1,d5 |
|
|
movel IMM (0),d3 |
|
|
movel d3,d2 |
|
|
movel d3,d1 |
|
|
movel d3,d0 |
|
|
|
|
| We use a1 as counter:
|
|
movel IMM (DBL_MANT_DIG-1),a1
|
|
#ifndef __mcoldfire__
|
|
exg d7,a1
|
|
#else
|
|
movel d7,a4
|
|
movel a1,d7
|
|
movel a4,a1
|
|
#endif
|
|
|
|
1:
|
|
#ifndef __mcoldfire__
|
|
exg d7,a1 | put counter back in a1
|
|
#else
|
|
movel d7,a4
|
|
movel a1,d7
|
|
movel a4,a1
|
|
#endif
|
|
addl d3,d3 | shift sum once left
|
|
addxl d2,d2 |
|
|
addxl d1,d1 |
|
|
addxl d0,d0 |
|
|
addl d7,d7 |
|
|
addxl d6,d6 |
|
|
bcc 2f | if bit clear skip the following
|
|
#ifndef __mcoldfire__
|
|
exg d7,a2 |
|
|
#else
|
|
movel d7,a4
|
|
movel a2,d7
|
|
movel a4,a2
|
|
#endif
|
|
addl d5,d3 | else add a to the sum
|
|
addxl d4,d2 |
|
|
addxl d7,d1 |
|
|
addxl d7,d0 |
|
|
#ifndef __mcoldfire__
|
|
exg d7,a2 |
|
|
#else
|
|
movel d7,a4
|
|
movel a2,d7
|
|
movel a4,a2
|
|
#endif
|
|
2:
|
|
#ifndef __mcoldfire__
|
|
exg d7,a1 | put counter in d7
|
|
dbf d7,1b | decrement and branch
|
|
#else
|
|
movel d7,a4
|
|
movel a1,d7
|
|
movel a4,a1
|
|
subql IMM (1),d7
|
|
bpl 1b
|
|
#endif
|
|
|
|
movel a3,d4 | restore exponent
|
|
#ifndef __mcoldfire__
|
|
moveml sp@+,a2-a3
|
|
#else
|
|
movel sp@+,a4
|
|
movel sp@+,a3
|
|
movel sp@+,a2
|
|
#endif
|
|
|
|
| Now we have the product in d0-d1-d2-d3, with bit 8 of d0 set. The
|
|
| first thing to do now is to normalize it so bit 8 becomes bit
|
|
| DBL_MANT_DIG-32 (to do the rounding); later we will shift right.
|
|
swap d0
|
|
swap d1
|
|
movew d1,d0
|
|
swap d2
|
|
movew d2,d1
|
|
swap d3
|
|
movew d3,d2
|
|
movew IMM (0),d3
|
|
#ifndef __mcoldfire__
|
|
lsrl IMM (1),d0
|
|
roxrl IMM (1),d1
|
|
roxrl IMM (1),d2
|
|
roxrl IMM (1),d3
|
|
lsrl IMM (1),d0
|
|
roxrl IMM (1),d1
|
|
roxrl IMM (1),d2
|
|
roxrl IMM (1),d3
|
|
lsrl IMM (1),d0
|
|
roxrl IMM (1),d1
|
|
roxrl IMM (1),d2
|
|
roxrl IMM (1),d3
|
|
#else
|
|
moveq IMM (29),d6
|
|
lsrl IMM (3),d3
|
|
movel d2,d7
|
|
lsll d6,d7
|
|
orl d7,d3
|
|
lsrl IMM (3),d2
|
|
movel d1,d7
|
|
lsll d6,d7
|
|
orl d7,d2
|
|
lsrl IMM (3),d1
|
|
movel d0,d7
|
|
lsll d6,d7
|
|
orl d7,d1
|
|
lsrl IMM (3),d0
|
|
#endif
|
|
|
|
| Now round, check for over- and underflow, and exit.
|
|
movel a0,d7 | get sign bit back into d7
|
|
moveq IMM (MULTIPLY),d5
|
|
|
|
btst IMM (DBL_MANT_DIG+1-32),d0
|
|
beq Lround$exit
|
|
#ifndef __mcoldfire__
|
|
lsrl IMM (1),d0
|
|
roxrl IMM (1),d1
|
|
addw IMM (1),d4
|
|
#else
|
|
lsrl IMM (1),d1
|
|
btst IMM (0),d0
|
|
beq 10f
|
|
bset IMM (31),d1
|
|
10: lsrl IMM (1),d0
|
|
addl IMM (1),d4
|
|
#endif
|
|
bra Lround$exit
|
|
|
|
Lmuldf$inop:
|
|
moveq IMM (MULTIPLY),d5
|
|
bra Ld$inop
|
|
|
|
Lmuldf$b$nf:
|
|
moveq IMM (MULTIPLY),d5
|
|
movel a0,d7 | get sign bit back into d7
|
|
tstl d3 | we know d2 == 0x7ff00000, so check d3
|
|
bne Ld$inop | if d3 <> 0 b is NaN
|
|
bra Ld$overflow | else we have overflow (since a is finite)
|
|
|
|
Lmuldf$a$nf:
|
|
moveq IMM (MULTIPLY),d5
|
|
movel a0,d7 | get sign bit back into d7
|
|
tstl d1 | we know d0 == 0x7ff00000, so check d1
|
|
bne Ld$inop | if d1 <> 0 a is NaN
|
|
bra Ld$overflow | else signal overflow
|
|
|
|
| If either number is zero return zero, unless the other is +/-INFINITY or
|
|
| NaN, in which case we return NaN.
|
|
Lmuldf$b$0:
|
|
moveq IMM (MULTIPLY),d5
|
|
#ifndef __mcoldfire__
|
|
exg d2,d0 | put b (==0) into d0-d1
|
|
exg d3,d1 | and a (with sign bit cleared) into d2-d3
|
|
movel a0,d0 | set result sign
|
|
#else
|
|
movel d0,d2 | put a into d2-d3
|
|
movel d1,d3
|
|
movel a0,d0 | put result zero into d0-d1
|
|
movq IMM(0),d1
|
|
#endif
|
|
bra 1f
|
|
Lmuldf$a$0:
|
|
movel a0,d0 | set result sign
|
|
movel a6@(16),d2 | put b into d2-d3 again
|
|
movel a6@(20),d3 |
|
|
bclr IMM (31),d2 | clear sign bit
|
|
1: cmpl IMM (0x7ff00000),d2 | check for non-finiteness
|
|
bge Ld$inop | in case NaN or +/-INFINITY return NaN
|
|
PICLEA SYM (_fpCCR),a0
|
|
movew IMM (0),a0@
|
|
#ifndef __mcoldfire__
|
|
moveml sp@+,d2-d7
|
|
#else
|
|
moveml sp@,d2-d7
|
|
| XXX if frame pointer is ever removed, stack pointer must
|
|
| be adjusted here.
|
|
#endif
|
|
unlk a6
|
|
rts
|
|
|
|
| If a number is denormalized we put an exponent of 1 but do not put the
|
|
| hidden bit back into the fraction; instead we shift left until bit 21
|
|
| (the hidden bit) is set, adjusting the exponent accordingly. We do this
|
|
| to ensure that the product of the fractions is close to 1.
|
|
Lmuldf$a$den:
|
|
movel IMM (1),d4
|
|
andl d6,d0
|
|
1: addl d1,d1 | shift a left until bit 20 is set
|
|
addxl d0,d0 |
|
|
#ifndef __mcoldfire__
|
|
subw IMM (1),d4 | and adjust exponent
|
|
#else
|
|
subl IMM (1),d4 | and adjust exponent
|
|
#endif
|
|
btst IMM (20),d0 |
|
|
bne Lmuldf$1 |
|
|
bra 1b
|
|
|
|
Lmuldf$b$den:
|
|
movel IMM (1),d5
|
|
andl d6,d2
|
|
1: addl d3,d3 | shift b left until bit 20 is set
|
|
addxl d2,d2 |
|
|
#ifndef __mcoldfire__
|
|
subw IMM (1),d5 | and adjust exponent
|
|
#else
|
|
subql IMM (1),d5 | and adjust exponent
|
|
#endif
|
|
btst IMM (20),d2 |
|
|
bne Lmuldf$2 |
|
|
bra 1b
|
|
|
|
|
|
|=============================================================================
|
|
| __divdf3
|
|
|=============================================================================
|
|
|
|
| double __divdf3(double, double);
|
|
FUNC(__divdf3)
|
|
SYM (__divdf3):
|
|
#ifndef __mcoldfire__
|
|
link a6,IMM (0)
|
|
moveml d2-d7,sp@-
|
|
#else
|
|
link a6,IMM (-24)
|
|
moveml d2-d7,sp@
|
|
#endif
|
|
movel a6@(8),d0 | get a into d0-d1
|
|
movel a6@(12),d1 |
|
|
movel a6@(16),d2 | and b into d2-d3
|
|
movel a6@(20),d3 |
|
|
movel d0,d7 | d7 will hold the sign of the result
|
|
eorl d2,d7 |
|
|
andl IMM (0x80000000),d7
|
|
movel d7,a0 | save sign into a0
|
|
movel IMM (0x7ff00000),d7 | useful constant (+INFINITY)
|
|
movel d7,d6 | another (mask for fraction)
|
|
notl d6 |
|
|
bclr IMM (31),d0 | get rid of a's sign bit '
|
|
movel d0,d4 |
|
|
orl d1,d4 |
|
|
beq Ldivdf$a$0 | branch if a is zero
|
|
movel d0,d4 |
|
|
bclr IMM (31),d2 | get rid of b's sign bit '
|
|
movel d2,d5 |
|
|
orl d3,d5 |
|
|
beq Ldivdf$b$0 | branch if b is zero
|
|
movel d2,d5
|
|
cmpl d7,d0 | is a big?
|
|
bhi Ldivdf$inop | if a is NaN return NaN
|
|
beq Ldivdf$a$nf | if d0 == 0x7ff00000 we check d1
|
|
cmpl d7,d2 | now compare b with INFINITY
|
|
bhi Ldivdf$inop | if b is NaN return NaN
|
|
beq Ldivdf$b$nf | if d2 == 0x7ff00000 we check d3
|
|
| Here we have both numbers finite and nonzero (and with no sign bit).
|
|
| Now we get the exponents into d4 and d5 and normalize the numbers to
|
|
| ensure that the ratio of the fractions is around 1. We do this by
|
|
| making sure that both numbers have bit #DBL_MANT_DIG-32-1 (hidden bit)
|
|
| set, even if they were denormalized to start with.
|
|
| Thus, the result will satisfy: 2 > result > 1/2.
|
|
andl d7,d4 | and isolate exponent in d4
|
|
beq Ldivdf$a$den | if exponent is zero we have a denormalized
|
|
andl d6,d0 | and isolate fraction
|
|
orl IMM (0x00100000),d0 | and put hidden bit back
|
|
swap d4 | I like exponents in the first byte
|
|
#ifndef __mcoldfire__
|
|
lsrw IMM (4),d4 |
|
|
#else
|
|
lsrl IMM (4),d4 |
|
|
#endif
|
|
Ldivdf$1: |
|
|
andl d7,d5 |
|
|
beq Ldivdf$b$den |
|
|
andl d6,d2 |
|
|
orl IMM (0x00100000),d2
|
|
swap d5 |
|
|
#ifndef __mcoldfire__
|
|
lsrw IMM (4),d5 |
|
|
#else
|
|
lsrl IMM (4),d5 |
|
|
#endif
|
|
Ldivdf$2: |
|
|
#ifndef __mcoldfire__
|
|
subw d5,d4 | subtract exponents
|
|
addw IMM (D_BIAS),d4 | and add bias
|
|
#else
|
|
subl d5,d4 | subtract exponents
|
|
addl IMM (D_BIAS),d4 | and add bias
|
|
#endif
|
|
|
|
| We are now ready to do the division. We have prepared things in such a way
|
|
| that the ratio of the fractions will be less than 2 but greater than 1/2.
|
|
| At this point the registers in use are:
|
|
| d0-d1 hold a (first operand, bit DBL_MANT_DIG-32=0, bit
|
|
| DBL_MANT_DIG-1-32=1)
|
|
| d2-d3 hold b (second operand, bit DBL_MANT_DIG-32=1)
|
|
| d4 holds the difference of the exponents, corrected by the bias
|
|
| a0 holds the sign of the ratio
|
|
|
|
| To do the rounding correctly we need to keep information about the
|
|
| nonsignificant bits. One way to do this would be to do the division
|
|
| using four registers; another is to use two registers (as originally
|
|
| I did), but use a sticky bit to preserve information about the
|
|
| fractional part. Note that we can keep that info in a1, which is not
|
|
| used.
|
|
movel IMM (0),d6 | d6-d7 will hold the result
|
|
movel d6,d7 |
|
|
movel IMM (0),a1 | and a1 will hold the sticky bit
|
|
|
|
movel IMM (DBL_MANT_DIG-32+1),d5
|
|
|
|
1: cmpl d0,d2 | is a < b?
|
|
bhi 3f | if b > a skip the following
|
|
beq 4f | if d0==d2 check d1 and d3
|
|
2: subl d3,d1 |
|
|
subxl d2,d0 | a <-- a - b
|
|
bset d5,d6 | set the corresponding bit in d6
|
|
3: addl d1,d1 | shift a by 1
|
|
addxl d0,d0 |
|
|
#ifndef __mcoldfire__
|
|
dbra d5,1b | and branch back
|
|
#else
|
|
subql IMM (1), d5
|
|
bpl 1b
|
|
#endif
|
|
bra 5f
|
|
4: cmpl d1,d3 | here d0==d2, so check d1 and d3
|
|
bhi 3b | if d1 > d2 skip the subtraction
|
|
bra 2b | else go do it
|
|
5:
|
|
| Here we have to start setting the bits in the second long.
|
|
movel IMM (31),d5 | again d5 is counter
|
|
|
|
1: cmpl d0,d2 | is a < b?
|
|
bhi 3f | if b > a skip the following
|
|
beq 4f | if d0==d2 check d1 and d3
|
|
2: subl d3,d1 |
|
|
subxl d2,d0 | a <-- a - b
|
|
bset d5,d7 | set the corresponding bit in d7
|
|
3: addl d1,d1 | shift a by 1
|
|
addxl d0,d0 |
|
|
#ifndef __mcoldfire__
|
|
dbra d5,1b | and branch back
|
|
#else
|
|
subql IMM (1), d5
|
|
bpl 1b
|
|
#endif
|
|
bra 5f
|
|
4: cmpl d1,d3 | here d0==d2, so check d1 and d3
|
|
bhi 3b | if d1 > d2 skip the subtraction
|
|
bra 2b | else go do it
|
|
5:
|
|
| Now go ahead checking until we hit a one, which we store in d2.
|
|
movel IMM (DBL_MANT_DIG),d5
|
|
1: cmpl d2,d0 | is a < b?
|
|
bhi 4f | if b < a, exit
|
|
beq 3f | if d0==d2 check d1 and d3
|
|
2: addl d1,d1 | shift a by 1
|
|
addxl d0,d0 |
|
|
#ifndef __mcoldfire__
|
|
dbra d5,1b | and branch back
|
|
#else
|
|
subql IMM (1), d5
|
|
bpl 1b
|
|
#endif
|
|
movel IMM (0),d2 | here no sticky bit was found
|
|
movel d2,d3
|
|
bra 5f
|
|
3: cmpl d1,d3 | here d0==d2, so check d1 and d3
|
|
bhi 2b | if d1 > d2 go back
|
|
4:
|
|
| Here put the sticky bit in d2-d3 (in the position which actually corresponds
|
|
| to it; if you don't do this the algorithm loses in some cases). '
|
|
movel IMM (0),d2
|
|
movel d2,d3
|
|
#ifndef __mcoldfire__
|
|
subw IMM (DBL_MANT_DIG),d5
|
|
addw IMM (63),d5
|
|
cmpw IMM (31),d5
|
|
#else
|
|
subl IMM (DBL_MANT_DIG),d5
|
|
addl IMM (63),d5
|
|
cmpl IMM (31),d5
|
|
#endif
|
|
bhi 2f
|
|
1: bset d5,d3
|
|
bra 5f
|
|
#ifndef __mcoldfire__
|
|
subw IMM (32),d5
|
|
#else
|
|
subl IMM (32),d5
|
|
#endif
|
|
2: bset d5,d2
|
|
5:
|
|
| Finally we are finished! Move the longs in the address registers to
|
|
| their final destination:
|
|
movel d6,d0
|
|
movel d7,d1
|
|
movel IMM (0),d3
|
|
|
|
| Here we have finished the division, with the result in d0-d1-d2-d3, with
|
|
| 2^21 <= d6 < 2^23. Thus bit 23 is not set, but bit 22 could be set.
|
|
| If it is not, then definitely bit 21 is set. Normalize so bit 22 is
|
|
| not set:
|
|
btst IMM (DBL_MANT_DIG-32+1),d0
|
|
beq 1f
|
|
#ifndef __mcoldfire__
|
|
lsrl IMM (1),d0
|
|
roxrl IMM (1),d1
|
|
roxrl IMM (1),d2
|
|
roxrl IMM (1),d3
|
|
addw IMM (1),d4
|
|
#else
|
|
lsrl IMM (1),d3
|
|
btst IMM (0),d2
|
|
beq 10f
|
|
bset IMM (31),d3
|
|
10: lsrl IMM (1),d2
|
|
btst IMM (0),d1
|
|
beq 11f
|
|
bset IMM (31),d2
|
|
11: lsrl IMM (1),d1
|
|
btst IMM (0),d0
|
|
beq 12f
|
|
bset IMM (31),d1
|
|
12: lsrl IMM (1),d0
|
|
addl IMM (1),d4
|
|
#endif
|
|
1:
|
|
| Now round, check for over- and underflow, and exit.
|
|
movel a0,d7 | restore sign bit to d7
|
|
moveq IMM (DIVIDE),d5
|
|
bra Lround$exit
|
|
|
|
Ldivdf$inop:
|
|
moveq IMM (DIVIDE),d5
|
|
bra Ld$inop
|
|
|
|
Ldivdf$a$0:
|
|
| If a is zero check to see whether b is zero also. In that case return
|
|
| NaN; then check if b is NaN, and return NaN also in that case. Else
|
|
| return a properly signed zero.
|
|
moveq IMM (DIVIDE),d5
|
|
bclr IMM (31),d2 |
|
|
movel d2,d4 |
|
|
orl d3,d4 |
|
|
beq Ld$inop | if b is also zero return NaN
|
|
cmpl IMM (0x7ff00000),d2 | check for NaN
|
|
bhi Ld$inop |
|
|
blt 1f |
|
|
tstl d3 |
|
|
bne Ld$inop |
|
|
1: movel a0,d0 | else return signed zero
|
|
moveq IMM(0),d1 |
|
|
PICLEA SYM (_fpCCR),a0 | clear exception flags
|
|
movew IMM (0),a0@ |
|
|
#ifndef __mcoldfire__
|
|
moveml sp@+,d2-d7 |
|
|
#else
|
|
moveml sp@,d2-d7 |
|
|
| XXX if frame pointer is ever removed, stack pointer must
|
|
| be adjusted here.
|
|
#endif
|
|
unlk a6 |
|
|
rts |
|
|
|
|
Ldivdf$b$0:
|
|
moveq IMM (DIVIDE),d5
|
|
| If we got here a is not zero. Check if a is NaN; in that case return NaN,
|
|
| else return +/-INFINITY. Remember that a is in d0 with the sign bit
|
|
| cleared already.
|
|
movel a0,d7 | put a's sign bit back in d7 '
|
|
cmpl IMM (0x7ff00000),d0 | compare d0 with INFINITY
|
|
bhi Ld$inop | if larger it is NaN
|
|
tstl d1 |
|
|
bne Ld$inop |
|
|
bra Ld$div$0 | else signal DIVIDE_BY_ZERO
|
|
|
|
Ldivdf$b$nf:
|
|
moveq IMM (DIVIDE),d5
|
|
| If d2 == 0x7ff00000 we have to check d3.
|
|
tstl d3 |
|
|
bne Ld$inop | if d3 <> 0, b is NaN
|
|
bra Ld$underflow | else b is +/-INFINITY, so signal underflow
|
|
|
|
Ldivdf$a$nf:
|
|
moveq IMM (DIVIDE),d5
|
|
| If d0 == 0x7ff00000 we have to check d1.
|
|
tstl d1 |
|
|
bne Ld$inop | if d1 <> 0, a is NaN
|
|
| If a is INFINITY we have to check b
|
|
cmpl d7,d2 | compare b with INFINITY
|
|
bge Ld$inop | if b is NaN or INFINITY return NaN
|
|
tstl d3 |
|
|
bne Ld$inop |
|
|
bra Ld$overflow | else return overflow
|
|
|
|
| If a number is denormalized we put an exponent of 1 but do not put the
|
|
| bit back into the fraction.
|
|
Ldivdf$a$den:
|
|
movel IMM (1),d4
|
|
andl d6,d0
|
|
1: addl d1,d1 | shift a left until bit 20 is set
|
|
addxl d0,d0
|
|
#ifndef __mcoldfire__
|
|
subw IMM (1),d4 | and adjust exponent
|
|
#else
|
|
subl IMM (1),d4 | and adjust exponent
|
|
#endif
|
|
btst IMM (DBL_MANT_DIG-32-1),d0
|
|
bne Ldivdf$1
|
|
bra 1b
|
|
|
|
Ldivdf$b$den:
|
|
movel IMM (1),d5
|
|
andl d6,d2
|
|
1: addl d3,d3 | shift b left until bit 20 is set
|
|
addxl d2,d2
|
|
#ifndef __mcoldfire__
|
|
subw IMM (1),d5 | and adjust exponent
|
|
#else
|
|
subql IMM (1),d5 | and adjust exponent
|
|
#endif
|
|
btst IMM (DBL_MANT_DIG-32-1),d2
|
|
bne Ldivdf$2
|
|
bra 1b
|
|
|
|
Lround$exit:
|
|
| This is a common exit point for __muldf3 and __divdf3. When they enter
|
|
| this point the sign of the result is in d7, the result in d0-d1, normalized
|
|
| so that 2^21 <= d0 < 2^22, and the exponent is in the lower byte of d4.
|
|
|
|
| First check for underlow in the exponent:
|
|
#ifndef __mcoldfire__
|
|
cmpw IMM (-DBL_MANT_DIG-1),d4
|
|
#else
|
|
cmpl IMM (-DBL_MANT_DIG-1),d4
|
|
#endif
|
|
blt Ld$underflow
|
|
| It could happen that the exponent is less than 1, in which case the
|
|
| number is denormalized. In this case we shift right and adjust the
|
|
| exponent until it becomes 1 or the fraction is zero (in the latter case
|
|
| we signal underflow and return zero).
|
|
movel d7,a0 |
|
|
movel IMM (0),d6 | use d6-d7 to collect bits flushed right
|
|
movel d6,d7 | use d6-d7 to collect bits flushed right
|
|
#ifndef __mcoldfire__
|
|
cmpw IMM (1),d4 | if the exponent is less than 1 we
|
|
#else
|
|
cmpl IMM (1),d4 | if the exponent is less than 1 we
|
|
#endif
|
|
bge 2f | have to shift right (denormalize)
|
|
1:
|
|
#ifndef __mcoldfire__
|
|
addw IMM (1),d4 | adjust the exponent
|
|
lsrl IMM (1),d0 | shift right once
|
|
roxrl IMM (1),d1 |
|
|
roxrl IMM (1),d2 |
|
|
roxrl IMM (1),d3 |
|
|
roxrl IMM (1),d6 |
|
|
roxrl IMM (1),d7 |
|
|
cmpw IMM (1),d4 | is the exponent 1 already?
|
|
#else
|
|
addl IMM (1),d4 | adjust the exponent
|
|
lsrl IMM (1),d7
|
|
btst IMM (0),d6
|
|
beq 13f
|
|
bset IMM (31),d7
|
|
13: lsrl IMM (1),d6
|
|
btst IMM (0),d3
|
|
beq 14f
|
|
bset IMM (31),d6
|
|
14: lsrl IMM (1),d3
|
|
btst IMM (0),d2
|
|
beq 10f
|
|
bset IMM (31),d3
|
|
10: lsrl IMM (1),d2
|
|
btst IMM (0),d1
|
|
beq 11f
|
|
bset IMM (31),d2
|
|
11: lsrl IMM (1),d1
|
|
btst IMM (0),d0
|
|
beq 12f
|
|
bset IMM (31),d1
|
|
12: lsrl IMM (1),d0
|
|
cmpl IMM (1),d4 | is the exponent 1 already?
|
|
#endif
|
|
beq 2f | if not loop back
|
|
bra 1b |
|
|
bra Ld$underflow | safety check, shouldn't execute '
|
|
2: orl d6,d2 | this is a trick so we don't lose '
|
|
orl d7,d3 | the bits which were flushed right
|
|
movel a0,d7 | get back sign bit into d7
|
|
| Now call the rounding routine (which takes care of denormalized numbers):
|
|
lea pc@(Lround$0),a0 | to return from rounding routine
|
|
PICLEA SYM (_fpCCR),a1 | check the rounding mode
|
|
#ifdef __mcoldfire__
|
|
clrl d6
|
|
#endif
|
|
movew a1@(6),d6 | rounding mode in d6
|
|
beq Lround$to$nearest
|
|
#ifndef __mcoldfire__
|
|
cmpw IMM (ROUND_TO_PLUS),d6
|
|
#else
|
|
cmpl IMM (ROUND_TO_PLUS),d6
|
|
#endif
|
|
bhi Lround$to$minus
|
|
blt Lround$to$zero
|
|
bra Lround$to$plus
|
|
Lround$0:
|
|
| Here we have a correctly rounded result (either normalized or denormalized).
|
|
|
|
| Here we should have either a normalized number or a denormalized one, and
|
|
| the exponent is necessarily larger or equal to 1 (so we don't have to '
|
|
| check again for underflow!). We have to check for overflow or for a
|
|
| denormalized number (which also signals underflow).
|
|
| Check for overflow (i.e., exponent >= 0x7ff).
|
|
#ifndef __mcoldfire__
|
|
cmpw IMM (0x07ff),d4
|
|
#else
|
|
cmpl IMM (0x07ff),d4
|
|
#endif
|
|
bge Ld$overflow
|
|
| Now check for a denormalized number (exponent==0):
|
|
movew d4,d4
|
|
beq Ld$den
|
|
1:
|
|
| Put back the exponents and sign and return.
|
|
#ifndef __mcoldfire__
|
|
lslw IMM (4),d4 | exponent back to fourth byte
|
|
#else
|
|
lsll IMM (4),d4 | exponent back to fourth byte
|
|
#endif
|
|
bclr IMM (DBL_MANT_DIG-32-1),d0
|
|
swap d0 | and put back exponent
|
|
#ifndef __mcoldfire__
|
|
orw d4,d0 |
|
|
#else
|
|
orl d4,d0 |
|
|
#endif
|
|
swap d0 |
|
|
orl d7,d0 | and sign also
|
|
|
|
PICLEA SYM (_fpCCR),a0
|
|
movew IMM (0),a0@
|
|
#ifndef __mcoldfire__
|
|
moveml sp@+,d2-d7
|
|
#else
|
|
moveml sp@,d2-d7
|
|
| XXX if frame pointer is ever removed, stack pointer must
|
|
| be adjusted here.
|
|
#endif
|
|
unlk a6
|
|
rts
|
|
|
|
|=============================================================================
|
|
| __negdf2
|
|
|=============================================================================
|
|
|
|
| double __negdf2(double, double);
|
|
FUNC(__negdf2)
|
|
SYM (__negdf2):
|
|
#ifndef __mcoldfire__
|
|
link a6,IMM (0)
|
|
moveml d2-d7,sp@-
|
|
#else
|
|
link a6,IMM (-24)
|
|
moveml d2-d7,sp@
|
|
#endif
|
|
moveq IMM (NEGATE),d5
|
|
movel a6@(8),d0 | get number to negate in d0-d1
|
|
movel a6@(12),d1 |
|
|
bchg IMM (31),d0 | negate
|
|
movel d0,d2 | make a positive copy (for the tests)
|
|
bclr IMM (31),d2 |
|
|
movel d2,d4 | check for zero
|
|
orl d1,d4 |
|
|
beq 2f | if zero (either sign) return +zero
|
|
cmpl IMM (0x7ff00000),d2 | compare to +INFINITY
|
|
blt 1f | if finite, return
|
|
bhi Ld$inop | if larger (fraction not zero) is NaN
|
|
tstl d1 | if d2 == 0x7ff00000 check d1
|
|
bne Ld$inop |
|
|
movel d0,d7 | else get sign and return INFINITY
|
|
andl IMM (0x80000000),d7
|
|
bra Ld$infty
|
|
1: PICLEA SYM (_fpCCR),a0
|
|
movew IMM (0),a0@
|
|
#ifndef __mcoldfire__
|
|
moveml sp@+,d2-d7
|
|
#else
|
|
moveml sp@,d2-d7
|
|
| XXX if frame pointer is ever removed, stack pointer must
|
|
| be adjusted here.
|
|
#endif
|
|
unlk a6
|
|
rts
|
|
2: bclr IMM (31),d0
|
|
bra 1b
|
|
|
|
|=============================================================================
|
|
| __cmpdf2
|
|
|=============================================================================
|
|
|
|
GREATER = 1
|
|
LESS = -1
|
|
EQUAL = 0
|
|
|
|
| int __cmpdf2_internal(double, double, int);
|
|
SYM (__cmpdf2_internal):
|
|
#ifndef __mcoldfire__
|
|
link a6,IMM (0)
|
|
moveml d2-d7,sp@- | save registers
|
|
#else
|
|
link a6,IMM (-24)
|
|
moveml d2-d7,sp@
|
|
#endif
|
|
moveq IMM (COMPARE),d5
|
|
movel a6@(8),d0 | get first operand
|
|
movel a6@(12),d1 |
|
|
movel a6@(16),d2 | get second operand
|
|
movel a6@(20),d3 |
|
|
| First check if a and/or b are (+/-) zero and in that case clear
|
|
| the sign bit.
|
|
movel d0,d6 | copy signs into d6 (a) and d7(b)
|
|
bclr IMM (31),d0 | and clear signs in d0 and d2
|
|
movel d2,d7 |
|
|
bclr IMM (31),d2 |
|
|
cmpl IMM (0x7ff00000),d0 | check for a == NaN
|
|
bhi Lcmpd$inop | if d0 > 0x7ff00000, a is NaN
|
|
beq Lcmpdf$a$nf | if equal can be INFINITY, so check d1
|
|
movel d0,d4 | copy into d4 to test for zero
|
|
orl d1,d4 |
|
|
beq Lcmpdf$a$0 |
|
|
Lcmpdf$0:
|
|
cmpl IMM (0x7ff00000),d2 | check for b == NaN
|
|
bhi Lcmpd$inop | if d2 > 0x7ff00000, b is NaN
|
|
beq Lcmpdf$b$nf | if equal can be INFINITY, so check d3
|
|
movel d2,d4 |
|
|
orl d3,d4 |
|
|
beq Lcmpdf$b$0 |
|
|
Lcmpdf$1:
|
|
| Check the signs
|
|
eorl d6,d7
|
|
bpl 1f
|
|
| If the signs are not equal check if a >= 0
|
|
tstl d6
|
|
bpl Lcmpdf$a$gt$b | if (a >= 0 && b < 0) => a > b
|
|
bmi Lcmpdf$b$gt$a | if (a < 0 && b >= 0) => a < b
|
|
1:
|
|
| If the signs are equal check for < 0
|
|
tstl d6
|
|
bpl 1f
|
|
| If both are negative exchange them
|
|
#ifndef __mcoldfire__
|
|
exg d0,d2
|
|
exg d1,d3
|
|
#else
|
|
movel d0,d7
|
|
movel d2,d0
|
|
movel d7,d2
|
|
movel d1,d7
|
|
movel d3,d1
|
|
movel d7,d3
|
|
#endif
|
|
1:
|
|
| Now that they are positive we just compare them as longs (does this also
|
|
| work for denormalized numbers?).
|
|
cmpl d0,d2
|
|
bhi Lcmpdf$b$gt$a | |b| > |a|
|
|
bne Lcmpdf$a$gt$b | |b| < |a|
|
|
| If we got here d0 == d2, so we compare d1 and d3.
|
|
cmpl d1,d3
|
|
bhi Lcmpdf$b$gt$a | |b| > |a|
|
|
bne Lcmpdf$a$gt$b | |b| < |a|
|
|
| If we got here a == b.
|
|
movel IMM (EQUAL),d0
|
|
#ifndef __mcoldfire__
|
|
moveml sp@+,d2-d7 | put back the registers
|
|
#else
|
|
moveml sp@,d2-d7
|
|
| XXX if frame pointer is ever removed, stack pointer must
|
|
| be adjusted here.
|
|
#endif
|
|
unlk a6
|
|
rts
|
|
Lcmpdf$a$gt$b:
|
|
movel IMM (GREATER),d0
|
|
#ifndef __mcoldfire__
|
|
moveml sp@+,d2-d7 | put back the registers
|
|
#else
|
|
moveml sp@,d2-d7
|
|
| XXX if frame pointer is ever removed, stack pointer must
|
|
| be adjusted here.
|
|
#endif
|
|
unlk a6
|
|
rts
|
|
Lcmpdf$b$gt$a:
|
|
movel IMM (LESS),d0
|
|
#ifndef __mcoldfire__
|
|
moveml sp@+,d2-d7 | put back the registers
|
|
#else
|
|
moveml sp@,d2-d7
|
|
| XXX if frame pointer is ever removed, stack pointer must
|
|
| be adjusted here.
|
|
#endif
|
|
unlk a6
|
|
rts
|
|
|
|
Lcmpdf$a$0:
|
|
bclr IMM (31),d6
|
|
bra Lcmpdf$0
|
|
Lcmpdf$b$0:
|
|
bclr IMM (31),d7
|
|
bra Lcmpdf$1
|
|
|
|
Lcmpdf$a$nf:
|
|
tstl d1
|
|
bne Ld$inop
|
|
bra Lcmpdf$0
|
|
|
|
Lcmpdf$b$nf:
|
|
tstl d3
|
|
bne Ld$inop
|
|
bra Lcmpdf$1
|
|
|
|
Lcmpd$inop:
|
|
movl a6@(24),d0
|
|
moveq IMM (INEXACT_RESULT+INVALID_OPERATION),d7
|
|
moveq IMM (DOUBLE_FLOAT),d6
|
|
PICJUMP $_exception_handler
|
|
|
|
| int __cmpdf2(double, double);
|
|
FUNC(__cmpdf2)
|
|
SYM (__cmpdf2):
|
|
link a6,IMM (0)
|
|
pea 1
|
|
movl a6@(20),sp@-
|
|
movl a6@(16),sp@-
|
|
movl a6@(12),sp@-
|
|
movl a6@(8),sp@-
|
|
PICCALL SYM (__cmpdf2_internal)
|
|
unlk a6
|
|
rts
|
|
|
|
|=============================================================================
|
|
| rounding routines
|
|
|=============================================================================
|
|
|
|
| The rounding routines expect the number to be normalized in registers
|
|
| d0-d1-d2-d3, with the exponent in register d4. They assume that the
|
|
| exponent is larger or equal to 1. They return a properly normalized number
|
|
| if possible, and a denormalized number otherwise. The exponent is returned
|
|
| in d4.
|
|
|
|
Lround$to$nearest:
|
|
| We now normalize as suggested by D. Knuth ("Seminumerical Algorithms"):
|
|
| Here we assume that the exponent is not too small (this should be checked
|
|
| before entering the rounding routine), but the number could be denormalized.
|
|
|
|
| Check for denormalized numbers:
|
|
1: btst IMM (DBL_MANT_DIG-32),d0
|
|
bne 2f | if set the number is normalized
|
|
| Normalize shifting left until bit #DBL_MANT_DIG-32 is set or the exponent
|
|
| is one (remember that a denormalized number corresponds to an
|
|
| exponent of -D_BIAS+1).
|
|
#ifndef __mcoldfire__
|
|
cmpw IMM (1),d4 | remember that the exponent is at least one
|
|
#else
|
|
cmpl IMM (1),d4 | remember that the exponent is at least one
|
|
#endif
|
|
beq 2f | an exponent of one means denormalized
|
|
addl d3,d3 | else shift and adjust the exponent
|
|
addxl d2,d2 |
|
|
addxl d1,d1 |
|
|
addxl d0,d0 |
|
|
#ifndef __mcoldfire__
|
|
dbra d4,1b |
|
|
#else
|
|
subql IMM (1), d4
|
|
bpl 1b
|
|
#endif
|
|
2:
|
|
| Now round: we do it as follows: after the shifting we can write the
|
|
| fraction part as f + delta, where 1 < f < 2^25, and 0 <= delta <= 2.
|
|
| If delta < 1, do nothing. If delta > 1, add 1 to f.
|
|
| If delta == 1, we make sure the rounded number will be even (odd?)
|
|
| (after shifting).
|
|
btst IMM (0),d1 | is delta < 1?
|
|
beq 2f | if so, do not do anything
|
|
orl d2,d3 | is delta == 1?
|
|
bne 1f | if so round to even
|
|
movel d1,d3 |
|
|
andl IMM (2),d3 | bit 1 is the last significant bit
|
|
movel IMM (0),d2 |
|
|
addl d3,d1 |
|
|
addxl d2,d0 |
|
|
bra 2f |
|
|
1: movel IMM (1),d3 | else add 1
|
|
movel IMM (0),d2 |
|
|
addl d3,d1 |
|
|
addxl d2,d0
|
|
| Shift right once (because we used bit #DBL_MANT_DIG-32!).
|
|
2:
|
|
#ifndef __mcoldfire__
|
|
lsrl IMM (1),d0
|
|
roxrl IMM (1),d1
|
|
#else
|
|
lsrl IMM (1),d1
|
|
btst IMM (0),d0
|
|
beq 10f
|
|
bset IMM (31),d1
|
|
10: lsrl IMM (1),d0
|
|
#endif
|
|
|
|
| Now check again bit #DBL_MANT_DIG-32 (rounding could have produced a
|
|
| 'fraction overflow' ...).
|
|
btst IMM (DBL_MANT_DIG-32),d0
|
|
beq 1f
|
|
#ifndef __mcoldfire__
|
|
lsrl IMM (1),d0
|
|
roxrl IMM (1),d1
|
|
addw IMM (1),d4
|
|
#else
|
|
lsrl IMM (1),d1
|
|
btst IMM (0),d0
|
|
beq 10f
|
|
bset IMM (31),d1
|
|
10: lsrl IMM (1),d0
|
|
addl IMM (1),d4
|
|
#endif
|
|
1:
|
|
| If bit #DBL_MANT_DIG-32-1 is clear we have a denormalized number, so we
|
|
| have to put the exponent to zero and return a denormalized number.
|
|
btst IMM (DBL_MANT_DIG-32-1),d0
|
|
beq 1f
|
|
jmp a0@
|
|
1: movel IMM (0),d4
|
|
jmp a0@
|
|
|
|
Lround$to$zero:
|
|
Lround$to$plus:
|
|
Lround$to$minus:
|
|
jmp a0@
|
|
#endif /* L_double */
|
|
|
|
#ifdef L_float
|
|
|
|
.globl SYM (_fpCCR)
|
|
.globl $_exception_handler
|
|
|
|
QUIET_NaN = 0xffffffff
|
|
SIGNL_NaN = 0x7f800001
|
|
INFINITY = 0x7f800000
|
|
|
|
F_MAX_EXP = 0xff
|
|
F_BIAS = 126
|
|
FLT_MAX_EXP = F_MAX_EXP - F_BIAS
|
|
FLT_MIN_EXP = 1 - F_BIAS
|
|
FLT_MANT_DIG = 24
|
|
|
|
INEXACT_RESULT = 0x0001
|
|
UNDERFLOW = 0x0002
|
|
OVERFLOW = 0x0004
|
|
DIVIDE_BY_ZERO = 0x0008
|
|
INVALID_OPERATION = 0x0010
|
|
|
|
SINGLE_FLOAT = 1
|
|
|
|
NOOP = 0
|
|
ADD = 1
|
|
MULTIPLY = 2
|
|
DIVIDE = 3
|
|
NEGATE = 4
|
|
COMPARE = 5
|
|
EXTENDSFDF = 6
|
|
TRUNCDFSF = 7
|
|
|
|
UNKNOWN = -1
|
|
ROUND_TO_NEAREST = 0 | round result to nearest representable value
|
|
ROUND_TO_ZERO = 1 | round result towards zero
|
|
ROUND_TO_PLUS = 2 | round result towards plus infinity
|
|
ROUND_TO_MINUS = 3 | round result towards minus infinity
|
|
|
|
| Entry points:
|
|
|
|
.globl SYM (__addsf3)
|
|
.globl SYM (__subsf3)
|
|
.globl SYM (__mulsf3)
|
|
.globl SYM (__divsf3)
|
|
.globl SYM (__negsf2)
|
|
.globl SYM (__cmpsf2)
|
|
.globl SYM (__cmpsf2_internal)
|
|
.hidden SYM (__cmpsf2_internal)
|
|
|
|
| These are common routines to return and signal exceptions.
|
|
|
|
.text
|
|
.even
|
|
|
|
Lf$den:
|
|
| Return and signal a denormalized number
|
|
orl d7,d0
|
|
moveq IMM (INEXACT_RESULT+UNDERFLOW),d7
|
|
moveq IMM (SINGLE_FLOAT),d6
|
|
PICJUMP $_exception_handler
|
|
|
|
Lf$infty:
|
|
Lf$overflow:
|
|
| Return a properly signed INFINITY and set the exception flags
|
|
movel IMM (INFINITY),d0
|
|
orl d7,d0
|
|
moveq IMM (INEXACT_RESULT+OVERFLOW),d7
|
|
moveq IMM (SINGLE_FLOAT),d6
|
|
PICJUMP $_exception_handler
|
|
|
|
Lf$underflow:
|
|
| Return 0 and set the exception flags
|
|
moveq IMM (0),d0
|
|
moveq IMM (INEXACT_RESULT+UNDERFLOW),d7
|
|
moveq IMM (SINGLE_FLOAT),d6
|
|
PICJUMP $_exception_handler
|
|
|
|
Lf$inop:
|
|
| Return a quiet NaN and set the exception flags
|
|
movel IMM (QUIET_NaN),d0
|
|
moveq IMM (INEXACT_RESULT+INVALID_OPERATION),d7
|
|
moveq IMM (SINGLE_FLOAT),d6
|
|
PICJUMP $_exception_handler
|
|
|
|
Lf$div$0:
|
|
| Return a properly signed INFINITY and set the exception flags
|
|
movel IMM (INFINITY),d0
|
|
orl d7,d0
|
|
moveq IMM (INEXACT_RESULT+DIVIDE_BY_ZERO),d7
|
|
moveq IMM (SINGLE_FLOAT),d6
|
|
PICJUMP $_exception_handler
|
|
|
|
|=============================================================================
|
|
|=============================================================================
|
|
| single precision routines
|
|
|=============================================================================
|
|
|=============================================================================
|
|
|
|
| A single precision floating point number (float) has the format:
|
|
|
|
|
| struct _float {
|
|
| unsigned int sign : 1; /* sign bit */
|
|
| unsigned int exponent : 8; /* exponent, shifted by 126 */
|
|
| unsigned int fraction : 23; /* fraction */
|
|
| } float;
|
|
|
|
|
| Thus sizeof(float) = 4 (32 bits).
|
|
|
|
|
| All the routines are callable from C programs, and return the result
|
|
| in the single register d0. They also preserve all registers except
|
|
| d0-d1 and a0-a1.
|
|
|
|
|=============================================================================
|
|
| __subsf3
|
|
|=============================================================================
|
|
|
|
| float __subsf3(float, float);
|
|
FUNC(__subsf3)
|
|
SYM (__subsf3):
|
|
bchg IMM (31),sp@(8) | change sign of second operand
|
|
| and fall through
|
|
|=============================================================================
|
|
| __addsf3
|
|
|=============================================================================
|
|
|
|
| float __addsf3(float, float);
|
|
FUNC(__addsf3)
|
|
SYM (__addsf3):
|
|
#ifndef __mcoldfire__
|
|
link a6,IMM (0) | everything will be done in registers
|
|
moveml d2-d7,sp@- | save all data registers but d0-d1
|
|
#else
|
|
link a6,IMM (-24)
|
|
moveml d2-d7,sp@
|
|
#endif
|
|
movel a6@(8),d0 | get first operand
|
|
movel a6@(12),d1 | get second operand
|
|
movel d0,a0 | get d0's sign bit '
|
|
addl d0,d0 | check and clear sign bit of a
|
|
beq Laddsf$b | if zero return second operand
|
|
movel d1,a1 | save b's sign bit '
|
|
addl d1,d1 | get rid of sign bit
|
|
beq Laddsf$a | if zero return first operand
|
|
|
|
| Get the exponents and check for denormalized and/or infinity.
|
|
|
|
movel IMM (0x00ffffff),d4 | mask to get fraction
|
|
movel IMM (0x01000000),d5 | mask to put hidden bit back
|
|
|
|
movel d0,d6 | save a to get exponent
|
|
andl d4,d0 | get fraction in d0
|
|
notl d4 | make d4 into a mask for the exponent
|
|
andl d4,d6 | get exponent in d6
|
|
beq Laddsf$a$den | branch if a is denormalized
|
|
cmpl d4,d6 | check for INFINITY or NaN
|
|
beq Laddsf$nf
|
|
swap d6 | put exponent into first word
|
|
orl d5,d0 | and put hidden bit back
|
|
Laddsf$1:
|
|
| Now we have a's exponent in d6 (second byte) and the mantissa in d0. '
|
|
movel d1,d7 | get exponent in d7
|
|
andl d4,d7 |
|
|
beq Laddsf$b$den | branch if b is denormalized
|
|
cmpl d4,d7 | check for INFINITY or NaN
|
|
beq Laddsf$nf
|
|
swap d7 | put exponent into first word
|
|
notl d4 | make d4 into a mask for the fraction
|
|
andl d4,d1 | get fraction in d1
|
|
orl d5,d1 | and put hidden bit back
|
|
Laddsf$2:
|
|
| Now we have b's exponent in d7 (second byte) and the mantissa in d1. '
|
|
|
|
| Note that the hidden bit corresponds to bit #FLT_MANT_DIG-1, and we
|
|
| shifted right once, so bit #FLT_MANT_DIG is set (so we have one extra
|
|
| bit).
|
|
|
|
movel d1,d2 | move b to d2, since we want to use
|
|
| two registers to do the sum
|
|
movel IMM (0),d1 | and clear the new ones
|
|
movel d1,d3 |
|
|
|
|
| Here we shift the numbers in registers d0 and d1 so the exponents are the
|
|
| same, and put the largest exponent in d6. Note that we are using two
|
|
| registers for each number (see the discussion by D. Knuth in "Seminumerical
|
|
| Algorithms").
|
|
#ifndef __mcoldfire__
|
|
cmpw d6,d7 | compare exponents
|
|
#else
|
|
cmpl d6,d7 | compare exponents
|
|
#endif
|
|
beq Laddsf$3 | if equal don't shift '
|
|
bhi 5f | branch if second exponent largest
|
|
1:
|
|
subl d6,d7 | keep the largest exponent
|
|
negl d7
|
|
#ifndef __mcoldfire__
|
|
lsrw IMM (8),d7 | put difference in lower byte
|
|
#else
|
|
lsrl IMM (8),d7 | put difference in lower byte
|
|
#endif
|
|
| if difference is too large we don't shift (actually, we can just exit) '
|
|
#ifndef __mcoldfire__
|
|
cmpw IMM (FLT_MANT_DIG+2),d7
|
|
#else
|
|
cmpl IMM (FLT_MANT_DIG+2),d7
|
|
#endif
|
|
bge Laddsf$b$small
|
|
#ifndef __mcoldfire__
|
|
cmpw IMM (16),d7 | if difference >= 16 swap
|
|
#else
|
|
cmpl IMM (16),d7 | if difference >= 16 swap
|
|
#endif
|
|
bge 4f
|
|
2:
|
|
#ifndef __mcoldfire__
|
|
subw IMM (1),d7
|
|
#else
|
|
subql IMM (1), d7
|
|
#endif
|
|
3:
|
|
#ifndef __mcoldfire__
|
|
lsrl IMM (1),d2 | shift right second operand
|
|
roxrl IMM (1),d3
|
|
dbra d7,3b
|
|
#else
|
|
lsrl IMM (1),d3
|
|
btst IMM (0),d2
|
|
beq 10f
|
|
bset IMM (31),d3
|
|
10: lsrl IMM (1),d2
|
|
subql IMM (1), d7
|
|
bpl 3b
|
|
#endif
|
|
bra Laddsf$3
|
|
4:
|
|
movew d2,d3
|
|
swap d3
|
|
movew d3,d2
|
|
swap d2
|
|
#ifndef __mcoldfire__
|
|
subw IMM (16),d7
|
|
#else
|
|
subl IMM (16),d7
|
|
#endif
|
|
bne 2b | if still more bits, go back to normal case
|
|
bra Laddsf$3
|
|
5:
|
|
#ifndef __mcoldfire__
|
|
exg d6,d7 | exchange the exponents
|
|
#else
|
|
eorl d6,d7
|
|
eorl d7,d6
|
|
eorl d6,d7
|
|
#endif
|
|
subl d6,d7 | keep the largest exponent
|
|
negl d7 |
|
|
#ifndef __mcoldfire__
|
|
lsrw IMM (8),d7 | put difference in lower byte
|
|
#else
|
|
lsrl IMM (8),d7 | put difference in lower byte
|
|
#endif
|
|
| if difference is too large we don't shift (and exit!) '
|
|
#ifndef __mcoldfire__
|
|
cmpw IMM (FLT_MANT_DIG+2),d7
|
|
#else
|
|
cmpl IMM (FLT_MANT_DIG+2),d7
|
|
#endif
|
|
bge Laddsf$a$small
|
|
#ifndef __mcoldfire__
|
|
cmpw IMM (16),d7 | if difference >= 16 swap
|
|
#else
|
|
cmpl IMM (16),d7 | if difference >= 16 swap
|
|
#endif
|
|
bge 8f
|
|
6:
|
|
#ifndef __mcoldfire__
|
|
subw IMM (1),d7
|
|
#else
|
|
subl IMM (1),d7
|
|
#endif
|
|
7:
|
|
#ifndef __mcoldfire__
|
|
lsrl IMM (1),d0 | shift right first operand
|
|
roxrl IMM (1),d1
|
|
dbra d7,7b
|
|
#else
|
|
lsrl IMM (1),d1
|
|
btst IMM (0),d0
|
|
beq 10f
|
|
bset IMM (31),d1
|
|
10: lsrl IMM (1),d0
|
|
subql IMM (1),d7
|
|
bpl 7b
|
|
#endif
|
|
bra Laddsf$3
|
|
8:
|
|
movew d0,d1
|
|
swap d1
|
|
movew d1,d0
|
|
swap d0
|
|
#ifndef __mcoldfire__
|
|
subw IMM (16),d7
|
|
#else
|
|
subl IMM (16),d7
|
|
#endif
|
|
bne 6b | if still more bits, go back to normal case
|
|
| otherwise we fall through
|
|
|
|
| Now we have a in d0-d1, b in d2-d3, and the largest exponent in d6 (the
|
|
| signs are stored in a0 and a1).
|
|
|
|
Laddsf$3:
|
|
| Here we have to decide whether to add or subtract the numbers
|
|
#ifndef __mcoldfire__
|
|
exg d6,a0 | get signs back
|
|
exg d7,a1 | and save the exponents
|
|
#else
|
|
movel d6,d4
|
|
movel a0,d6
|
|
movel d4,a0
|
|
movel d7,d4
|
|
movel a1,d7
|
|
movel d4,a1
|
|
#endif
|
|
eorl d6,d7 | combine sign bits
|
|
bmi Lsubsf$0 | if negative a and b have opposite
|
|
| sign so we actually subtract the
|
|
| numbers
|
|
|
|
| Here we have both positive or both negative
|
|
#ifndef __mcoldfire__
|
|
exg d6,a0 | now we have the exponent in d6
|
|
#else
|
|
movel d6,d4
|
|
movel a0,d6
|
|
movel d4,a0
|
|
#endif
|
|
movel a0,d7 | and sign in d7
|
|
andl IMM (0x80000000),d7
|
|
| Here we do the addition.
|
|
addl d3,d1
|
|
addxl d2,d0
|
|
| Note: now we have d2, d3, d4 and d5 to play with!
|
|
|
|
| Put the exponent, in the first byte, in d2, to use the "standard" rounding
|
|
| routines:
|
|
movel d6,d2
|
|
#ifndef __mcoldfire__
|
|
lsrw IMM (8),d2
|
|
#else
|
|
lsrl IMM (8),d2
|
|
#endif
|
|
|
|
| Before rounding normalize so bit #FLT_MANT_DIG is set (we will consider
|
|
| the case of denormalized numbers in the rounding routine itself).
|
|
| As in the addition (not in the subtraction!) we could have set
|
|
| one more bit we check this:
|
|
btst IMM (FLT_MANT_DIG+1),d0
|
|
beq 1f
|
|
#ifndef __mcoldfire__
|
|
lsrl IMM (1),d0
|
|
roxrl IMM (1),d1
|
|
#else
|
|
lsrl IMM (1),d1
|
|
btst IMM (0),d0
|
|
beq 10f
|
|
bset IMM (31),d1
|
|
10: lsrl IMM (1),d0
|
|
#endif
|
|
addl IMM (1),d2
|
|
1:
|
|
lea pc@(Laddsf$4),a0 | to return from rounding routine
|
|
PICLEA SYM (_fpCCR),a1 | check the rounding mode
|
|
#ifdef __mcoldfire__
|
|
clrl d6
|
|
#endif
|
|
movew a1@(6),d6 | rounding mode in d6
|
|
beq Lround$to$nearest
|
|
#ifndef __mcoldfire__
|
|
cmpw IMM (ROUND_TO_PLUS),d6
|
|
#else
|
|
cmpl IMM (ROUND_TO_PLUS),d6
|
|
#endif
|
|
bhi Lround$to$minus
|
|
blt Lround$to$zero
|
|
bra Lround$to$plus
|
|
Laddsf$4:
|
|
| Put back the exponent, but check for overflow.
|
|
#ifndef __mcoldfire__
|
|
cmpw IMM (0xff),d2
|
|
#else
|
|
cmpl IMM (0xff),d2
|
|
#endif
|
|
bhi 1f
|
|
bclr IMM (FLT_MANT_DIG-1),d0
|
|
#ifndef __mcoldfire__
|
|
lslw IMM (7),d2
|
|
#else
|
|
lsll IMM (7),d2
|
|
#endif
|
|
swap d2
|
|
orl d2,d0
|
|
bra Laddsf$ret
|
|
1:
|
|
moveq IMM (ADD),d5
|
|
bra Lf$overflow
|
|
|
|
Lsubsf$0:
|
|
| We are here if a > 0 and b < 0 (sign bits cleared).
|
|
| Here we do the subtraction.
|
|
movel d6,d7 | put sign in d7
|
|
andl IMM (0x80000000),d7
|
|
|
|
subl d3,d1 | result in d0-d1
|
|
subxl d2,d0 |
|
|
beq Laddsf$ret | if zero just exit
|
|
bpl 1f | if positive skip the following
|
|
bchg IMM (31),d7 | change sign bit in d7
|
|
negl d1
|
|
negxl d0
|
|
1:
|
|
#ifndef __mcoldfire__
|
|
exg d2,a0 | now we have the exponent in d2
|
|
lsrw IMM (8),d2 | put it in the first byte
|
|
#else
|
|
movel d2,d4
|
|
movel a0,d2
|
|
movel d4,a0
|
|
lsrl IMM (8),d2 | put it in the first byte
|
|
#endif
|
|
|
|
| Now d0-d1 is positive and the sign bit is in d7.
|
|
|
|
| Note that we do not have to normalize, since in the subtraction bit
|
|
| #FLT_MANT_DIG+1 is never set, and denormalized numbers are handled by
|
|
| the rounding routines themselves.
|
|
lea pc@(Lsubsf$1),a0 | to return from rounding routine
|
|
PICLEA SYM (_fpCCR),a1 | check the rounding mode
|
|
#ifdef __mcoldfire__
|
|
clrl d6
|
|
#endif
|
|
movew a1@(6),d6 | rounding mode in d6
|
|
beq Lround$to$nearest
|
|
#ifndef __mcoldfire__
|
|
cmpw IMM (ROUND_TO_PLUS),d6
|
|
#else
|
|
cmpl IMM (ROUND_TO_PLUS),d6
|
|
#endif
|
|
bhi Lround$to$minus
|
|
blt Lround$to$zero
|
|
bra Lround$to$plus
|
|
Lsubsf$1:
|
|
| Put back the exponent (we can't have overflow!). '
|
|
bclr IMM (FLT_MANT_DIG-1),d0
|
|
#ifndef __mcoldfire__
|
|
lslw IMM (7),d2
|
|
#else
|
|
lsll IMM (7),d2
|
|
#endif
|
|
swap d2
|
|
orl d2,d0
|
|
bra Laddsf$ret
|
|
|
|
| If one of the numbers was too small (difference of exponents >=
|
|
| FLT_MANT_DIG+2) we return the other (and now we don't have to '
|
|
| check for finiteness or zero).
|
|
Laddsf$a$small:
|
|
movel a6@(12),d0
|
|
PICLEA SYM (_fpCCR),a0
|
|
movew IMM (0),a0@
|
|
#ifndef __mcoldfire__
|
|
moveml sp@+,d2-d7 | restore data registers
|
|
#else
|
|
moveml sp@,d2-d7
|
|
| XXX if frame pointer is ever removed, stack pointer must
|
|
| be adjusted here.
|
|
#endif
|
|
unlk a6 | and return
|
|
rts
|
|
|
|
Laddsf$b$small:
|
|
movel a6@(8),d0
|
|
PICLEA SYM (_fpCCR),a0
|
|
movew IMM (0),a0@
|
|
#ifndef __mcoldfire__
|
|
moveml sp@+,d2-d7 | restore data registers
|
|
#else
|
|
moveml sp@,d2-d7
|
|
| XXX if frame pointer is ever removed, stack pointer must
|
|
| be adjusted here.
|
|
#endif
|
|
unlk a6 | and return
|
|
rts
|
|
|
|
| If the numbers are denormalized remember to put exponent equal to 1.
|
|
|
|
Laddsf$a$den:
|
|
movel d5,d6 | d5 contains 0x01000000
|
|
swap d6
|
|
bra Laddsf$1
|
|
|
|
Laddsf$b$den:
|
|
movel d5,d7
|
|
swap d7
|
|
notl d4 | make d4 into a mask for the fraction
|
|
| (this was not executed after the jump)
|
|
bra Laddsf$2
|
|
|
|
| The rest is mainly code for the different results which can be
|
|
| returned (checking always for +/-INFINITY and NaN).
|
|
|
|
Laddsf$b:
|
|
| Return b (if a is zero).
|
|
movel a6@(12),d0
|
|
cmpl IMM (0x80000000),d0 | Check if b is -0
|
|
bne 1f
|
|
movel a0,d7
|
|
andl IMM (0x80000000),d7 | Use the sign of a
|
|
clrl d0
|
|
bra Laddsf$ret
|
|
Laddsf$a:
|
|
| Return a (if b is zero).
|
|
movel a6@(8),d0
|
|
1:
|
|
moveq IMM (ADD),d5
|
|
| We have to check for NaN and +/-infty.
|
|
movel d0,d7
|
|
andl IMM (0x80000000),d7 | put sign in d7
|
|
bclr IMM (31),d0 | clear sign
|
|
cmpl IMM (INFINITY),d0 | check for infty or NaN
|
|
bge 2f
|
|
movel d0,d0 | check for zero (we do this because we don't '
|
|
bne Laddsf$ret | want to return -0 by mistake
|
|
bclr IMM (31),d7 | if zero be sure to clear sign
|
|
bra Laddsf$ret | if everything OK just return
|
|
2:
|
|
| The value to be returned is either +/-infty or NaN
|
|
andl IMM (0x007fffff),d0 | check for NaN
|
|
bne Lf$inop | if mantissa not zero is NaN
|
|
bra Lf$infty
|
|
|
|
Laddsf$ret:
|
|
| Normal exit (a and b nonzero, result is not NaN nor +/-infty).
|
|
| We have to clear the exception flags (just the exception type).
|
|
PICLEA SYM (_fpCCR),a0
|
|
movew IMM (0),a0@
|
|
orl d7,d0 | put sign bit
|
|
#ifndef __mcoldfire__
|
|
moveml sp@+,d2-d7 | restore data registers
|
|
#else
|
|
moveml sp@,d2-d7
|
|
| XXX if frame pointer is ever removed, stack pointer must
|
|
| be adjusted here.
|
|
#endif
|
|
unlk a6 | and return
|
|
rts
|
|
|
|
Laddsf$ret$den:
|
|
| Return a denormalized number (for addition we don't signal underflow) '
|
|
lsrl IMM (1),d0 | remember to shift right back once
|
|
bra Laddsf$ret | and return
|
|
|
|
| Note: when adding two floats of the same sign if either one is
|
|
| NaN we return NaN without regard to whether the other is finite or
|
|
| not. When subtracting them (i.e., when adding two numbers of
|
|
| opposite signs) things are more complicated: if both are INFINITY
|
|
| we return NaN, if only one is INFINITY and the other is NaN we return
|
|
| NaN, but if it is finite we return INFINITY with the corresponding sign.
|
|
|
|
Laddsf$nf:
|
|
moveq IMM (ADD),d5
|
|
| This could be faster but it is not worth the effort, since it is not
|
|
| executed very often. We sacrifice speed for clarity here.
|
|
movel a6@(8),d0 | get the numbers back (remember that we
|
|
movel a6@(12),d1 | did some processing already)
|
|
movel IMM (INFINITY),d4 | useful constant (INFINITY)
|
|
movel d0,d2 | save sign bits
|
|
movel d1,d3
|
|
bclr IMM (31),d0 | clear sign bits
|
|
bclr IMM (31),d1
|
|
| We know that one of them is either NaN of +/-INFINITY
|
|
| Check for NaN (if either one is NaN return NaN)
|
|
cmpl d4,d0 | check first a (d0)
|
|
bhi Lf$inop
|
|
cmpl d4,d1 | check now b (d1)
|
|
bhi Lf$inop
|
|
| Now comes the check for +/-INFINITY. We know that both are (maybe not
|
|
| finite) numbers, but we have to check if both are infinite whether we
|
|
| are adding or subtracting them.
|
|
eorl d3,d2 | to check sign bits
|
|
bmi 1f
|
|
movel d0,d7
|
|
andl IMM (0x80000000),d7 | get (common) sign bit
|
|
bra Lf$infty
|
|
1:
|
|
| We know one (or both) are infinite, so we test for equality between the
|
|
| two numbers (if they are equal they have to be infinite both, so we
|
|
| return NaN).
|
|
cmpl d1,d0 | are both infinite?
|
|
beq Lf$inop | if so return NaN
|
|
|
|
movel d0,d7
|
|
andl IMM (0x80000000),d7 | get a's sign bit '
|
|
cmpl d4,d0 | test now for infinity
|
|
beq Lf$infty | if a is INFINITY return with this sign
|
|
bchg IMM (31),d7 | else we know b is INFINITY and has
|
|
bra Lf$infty | the opposite sign
|
|
|
|
|=============================================================================
|
|
| __mulsf3
|
|
|=============================================================================
|
|
|
|
| float __mulsf3(float, float);
|
|
FUNC(__mulsf3)
|
|
SYM (__mulsf3):
|
|
#ifndef __mcoldfire__
|
|
link a6,IMM (0)
|
|
moveml d2-d7,sp@-
|
|
#else
|
|
link a6,IMM (-24)
|
|
moveml d2-d7,sp@
|
|
#endif
|
|
movel a6@(8),d0 | get a into d0
|
|
movel a6@(12),d1 | and b into d1
|
|
movel d0,d7 | d7 will hold the sign of the product
|
|
eorl d1,d7 |
|
|
andl IMM (0x80000000),d7
|
|
movel IMM (INFINITY),d6 | useful constant (+INFINITY)
|
|
movel d6,d5 | another (mask for fraction)
|
|
notl d5 |
|
|
movel IMM (0x00800000),d4 | this is to put hidden bit back
|
|
bclr IMM (31),d0 | get rid of a's sign bit '
|
|
movel d0,d2 |
|
|
beq Lmulsf$a$0 | branch if a is zero
|
|
bclr IMM (31),d1 | get rid of b's sign bit '
|
|
movel d1,d3 |
|
|
beq Lmulsf$b$0 | branch if b is zero
|
|
cmpl d6,d0 | is a big?
|
|
bhi Lmulsf$inop | if a is NaN return NaN
|
|
beq Lmulsf$inf | if a is INFINITY we have to check b
|
|
cmpl d6,d1 | now compare b with INFINITY
|
|
bhi Lmulsf$inop | is b NaN?
|
|
beq Lmulsf$overflow | is b INFINITY?
|
|
| Here we have both numbers finite and nonzero (and with no sign bit).
|
|
| Now we get the exponents into d2 and d3.
|
|
andl d6,d2 | and isolate exponent in d2
|
|
beq Lmulsf$a$den | if exponent is zero we have a denormalized
|
|
andl d5,d0 | and isolate fraction
|
|
orl d4,d0 | and put hidden bit back
|
|
swap d2 | I like exponents in the first byte
|
|
#ifndef __mcoldfire__
|
|
lsrw IMM (7),d2 |
|
|
#else
|
|
lsrl IMM (7),d2 |
|
|
#endif
|
|
Lmulsf$1: | number
|
|
andl d6,d3 |
|
|
beq Lmulsf$b$den |
|
|
andl d5,d1 |
|
|
orl d4,d1 |
|
|
swap d3 |
|
|
#ifndef __mcoldfire__
|
|
lsrw IMM (7),d3 |
|
|
#else
|
|
lsrl IMM (7),d3 |
|
|
#endif
|
|
Lmulsf$2: |
|
|
#ifndef __mcoldfire__
|
|
addw d3,d2 | add exponents
|
|
subw IMM (F_BIAS+1),d2 | and subtract bias (plus one)
|
|
#else
|
|
addl d3,d2 | add exponents
|
|
subl IMM (F_BIAS+1),d2 | and subtract bias (plus one)
|
|
#endif
|
|
|
|
| We are now ready to do the multiplication. The situation is as follows:
|
|
| both a and b have bit FLT_MANT_DIG-1 set (even if they were
|
|
| denormalized to start with!), which means that in the product
|
|
| bit 2*(FLT_MANT_DIG-1) (that is, bit 2*FLT_MANT_DIG-2-32 of the
|
|
| high long) is set.
|
|
|
|
| To do the multiplication let us move the number a little bit around ...
|
|
movel d1,d6 | second operand in d6
|
|
movel d0,d5 | first operand in d4-d5
|
|
movel IMM (0),d4
|
|
movel d4,d1 | the sums will go in d0-d1
|
|
movel d4,d0
|
|
|
|
| now bit FLT_MANT_DIG-1 becomes bit 31:
|
|
lsll IMM (31-FLT_MANT_DIG+1),d6
|
|
|
|
| Start the loop (we loop #FLT_MANT_DIG times):
|
|
moveq IMM (FLT_MANT_DIG-1),d3
|
|
1: addl d1,d1 | shift sum
|
|
addxl d0,d0
|
|
lsll IMM (1),d6 | get bit bn
|
|
bcc 2f | if not set skip sum
|
|
addl d5,d1 | add a
|
|
addxl d4,d0
|
|
2:
|
|
#ifndef __mcoldfire__
|
|
dbf d3,1b | loop back
|
|
#else
|
|
subql IMM (1),d3
|
|
bpl 1b
|
|
#endif
|
|
|
|
| Now we have the product in d0-d1, with bit (FLT_MANT_DIG - 1) + FLT_MANT_DIG
|
|
| (mod 32) of d0 set. The first thing to do now is to normalize it so bit
|
|
| FLT_MANT_DIG is set (to do the rounding).
|
|
#ifndef __mcoldfire__
|
|
rorl IMM (6),d1
|
|
swap d1
|
|
movew d1,d3
|
|
andw IMM (0x03ff),d3
|
|
andw IMM (0xfd00),d1
|
|
#else
|
|
movel d1,d3
|
|
lsll IMM (8),d1
|
|
addl d1,d1
|
|
addl d1,d1
|
|
moveq IMM (22),d5
|
|
lsrl d5,d3
|
|
orl d3,d1
|
|
andl IMM (0xfffffd00),d1
|
|
#endif
|
|
lsll IMM (8),d0
|
|
addl d0,d0
|
|
addl d0,d0
|
|
#ifndef __mcoldfire__
|
|
orw d3,d0
|
|
#else
|
|
orl d3,d0
|
|
#endif
|
|
|
|
moveq IMM (MULTIPLY),d5
|
|
|
|
btst IMM (FLT_MANT_DIG+1),d0
|
|
beq Lround$exit
|
|
#ifndef __mcoldfire__
|
|
lsrl IMM (1),d0
|
|
roxrl IMM (1),d1
|
|
addw IMM (1),d2
|
|
#else
|
|
lsrl IMM (1),d1
|
|
btst IMM (0),d0
|
|
beq 10f
|
|
bset IMM (31),d1
|
|
10: lsrl IMM (1),d0
|
|
addql IMM (1),d2
|
|
#endif
|
|
bra Lround$exit
|
|
|
|
Lmulsf$inop:
|
|
moveq IMM (MULTIPLY),d5
|
|
bra Lf$inop
|
|
|
|
Lmulsf$overflow:
|
|
moveq IMM (MULTIPLY),d5
|
|
bra Lf$overflow
|
|
|
|
Lmulsf$inf:
|
|
moveq IMM (MULTIPLY),d5
|
|
| If either is NaN return NaN; else both are (maybe infinite) numbers, so
|
|
| return INFINITY with the correct sign (which is in d7).
|
|
cmpl d6,d1 | is b NaN?
|
|
bhi Lf$inop | if so return NaN
|
|
bra Lf$overflow | else return +/-INFINITY
|
|
|
|
| If either number is zero return zero, unless the other is +/-INFINITY,
|
|
| or NaN, in which case we return NaN.
|
|
Lmulsf$b$0:
|
|
| Here d1 (==b) is zero.
|
|
movel a6@(8),d1 | get a again to check for non-finiteness
|
|
bra 1f
|
|
Lmulsf$a$0:
|
|
movel a6@(12),d1 | get b again to check for non-finiteness
|
|
1: bclr IMM (31),d1 | clear sign bit
|
|
cmpl IMM (INFINITY),d1 | and check for a large exponent
|
|
bge Lf$inop | if b is +/-INFINITY or NaN return NaN
|
|
movel d7,d0 | else return signed zero
|
|
PICLEA SYM (_fpCCR),a0 |
|
|
movew IMM (0),a0@ |
|
|
#ifndef __mcoldfire__
|
|
moveml sp@+,d2-d7 |
|
|
#else
|
|
moveml sp@,d2-d7
|
|
| XXX if frame pointer is ever removed, stack pointer must
|
|
| be adjusted here.
|
|
#endif
|
|
unlk a6 |
|
|
rts |
|
|
|
|
| If a number is denormalized we put an exponent of 1 but do not put the
|
|
| hidden bit back into the fraction; instead we shift left until bit 23
|
|
| (the hidden bit) is set, adjusting the exponent accordingly. We do this
|
|
| to ensure that the product of the fractions is close to 1.
|
|
Lmulsf$a$den:
|
|
movel IMM (1),d2
|
|
andl d5,d0
|
|
1: addl d0,d0 | shift a left (until bit 23 is set)
|
|
#ifndef __mcoldfire__
|
|
subw IMM (1),d2 | and adjust exponent
|
|
#else
|
|
subql IMM (1),d2 | and adjust exponent
|
|
#endif
|
|
btst IMM (FLT_MANT_DIG-1),d0
|
|
bne Lmulsf$1 |
|
|
bra 1b | else loop back
|
|
|
|
Lmulsf$b$den:
|
|
movel IMM (1),d3
|
|
andl d5,d1
|
|
1: addl d1,d1 | shift b left until bit 23 is set
|
|
#ifndef __mcoldfire__
|
|
subw IMM (1),d3 | and adjust exponent
|
|
#else
|
|
subql IMM (1),d3 | and adjust exponent
|
|
#endif
|
|
btst IMM (FLT_MANT_DIG-1),d1
|
|
bne Lmulsf$2 |
|
|
bra 1b | else loop back
|
|
|
|
|=============================================================================
|
|
| __divsf3
|
|
|=============================================================================
|
|
|
|
| float __divsf3(float, float);
|
|
FUNC(__divsf3)
|
|
SYM (__divsf3):
|
|
#ifndef __mcoldfire__
|
|
link a6,IMM (0)
|
|
moveml d2-d7,sp@-
|
|
#else
|
|
link a6,IMM (-24)
|
|
moveml d2-d7,sp@
|
|
#endif
|
|
movel a6@(8),d0 | get a into d0
|
|
movel a6@(12),d1 | and b into d1
|
|
movel d0,d7 | d7 will hold the sign of the result
|
|
eorl d1,d7 |
|
|
andl IMM (0x80000000),d7 |
|
|
movel IMM (INFINITY),d6 | useful constant (+INFINITY)
|
|
movel d6,d5 | another (mask for fraction)
|
|
notl d5 |
|
|
movel IMM (0x00800000),d4 | this is to put hidden bit back
|
|
bclr IMM (31),d0 | get rid of a's sign bit '
|
|
movel d0,d2 |
|
|
beq Ldivsf$a$0 | branch if a is zero
|
|
bclr IMM (31),d1 | get rid of b's sign bit '
|
|
movel d1,d3 |
|
|
beq Ldivsf$b$0 | branch if b is zero
|
|
cmpl d6,d0 | is a big?
|
|
bhi Ldivsf$inop | if a is NaN return NaN
|
|
beq Ldivsf$inf | if a is INFINITY we have to check b
|
|
cmpl d6,d1 | now compare b with INFINITY
|
|
bhi Ldivsf$inop | if b is NaN return NaN
|
|
beq Ldivsf$underflow
|
|
| Here we have both numbers finite and nonzero (and with no sign bit).
|
|
| Now we get the exponents into d2 and d3 and normalize the numbers to
|
|
| ensure that the ratio of the fractions is close to 1. We do this by
|
|
| making sure that bit #FLT_MANT_DIG-1 (hidden bit) is set.
|
|
andl d6,d2 | and isolate exponent in d2
|
|
beq Ldivsf$a$den | if exponent is zero we have a denormalized
|
|
andl d5,d0 | and isolate fraction
|
|
orl d4,d0 | and put hidden bit back
|
|
swap d2 | I like exponents in the first byte
|
|
#ifndef __mcoldfire__
|
|
lsrw IMM (7),d2 |
|
|
#else
|
|
lsrl IMM (7),d2 |
|
|
#endif
|
|
Ldivsf$1: |
|
|
andl d6,d3 |
|
|
beq Ldivsf$b$den |
|
|
andl d5,d1 |
|
|
orl d4,d1 |
|
|
swap d3 |
|
|
#ifndef __mcoldfire__
|
|
lsrw IMM (7),d3 |
|
|
#else
|
|
lsrl IMM (7),d3 |
|
|
#endif
|
|
Ldivsf$2: |
|
|
#ifndef __mcoldfire__
|
|
subw d3,d2 | subtract exponents
|
|
addw IMM (F_BIAS),d2 | and add bias
|
|
#else
|
|
subl d3,d2 | subtract exponents
|
|
addl IMM (F_BIAS),d2 | and add bias
|
|
#endif
|
|
|
|
| We are now ready to do the division. We have prepared things in such a way
|
|
| that the ratio of the fractions will be less than 2 but greater than 1/2.
|
|
| At this point the registers in use are:
|
|
| d0 holds a (first operand, bit FLT_MANT_DIG=0, bit FLT_MANT_DIG-1=1)
|
|
| d1 holds b (second operand, bit FLT_MANT_DIG=1)
|
|
| d2 holds the difference of the exponents, corrected by the bias
|
|
| d7 holds the sign of the ratio
|
|
| d4, d5, d6 hold some constants
|
|
movel d7,a0 | d6-d7 will hold the ratio of the fractions
|
|
movel IMM (0),d6 |
|
|
movel d6,d7
|
|
|
|
moveq IMM (FLT_MANT_DIG+1),d3
|
|
1: cmpl d0,d1 | is a < b?
|
|
bhi 2f |
|
|
bset d3,d6 | set a bit in d6
|
|
subl d1,d0 | if a >= b a <-- a-b
|
|
beq 3f | if a is zero, exit
|
|
2: addl d0,d0 | multiply a by 2
|
|
#ifndef __mcoldfire__
|
|
dbra d3,1b
|
|
#else
|
|
subql IMM (1),d3
|
|
bpl 1b
|
|
#endif
|
|
|
|
| Now we keep going to set the sticky bit ...
|
|
moveq IMM (FLT_MANT_DIG),d3
|
|
1: cmpl d0,d1
|
|
ble 2f
|
|
addl d0,d0
|
|
#ifndef __mcoldfire__
|
|
dbra d3,1b
|
|
#else
|
|
subql IMM(1),d3
|
|
bpl 1b
|
|
#endif
|
|
movel IMM (0),d1
|
|
bra 3f
|
|
2: movel IMM (0),d1
|
|
#ifndef __mcoldfire__
|
|
subw IMM (FLT_MANT_DIG),d3
|
|
addw IMM (31),d3
|
|
#else
|
|
subl IMM (FLT_MANT_DIG),d3
|
|
addl IMM (31),d3
|
|
#endif
|
|
bset d3,d1
|
|
3:
|
|
movel d6,d0 | put the ratio in d0-d1
|
|
movel a0,d7 | get sign back
|
|
|
|
| Because of the normalization we did before we are guaranteed that
|
|
| d0 is smaller than 2^26 but larger than 2^24. Thus bit 26 is not set,
|
|
| bit 25 could be set, and if it is not set then bit 24 is necessarily set.
|
|
btst IMM (FLT_MANT_DIG+1),d0
|
|
beq 1f | if it is not set, then bit 24 is set
|
|
lsrl IMM (1),d0 |
|
|
#ifndef __mcoldfire__
|
|
addw IMM (1),d2 |
|
|
#else
|
|
addl IMM (1),d2 |
|
|
#endif
|
|
1:
|
|
| Now round, check for over- and underflow, and exit.
|
|
moveq IMM (DIVIDE),d5
|
|
bra Lround$exit
|
|
|
|
Ldivsf$inop:
|
|
moveq IMM (DIVIDE),d5
|
|
bra Lf$inop
|
|
|
|
Ldivsf$overflow:
|
|
moveq IMM (DIVIDE),d5
|
|
bra Lf$overflow
|
|
|
|
Ldivsf$underflow:
|
|
moveq IMM (DIVIDE),d5
|
|
bra Lf$underflow
|
|
|
|
Ldivsf$a$0:
|
|
moveq IMM (DIVIDE),d5
|
|
| If a is zero check to see whether b is zero also. In that case return
|
|
| NaN; then check if b is NaN, and return NaN also in that case. Else
|
|
| return a properly signed zero.
|
|
andl IMM (0x7fffffff),d1 | clear sign bit and test b
|
|
beq Lf$inop | if b is also zero return NaN
|
|
cmpl IMM (INFINITY),d1 | check for NaN
|
|
bhi Lf$inop |
|
|
movel d7,d0 | else return signed zero
|
|
PICLEA SYM (_fpCCR),a0 |
|
|
movew IMM (0),a0@ |
|
|
#ifndef __mcoldfire__
|
|
moveml sp@+,d2-d7 |
|
|
#else
|
|
moveml sp@,d2-d7 |
|
|
| XXX if frame pointer is ever removed, stack pointer must
|
|
| be adjusted here.
|
|
#endif
|
|
unlk a6 |
|
|
rts |
|
|
|
|
Ldivsf$b$0:
|
|
moveq IMM (DIVIDE),d5
|
|
| If we got here a is not zero. Check if a is NaN; in that case return NaN,
|
|
| else return +/-INFINITY. Remember that a is in d0 with the sign bit
|
|
| cleared already.
|
|
cmpl IMM (INFINITY),d0 | compare d0 with INFINITY
|
|
bhi Lf$inop | if larger it is NaN
|
|
bra Lf$div$0 | else signal DIVIDE_BY_ZERO
|
|
|
|
Ldivsf$inf:
|
|
moveq IMM (DIVIDE),d5
|
|
| If a is INFINITY we have to check b
|
|
cmpl IMM (INFINITY),d1 | compare b with INFINITY
|
|
bge Lf$inop | if b is NaN or INFINITY return NaN
|
|
bra Lf$overflow | else return overflow
|
|
|
|
| If a number is denormalized we put an exponent of 1 but do not put the
|
|
| bit back into the fraction.
|
|
Ldivsf$a$den:
|
|
movel IMM (1),d2
|
|
andl d5,d0
|
|
1: addl d0,d0 | shift a left until bit FLT_MANT_DIG-1 is set
|
|
#ifndef __mcoldfire__
|
|
subw IMM (1),d2 | and adjust exponent
|
|
#else
|
|
subl IMM (1),d2 | and adjust exponent
|
|
#endif
|
|
btst IMM (FLT_MANT_DIG-1),d0
|
|
bne Ldivsf$1
|
|
bra 1b
|
|
|
|
Ldivsf$b$den:
|
|
movel IMM (1),d3
|
|
andl d5,d1
|
|
1: addl d1,d1 | shift b left until bit FLT_MANT_DIG is set
|
|
#ifndef __mcoldfire__
|
|
subw IMM (1),d3 | and adjust exponent
|
|
#else
|
|
subl IMM (1),d3 | and adjust exponent
|
|
#endif
|
|
btst IMM (FLT_MANT_DIG-1),d1
|
|
bne Ldivsf$2
|
|
bra 1b
|
|
|
|
Lround$exit:
|
|
| This is a common exit point for __mulsf3 and __divsf3.
|
|
|
|
| First check for underlow in the exponent:
|
|
#ifndef __mcoldfire__
|
|
cmpw IMM (-FLT_MANT_DIG-1),d2
|
|
#else
|
|
cmpl IMM (-FLT_MANT_DIG-1),d2
|
|
#endif
|
|
blt Lf$underflow
|
|
| It could happen that the exponent is less than 1, in which case the
|
|
| number is denormalized. In this case we shift right and adjust the
|
|
| exponent until it becomes 1 or the fraction is zero (in the latter case
|
|
| we signal underflow and return zero).
|
|
movel IMM (0),d6 | d6 is used temporarily
|
|
#ifndef __mcoldfire__
|
|
cmpw IMM (1),d2 | if the exponent is less than 1 we
|
|
#else
|
|
cmpl IMM (1),d2 | if the exponent is less than 1 we
|
|
#endif
|
|
bge 2f | have to shift right (denormalize)
|
|
1:
|
|
#ifndef __mcoldfire__
|
|
addw IMM (1),d2 | adjust the exponent
|
|
lsrl IMM (1),d0 | shift right once
|
|
roxrl IMM (1),d1 |
|
|
roxrl IMM (1),d6 | d6 collect bits we would lose otherwise
|
|
cmpw IMM (1),d2 | is the exponent 1 already?
|
|
#else
|
|
addql IMM (1),d2 | adjust the exponent
|
|
lsrl IMM (1),d6
|
|
btst IMM (0),d1
|
|
beq 11f
|
|
bset IMM (31),d6
|
|
11: lsrl IMM (1),d1
|
|
btst IMM (0),d0
|
|
beq 10f
|
|
bset IMM (31),d1
|
|
10: lsrl IMM (1),d0
|
|
cmpl IMM (1),d2 | is the exponent 1 already?
|
|
#endif
|
|
beq 2f | if not loop back
|
|
bra 1b |
|
|
bra Lf$underflow | safety check, shouldn't execute '
|
|
2: orl d6,d1 | this is a trick so we don't lose '
|
|
| the extra bits which were flushed right
|
|
| Now call the rounding routine (which takes care of denormalized numbers):
|
|
lea pc@(Lround$0),a0 | to return from rounding routine
|
|
PICLEA SYM (_fpCCR),a1 | check the rounding mode
|
|
#ifdef __mcoldfire__
|
|
clrl d6
|
|
#endif
|
|
movew a1@(6),d6 | rounding mode in d6
|
|
beq Lround$to$nearest
|
|
#ifndef __mcoldfire__
|
|
cmpw IMM (ROUND_TO_PLUS),d6
|
|
#else
|
|
cmpl IMM (ROUND_TO_PLUS),d6
|
|
#endif
|
|
bhi Lround$to$minus
|
|
blt Lround$to$zero
|
|
bra Lround$to$plus
|
|
Lround$0:
|
|
| Here we have a correctly rounded result (either normalized or denormalized).
|
|
|
|
| Here we should have either a normalized number or a denormalized one, and
|
|
| the exponent is necessarily larger or equal to 1 (so we don't have to '
|
|
| check again for underflow!). We have to check for overflow or for a
|
|
| denormalized number (which also signals underflow).
|
|
| Check for overflow (i.e., exponent >= 255).
|
|
#ifndef __mcoldfire__
|
|
cmpw IMM (0x00ff),d2
|
|
#else
|
|
cmpl IMM (0x00ff),d2
|
|
#endif
|
|
bge Lf$overflow
|
|
| Now check for a denormalized number (exponent==0).
|
|
movew d2,d2
|
|
beq Lf$den
|
|
1:
|
|
| Put back the exponents and sign and return.
|
|
#ifndef __mcoldfire__
|
|
lslw IMM (7),d2 | exponent back to fourth byte
|
|
#else
|
|
lsll IMM (7),d2 | exponent back to fourth byte
|
|
#endif
|
|
bclr IMM (FLT_MANT_DIG-1),d0
|
|
swap d0 | and put back exponent
|
|
#ifndef __mcoldfire__
|
|
orw d2,d0 |
|
|
#else
|
|
orl d2,d0
|
|
#endif
|
|
swap d0 |
|
|
orl d7,d0 | and sign also
|
|
|
|
PICLEA SYM (_fpCCR),a0
|
|
movew IMM (0),a0@
|
|
#ifndef __mcoldfire__
|
|
moveml sp@+,d2-d7
|
|
#else
|
|
moveml sp@,d2-d7
|
|
| XXX if frame pointer is ever removed, stack pointer must
|
|
| be adjusted here.
|
|
#endif
|
|
unlk a6
|
|
rts
|
|
|
|
|=============================================================================
|
|
| __negsf2
|
|
|=============================================================================
|
|
|
|
| This is trivial and could be shorter if we didn't bother checking for NaN '
|
|
| and +/-INFINITY.
|
|
|
|
| float __negsf2(float);
|
|
FUNC(__negsf2)
|
|
SYM (__negsf2):
|
|
#ifndef __mcoldfire__
|
|
link a6,IMM (0)
|
|
moveml d2-d7,sp@-
|
|
#else
|
|
link a6,IMM (-24)
|
|
moveml d2-d7,sp@
|
|
#endif
|
|
moveq IMM (NEGATE),d5
|
|
movel a6@(8),d0 | get number to negate in d0
|
|
bchg IMM (31),d0 | negate
|
|
movel d0,d1 | make a positive copy
|
|
bclr IMM (31),d1 |
|
|
tstl d1 | check for zero
|
|
beq 2f | if zero (either sign) return +zero
|
|
cmpl IMM (INFINITY),d1 | compare to +INFINITY
|
|
blt 1f |
|
|
bhi Lf$inop | if larger (fraction not zero) is NaN
|
|
movel d0,d7 | else get sign and return INFINITY
|
|
andl IMM (0x80000000),d7
|
|
bra Lf$infty
|
|
1: PICLEA SYM (_fpCCR),a0
|
|
movew IMM (0),a0@
|
|
#ifndef __mcoldfire__
|
|
moveml sp@+,d2-d7
|
|
#else
|
|
moveml sp@,d2-d7
|
|
| XXX if frame pointer is ever removed, stack pointer must
|
|
| be adjusted here.
|
|
#endif
|
|
unlk a6
|
|
rts
|
|
2: bclr IMM (31),d0
|
|
bra 1b
|
|
|
|
|=============================================================================
|
|
| __cmpsf2
|
|
|=============================================================================
|
|
|
|
GREATER = 1
|
|
LESS = -1
|
|
EQUAL = 0
|
|
|
|
| int __cmpsf2_internal(float, float, int);
|
|
SYM (__cmpsf2_internal):
|
|
#ifndef __mcoldfire__
|
|
link a6,IMM (0)
|
|
moveml d2-d7,sp@- | save registers
|
|
#else
|
|
link a6,IMM (-24)
|
|
moveml d2-d7,sp@
|
|
#endif
|
|
moveq IMM (COMPARE),d5
|
|
movel a6@(8),d0 | get first operand
|
|
movel a6@(12),d1 | get second operand
|
|
| Check if either is NaN, and in that case return garbage and signal
|
|
| INVALID_OPERATION. Check also if either is zero, and clear the signs
|
|
| if necessary.
|
|
movel d0,d6
|
|
andl IMM (0x7fffffff),d0
|
|
beq Lcmpsf$a$0
|
|
cmpl IMM (0x7f800000),d0
|
|
bhi Lcmpf$inop
|
|
Lcmpsf$1:
|
|
movel d1,d7
|
|
andl IMM (0x7fffffff),d1
|
|
beq Lcmpsf$b$0
|
|
cmpl IMM (0x7f800000),d1
|
|
bhi Lcmpf$inop
|
|
Lcmpsf$2:
|
|
| Check the signs
|
|
eorl d6,d7
|
|
bpl 1f
|
|
| If the signs are not equal check if a >= 0
|
|
tstl d6
|
|
bpl Lcmpsf$a$gt$b | if (a >= 0 && b < 0) => a > b
|
|
bmi Lcmpsf$b$gt$a | if (a < 0 && b >= 0) => a < b
|
|
1:
|
|
| If the signs are equal check for < 0
|
|
tstl d6
|
|
bpl 1f
|
|
| If both are negative exchange them
|
|
#ifndef __mcoldfire__
|
|
exg d0,d1
|
|
#else
|
|
movel d0,d7
|
|
movel d1,d0
|
|
movel d7,d1
|
|
#endif
|
|
1:
|
|
| Now that they are positive we just compare them as longs (does this also
|
|
| work for denormalized numbers?).
|
|
cmpl d0,d1
|
|
bhi Lcmpsf$b$gt$a | |b| > |a|
|
|
bne Lcmpsf$a$gt$b | |b| < |a|
|
|
| If we got here a == b.
|
|
movel IMM (EQUAL),d0
|
|
#ifndef __mcoldfire__
|
|
moveml sp@+,d2-d7 | put back the registers
|
|
#else
|
|
moveml sp@,d2-d7
|
|
#endif
|
|
unlk a6
|
|
rts
|
|
Lcmpsf$a$gt$b:
|
|
movel IMM (GREATER),d0
|
|
#ifndef __mcoldfire__
|
|
moveml sp@+,d2-d7 | put back the registers
|
|
#else
|
|
moveml sp@,d2-d7
|
|
| XXX if frame pointer is ever removed, stack pointer must
|
|
| be adjusted here.
|
|
#endif
|
|
unlk a6
|
|
rts
|
|
Lcmpsf$b$gt$a:
|
|
movel IMM (LESS),d0
|
|
#ifndef __mcoldfire__
|
|
moveml sp@+,d2-d7 | put back the registers
|
|
#else
|
|
moveml sp@,d2-d7
|
|
| XXX if frame pointer is ever removed, stack pointer must
|
|
| be adjusted here.
|
|
#endif
|
|
unlk a6
|
|
rts
|
|
|
|
Lcmpsf$a$0:
|
|
bclr IMM (31),d6
|
|
bra Lcmpsf$1
|
|
Lcmpsf$b$0:
|
|
bclr IMM (31),d7
|
|
bra Lcmpsf$2
|
|
|
|
Lcmpf$inop:
|
|
movl a6@(16),d0
|
|
moveq IMM (INEXACT_RESULT+INVALID_OPERATION),d7
|
|
moveq IMM (SINGLE_FLOAT),d6
|
|
PICJUMP $_exception_handler
|
|
|
|
| int __cmpsf2(float, float);
|
|
FUNC(__cmpsf2)
|
|
SYM (__cmpsf2):
|
|
link a6,IMM (0)
|
|
pea 1
|
|
movl a6@(12),sp@-
|
|
movl a6@(8),sp@-
|
|
PICCALL SYM (__cmpsf2_internal)
|
|
unlk a6
|
|
rts
|
|
|
|
|=============================================================================
|
|
| rounding routines
|
|
|=============================================================================
|
|
|
|
| The rounding routines expect the number to be normalized in registers
|
|
| d0-d1, with the exponent in register d2. They assume that the
|
|
| exponent is larger or equal to 1. They return a properly normalized number
|
|
| if possible, and a denormalized number otherwise. The exponent is returned
|
|
| in d2.
|
|
|
|
Lround$to$nearest:
|
|
| We now normalize as suggested by D. Knuth ("Seminumerical Algorithms"):
|
|
| Here we assume that the exponent is not too small (this should be checked
|
|
| before entering the rounding routine), but the number could be denormalized.
|
|
|
|
| Check for denormalized numbers:
|
|
1: btst IMM (FLT_MANT_DIG),d0
|
|
bne 2f | if set the number is normalized
|
|
| Normalize shifting left until bit #FLT_MANT_DIG is set or the exponent
|
|
| is one (remember that a denormalized number corresponds to an
|
|
| exponent of -F_BIAS+1).
|
|
#ifndef __mcoldfire__
|
|
cmpw IMM (1),d2 | remember that the exponent is at least one
|
|
#else
|
|
cmpl IMM (1),d2 | remember that the exponent is at least one
|
|
#endif
|
|
beq 2f | an exponent of one means denormalized
|
|
addl d1,d1 | else shift and adjust the exponent
|
|
addxl d0,d0 |
|
|
#ifndef __mcoldfire__
|
|
dbra d2,1b |
|
|
#else
|
|
subql IMM (1),d2
|
|
bpl 1b
|
|
#endif
|
|
2:
|
|
| Now round: we do it as follows: after the shifting we can write the
|
|
| fraction part as f + delta, where 1 < f < 2^25, and 0 <= delta <= 2.
|
|
| If delta < 1, do nothing. If delta > 1, add 1 to f.
|
|
| If delta == 1, we make sure the rounded number will be even (odd?)
|
|
| (after shifting).
|
|
btst IMM (0),d0 | is delta < 1?
|
|
beq 2f | if so, do not do anything
|
|
tstl d1 | is delta == 1?
|
|
bne 1f | if so round to even
|
|
movel d0,d1 |
|
|
andl IMM (2),d1 | bit 1 is the last significant bit
|
|
addl d1,d0 |
|
|
bra 2f |
|
|
1: movel IMM (1),d1 | else add 1
|
|
addl d1,d0 |
|
|
| Shift right once (because we used bit #FLT_MANT_DIG!).
|
|
2: lsrl IMM (1),d0
|
|
| Now check again bit #FLT_MANT_DIG (rounding could have produced a
|
|
| 'fraction overflow' ...).
|
|
btst IMM (FLT_MANT_DIG),d0
|
|
beq 1f
|
|
lsrl IMM (1),d0
|
|
#ifndef __mcoldfire__
|
|
addw IMM (1),d2
|
|
#else
|
|
addql IMM (1),d2
|
|
#endif
|
|
1:
|
|
| If bit #FLT_MANT_DIG-1 is clear we have a denormalized number, so we
|
|
| have to put the exponent to zero and return a denormalized number.
|
|
btst IMM (FLT_MANT_DIG-1),d0
|
|
beq 1f
|
|
jmp a0@
|
|
1: movel IMM (0),d2
|
|
jmp a0@
|
|
|
|
Lround$to$zero:
|
|
Lround$to$plus:
|
|
Lround$to$minus:
|
|
jmp a0@
|
|
#endif /* L_float */
|
|
|
|
| gcc expects the routines __eqdf2, __nedf2, __gtdf2, __gedf2,
|
|
| __ledf2, __ltdf2 to all return the same value as a direct call to
|
|
| __cmpdf2 would. In this implementation, each of these routines
|
|
| simply calls __cmpdf2. It would be more efficient to give the
|
|
| __cmpdf2 routine several names, but separating them out will make it
|
|
| easier to write efficient versions of these routines someday.
|
|
| If the operands recompare unordered unordered __gtdf2 and __gedf2 return -1.
|
|
| The other routines return 1.
|
|
|
|
#ifdef L_eqdf2
|
|
.text
|
|
FUNC(__eqdf2)
|
|
.globl SYM (__eqdf2)
|
|
SYM (__eqdf2):
|
|
link a6,IMM (0)
|
|
pea 1
|
|
movl a6@(20),sp@-
|
|
movl a6@(16),sp@-
|
|
movl a6@(12),sp@-
|
|
movl a6@(8),sp@-
|
|
PICCALL SYM (__cmpdf2_internal)
|
|
unlk a6
|
|
rts
|
|
#endif /* L_eqdf2 */
|
|
|
|
#ifdef L_nedf2
|
|
.text
|
|
FUNC(__nedf2)
|
|
.globl SYM (__nedf2)
|
|
SYM (__nedf2):
|
|
link a6,IMM (0)
|
|
pea 1
|
|
movl a6@(20),sp@-
|
|
movl a6@(16),sp@-
|
|
movl a6@(12),sp@-
|
|
movl a6@(8),sp@-
|
|
PICCALL SYM (__cmpdf2_internal)
|
|
unlk a6
|
|
rts
|
|
#endif /* L_nedf2 */
|
|
|
|
#ifdef L_gtdf2
|
|
.text
|
|
FUNC(__gtdf2)
|
|
.globl SYM (__gtdf2)
|
|
SYM (__gtdf2):
|
|
link a6,IMM (0)
|
|
pea -1
|
|
movl a6@(20),sp@-
|
|
movl a6@(16),sp@-
|
|
movl a6@(12),sp@-
|
|
movl a6@(8),sp@-
|
|
PICCALL SYM (__cmpdf2_internal)
|
|
unlk a6
|
|
rts
|
|
#endif /* L_gtdf2 */
|
|
|
|
#ifdef L_gedf2
|
|
.text
|
|
FUNC(__gedf2)
|
|
.globl SYM (__gedf2)
|
|
SYM (__gedf2):
|
|
link a6,IMM (0)
|
|
pea -1
|
|
movl a6@(20),sp@-
|
|
movl a6@(16),sp@-
|
|
movl a6@(12),sp@-
|
|
movl a6@(8),sp@-
|
|
PICCALL SYM (__cmpdf2_internal)
|
|
unlk a6
|
|
rts
|
|
#endif /* L_gedf2 */
|
|
|
|
#ifdef L_ltdf2
|
|
.text
|
|
FUNC(__ltdf2)
|
|
.globl SYM (__ltdf2)
|
|
SYM (__ltdf2):
|
|
link a6,IMM (0)
|
|
pea 1
|
|
movl a6@(20),sp@-
|
|
movl a6@(16),sp@-
|
|
movl a6@(12),sp@-
|
|
movl a6@(8),sp@-
|
|
PICCALL SYM (__cmpdf2_internal)
|
|
unlk a6
|
|
rts
|
|
#endif /* L_ltdf2 */
|
|
|
|
#ifdef L_ledf2
|
|
.text
|
|
FUNC(__ledf2)
|
|
.globl SYM (__ledf2)
|
|
SYM (__ledf2):
|
|
link a6,IMM (0)
|
|
pea 1
|
|
movl a6@(20),sp@-
|
|
movl a6@(16),sp@-
|
|
movl a6@(12),sp@-
|
|
movl a6@(8),sp@-
|
|
PICCALL SYM (__cmpdf2_internal)
|
|
unlk a6
|
|
rts
|
|
#endif /* L_ledf2 */
|
|
|
|
| The comments above about __eqdf2, et. al., also apply to __eqsf2,
|
|
| et. al., except that the latter call __cmpsf2 rather than __cmpdf2.
|
|
|
|
#ifdef L_eqsf2
|
|
.text
|
|
FUNC(__eqsf2)
|
|
.globl SYM (__eqsf2)
|
|
SYM (__eqsf2):
|
|
link a6,IMM (0)
|
|
pea 1
|
|
movl a6@(12),sp@-
|
|
movl a6@(8),sp@-
|
|
PICCALL SYM (__cmpsf2_internal)
|
|
unlk a6
|
|
rts
|
|
#endif /* L_eqsf2 */
|
|
|
|
#ifdef L_nesf2
|
|
.text
|
|
FUNC(__nesf2)
|
|
.globl SYM (__nesf2)
|
|
SYM (__nesf2):
|
|
link a6,IMM (0)
|
|
pea 1
|
|
movl a6@(12),sp@-
|
|
movl a6@(8),sp@-
|
|
PICCALL SYM (__cmpsf2_internal)
|
|
unlk a6
|
|
rts
|
|
#endif /* L_nesf2 */
|
|
|
|
#ifdef L_gtsf2
|
|
.text
|
|
FUNC(__gtsf2)
|
|
.globl SYM (__gtsf2)
|
|
SYM (__gtsf2):
|
|
link a6,IMM (0)
|
|
pea -1
|
|
movl a6@(12),sp@-
|
|
movl a6@(8),sp@-
|
|
PICCALL SYM (__cmpsf2_internal)
|
|
unlk a6
|
|
rts
|
|
#endif /* L_gtsf2 */
|
|
|
|
#ifdef L_gesf2
|
|
.text
|
|
FUNC(__gesf2)
|
|
.globl SYM (__gesf2)
|
|
SYM (__gesf2):
|
|
link a6,IMM (0)
|
|
pea -1
|
|
movl a6@(12),sp@-
|
|
movl a6@(8),sp@-
|
|
PICCALL SYM (__cmpsf2_internal)
|
|
unlk a6
|
|
rts
|
|
#endif /* L_gesf2 */
|
|
|
|
#ifdef L_ltsf2
|
|
.text
|
|
FUNC(__ltsf2)
|
|
.globl SYM (__ltsf2)
|
|
SYM (__ltsf2):
|
|
link a6,IMM (0)
|
|
pea 1
|
|
movl a6@(12),sp@-
|
|
movl a6@(8),sp@-
|
|
PICCALL SYM (__cmpsf2_internal)
|
|
unlk a6
|
|
rts
|
|
#endif /* L_ltsf2 */
|
|
|
|
#ifdef L_lesf2
|
|
.text
|
|
FUNC(__lesf2)
|
|
.globl SYM (__lesf2)
|
|
SYM (__lesf2):
|
|
link a6,IMM (0)
|
|
pea 1
|
|
movl a6@(12),sp@-
|
|
movl a6@(8),sp@-
|
|
PICCALL SYM (__cmpsf2_internal)
|
|
unlk a6
|
|
rts
|
|
#endif /* L_lesf2 */
|
|
|
|
#if defined (__ELF__) && defined (__linux__)
|
|
/* Make stack non-executable for ELF linux targets. */
|
|
.section .note.GNU-stack,"",@progbits
|
|
#endif
|