5d85afe92a
* bb-reorder.c: Don't include obstack.h if backend.h is included. * cfg.c: Likewise. * cfgloopanal.c: Likewise. * cfgrtl.c: Likewise. * combine.c: Likewise. * cprop.c: Likewise. * dominance.c: Likewise. * fwprop.c: Likewise. * gcse.c: Likewise. * ira-emit.c: Likewise. * ira.c: Likewise. * loop-init.c: Likewise. * loop-invariant.c: Likewise. * loop-iv.c: Likewise. * loop-unroll.c: Likewise. * lower-subreg.c: Likewise. * postreload-gcse.c: Likewise. * postreload.c: Likewise. * regcprop.c: Likewise. * regrename.c: Likewise. * reload1.c: Likewise. * reorg.c: Likewise. * tree-ssa-pre.c: Likewise. * tree-ssa-structalias.c: Likewise. * tree.c: Likewise. * web.c: Likewise. * config/aarch64/cortex-a57-fma-steering.c: Likewise. * config/alpha/alpha.c: Likewise. * config/arm/arm.c: Likewise. * config/avr/avr.c: Likewise. * config/darwin.c: Likewise. * config/fr30/fr30.c: Likewise. * config/frv/frv.c: Likewise. * config/ft32/ft32.c: Likewise. * config/m32c/m32c.c: Likewise. * config/mcore/mcore.c: Likewise. * config/mep/mep.c: Likewise. * config/mn10300/mn10300.c: Likewise. * config/moxie/moxie.c: Likewise. * config/rs6000/rs6000.c: Likewise. * config/spu/spu.c: Likewise. * config/stormy16/stormy16.c: Likewise. From-SVN: r225689
5137 lines
140 KiB
C
5137 lines
140 KiB
C
/* Control flow graph manipulation code for GNU compiler.
|
||
Copyright (C) 1987-2015 Free Software Foundation, Inc.
|
||
|
||
This file is part of GCC.
|
||
|
||
GCC is free software; you can redistribute it and/or modify it under
|
||
the terms of the GNU General Public License as published by the Free
|
||
Software Foundation; either version 3, or (at your option) any later
|
||
version.
|
||
|
||
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
||
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||
for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GCC; see the file COPYING3. If not see
|
||
<http://www.gnu.org/licenses/>. */
|
||
|
||
/* This file contains low level functions to manipulate the CFG and analyze it
|
||
that are aware of the RTL intermediate language.
|
||
|
||
Available functionality:
|
||
- Basic CFG/RTL manipulation API documented in cfghooks.h
|
||
- CFG-aware instruction chain manipulation
|
||
delete_insn, delete_insn_chain
|
||
- Edge splitting and committing to edges
|
||
insert_insn_on_edge, commit_edge_insertions
|
||
- CFG updating after insn simplification
|
||
purge_dead_edges, purge_all_dead_edges
|
||
- CFG fixing after coarse manipulation
|
||
fixup_abnormal_edges
|
||
|
||
Functions not supposed for generic use:
|
||
- Infrastructure to determine quickly basic block for insn
|
||
compute_bb_for_insn, update_bb_for_insn, set_block_for_insn,
|
||
- Edge redirection with updating and optimizing of insn chain
|
||
block_label, tidy_fallthru_edge, force_nonfallthru */
|
||
|
||
#include "config.h"
|
||
#include "system.h"
|
||
#include "coretypes.h"
|
||
#include "backend.h"
|
||
#include "cfghooks.h"
|
||
#include "tree.h"
|
||
#include "rtl.h"
|
||
#include "df.h"
|
||
#include "alias.h"
|
||
#include "cfgrtl.h"
|
||
#include "cfganal.h"
|
||
#include "cfgbuild.h"
|
||
#include "cfgcleanup.h"
|
||
#include "bb-reorder.h"
|
||
#include "regs.h"
|
||
#include "flags.h"
|
||
#include "except.h"
|
||
#include "rtl-error.h"
|
||
#include "tm_p.h"
|
||
#include "insn-attr.h"
|
||
#include "insn-config.h"
|
||
#include "expmed.h"
|
||
#include "dojump.h"
|
||
#include "explow.h"
|
||
#include "calls.h"
|
||
#include "emit-rtl.h"
|
||
#include "varasm.h"
|
||
#include "stmt.h"
|
||
#include "expr.h"
|
||
#include "target.h"
|
||
#include "common/common-target.h"
|
||
#include "cfgloop.h"
|
||
#include "tree-pass.h"
|
||
|
||
/* Holds the interesting leading and trailing notes for the function.
|
||
Only applicable if the CFG is in cfglayout mode. */
|
||
static GTY(()) rtx_insn *cfg_layout_function_footer;
|
||
static GTY(()) rtx_insn *cfg_layout_function_header;
|
||
|
||
static rtx_insn *skip_insns_after_block (basic_block);
|
||
static void record_effective_endpoints (void);
|
||
static void fixup_reorder_chain (void);
|
||
|
||
void verify_insn_chain (void);
|
||
static void fixup_fallthru_exit_predecessor (void);
|
||
static int can_delete_note_p (const rtx_note *);
|
||
static int can_delete_label_p (const rtx_code_label *);
|
||
static basic_block rtl_split_edge (edge);
|
||
static bool rtl_move_block_after (basic_block, basic_block);
|
||
static int rtl_verify_flow_info (void);
|
||
static basic_block cfg_layout_split_block (basic_block, void *);
|
||
static edge cfg_layout_redirect_edge_and_branch (edge, basic_block);
|
||
static basic_block cfg_layout_redirect_edge_and_branch_force (edge, basic_block);
|
||
static void cfg_layout_delete_block (basic_block);
|
||
static void rtl_delete_block (basic_block);
|
||
static basic_block rtl_redirect_edge_and_branch_force (edge, basic_block);
|
||
static edge rtl_redirect_edge_and_branch (edge, basic_block);
|
||
static basic_block rtl_split_block (basic_block, void *);
|
||
static void rtl_dump_bb (FILE *, basic_block, int, int);
|
||
static int rtl_verify_flow_info_1 (void);
|
||
static void rtl_make_forwarder_block (edge);
|
||
|
||
/* Return true if NOTE is not one of the ones that must be kept paired,
|
||
so that we may simply delete it. */
|
||
|
||
static int
|
||
can_delete_note_p (const rtx_note *note)
|
||
{
|
||
switch (NOTE_KIND (note))
|
||
{
|
||
case NOTE_INSN_DELETED:
|
||
case NOTE_INSN_BASIC_BLOCK:
|
||
case NOTE_INSN_EPILOGUE_BEG:
|
||
return true;
|
||
|
||
default:
|
||
return false;
|
||
}
|
||
}
|
||
|
||
/* True if a given label can be deleted. */
|
||
|
||
static int
|
||
can_delete_label_p (const rtx_code_label *label)
|
||
{
|
||
return (!LABEL_PRESERVE_P (label)
|
||
/* User declared labels must be preserved. */
|
||
&& LABEL_NAME (label) == 0
|
||
&& !in_insn_list_p (forced_labels, label));
|
||
}
|
||
|
||
/* Delete INSN by patching it out. */
|
||
|
||
void
|
||
delete_insn (rtx uncast_insn)
|
||
{
|
||
rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
|
||
rtx note;
|
||
bool really_delete = true;
|
||
|
||
if (LABEL_P (insn))
|
||
{
|
||
/* Some labels can't be directly removed from the INSN chain, as they
|
||
might be references via variables, constant pool etc.
|
||
Convert them to the special NOTE_INSN_DELETED_LABEL note. */
|
||
if (! can_delete_label_p (as_a <rtx_code_label *> (insn)))
|
||
{
|
||
const char *name = LABEL_NAME (insn);
|
||
basic_block bb = BLOCK_FOR_INSN (insn);
|
||
rtx_insn *bb_note = NEXT_INSN (insn);
|
||
|
||
really_delete = false;
|
||
PUT_CODE (insn, NOTE);
|
||
NOTE_KIND (insn) = NOTE_INSN_DELETED_LABEL;
|
||
NOTE_DELETED_LABEL_NAME (insn) = name;
|
||
|
||
/* If the note following the label starts a basic block, and the
|
||
label is a member of the same basic block, interchange the two. */
|
||
if (bb_note != NULL_RTX
|
||
&& NOTE_INSN_BASIC_BLOCK_P (bb_note)
|
||
&& bb != NULL
|
||
&& bb == BLOCK_FOR_INSN (bb_note))
|
||
{
|
||
reorder_insns_nobb (insn, insn, bb_note);
|
||
BB_HEAD (bb) = bb_note;
|
||
if (BB_END (bb) == bb_note)
|
||
BB_END (bb) = insn;
|
||
}
|
||
}
|
||
|
||
remove_node_from_insn_list (insn, &nonlocal_goto_handler_labels);
|
||
}
|
||
|
||
if (really_delete)
|
||
{
|
||
/* If this insn has already been deleted, something is very wrong. */
|
||
gcc_assert (!insn->deleted ());
|
||
if (INSN_P (insn))
|
||
df_insn_delete (insn);
|
||
remove_insn (insn);
|
||
insn->set_deleted ();
|
||
}
|
||
|
||
/* If deleting a jump, decrement the use count of the label. Deleting
|
||
the label itself should happen in the normal course of block merging. */
|
||
if (JUMP_P (insn))
|
||
{
|
||
if (JUMP_LABEL (insn)
|
||
&& LABEL_P (JUMP_LABEL (insn)))
|
||
LABEL_NUSES (JUMP_LABEL (insn))--;
|
||
|
||
/* If there are more targets, remove them too. */
|
||
while ((note
|
||
= find_reg_note (insn, REG_LABEL_TARGET, NULL_RTX)) != NULL_RTX
|
||
&& LABEL_P (XEXP (note, 0)))
|
||
{
|
||
LABEL_NUSES (XEXP (note, 0))--;
|
||
remove_note (insn, note);
|
||
}
|
||
}
|
||
|
||
/* Also if deleting any insn that references a label as an operand. */
|
||
while ((note = find_reg_note (insn, REG_LABEL_OPERAND, NULL_RTX)) != NULL_RTX
|
||
&& LABEL_P (XEXP (note, 0)))
|
||
{
|
||
LABEL_NUSES (XEXP (note, 0))--;
|
||
remove_note (insn, note);
|
||
}
|
||
|
||
if (rtx_jump_table_data *table = dyn_cast <rtx_jump_table_data *> (insn))
|
||
{
|
||
rtvec vec = table->get_labels ();
|
||
int len = GET_NUM_ELEM (vec);
|
||
int i;
|
||
|
||
for (i = 0; i < len; i++)
|
||
{
|
||
rtx label = XEXP (RTVEC_ELT (vec, i), 0);
|
||
|
||
/* When deleting code in bulk (e.g. removing many unreachable
|
||
blocks) we can delete a label that's a target of the vector
|
||
before deleting the vector itself. */
|
||
if (!NOTE_P (label))
|
||
LABEL_NUSES (label)--;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Like delete_insn but also purge dead edges from BB. */
|
||
|
||
void
|
||
delete_insn_and_edges (rtx_insn *insn)
|
||
{
|
||
bool purge = false;
|
||
|
||
if (INSN_P (insn)
|
||
&& BLOCK_FOR_INSN (insn)
|
||
&& BB_END (BLOCK_FOR_INSN (insn)) == insn)
|
||
purge = true;
|
||
delete_insn (insn);
|
||
if (purge)
|
||
purge_dead_edges (BLOCK_FOR_INSN (insn));
|
||
}
|
||
|
||
/* Unlink a chain of insns between START and FINISH, leaving notes
|
||
that must be paired. If CLEAR_BB is true, we set bb field for
|
||
insns that cannot be removed to NULL. */
|
||
|
||
void
|
||
delete_insn_chain (rtx start, rtx finish, bool clear_bb)
|
||
{
|
||
rtx_insn *prev, *current;
|
||
|
||
/* Unchain the insns one by one. It would be quicker to delete all of these
|
||
with a single unchaining, rather than one at a time, but we need to keep
|
||
the NOTE's. */
|
||
current = safe_as_a <rtx_insn *> (finish);
|
||
while (1)
|
||
{
|
||
prev = PREV_INSN (current);
|
||
if (NOTE_P (current) && !can_delete_note_p (as_a <rtx_note *> (current)))
|
||
;
|
||
else
|
||
delete_insn (current);
|
||
|
||
if (clear_bb && !current->deleted ())
|
||
set_block_for_insn (current, NULL);
|
||
|
||
if (current == start)
|
||
break;
|
||
current = prev;
|
||
}
|
||
}
|
||
|
||
/* Create a new basic block consisting of the instructions between HEAD and END
|
||
inclusive. This function is designed to allow fast BB construction - reuses
|
||
the note and basic block struct in BB_NOTE, if any and do not grow
|
||
BASIC_BLOCK chain and should be used directly only by CFG construction code.
|
||
END can be NULL in to create new empty basic block before HEAD. Both END
|
||
and HEAD can be NULL to create basic block at the end of INSN chain.
|
||
AFTER is the basic block we should be put after. */
|
||
|
||
basic_block
|
||
create_basic_block_structure (rtx_insn *head, rtx_insn *end, rtx_note *bb_note,
|
||
basic_block after)
|
||
{
|
||
basic_block bb;
|
||
|
||
if (bb_note
|
||
&& (bb = NOTE_BASIC_BLOCK (bb_note)) != NULL
|
||
&& bb->aux == NULL)
|
||
{
|
||
/* If we found an existing note, thread it back onto the chain. */
|
||
|
||
rtx_insn *after;
|
||
|
||
if (LABEL_P (head))
|
||
after = head;
|
||
else
|
||
{
|
||
after = PREV_INSN (head);
|
||
head = bb_note;
|
||
}
|
||
|
||
if (after != bb_note && NEXT_INSN (after) != bb_note)
|
||
reorder_insns_nobb (bb_note, bb_note, after);
|
||
}
|
||
else
|
||
{
|
||
/* Otherwise we must create a note and a basic block structure. */
|
||
|
||
bb = alloc_block ();
|
||
|
||
init_rtl_bb_info (bb);
|
||
if (!head && !end)
|
||
head = end = bb_note
|
||
= emit_note_after (NOTE_INSN_BASIC_BLOCK, get_last_insn ());
|
||
else if (LABEL_P (head) && end)
|
||
{
|
||
bb_note = emit_note_after (NOTE_INSN_BASIC_BLOCK, head);
|
||
if (head == end)
|
||
end = bb_note;
|
||
}
|
||
else
|
||
{
|
||
bb_note = emit_note_before (NOTE_INSN_BASIC_BLOCK, head);
|
||
head = bb_note;
|
||
if (!end)
|
||
end = head;
|
||
}
|
||
|
||
NOTE_BASIC_BLOCK (bb_note) = bb;
|
||
}
|
||
|
||
/* Always include the bb note in the block. */
|
||
if (NEXT_INSN (end) == bb_note)
|
||
end = bb_note;
|
||
|
||
BB_HEAD (bb) = head;
|
||
BB_END (bb) = end;
|
||
bb->index = last_basic_block_for_fn (cfun)++;
|
||
bb->flags = BB_NEW | BB_RTL;
|
||
link_block (bb, after);
|
||
SET_BASIC_BLOCK_FOR_FN (cfun, bb->index, bb);
|
||
df_bb_refs_record (bb->index, false);
|
||
update_bb_for_insn (bb);
|
||
BB_SET_PARTITION (bb, BB_UNPARTITIONED);
|
||
|
||
/* Tag the block so that we know it has been used when considering
|
||
other basic block notes. */
|
||
bb->aux = bb;
|
||
|
||
return bb;
|
||
}
|
||
|
||
/* Create new basic block consisting of instructions in between HEAD and END
|
||
and place it to the BB chain after block AFTER. END can be NULL to
|
||
create a new empty basic block before HEAD. Both END and HEAD can be
|
||
NULL to create basic block at the end of INSN chain. */
|
||
|
||
static basic_block
|
||
rtl_create_basic_block (void *headp, void *endp, basic_block after)
|
||
{
|
||
rtx_insn *head = (rtx_insn *) headp;
|
||
rtx_insn *end = (rtx_insn *) endp;
|
||
basic_block bb;
|
||
|
||
/* Grow the basic block array if needed. */
|
||
if ((size_t) last_basic_block_for_fn (cfun)
|
||
>= basic_block_info_for_fn (cfun)->length ())
|
||
{
|
||
size_t new_size =
|
||
(last_basic_block_for_fn (cfun)
|
||
+ (last_basic_block_for_fn (cfun) + 3) / 4);
|
||
vec_safe_grow_cleared (basic_block_info_for_fn (cfun), new_size);
|
||
}
|
||
|
||
n_basic_blocks_for_fn (cfun)++;
|
||
|
||
bb = create_basic_block_structure (head, end, NULL, after);
|
||
bb->aux = NULL;
|
||
return bb;
|
||
}
|
||
|
||
static basic_block
|
||
cfg_layout_create_basic_block (void *head, void *end, basic_block after)
|
||
{
|
||
basic_block newbb = rtl_create_basic_block (head, end, after);
|
||
|
||
return newbb;
|
||
}
|
||
|
||
/* Delete the insns in a (non-live) block. We physically delete every
|
||
non-deleted-note insn, and update the flow graph appropriately.
|
||
|
||
Return nonzero if we deleted an exception handler. */
|
||
|
||
/* ??? Preserving all such notes strikes me as wrong. It would be nice
|
||
to post-process the stream to remove empty blocks, loops, ranges, etc. */
|
||
|
||
static void
|
||
rtl_delete_block (basic_block b)
|
||
{
|
||
rtx_insn *insn, *end;
|
||
|
||
/* If the head of this block is a CODE_LABEL, then it might be the
|
||
label for an exception handler which can't be reached. We need
|
||
to remove the label from the exception_handler_label list. */
|
||
insn = BB_HEAD (b);
|
||
|
||
end = get_last_bb_insn (b);
|
||
|
||
/* Selectively delete the entire chain. */
|
||
BB_HEAD (b) = NULL;
|
||
delete_insn_chain (insn, end, true);
|
||
|
||
|
||
if (dump_file)
|
||
fprintf (dump_file, "deleting block %d\n", b->index);
|
||
df_bb_delete (b->index);
|
||
}
|
||
|
||
/* Records the basic block struct in BLOCK_FOR_INSN for every insn. */
|
||
|
||
void
|
||
compute_bb_for_insn (void)
|
||
{
|
||
basic_block bb;
|
||
|
||
FOR_EACH_BB_FN (bb, cfun)
|
||
{
|
||
rtx_insn *end = BB_END (bb);
|
||
rtx_insn *insn;
|
||
|
||
for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn))
|
||
{
|
||
BLOCK_FOR_INSN (insn) = bb;
|
||
if (insn == end)
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Release the basic_block_for_insn array. */
|
||
|
||
unsigned int
|
||
free_bb_for_insn (void)
|
||
{
|
||
rtx_insn *insn;
|
||
for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
|
||
if (!BARRIER_P (insn))
|
||
BLOCK_FOR_INSN (insn) = NULL;
|
||
return 0;
|
||
}
|
||
|
||
namespace {
|
||
|
||
const pass_data pass_data_free_cfg =
|
||
{
|
||
RTL_PASS, /* type */
|
||
"*free_cfg", /* name */
|
||
OPTGROUP_NONE, /* optinfo_flags */
|
||
TV_NONE, /* tv_id */
|
||
0, /* properties_required */
|
||
0, /* properties_provided */
|
||
PROP_cfg, /* properties_destroyed */
|
||
0, /* todo_flags_start */
|
||
0, /* todo_flags_finish */
|
||
};
|
||
|
||
class pass_free_cfg : public rtl_opt_pass
|
||
{
|
||
public:
|
||
pass_free_cfg (gcc::context *ctxt)
|
||
: rtl_opt_pass (pass_data_free_cfg, ctxt)
|
||
{}
|
||
|
||
/* opt_pass methods: */
|
||
virtual unsigned int execute (function *);
|
||
|
||
}; // class pass_free_cfg
|
||
|
||
unsigned int
|
||
pass_free_cfg::execute (function *)
|
||
{
|
||
#ifdef DELAY_SLOTS
|
||
/* The resource.c machinery uses DF but the CFG isn't guaranteed to be
|
||
valid at that point so it would be too late to call df_analyze. */
|
||
if (optimize > 0 && flag_delayed_branch)
|
||
{
|
||
df_note_add_problem ();
|
||
df_analyze ();
|
||
}
|
||
#endif
|
||
|
||
if (crtl->has_bb_partition)
|
||
insert_section_boundary_note ();
|
||
|
||
free_bb_for_insn ();
|
||
return 0;
|
||
}
|
||
|
||
} // anon namespace
|
||
|
||
rtl_opt_pass *
|
||
make_pass_free_cfg (gcc::context *ctxt)
|
||
{
|
||
return new pass_free_cfg (ctxt);
|
||
}
|
||
|
||
/* Return RTX to emit after when we want to emit code on the entry of function. */
|
||
rtx_insn *
|
||
entry_of_function (void)
|
||
{
|
||
return (n_basic_blocks_for_fn (cfun) > NUM_FIXED_BLOCKS ?
|
||
BB_HEAD (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb) : get_insns ());
|
||
}
|
||
|
||
/* Emit INSN at the entry point of the function, ensuring that it is only
|
||
executed once per function. */
|
||
void
|
||
emit_insn_at_entry (rtx insn)
|
||
{
|
||
edge_iterator ei = ei_start (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs);
|
||
edge e = ei_safe_edge (ei);
|
||
gcc_assert (e->flags & EDGE_FALLTHRU);
|
||
|
||
insert_insn_on_edge (insn, e);
|
||
commit_edge_insertions ();
|
||
}
|
||
|
||
/* Update BLOCK_FOR_INSN of insns between BEGIN and END
|
||
(or BARRIER if found) and notify df of the bb change.
|
||
The insn chain range is inclusive
|
||
(i.e. both BEGIN and END will be updated. */
|
||
|
||
static void
|
||
update_bb_for_insn_chain (rtx_insn *begin, rtx_insn *end, basic_block bb)
|
||
{
|
||
rtx_insn *insn;
|
||
|
||
end = NEXT_INSN (end);
|
||
for (insn = begin; insn != end; insn = NEXT_INSN (insn))
|
||
if (!BARRIER_P (insn))
|
||
df_insn_change_bb (insn, bb);
|
||
}
|
||
|
||
/* Update BLOCK_FOR_INSN of insns in BB to BB,
|
||
and notify df of the change. */
|
||
|
||
void
|
||
update_bb_for_insn (basic_block bb)
|
||
{
|
||
update_bb_for_insn_chain (BB_HEAD (bb), BB_END (bb), bb);
|
||
}
|
||
|
||
|
||
/* Like active_insn_p, except keep the return value clobber around
|
||
even after reload. */
|
||
|
||
static bool
|
||
flow_active_insn_p (const rtx_insn *insn)
|
||
{
|
||
if (active_insn_p (insn))
|
||
return true;
|
||
|
||
/* A clobber of the function return value exists for buggy
|
||
programs that fail to return a value. Its effect is to
|
||
keep the return value from being live across the entire
|
||
function. If we allow it to be skipped, we introduce the
|
||
possibility for register lifetime confusion. */
|
||
if (GET_CODE (PATTERN (insn)) == CLOBBER
|
||
&& REG_P (XEXP (PATTERN (insn), 0))
|
||
&& REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))
|
||
return true;
|
||
|
||
return false;
|
||
}
|
||
|
||
/* Return true if the block has no effect and only forwards control flow to
|
||
its single destination. */
|
||
|
||
bool
|
||
contains_no_active_insn_p (const_basic_block bb)
|
||
{
|
||
rtx_insn *insn;
|
||
|
||
if (bb == EXIT_BLOCK_PTR_FOR_FN (cfun) || bb == ENTRY_BLOCK_PTR_FOR_FN (cfun)
|
||
|| !single_succ_p (bb))
|
||
return false;
|
||
|
||
for (insn = BB_HEAD (bb); insn != BB_END (bb); insn = NEXT_INSN (insn))
|
||
if (INSN_P (insn) && flow_active_insn_p (insn))
|
||
return false;
|
||
|
||
return (!INSN_P (insn)
|
||
|| (JUMP_P (insn) && simplejump_p (insn))
|
||
|| !flow_active_insn_p (insn));
|
||
}
|
||
|
||
/* Likewise, but protect loop latches, headers and preheaders. */
|
||
/* FIXME: Make this a cfg hook. */
|
||
|
||
bool
|
||
forwarder_block_p (const_basic_block bb)
|
||
{
|
||
if (!contains_no_active_insn_p (bb))
|
||
return false;
|
||
|
||
/* Protect loop latches, headers and preheaders. */
|
||
if (current_loops)
|
||
{
|
||
basic_block dest;
|
||
if (bb->loop_father->header == bb)
|
||
return false;
|
||
dest = EDGE_SUCC (bb, 0)->dest;
|
||
if (dest->loop_father->header == dest)
|
||
return false;
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Return nonzero if we can reach target from src by falling through. */
|
||
/* FIXME: Make this a cfg hook, the result is only valid in cfgrtl mode. */
|
||
|
||
bool
|
||
can_fallthru (basic_block src, basic_block target)
|
||
{
|
||
rtx_insn *insn = BB_END (src);
|
||
rtx_insn *insn2;
|
||
edge e;
|
||
edge_iterator ei;
|
||
|
||
if (target == EXIT_BLOCK_PTR_FOR_FN (cfun))
|
||
return true;
|
||
if (src->next_bb != target)
|
||
return false;
|
||
|
||
/* ??? Later we may add code to move jump tables offline. */
|
||
if (tablejump_p (insn, NULL, NULL))
|
||
return false;
|
||
|
||
FOR_EACH_EDGE (e, ei, src->succs)
|
||
if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
|
||
&& e->flags & EDGE_FALLTHRU)
|
||
return false;
|
||
|
||
insn2 = BB_HEAD (target);
|
||
if (!active_insn_p (insn2))
|
||
insn2 = next_active_insn (insn2);
|
||
|
||
return next_active_insn (insn) == insn2;
|
||
}
|
||
|
||
/* Return nonzero if we could reach target from src by falling through,
|
||
if the target was made adjacent. If we already have a fall-through
|
||
edge to the exit block, we can't do that. */
|
||
static bool
|
||
could_fall_through (basic_block src, basic_block target)
|
||
{
|
||
edge e;
|
||
edge_iterator ei;
|
||
|
||
if (target == EXIT_BLOCK_PTR_FOR_FN (cfun))
|
||
return true;
|
||
FOR_EACH_EDGE (e, ei, src->succs)
|
||
if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
|
||
&& e->flags & EDGE_FALLTHRU)
|
||
return 0;
|
||
return true;
|
||
}
|
||
|
||
/* Return the NOTE_INSN_BASIC_BLOCK of BB. */
|
||
rtx_note *
|
||
bb_note (basic_block bb)
|
||
{
|
||
rtx_insn *note;
|
||
|
||
note = BB_HEAD (bb);
|
||
if (LABEL_P (note))
|
||
note = NEXT_INSN (note);
|
||
|
||
gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
|
||
return as_a <rtx_note *> (note);
|
||
}
|
||
|
||
/* Return the INSN immediately following the NOTE_INSN_BASIC_BLOCK
|
||
note associated with the BLOCK. */
|
||
|
||
static rtx_insn *
|
||
first_insn_after_basic_block_note (basic_block block)
|
||
{
|
||
rtx_insn *insn;
|
||
|
||
/* Get the first instruction in the block. */
|
||
insn = BB_HEAD (block);
|
||
|
||
if (insn == NULL_RTX)
|
||
return NULL;
|
||
if (LABEL_P (insn))
|
||
insn = NEXT_INSN (insn);
|
||
gcc_assert (NOTE_INSN_BASIC_BLOCK_P (insn));
|
||
|
||
return NEXT_INSN (insn);
|
||
}
|
||
|
||
/* Creates a new basic block just after basic block BB by splitting
|
||
everything after specified instruction INSNP. */
|
||
|
||
static basic_block
|
||
rtl_split_block (basic_block bb, void *insnp)
|
||
{
|
||
basic_block new_bb;
|
||
rtx_insn *insn = (rtx_insn *) insnp;
|
||
edge e;
|
||
edge_iterator ei;
|
||
|
||
if (!insn)
|
||
{
|
||
insn = first_insn_after_basic_block_note (bb);
|
||
|
||
if (insn)
|
||
{
|
||
rtx_insn *next = insn;
|
||
|
||
insn = PREV_INSN (insn);
|
||
|
||
/* If the block contains only debug insns, insn would have
|
||
been NULL in a non-debug compilation, and then we'd end
|
||
up emitting a DELETED note. For -fcompare-debug
|
||
stability, emit the note too. */
|
||
if (insn != BB_END (bb)
|
||
&& DEBUG_INSN_P (next)
|
||
&& DEBUG_INSN_P (BB_END (bb)))
|
||
{
|
||
while (next != BB_END (bb) && DEBUG_INSN_P (next))
|
||
next = NEXT_INSN (next);
|
||
|
||
if (next == BB_END (bb))
|
||
emit_note_after (NOTE_INSN_DELETED, next);
|
||
}
|
||
}
|
||
else
|
||
insn = get_last_insn ();
|
||
}
|
||
|
||
/* We probably should check type of the insn so that we do not create
|
||
inconsistent cfg. It is checked in verify_flow_info anyway, so do not
|
||
bother. */
|
||
if (insn == BB_END (bb))
|
||
emit_note_after (NOTE_INSN_DELETED, insn);
|
||
|
||
/* Create the new basic block. */
|
||
new_bb = create_basic_block (NEXT_INSN (insn), BB_END (bb), bb);
|
||
BB_COPY_PARTITION (new_bb, bb);
|
||
BB_END (bb) = insn;
|
||
|
||
/* Redirect the outgoing edges. */
|
||
new_bb->succs = bb->succs;
|
||
bb->succs = NULL;
|
||
FOR_EACH_EDGE (e, ei, new_bb->succs)
|
||
e->src = new_bb;
|
||
|
||
/* The new block starts off being dirty. */
|
||
df_set_bb_dirty (bb);
|
||
return new_bb;
|
||
}
|
||
|
||
/* Return true if the single edge between blocks A and B is the only place
|
||
in RTL which holds some unique locus. */
|
||
|
||
static bool
|
||
unique_locus_on_edge_between_p (basic_block a, basic_block b)
|
||
{
|
||
const location_t goto_locus = EDGE_SUCC (a, 0)->goto_locus;
|
||
rtx_insn *insn, *end;
|
||
|
||
if (LOCATION_LOCUS (goto_locus) == UNKNOWN_LOCATION)
|
||
return false;
|
||
|
||
/* First scan block A backward. */
|
||
insn = BB_END (a);
|
||
end = PREV_INSN (BB_HEAD (a));
|
||
while (insn != end && (!NONDEBUG_INSN_P (insn) || !INSN_HAS_LOCATION (insn)))
|
||
insn = PREV_INSN (insn);
|
||
|
||
if (insn != end && INSN_LOCATION (insn) == goto_locus)
|
||
return false;
|
||
|
||
/* Then scan block B forward. */
|
||
insn = BB_HEAD (b);
|
||
if (insn)
|
||
{
|
||
end = NEXT_INSN (BB_END (b));
|
||
while (insn != end && !NONDEBUG_INSN_P (insn))
|
||
insn = NEXT_INSN (insn);
|
||
|
||
if (insn != end && INSN_HAS_LOCATION (insn)
|
||
&& INSN_LOCATION (insn) == goto_locus)
|
||
return false;
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
/* If the single edge between blocks A and B is the only place in RTL which
|
||
holds some unique locus, emit a nop with that locus between the blocks. */
|
||
|
||
static void
|
||
emit_nop_for_unique_locus_between (basic_block a, basic_block b)
|
||
{
|
||
if (!unique_locus_on_edge_between_p (a, b))
|
||
return;
|
||
|
||
BB_END (a) = emit_insn_after_noloc (gen_nop (), BB_END (a), a);
|
||
INSN_LOCATION (BB_END (a)) = EDGE_SUCC (a, 0)->goto_locus;
|
||
}
|
||
|
||
/* Blocks A and B are to be merged into a single block A. The insns
|
||
are already contiguous. */
|
||
|
||
static void
|
||
rtl_merge_blocks (basic_block a, basic_block b)
|
||
{
|
||
rtx_insn *b_head = BB_HEAD (b), *b_end = BB_END (b), *a_end = BB_END (a);
|
||
rtx_insn *del_first = NULL, *del_last = NULL;
|
||
rtx_insn *b_debug_start = b_end, *b_debug_end = b_end;
|
||
bool forwarder_p = (b->flags & BB_FORWARDER_BLOCK) != 0;
|
||
int b_empty = 0;
|
||
|
||
if (dump_file)
|
||
fprintf (dump_file, "Merging block %d into block %d...\n", b->index,
|
||
a->index);
|
||
|
||
while (DEBUG_INSN_P (b_end))
|
||
b_end = PREV_INSN (b_debug_start = b_end);
|
||
|
||
/* If there was a CODE_LABEL beginning B, delete it. */
|
||
if (LABEL_P (b_head))
|
||
{
|
||
/* Detect basic blocks with nothing but a label. This can happen
|
||
in particular at the end of a function. */
|
||
if (b_head == b_end)
|
||
b_empty = 1;
|
||
|
||
del_first = del_last = b_head;
|
||
b_head = NEXT_INSN (b_head);
|
||
}
|
||
|
||
/* Delete the basic block note and handle blocks containing just that
|
||
note. */
|
||
if (NOTE_INSN_BASIC_BLOCK_P (b_head))
|
||
{
|
||
if (b_head == b_end)
|
||
b_empty = 1;
|
||
if (! del_last)
|
||
del_first = b_head;
|
||
|
||
del_last = b_head;
|
||
b_head = NEXT_INSN (b_head);
|
||
}
|
||
|
||
/* If there was a jump out of A, delete it. */
|
||
if (JUMP_P (a_end))
|
||
{
|
||
rtx_insn *prev;
|
||
|
||
for (prev = PREV_INSN (a_end); ; prev = PREV_INSN (prev))
|
||
if (!NOTE_P (prev)
|
||
|| NOTE_INSN_BASIC_BLOCK_P (prev)
|
||
|| prev == BB_HEAD (a))
|
||
break;
|
||
|
||
del_first = a_end;
|
||
|
||
/* If this was a conditional jump, we need to also delete
|
||
the insn that set cc0. */
|
||
if (HAVE_cc0 && only_sets_cc0_p (prev))
|
||
{
|
||
rtx_insn *tmp = prev;
|
||
|
||
prev = prev_nonnote_insn (prev);
|
||
if (!prev)
|
||
prev = BB_HEAD (a);
|
||
del_first = tmp;
|
||
}
|
||
|
||
a_end = PREV_INSN (del_first);
|
||
}
|
||
else if (BARRIER_P (NEXT_INSN (a_end)))
|
||
del_first = NEXT_INSN (a_end);
|
||
|
||
/* Delete everything marked above as well as crap that might be
|
||
hanging out between the two blocks. */
|
||
BB_END (a) = a_end;
|
||
BB_HEAD (b) = b_empty ? NULL : b_head;
|
||
delete_insn_chain (del_first, del_last, true);
|
||
|
||
/* When not optimizing and the edge is the only place in RTL which holds
|
||
some unique locus, emit a nop with that locus in between. */
|
||
if (!optimize)
|
||
{
|
||
emit_nop_for_unique_locus_between (a, b);
|
||
a_end = BB_END (a);
|
||
}
|
||
|
||
/* Reassociate the insns of B with A. */
|
||
if (!b_empty)
|
||
{
|
||
update_bb_for_insn_chain (a_end, b_debug_end, a);
|
||
|
||
BB_END (a) = b_debug_end;
|
||
BB_HEAD (b) = NULL;
|
||
}
|
||
else if (b_end != b_debug_end)
|
||
{
|
||
/* Move any deleted labels and other notes between the end of A
|
||
and the debug insns that make up B after the debug insns,
|
||
bringing the debug insns into A while keeping the notes after
|
||
the end of A. */
|
||
if (NEXT_INSN (a_end) != b_debug_start)
|
||
reorder_insns_nobb (NEXT_INSN (a_end), PREV_INSN (b_debug_start),
|
||
b_debug_end);
|
||
update_bb_for_insn_chain (b_debug_start, b_debug_end, a);
|
||
BB_END (a) = b_debug_end;
|
||
}
|
||
|
||
df_bb_delete (b->index);
|
||
|
||
/* If B was a forwarder block, propagate the locus on the edge. */
|
||
if (forwarder_p
|
||
&& LOCATION_LOCUS (EDGE_SUCC (b, 0)->goto_locus) == UNKNOWN_LOCATION)
|
||
EDGE_SUCC (b, 0)->goto_locus = EDGE_SUCC (a, 0)->goto_locus;
|
||
|
||
if (dump_file)
|
||
fprintf (dump_file, "Merged blocks %d and %d.\n", a->index, b->index);
|
||
}
|
||
|
||
|
||
/* Return true when block A and B can be merged. */
|
||
|
||
static bool
|
||
rtl_can_merge_blocks (basic_block a, basic_block b)
|
||
{
|
||
/* If we are partitioning hot/cold basic blocks, we don't want to
|
||
mess up unconditional or indirect jumps that cross between hot
|
||
and cold sections.
|
||
|
||
Basic block partitioning may result in some jumps that appear to
|
||
be optimizable (or blocks that appear to be mergeable), but which really
|
||
must be left untouched (they are required to make it safely across
|
||
partition boundaries). See the comments at the top of
|
||
bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
|
||
|
||
if (BB_PARTITION (a) != BB_PARTITION (b))
|
||
return false;
|
||
|
||
/* Protect the loop latches. */
|
||
if (current_loops && b->loop_father->latch == b)
|
||
return false;
|
||
|
||
/* There must be exactly one edge in between the blocks. */
|
||
return (single_succ_p (a)
|
||
&& single_succ (a) == b
|
||
&& single_pred_p (b)
|
||
&& a != b
|
||
/* Must be simple edge. */
|
||
&& !(single_succ_edge (a)->flags & EDGE_COMPLEX)
|
||
&& a->next_bb == b
|
||
&& a != ENTRY_BLOCK_PTR_FOR_FN (cfun)
|
||
&& b != EXIT_BLOCK_PTR_FOR_FN (cfun)
|
||
/* If the jump insn has side effects,
|
||
we can't kill the edge. */
|
||
&& (!JUMP_P (BB_END (a))
|
||
|| (reload_completed
|
||
? simplejump_p (BB_END (a)) : onlyjump_p (BB_END (a)))));
|
||
}
|
||
|
||
/* Return the label in the head of basic block BLOCK. Create one if it doesn't
|
||
exist. */
|
||
|
||
rtx_code_label *
|
||
block_label (basic_block block)
|
||
{
|
||
if (block == EXIT_BLOCK_PTR_FOR_FN (cfun))
|
||
return NULL;
|
||
|
||
if (!LABEL_P (BB_HEAD (block)))
|
||
{
|
||
BB_HEAD (block) = emit_label_before (gen_label_rtx (), BB_HEAD (block));
|
||
}
|
||
|
||
return as_a <rtx_code_label *> (BB_HEAD (block));
|
||
}
|
||
|
||
/* Attempt to perform edge redirection by replacing possibly complex jump
|
||
instruction by unconditional jump or removing jump completely. This can
|
||
apply only if all edges now point to the same block. The parameters and
|
||
return values are equivalent to redirect_edge_and_branch. */
|
||
|
||
edge
|
||
try_redirect_by_replacing_jump (edge e, basic_block target, bool in_cfglayout)
|
||
{
|
||
basic_block src = e->src;
|
||
rtx_insn *insn = BB_END (src), *kill_from;
|
||
rtx set;
|
||
int fallthru = 0;
|
||
|
||
/* If we are partitioning hot/cold basic blocks, we don't want to
|
||
mess up unconditional or indirect jumps that cross between hot
|
||
and cold sections.
|
||
|
||
Basic block partitioning may result in some jumps that appear to
|
||
be optimizable (or blocks that appear to be mergeable), but which really
|
||
must be left untouched (they are required to make it safely across
|
||
partition boundaries). See the comments at the top of
|
||
bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
|
||
|
||
if (BB_PARTITION (src) != BB_PARTITION (target))
|
||
return NULL;
|
||
|
||
/* We can replace or remove a complex jump only when we have exactly
|
||
two edges. Also, if we have exactly one outgoing edge, we can
|
||
redirect that. */
|
||
if (EDGE_COUNT (src->succs) >= 3
|
||
/* Verify that all targets will be TARGET. Specifically, the
|
||
edge that is not E must also go to TARGET. */
|
||
|| (EDGE_COUNT (src->succs) == 2
|
||
&& EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target))
|
||
return NULL;
|
||
|
||
if (!onlyjump_p (insn))
|
||
return NULL;
|
||
if ((!optimize || reload_completed) && tablejump_p (insn, NULL, NULL))
|
||
return NULL;
|
||
|
||
/* Avoid removing branch with side effects. */
|
||
set = single_set (insn);
|
||
if (!set || side_effects_p (set))
|
||
return NULL;
|
||
|
||
/* In case we zap a conditional jump, we'll need to kill
|
||
the cc0 setter too. */
|
||
kill_from = insn;
|
||
if (HAVE_cc0 && reg_mentioned_p (cc0_rtx, PATTERN (insn))
|
||
&& only_sets_cc0_p (PREV_INSN (insn)))
|
||
kill_from = PREV_INSN (insn);
|
||
|
||
/* See if we can create the fallthru edge. */
|
||
if (in_cfglayout || can_fallthru (src, target))
|
||
{
|
||
if (dump_file)
|
||
fprintf (dump_file, "Removing jump %i.\n", INSN_UID (insn));
|
||
fallthru = 1;
|
||
|
||
/* Selectively unlink whole insn chain. */
|
||
if (in_cfglayout)
|
||
{
|
||
rtx_insn *insn = BB_FOOTER (src);
|
||
|
||
delete_insn_chain (kill_from, BB_END (src), false);
|
||
|
||
/* Remove barriers but keep jumptables. */
|
||
while (insn)
|
||
{
|
||
if (BARRIER_P (insn))
|
||
{
|
||
if (PREV_INSN (insn))
|
||
SET_NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
|
||
else
|
||
BB_FOOTER (src) = NEXT_INSN (insn);
|
||
if (NEXT_INSN (insn))
|
||
SET_PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
|
||
}
|
||
if (LABEL_P (insn))
|
||
break;
|
||
insn = NEXT_INSN (insn);
|
||
}
|
||
}
|
||
else
|
||
delete_insn_chain (kill_from, PREV_INSN (BB_HEAD (target)),
|
||
false);
|
||
}
|
||
|
||
/* If this already is simplejump, redirect it. */
|
||
else if (simplejump_p (insn))
|
||
{
|
||
if (e->dest == target)
|
||
return NULL;
|
||
if (dump_file)
|
||
fprintf (dump_file, "Redirecting jump %i from %i to %i.\n",
|
||
INSN_UID (insn), e->dest->index, target->index);
|
||
if (!redirect_jump (as_a <rtx_jump_insn *> (insn),
|
||
block_label (target), 0))
|
||
{
|
||
gcc_assert (target == EXIT_BLOCK_PTR_FOR_FN (cfun));
|
||
return NULL;
|
||
}
|
||
}
|
||
|
||
/* Cannot do anything for target exit block. */
|
||
else if (target == EXIT_BLOCK_PTR_FOR_FN (cfun))
|
||
return NULL;
|
||
|
||
/* Or replace possibly complicated jump insn by simple jump insn. */
|
||
else
|
||
{
|
||
rtx_code_label *target_label = block_label (target);
|
||
rtx_insn *barrier;
|
||
rtx label;
|
||
rtx_jump_table_data *table;
|
||
|
||
emit_jump_insn_after_noloc (targetm.gen_jump (target_label), insn);
|
||
JUMP_LABEL (BB_END (src)) = target_label;
|
||
LABEL_NUSES (target_label)++;
|
||
if (dump_file)
|
||
fprintf (dump_file, "Replacing insn %i by jump %i\n",
|
||
INSN_UID (insn), INSN_UID (BB_END (src)));
|
||
|
||
|
||
delete_insn_chain (kill_from, insn, false);
|
||
|
||
/* Recognize a tablejump that we are converting to a
|
||
simple jump and remove its associated CODE_LABEL
|
||
and ADDR_VEC or ADDR_DIFF_VEC. */
|
||
if (tablejump_p (insn, &label, &table))
|
||
delete_insn_chain (label, table, false);
|
||
|
||
barrier = next_nonnote_insn (BB_END (src));
|
||
if (!barrier || !BARRIER_P (barrier))
|
||
emit_barrier_after (BB_END (src));
|
||
else
|
||
{
|
||
if (barrier != NEXT_INSN (BB_END (src)))
|
||
{
|
||
/* Move the jump before barrier so that the notes
|
||
which originally were or were created before jump table are
|
||
inside the basic block. */
|
||
rtx_insn *new_insn = BB_END (src);
|
||
|
||
update_bb_for_insn_chain (NEXT_INSN (BB_END (src)),
|
||
PREV_INSN (barrier), src);
|
||
|
||
SET_NEXT_INSN (PREV_INSN (new_insn)) = NEXT_INSN (new_insn);
|
||
SET_PREV_INSN (NEXT_INSN (new_insn)) = PREV_INSN (new_insn);
|
||
|
||
SET_NEXT_INSN (new_insn) = barrier;
|
||
SET_NEXT_INSN (PREV_INSN (barrier)) = new_insn;
|
||
|
||
SET_PREV_INSN (new_insn) = PREV_INSN (barrier);
|
||
SET_PREV_INSN (barrier) = new_insn;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Keep only one edge out and set proper flags. */
|
||
if (!single_succ_p (src))
|
||
remove_edge (e);
|
||
gcc_assert (single_succ_p (src));
|
||
|
||
e = single_succ_edge (src);
|
||
if (fallthru)
|
||
e->flags = EDGE_FALLTHRU;
|
||
else
|
||
e->flags = 0;
|
||
|
||
e->probability = REG_BR_PROB_BASE;
|
||
e->count = src->count;
|
||
|
||
if (e->dest != target)
|
||
redirect_edge_succ (e, target);
|
||
return e;
|
||
}
|
||
|
||
/* Subroutine of redirect_branch_edge that tries to patch the jump
|
||
instruction INSN so that it reaches block NEW. Do this
|
||
only when it originally reached block OLD. Return true if this
|
||
worked or the original target wasn't OLD, return false if redirection
|
||
doesn't work. */
|
||
|
||
static bool
|
||
patch_jump_insn (rtx_insn *insn, rtx_insn *old_label, basic_block new_bb)
|
||
{
|
||
rtx_jump_table_data *table;
|
||
rtx tmp;
|
||
/* Recognize a tablejump and adjust all matching cases. */
|
||
if (tablejump_p (insn, NULL, &table))
|
||
{
|
||
rtvec vec;
|
||
int j;
|
||
rtx_code_label *new_label = block_label (new_bb);
|
||
|
||
if (new_bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
|
||
return false;
|
||
vec = table->get_labels ();
|
||
|
||
for (j = GET_NUM_ELEM (vec) - 1; j >= 0; --j)
|
||
if (XEXP (RTVEC_ELT (vec, j), 0) == old_label)
|
||
{
|
||
RTVEC_ELT (vec, j) = gen_rtx_LABEL_REF (Pmode, new_label);
|
||
--LABEL_NUSES (old_label);
|
||
++LABEL_NUSES (new_label);
|
||
}
|
||
|
||
/* Handle casesi dispatch insns. */
|
||
if ((tmp = single_set (insn)) != NULL
|
||
&& SET_DEST (tmp) == pc_rtx
|
||
&& GET_CODE (SET_SRC (tmp)) == IF_THEN_ELSE
|
||
&& GET_CODE (XEXP (SET_SRC (tmp), 2)) == LABEL_REF
|
||
&& LABEL_REF_LABEL (XEXP (SET_SRC (tmp), 2)) == old_label)
|
||
{
|
||
XEXP (SET_SRC (tmp), 2) = gen_rtx_LABEL_REF (Pmode,
|
||
new_label);
|
||
--LABEL_NUSES (old_label);
|
||
++LABEL_NUSES (new_label);
|
||
}
|
||
}
|
||
else if ((tmp = extract_asm_operands (PATTERN (insn))) != NULL)
|
||
{
|
||
int i, n = ASM_OPERANDS_LABEL_LENGTH (tmp);
|
||
rtx note;
|
||
|
||
if (new_bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
|
||
return false;
|
||
rtx_code_label *new_label = block_label (new_bb);
|
||
|
||
for (i = 0; i < n; ++i)
|
||
{
|
||
rtx old_ref = ASM_OPERANDS_LABEL (tmp, i);
|
||
gcc_assert (GET_CODE (old_ref) == LABEL_REF);
|
||
if (XEXP (old_ref, 0) == old_label)
|
||
{
|
||
ASM_OPERANDS_LABEL (tmp, i)
|
||
= gen_rtx_LABEL_REF (Pmode, new_label);
|
||
--LABEL_NUSES (old_label);
|
||
++LABEL_NUSES (new_label);
|
||
}
|
||
}
|
||
|
||
if (JUMP_LABEL (insn) == old_label)
|
||
{
|
||
JUMP_LABEL (insn) = new_label;
|
||
note = find_reg_note (insn, REG_LABEL_TARGET, new_label);
|
||
if (note)
|
||
remove_note (insn, note);
|
||
}
|
||
else
|
||
{
|
||
note = find_reg_note (insn, REG_LABEL_TARGET, old_label);
|
||
if (note)
|
||
remove_note (insn, note);
|
||
if (JUMP_LABEL (insn) != new_label
|
||
&& !find_reg_note (insn, REG_LABEL_TARGET, new_label))
|
||
add_reg_note (insn, REG_LABEL_TARGET, new_label);
|
||
}
|
||
while ((note = find_reg_note (insn, REG_LABEL_OPERAND, old_label))
|
||
!= NULL_RTX)
|
||
XEXP (note, 0) = new_label;
|
||
}
|
||
else
|
||
{
|
||
/* ?? We may play the games with moving the named labels from
|
||
one basic block to the other in case only one computed_jump is
|
||
available. */
|
||
if (computed_jump_p (insn)
|
||
/* A return instruction can't be redirected. */
|
||
|| returnjump_p (insn))
|
||
return false;
|
||
|
||
if (!currently_expanding_to_rtl || JUMP_LABEL (insn) == old_label)
|
||
{
|
||
/* If the insn doesn't go where we think, we're confused. */
|
||
gcc_assert (JUMP_LABEL (insn) == old_label);
|
||
|
||
/* If the substitution doesn't succeed, die. This can happen
|
||
if the back end emitted unrecognizable instructions or if
|
||
target is exit block on some arches. */
|
||
if (!redirect_jump (as_a <rtx_jump_insn *> (insn),
|
||
block_label (new_bb), 0))
|
||
{
|
||
gcc_assert (new_bb == EXIT_BLOCK_PTR_FOR_FN (cfun));
|
||
return false;
|
||
}
|
||
}
|
||
}
|
||
return true;
|
||
}
|
||
|
||
|
||
/* Redirect edge representing branch of (un)conditional jump or tablejump,
|
||
NULL on failure */
|
||
static edge
|
||
redirect_branch_edge (edge e, basic_block target)
|
||
{
|
||
rtx_insn *old_label = BB_HEAD (e->dest);
|
||
basic_block src = e->src;
|
||
rtx_insn *insn = BB_END (src);
|
||
|
||
/* We can only redirect non-fallthru edges of jump insn. */
|
||
if (e->flags & EDGE_FALLTHRU)
|
||
return NULL;
|
||
else if (!JUMP_P (insn) && !currently_expanding_to_rtl)
|
||
return NULL;
|
||
|
||
if (!currently_expanding_to_rtl)
|
||
{
|
||
if (!patch_jump_insn (as_a <rtx_jump_insn *> (insn), old_label, target))
|
||
return NULL;
|
||
}
|
||
else
|
||
/* When expanding this BB might actually contain multiple
|
||
jumps (i.e. not yet split by find_many_sub_basic_blocks).
|
||
Redirect all of those that match our label. */
|
||
FOR_BB_INSNS (src, insn)
|
||
if (JUMP_P (insn) && !patch_jump_insn (as_a <rtx_jump_insn *> (insn),
|
||
old_label, target))
|
||
return NULL;
|
||
|
||
if (dump_file)
|
||
fprintf (dump_file, "Edge %i->%i redirected to %i\n",
|
||
e->src->index, e->dest->index, target->index);
|
||
|
||
if (e->dest != target)
|
||
e = redirect_edge_succ_nodup (e, target);
|
||
|
||
return e;
|
||
}
|
||
|
||
/* Called when edge E has been redirected to a new destination,
|
||
in order to update the region crossing flag on the edge and
|
||
jump. */
|
||
|
||
static void
|
||
fixup_partition_crossing (edge e)
|
||
{
|
||
if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun) || e->dest
|
||
== EXIT_BLOCK_PTR_FOR_FN (cfun))
|
||
return;
|
||
/* If we redirected an existing edge, it may already be marked
|
||
crossing, even though the new src is missing a reg crossing note.
|
||
But make sure reg crossing note doesn't already exist before
|
||
inserting. */
|
||
if (BB_PARTITION (e->src) != BB_PARTITION (e->dest))
|
||
{
|
||
e->flags |= EDGE_CROSSING;
|
||
if (JUMP_P (BB_END (e->src))
|
||
&& !CROSSING_JUMP_P (BB_END (e->src)))
|
||
CROSSING_JUMP_P (BB_END (e->src)) = 1;
|
||
}
|
||
else if (BB_PARTITION (e->src) == BB_PARTITION (e->dest))
|
||
{
|
||
e->flags &= ~EDGE_CROSSING;
|
||
/* Remove the section crossing note from jump at end of
|
||
src if it exists, and if no other successors are
|
||
still crossing. */
|
||
if (JUMP_P (BB_END (e->src)) && CROSSING_JUMP_P (BB_END (e->src)))
|
||
{
|
||
bool has_crossing_succ = false;
|
||
edge e2;
|
||
edge_iterator ei;
|
||
FOR_EACH_EDGE (e2, ei, e->src->succs)
|
||
{
|
||
has_crossing_succ |= (e2->flags & EDGE_CROSSING);
|
||
if (has_crossing_succ)
|
||
break;
|
||
}
|
||
if (!has_crossing_succ)
|
||
CROSSING_JUMP_P (BB_END (e->src)) = 0;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Called when block BB has been reassigned to the cold partition,
|
||
because it is now dominated by another cold block,
|
||
to ensure that the region crossing attributes are updated. */
|
||
|
||
static void
|
||
fixup_new_cold_bb (basic_block bb)
|
||
{
|
||
edge e;
|
||
edge_iterator ei;
|
||
|
||
/* This is called when a hot bb is found to now be dominated
|
||
by a cold bb and therefore needs to become cold. Therefore,
|
||
its preds will no longer be region crossing. Any non-dominating
|
||
preds that were previously hot would also have become cold
|
||
in the caller for the same region. Any preds that were previously
|
||
region-crossing will be adjusted in fixup_partition_crossing. */
|
||
FOR_EACH_EDGE (e, ei, bb->preds)
|
||
{
|
||
fixup_partition_crossing (e);
|
||
}
|
||
|
||
/* Possibly need to make bb's successor edges region crossing,
|
||
or remove stale region crossing. */
|
||
FOR_EACH_EDGE (e, ei, bb->succs)
|
||
{
|
||
/* We can't have fall-through edges across partition boundaries.
|
||
Note that force_nonfallthru will do any necessary partition
|
||
boundary fixup by calling fixup_partition_crossing itself. */
|
||
if ((e->flags & EDGE_FALLTHRU)
|
||
&& BB_PARTITION (bb) != BB_PARTITION (e->dest)
|
||
&& e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
|
||
force_nonfallthru (e);
|
||
else
|
||
fixup_partition_crossing (e);
|
||
}
|
||
}
|
||
|
||
/* Attempt to change code to redirect edge E to TARGET. Don't do that on
|
||
expense of adding new instructions or reordering basic blocks.
|
||
|
||
Function can be also called with edge destination equivalent to the TARGET.
|
||
Then it should try the simplifications and do nothing if none is possible.
|
||
|
||
Return edge representing the branch if transformation succeeded. Return NULL
|
||
on failure.
|
||
We still return NULL in case E already destinated TARGET and we didn't
|
||
managed to simplify instruction stream. */
|
||
|
||
static edge
|
||
rtl_redirect_edge_and_branch (edge e, basic_block target)
|
||
{
|
||
edge ret;
|
||
basic_block src = e->src;
|
||
basic_block dest = e->dest;
|
||
|
||
if (e->flags & (EDGE_ABNORMAL_CALL | EDGE_EH))
|
||
return NULL;
|
||
|
||
if (dest == target)
|
||
return e;
|
||
|
||
if ((ret = try_redirect_by_replacing_jump (e, target, false)) != NULL)
|
||
{
|
||
df_set_bb_dirty (src);
|
||
fixup_partition_crossing (ret);
|
||
return ret;
|
||
}
|
||
|
||
ret = redirect_branch_edge (e, target);
|
||
if (!ret)
|
||
return NULL;
|
||
|
||
df_set_bb_dirty (src);
|
||
fixup_partition_crossing (ret);
|
||
return ret;
|
||
}
|
||
|
||
/* Emit a barrier after BB, into the footer if we are in CFGLAYOUT mode. */
|
||
|
||
void
|
||
emit_barrier_after_bb (basic_block bb)
|
||
{
|
||
rtx_barrier *barrier = emit_barrier_after (BB_END (bb));
|
||
gcc_assert (current_ir_type () == IR_RTL_CFGRTL
|
||
|| current_ir_type () == IR_RTL_CFGLAYOUT);
|
||
if (current_ir_type () == IR_RTL_CFGLAYOUT)
|
||
{
|
||
rtx_insn *insn = unlink_insn_chain (barrier, barrier);
|
||
|
||
if (BB_FOOTER (bb))
|
||
{
|
||
rtx_insn *footer_tail = BB_FOOTER (bb);
|
||
|
||
while (NEXT_INSN (footer_tail))
|
||
footer_tail = NEXT_INSN (footer_tail);
|
||
if (!BARRIER_P (footer_tail))
|
||
{
|
||
SET_NEXT_INSN (footer_tail) = insn;
|
||
SET_PREV_INSN (insn) = footer_tail;
|
||
}
|
||
}
|
||
else
|
||
BB_FOOTER (bb) = insn;
|
||
}
|
||
}
|
||
|
||
/* Like force_nonfallthru below, but additionally performs redirection
|
||
Used by redirect_edge_and_branch_force. JUMP_LABEL is used only
|
||
when redirecting to the EXIT_BLOCK, it is either ret_rtx or
|
||
simple_return_rtx, indicating which kind of returnjump to create.
|
||
It should be NULL otherwise. */
|
||
|
||
basic_block
|
||
force_nonfallthru_and_redirect (edge e, basic_block target, rtx jump_label)
|
||
{
|
||
basic_block jump_block, new_bb = NULL, src = e->src;
|
||
rtx note;
|
||
edge new_edge;
|
||
int abnormal_edge_flags = 0;
|
||
bool asm_goto_edge = false;
|
||
int loc;
|
||
|
||
/* In the case the last instruction is conditional jump to the next
|
||
instruction, first redirect the jump itself and then continue
|
||
by creating a basic block afterwards to redirect fallthru edge. */
|
||
if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
|
||
&& e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
|
||
&& any_condjump_p (BB_END (e->src))
|
||
&& JUMP_LABEL (BB_END (e->src)) == BB_HEAD (e->dest))
|
||
{
|
||
rtx note;
|
||
edge b = unchecked_make_edge (e->src, target, 0);
|
||
bool redirected;
|
||
|
||
redirected = redirect_jump (as_a <rtx_jump_insn *> (BB_END (e->src)),
|
||
block_label (target), 0);
|
||
gcc_assert (redirected);
|
||
|
||
note = find_reg_note (BB_END (e->src), REG_BR_PROB, NULL_RTX);
|
||
if (note)
|
||
{
|
||
int prob = XINT (note, 0);
|
||
|
||
b->probability = prob;
|
||
/* Update this to use GCOV_COMPUTE_SCALE. */
|
||
b->count = e->count * prob / REG_BR_PROB_BASE;
|
||
e->probability -= e->probability;
|
||
e->count -= b->count;
|
||
if (e->probability < 0)
|
||
e->probability = 0;
|
||
if (e->count < 0)
|
||
e->count = 0;
|
||
}
|
||
}
|
||
|
||
if (e->flags & EDGE_ABNORMAL)
|
||
{
|
||
/* Irritating special case - fallthru edge to the same block as abnormal
|
||
edge.
|
||
We can't redirect abnormal edge, but we still can split the fallthru
|
||
one and create separate abnormal edge to original destination.
|
||
This allows bb-reorder to make such edge non-fallthru. */
|
||
gcc_assert (e->dest == target);
|
||
abnormal_edge_flags = e->flags & ~EDGE_FALLTHRU;
|
||
e->flags &= EDGE_FALLTHRU;
|
||
}
|
||
else
|
||
{
|
||
gcc_assert (e->flags & EDGE_FALLTHRU);
|
||
if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
|
||
{
|
||
/* We can't redirect the entry block. Create an empty block
|
||
at the start of the function which we use to add the new
|
||
jump. */
|
||
edge tmp;
|
||
edge_iterator ei;
|
||
bool found = false;
|
||
|
||
basic_block bb = create_basic_block (BB_HEAD (e->dest), NULL,
|
||
ENTRY_BLOCK_PTR_FOR_FN (cfun));
|
||
|
||
/* Change the existing edge's source to be the new block, and add
|
||
a new edge from the entry block to the new block. */
|
||
e->src = bb;
|
||
for (ei = ei_start (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs);
|
||
(tmp = ei_safe_edge (ei)); )
|
||
{
|
||
if (tmp == e)
|
||
{
|
||
ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs->unordered_remove (ei.index);
|
||
found = true;
|
||
break;
|
||
}
|
||
else
|
||
ei_next (&ei);
|
||
}
|
||
|
||
gcc_assert (found);
|
||
|
||
vec_safe_push (bb->succs, e);
|
||
make_single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun), bb,
|
||
EDGE_FALLTHRU);
|
||
}
|
||
}
|
||
|
||
/* If e->src ends with asm goto, see if any of the ASM_OPERANDS_LABELs
|
||
don't point to the target or fallthru label. */
|
||
if (JUMP_P (BB_END (e->src))
|
||
&& target != EXIT_BLOCK_PTR_FOR_FN (cfun)
|
||
&& (e->flags & EDGE_FALLTHRU)
|
||
&& (note = extract_asm_operands (PATTERN (BB_END (e->src)))))
|
||
{
|
||
int i, n = ASM_OPERANDS_LABEL_LENGTH (note);
|
||
bool adjust_jump_target = false;
|
||
|
||
for (i = 0; i < n; ++i)
|
||
{
|
||
if (XEXP (ASM_OPERANDS_LABEL (note, i), 0) == BB_HEAD (e->dest))
|
||
{
|
||
LABEL_NUSES (XEXP (ASM_OPERANDS_LABEL (note, i), 0))--;
|
||
XEXP (ASM_OPERANDS_LABEL (note, i), 0) = block_label (target);
|
||
LABEL_NUSES (XEXP (ASM_OPERANDS_LABEL (note, i), 0))++;
|
||
adjust_jump_target = true;
|
||
}
|
||
if (XEXP (ASM_OPERANDS_LABEL (note, i), 0) == BB_HEAD (target))
|
||
asm_goto_edge = true;
|
||
}
|
||
if (adjust_jump_target)
|
||
{
|
||
rtx_insn *insn = BB_END (e->src);
|
||
rtx note;
|
||
rtx_insn *old_label = BB_HEAD (e->dest);
|
||
rtx_insn *new_label = BB_HEAD (target);
|
||
|
||
if (JUMP_LABEL (insn) == old_label)
|
||
{
|
||
JUMP_LABEL (insn) = new_label;
|
||
note = find_reg_note (insn, REG_LABEL_TARGET, new_label);
|
||
if (note)
|
||
remove_note (insn, note);
|
||
}
|
||
else
|
||
{
|
||
note = find_reg_note (insn, REG_LABEL_TARGET, old_label);
|
||
if (note)
|
||
remove_note (insn, note);
|
||
if (JUMP_LABEL (insn) != new_label
|
||
&& !find_reg_note (insn, REG_LABEL_TARGET, new_label))
|
||
add_reg_note (insn, REG_LABEL_TARGET, new_label);
|
||
}
|
||
while ((note = find_reg_note (insn, REG_LABEL_OPERAND, old_label))
|
||
!= NULL_RTX)
|
||
XEXP (note, 0) = new_label;
|
||
}
|
||
}
|
||
|
||
if (EDGE_COUNT (e->src->succs) >= 2 || abnormal_edge_flags || asm_goto_edge)
|
||
{
|
||
rtx_insn *new_head;
|
||
gcov_type count = e->count;
|
||
int probability = e->probability;
|
||
/* Create the new structures. */
|
||
|
||
/* If the old block ended with a tablejump, skip its table
|
||
by searching forward from there. Otherwise start searching
|
||
forward from the last instruction of the old block. */
|
||
rtx_jump_table_data *table;
|
||
if (tablejump_p (BB_END (e->src), NULL, &table))
|
||
new_head = table;
|
||
else
|
||
new_head = BB_END (e->src);
|
||
new_head = NEXT_INSN (new_head);
|
||
|
||
jump_block = create_basic_block (new_head, NULL, e->src);
|
||
jump_block->count = count;
|
||
jump_block->frequency = EDGE_FREQUENCY (e);
|
||
|
||
/* Make sure new block ends up in correct hot/cold section. */
|
||
|
||
BB_COPY_PARTITION (jump_block, e->src);
|
||
|
||
/* Wire edge in. */
|
||
new_edge = make_edge (e->src, jump_block, EDGE_FALLTHRU);
|
||
new_edge->probability = probability;
|
||
new_edge->count = count;
|
||
|
||
/* Redirect old edge. */
|
||
redirect_edge_pred (e, jump_block);
|
||
e->probability = REG_BR_PROB_BASE;
|
||
|
||
/* If e->src was previously region crossing, it no longer is
|
||
and the reg crossing note should be removed. */
|
||
fixup_partition_crossing (new_edge);
|
||
|
||
/* If asm goto has any label refs to target's label,
|
||
add also edge from asm goto bb to target. */
|
||
if (asm_goto_edge)
|
||
{
|
||
new_edge->probability /= 2;
|
||
new_edge->count /= 2;
|
||
jump_block->count /= 2;
|
||
jump_block->frequency /= 2;
|
||
new_edge = make_edge (new_edge->src, target,
|
||
e->flags & ~EDGE_FALLTHRU);
|
||
new_edge->probability = probability - probability / 2;
|
||
new_edge->count = count - count / 2;
|
||
}
|
||
|
||
new_bb = jump_block;
|
||
}
|
||
else
|
||
jump_block = e->src;
|
||
|
||
loc = e->goto_locus;
|
||
e->flags &= ~EDGE_FALLTHRU;
|
||
if (target == EXIT_BLOCK_PTR_FOR_FN (cfun))
|
||
{
|
||
if (jump_label == ret_rtx)
|
||
emit_jump_insn_after_setloc (targetm.gen_return (),
|
||
BB_END (jump_block), loc);
|
||
else
|
||
{
|
||
gcc_assert (jump_label == simple_return_rtx);
|
||
emit_jump_insn_after_setloc (targetm.gen_simple_return (),
|
||
BB_END (jump_block), loc);
|
||
}
|
||
set_return_jump_label (BB_END (jump_block));
|
||
}
|
||
else
|
||
{
|
||
rtx_code_label *label = block_label (target);
|
||
emit_jump_insn_after_setloc (targetm.gen_jump (label),
|
||
BB_END (jump_block), loc);
|
||
JUMP_LABEL (BB_END (jump_block)) = label;
|
||
LABEL_NUSES (label)++;
|
||
}
|
||
|
||
/* We might be in cfg layout mode, and if so, the following routine will
|
||
insert the barrier correctly. */
|
||
emit_barrier_after_bb (jump_block);
|
||
redirect_edge_succ_nodup (e, target);
|
||
|
||
if (abnormal_edge_flags)
|
||
make_edge (src, target, abnormal_edge_flags);
|
||
|
||
df_mark_solutions_dirty ();
|
||
fixup_partition_crossing (e);
|
||
return new_bb;
|
||
}
|
||
|
||
/* Edge E is assumed to be fallthru edge. Emit needed jump instruction
|
||
(and possibly create new basic block) to make edge non-fallthru.
|
||
Return newly created BB or NULL if none. */
|
||
|
||
static basic_block
|
||
rtl_force_nonfallthru (edge e)
|
||
{
|
||
return force_nonfallthru_and_redirect (e, e->dest, NULL_RTX);
|
||
}
|
||
|
||
/* Redirect edge even at the expense of creating new jump insn or
|
||
basic block. Return new basic block if created, NULL otherwise.
|
||
Conversion must be possible. */
|
||
|
||
static basic_block
|
||
rtl_redirect_edge_and_branch_force (edge e, basic_block target)
|
||
{
|
||
if (redirect_edge_and_branch (e, target)
|
||
|| e->dest == target)
|
||
return NULL;
|
||
|
||
/* In case the edge redirection failed, try to force it to be non-fallthru
|
||
and redirect newly created simplejump. */
|
||
df_set_bb_dirty (e->src);
|
||
return force_nonfallthru_and_redirect (e, target, NULL_RTX);
|
||
}
|
||
|
||
/* The given edge should potentially be a fallthru edge. If that is in
|
||
fact true, delete the jump and barriers that are in the way. */
|
||
|
||
static void
|
||
rtl_tidy_fallthru_edge (edge e)
|
||
{
|
||
rtx_insn *q;
|
||
basic_block b = e->src, c = b->next_bb;
|
||
|
||
/* ??? In a late-running flow pass, other folks may have deleted basic
|
||
blocks by nopping out blocks, leaving multiple BARRIERs between here
|
||
and the target label. They ought to be chastised and fixed.
|
||
|
||
We can also wind up with a sequence of undeletable labels between
|
||
one block and the next.
|
||
|
||
So search through a sequence of barriers, labels, and notes for
|
||
the head of block C and assert that we really do fall through. */
|
||
|
||
for (q = NEXT_INSN (BB_END (b)); q != BB_HEAD (c); q = NEXT_INSN (q))
|
||
if (INSN_P (q))
|
||
return;
|
||
|
||
/* Remove what will soon cease being the jump insn from the source block.
|
||
If block B consisted only of this single jump, turn it into a deleted
|
||
note. */
|
||
q = BB_END (b);
|
||
if (JUMP_P (q)
|
||
&& onlyjump_p (q)
|
||
&& (any_uncondjump_p (q)
|
||
|| single_succ_p (b)))
|
||
{
|
||
rtx label;
|
||
rtx_jump_table_data *table;
|
||
|
||
if (tablejump_p (q, &label, &table))
|
||
{
|
||
/* The label is likely mentioned in some instruction before
|
||
the tablejump and might not be DCEd, so turn it into
|
||
a note instead and move before the tablejump that is going to
|
||
be deleted. */
|
||
const char *name = LABEL_NAME (label);
|
||
PUT_CODE (label, NOTE);
|
||
NOTE_KIND (label) = NOTE_INSN_DELETED_LABEL;
|
||
NOTE_DELETED_LABEL_NAME (label) = name;
|
||
rtx_insn *lab = safe_as_a <rtx_insn *> (label);
|
||
reorder_insns (lab, lab, PREV_INSN (q));
|
||
delete_insn (table);
|
||
}
|
||
|
||
/* If this was a conditional jump, we need to also delete
|
||
the insn that set cc0. */
|
||
if (HAVE_cc0 && any_condjump_p (q) && only_sets_cc0_p (PREV_INSN (q)))
|
||
q = PREV_INSN (q);
|
||
|
||
q = PREV_INSN (q);
|
||
}
|
||
|
||
/* Selectively unlink the sequence. */
|
||
if (q != PREV_INSN (BB_HEAD (c)))
|
||
delete_insn_chain (NEXT_INSN (q), PREV_INSN (BB_HEAD (c)), false);
|
||
|
||
e->flags |= EDGE_FALLTHRU;
|
||
}
|
||
|
||
/* Should move basic block BB after basic block AFTER. NIY. */
|
||
|
||
static bool
|
||
rtl_move_block_after (basic_block bb ATTRIBUTE_UNUSED,
|
||
basic_block after ATTRIBUTE_UNUSED)
|
||
{
|
||
return false;
|
||
}
|
||
|
||
/* Locate the last bb in the same partition as START_BB. */
|
||
|
||
static basic_block
|
||
last_bb_in_partition (basic_block start_bb)
|
||
{
|
||
basic_block bb;
|
||
FOR_BB_BETWEEN (bb, start_bb, EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb)
|
||
{
|
||
if (BB_PARTITION (start_bb) != BB_PARTITION (bb->next_bb))
|
||
return bb;
|
||
}
|
||
/* Return bb before the exit block. */
|
||
return bb->prev_bb;
|
||
}
|
||
|
||
/* Split a (typically critical) edge. Return the new block.
|
||
The edge must not be abnormal.
|
||
|
||
??? The code generally expects to be called on critical edges.
|
||
The case of a block ending in an unconditional jump to a
|
||
block with multiple predecessors is not handled optimally. */
|
||
|
||
static basic_block
|
||
rtl_split_edge (edge edge_in)
|
||
{
|
||
basic_block bb, new_bb;
|
||
rtx_insn *before;
|
||
|
||
/* Abnormal edges cannot be split. */
|
||
gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
|
||
|
||
/* We are going to place the new block in front of edge destination.
|
||
Avoid existence of fallthru predecessors. */
|
||
if ((edge_in->flags & EDGE_FALLTHRU) == 0)
|
||
{
|
||
edge e = find_fallthru_edge (edge_in->dest->preds);
|
||
|
||
if (e)
|
||
force_nonfallthru (e);
|
||
}
|
||
|
||
/* Create the basic block note. */
|
||
if (edge_in->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
|
||
before = BB_HEAD (edge_in->dest);
|
||
else
|
||
before = NULL;
|
||
|
||
/* If this is a fall through edge to the exit block, the blocks might be
|
||
not adjacent, and the right place is after the source. */
|
||
if ((edge_in->flags & EDGE_FALLTHRU)
|
||
&& edge_in->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
|
||
{
|
||
before = NEXT_INSN (BB_END (edge_in->src));
|
||
bb = create_basic_block (before, NULL, edge_in->src);
|
||
BB_COPY_PARTITION (bb, edge_in->src);
|
||
}
|
||
else
|
||
{
|
||
if (edge_in->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
|
||
{
|
||
bb = create_basic_block (before, NULL, edge_in->dest->prev_bb);
|
||
BB_COPY_PARTITION (bb, edge_in->dest);
|
||
}
|
||
else
|
||
{
|
||
basic_block after = edge_in->dest->prev_bb;
|
||
/* If this is post-bb reordering, and the edge crosses a partition
|
||
boundary, the new block needs to be inserted in the bb chain
|
||
at the end of the src partition (since we put the new bb into
|
||
that partition, see below). Otherwise we may end up creating
|
||
an extra partition crossing in the chain, which is illegal.
|
||
It can't go after the src, because src may have a fall-through
|
||
to a different block. */
|
||
if (crtl->bb_reorder_complete
|
||
&& (edge_in->flags & EDGE_CROSSING))
|
||
{
|
||
after = last_bb_in_partition (edge_in->src);
|
||
before = get_last_bb_insn (after);
|
||
/* The instruction following the last bb in partition should
|
||
be a barrier, since it cannot end in a fall-through. */
|
||
gcc_checking_assert (BARRIER_P (before));
|
||
before = NEXT_INSN (before);
|
||
}
|
||
bb = create_basic_block (before, NULL, after);
|
||
/* Put the split bb into the src partition, to avoid creating
|
||
a situation where a cold bb dominates a hot bb, in the case
|
||
where src is cold and dest is hot. The src will dominate
|
||
the new bb (whereas it might not have dominated dest). */
|
||
BB_COPY_PARTITION (bb, edge_in->src);
|
||
}
|
||
}
|
||
|
||
make_single_succ_edge (bb, edge_in->dest, EDGE_FALLTHRU);
|
||
|
||
/* Can't allow a region crossing edge to be fallthrough. */
|
||
if (BB_PARTITION (bb) != BB_PARTITION (edge_in->dest)
|
||
&& edge_in->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
|
||
{
|
||
new_bb = force_nonfallthru (single_succ_edge (bb));
|
||
gcc_assert (!new_bb);
|
||
}
|
||
|
||
/* For non-fallthru edges, we must adjust the predecessor's
|
||
jump instruction to target our new block. */
|
||
if ((edge_in->flags & EDGE_FALLTHRU) == 0)
|
||
{
|
||
edge redirected = redirect_edge_and_branch (edge_in, bb);
|
||
gcc_assert (redirected);
|
||
}
|
||
else
|
||
{
|
||
if (edge_in->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
|
||
{
|
||
/* For asm goto even splitting of fallthru edge might
|
||
need insn patching, as other labels might point to the
|
||
old label. */
|
||
rtx_insn *last = BB_END (edge_in->src);
|
||
if (last
|
||
&& JUMP_P (last)
|
||
&& edge_in->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
|
||
&& extract_asm_operands (PATTERN (last)) != NULL_RTX
|
||
&& patch_jump_insn (last, before, bb))
|
||
df_set_bb_dirty (edge_in->src);
|
||
}
|
||
redirect_edge_succ (edge_in, bb);
|
||
}
|
||
|
||
return bb;
|
||
}
|
||
|
||
/* Queue instructions for insertion on an edge between two basic blocks.
|
||
The new instructions and basic blocks (if any) will not appear in the
|
||
CFG until commit_edge_insertions is called. */
|
||
|
||
void
|
||
insert_insn_on_edge (rtx pattern, edge e)
|
||
{
|
||
/* We cannot insert instructions on an abnormal critical edge.
|
||
It will be easier to find the culprit if we die now. */
|
||
gcc_assert (!((e->flags & EDGE_ABNORMAL) && EDGE_CRITICAL_P (e)));
|
||
|
||
if (e->insns.r == NULL_RTX)
|
||
start_sequence ();
|
||
else
|
||
push_to_sequence (e->insns.r);
|
||
|
||
emit_insn (pattern);
|
||
|
||
e->insns.r = get_insns ();
|
||
end_sequence ();
|
||
}
|
||
|
||
/* Update the CFG for the instructions queued on edge E. */
|
||
|
||
void
|
||
commit_one_edge_insertion (edge e)
|
||
{
|
||
rtx_insn *before = NULL, *after = NULL, *insns, *tmp, *last;
|
||
basic_block bb;
|
||
|
||
/* Pull the insns off the edge now since the edge might go away. */
|
||
insns = e->insns.r;
|
||
e->insns.r = NULL;
|
||
|
||
/* Figure out where to put these insns. If the destination has
|
||
one predecessor, insert there. Except for the exit block. */
|
||
if (single_pred_p (e->dest) && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
|
||
{
|
||
bb = e->dest;
|
||
|
||
/* Get the location correct wrt a code label, and "nice" wrt
|
||
a basic block note, and before everything else. */
|
||
tmp = BB_HEAD (bb);
|
||
if (LABEL_P (tmp))
|
||
tmp = NEXT_INSN (tmp);
|
||
if (NOTE_INSN_BASIC_BLOCK_P (tmp))
|
||
tmp = NEXT_INSN (tmp);
|
||
if (tmp == BB_HEAD (bb))
|
||
before = tmp;
|
||
else if (tmp)
|
||
after = PREV_INSN (tmp);
|
||
else
|
||
after = get_last_insn ();
|
||
}
|
||
|
||
/* If the source has one successor and the edge is not abnormal,
|
||
insert there. Except for the entry block.
|
||
Don't do this if the predecessor ends in a jump other than
|
||
unconditional simple jump. E.g. for asm goto that points all
|
||
its labels at the fallthru basic block, we can't insert instructions
|
||
before the asm goto, as the asm goto can have various of side effects,
|
||
and can't emit instructions after the asm goto, as it must end
|
||
the basic block. */
|
||
else if ((e->flags & EDGE_ABNORMAL) == 0
|
||
&& single_succ_p (e->src)
|
||
&& e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
|
||
&& (!JUMP_P (BB_END (e->src))
|
||
|| simplejump_p (BB_END (e->src))))
|
||
{
|
||
bb = e->src;
|
||
|
||
/* It is possible to have a non-simple jump here. Consider a target
|
||
where some forms of unconditional jumps clobber a register. This
|
||
happens on the fr30 for example.
|
||
|
||
We know this block has a single successor, so we can just emit
|
||
the queued insns before the jump. */
|
||
if (JUMP_P (BB_END (bb)))
|
||
before = BB_END (bb);
|
||
else
|
||
{
|
||
/* We'd better be fallthru, or we've lost track of what's what. */
|
||
gcc_assert (e->flags & EDGE_FALLTHRU);
|
||
|
||
after = BB_END (bb);
|
||
}
|
||
}
|
||
|
||
/* Otherwise we must split the edge. */
|
||
else
|
||
{
|
||
bb = split_edge (e);
|
||
|
||
/* If E crossed a partition boundary, we needed to make bb end in
|
||
a region-crossing jump, even though it was originally fallthru. */
|
||
if (JUMP_P (BB_END (bb)))
|
||
before = BB_END (bb);
|
||
else
|
||
after = BB_END (bb);
|
||
}
|
||
|
||
/* Now that we've found the spot, do the insertion. */
|
||
if (before)
|
||
{
|
||
emit_insn_before_noloc (insns, before, bb);
|
||
last = prev_nonnote_insn (before);
|
||
}
|
||
else
|
||
last = emit_insn_after_noloc (insns, after, bb);
|
||
|
||
if (returnjump_p (last))
|
||
{
|
||
/* ??? Remove all outgoing edges from BB and add one for EXIT.
|
||
This is not currently a problem because this only happens
|
||
for the (single) epilogue, which already has a fallthru edge
|
||
to EXIT. */
|
||
|
||
e = single_succ_edge (bb);
|
||
gcc_assert (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
|
||
&& single_succ_p (bb) && (e->flags & EDGE_FALLTHRU));
|
||
|
||
e->flags &= ~EDGE_FALLTHRU;
|
||
emit_barrier_after (last);
|
||
|
||
if (before)
|
||
delete_insn (before);
|
||
}
|
||
else
|
||
gcc_assert (!JUMP_P (last));
|
||
}
|
||
|
||
/* Update the CFG for all queued instructions. */
|
||
|
||
void
|
||
commit_edge_insertions (void)
|
||
{
|
||
basic_block bb;
|
||
|
||
/* Optimization passes that invoke this routine can cause hot blocks
|
||
previously reached by both hot and cold blocks to become dominated only
|
||
by cold blocks. This will cause the verification below to fail,
|
||
and lead to now cold code in the hot section. In some cases this
|
||
may only be visible after newly unreachable blocks are deleted,
|
||
which will be done by fixup_partitions. */
|
||
fixup_partitions ();
|
||
|
||
#ifdef ENABLE_CHECKING
|
||
verify_flow_info ();
|
||
#endif
|
||
|
||
FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun),
|
||
EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb)
|
||
{
|
||
edge e;
|
||
edge_iterator ei;
|
||
|
||
FOR_EACH_EDGE (e, ei, bb->succs)
|
||
if (e->insns.r)
|
||
commit_one_edge_insertion (e);
|
||
}
|
||
}
|
||
|
||
|
||
/* Print out RTL-specific basic block information (live information
|
||
at start and end with TDF_DETAILS). FLAGS are the TDF_* masks
|
||
documented in dumpfile.h. */
|
||
|
||
static void
|
||
rtl_dump_bb (FILE *outf, basic_block bb, int indent, int flags)
|
||
{
|
||
rtx_insn *insn;
|
||
rtx_insn *last;
|
||
char *s_indent;
|
||
|
||
s_indent = (char *) alloca ((size_t) indent + 1);
|
||
memset (s_indent, ' ', (size_t) indent);
|
||
s_indent[indent] = '\0';
|
||
|
||
if (df && (flags & TDF_DETAILS))
|
||
{
|
||
df_dump_top (bb, outf);
|
||
putc ('\n', outf);
|
||
}
|
||
|
||
if (bb->index != ENTRY_BLOCK && bb->index != EXIT_BLOCK)
|
||
for (insn = BB_HEAD (bb), last = NEXT_INSN (BB_END (bb)); insn != last;
|
||
insn = NEXT_INSN (insn))
|
||
{
|
||
if (flags & TDF_DETAILS)
|
||
df_dump_insn_top (insn, outf);
|
||
if (! (flags & TDF_SLIM))
|
||
print_rtl_single (outf, insn);
|
||
else
|
||
dump_insn_slim (outf, insn);
|
||
if (flags & TDF_DETAILS)
|
||
df_dump_insn_bottom (insn, outf);
|
||
}
|
||
|
||
if (df && (flags & TDF_DETAILS))
|
||
{
|
||
df_dump_bottom (bb, outf);
|
||
putc ('\n', outf);
|
||
}
|
||
|
||
}
|
||
|
||
/* Like dump_function_to_file, but for RTL. Print out dataflow information
|
||
for the start of each basic block. FLAGS are the TDF_* masks documented
|
||
in dumpfile.h. */
|
||
|
||
void
|
||
print_rtl_with_bb (FILE *outf, const rtx_insn *rtx_first, int flags)
|
||
{
|
||
const rtx_insn *tmp_rtx;
|
||
if (rtx_first == 0)
|
||
fprintf (outf, "(nil)\n");
|
||
else
|
||
{
|
||
enum bb_state { NOT_IN_BB, IN_ONE_BB, IN_MULTIPLE_BB };
|
||
int max_uid = get_max_uid ();
|
||
basic_block *start = XCNEWVEC (basic_block, max_uid);
|
||
basic_block *end = XCNEWVEC (basic_block, max_uid);
|
||
enum bb_state *in_bb_p = XCNEWVEC (enum bb_state, max_uid);
|
||
basic_block bb;
|
||
|
||
/* After freeing the CFG, we still have BLOCK_FOR_INSN set on most
|
||
insns, but the CFG is not maintained so the basic block info
|
||
is not reliable. Therefore it's omitted from the dumps. */
|
||
if (! (cfun->curr_properties & PROP_cfg))
|
||
flags &= ~TDF_BLOCKS;
|
||
|
||
if (df)
|
||
df_dump_start (outf);
|
||
|
||
if (flags & TDF_BLOCKS)
|
||
{
|
||
FOR_EACH_BB_REVERSE_FN (bb, cfun)
|
||
{
|
||
rtx_insn *x;
|
||
|
||
start[INSN_UID (BB_HEAD (bb))] = bb;
|
||
end[INSN_UID (BB_END (bb))] = bb;
|
||
for (x = BB_HEAD (bb); x != NULL_RTX; x = NEXT_INSN (x))
|
||
{
|
||
enum bb_state state = IN_MULTIPLE_BB;
|
||
|
||
if (in_bb_p[INSN_UID (x)] == NOT_IN_BB)
|
||
state = IN_ONE_BB;
|
||
in_bb_p[INSN_UID (x)] = state;
|
||
|
||
if (x == BB_END (bb))
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
for (tmp_rtx = rtx_first; NULL != tmp_rtx; tmp_rtx = NEXT_INSN (tmp_rtx))
|
||
{
|
||
if (flags & TDF_BLOCKS)
|
||
{
|
||
bb = start[INSN_UID (tmp_rtx)];
|
||
if (bb != NULL)
|
||
{
|
||
dump_bb_info (outf, bb, 0, dump_flags | TDF_COMMENT, true, false);
|
||
if (df && (flags & TDF_DETAILS))
|
||
df_dump_top (bb, outf);
|
||
}
|
||
|
||
if (in_bb_p[INSN_UID (tmp_rtx)] == NOT_IN_BB
|
||
&& !NOTE_P (tmp_rtx)
|
||
&& !BARRIER_P (tmp_rtx))
|
||
fprintf (outf, ";; Insn is not within a basic block\n");
|
||
else if (in_bb_p[INSN_UID (tmp_rtx)] == IN_MULTIPLE_BB)
|
||
fprintf (outf, ";; Insn is in multiple basic blocks\n");
|
||
}
|
||
|
||
if (flags & TDF_DETAILS)
|
||
df_dump_insn_top (tmp_rtx, outf);
|
||
if (! (flags & TDF_SLIM))
|
||
print_rtl_single (outf, tmp_rtx);
|
||
else
|
||
dump_insn_slim (outf, tmp_rtx);
|
||
if (flags & TDF_DETAILS)
|
||
df_dump_insn_bottom (tmp_rtx, outf);
|
||
|
||
if (flags & TDF_BLOCKS)
|
||
{
|
||
bb = end[INSN_UID (tmp_rtx)];
|
||
if (bb != NULL)
|
||
{
|
||
dump_bb_info (outf, bb, 0, dump_flags | TDF_COMMENT, false, true);
|
||
if (df && (flags & TDF_DETAILS))
|
||
df_dump_bottom (bb, outf);
|
||
putc ('\n', outf);
|
||
}
|
||
}
|
||
}
|
||
|
||
free (start);
|
||
free (end);
|
||
free (in_bb_p);
|
||
}
|
||
}
|
||
|
||
/* Update the branch probability of BB if a REG_BR_PROB is present. */
|
||
|
||
void
|
||
update_br_prob_note (basic_block bb)
|
||
{
|
||
rtx note;
|
||
if (!JUMP_P (BB_END (bb)))
|
||
return;
|
||
note = find_reg_note (BB_END (bb), REG_BR_PROB, NULL_RTX);
|
||
if (!note || XINT (note, 0) == BRANCH_EDGE (bb)->probability)
|
||
return;
|
||
XINT (note, 0) = BRANCH_EDGE (bb)->probability;
|
||
}
|
||
|
||
/* Get the last insn associated with block BB (that includes barriers and
|
||
tablejumps after BB). */
|
||
rtx_insn *
|
||
get_last_bb_insn (basic_block bb)
|
||
{
|
||
rtx_jump_table_data *table;
|
||
rtx_insn *tmp;
|
||
rtx_insn *end = BB_END (bb);
|
||
|
||
/* Include any jump table following the basic block. */
|
||
if (tablejump_p (end, NULL, &table))
|
||
end = table;
|
||
|
||
/* Include any barriers that may follow the basic block. */
|
||
tmp = next_nonnote_insn_bb (end);
|
||
while (tmp && BARRIER_P (tmp))
|
||
{
|
||
end = tmp;
|
||
tmp = next_nonnote_insn_bb (end);
|
||
}
|
||
|
||
return end;
|
||
}
|
||
|
||
/* Sanity check partition hotness to ensure that basic blocks in
|
||
the cold partition don't dominate basic blocks in the hot partition.
|
||
If FLAG_ONLY is true, report violations as errors. Otherwise
|
||
re-mark the dominated blocks as cold, since this is run after
|
||
cfg optimizations that may make hot blocks previously reached
|
||
by both hot and cold blocks now only reachable along cold paths. */
|
||
|
||
static vec<basic_block>
|
||
find_partition_fixes (bool flag_only)
|
||
{
|
||
basic_block bb;
|
||
vec<basic_block> bbs_in_cold_partition = vNULL;
|
||
vec<basic_block> bbs_to_fix = vNULL;
|
||
|
||
/* Callers check this. */
|
||
gcc_checking_assert (crtl->has_bb_partition);
|
||
|
||
FOR_EACH_BB_FN (bb, cfun)
|
||
if ((BB_PARTITION (bb) == BB_COLD_PARTITION))
|
||
bbs_in_cold_partition.safe_push (bb);
|
||
|
||
if (bbs_in_cold_partition.is_empty ())
|
||
return vNULL;
|
||
|
||
bool dom_calculated_here = !dom_info_available_p (CDI_DOMINATORS);
|
||
|
||
if (dom_calculated_here)
|
||
calculate_dominance_info (CDI_DOMINATORS);
|
||
|
||
while (! bbs_in_cold_partition.is_empty ())
|
||
{
|
||
bb = bbs_in_cold_partition.pop ();
|
||
/* Any blocks dominated by a block in the cold section
|
||
must also be cold. */
|
||
basic_block son;
|
||
for (son = first_dom_son (CDI_DOMINATORS, bb);
|
||
son;
|
||
son = next_dom_son (CDI_DOMINATORS, son))
|
||
{
|
||
/* If son is not yet cold, then mark it cold here and
|
||
enqueue it for further processing. */
|
||
if ((BB_PARTITION (son) != BB_COLD_PARTITION))
|
||
{
|
||
if (flag_only)
|
||
error ("non-cold basic block %d dominated "
|
||
"by a block in the cold partition (%d)", son->index, bb->index);
|
||
else
|
||
BB_SET_PARTITION (son, BB_COLD_PARTITION);
|
||
bbs_to_fix.safe_push (son);
|
||
bbs_in_cold_partition.safe_push (son);
|
||
}
|
||
}
|
||
}
|
||
|
||
if (dom_calculated_here)
|
||
free_dominance_info (CDI_DOMINATORS);
|
||
|
||
return bbs_to_fix;
|
||
}
|
||
|
||
/* Perform cleanup on the hot/cold bb partitioning after optimization
|
||
passes that modify the cfg. */
|
||
|
||
void
|
||
fixup_partitions (void)
|
||
{
|
||
basic_block bb;
|
||
|
||
if (!crtl->has_bb_partition)
|
||
return;
|
||
|
||
/* Delete any blocks that became unreachable and weren't
|
||
already cleaned up, for example during edge forwarding
|
||
and convert_jumps_to_returns. This will expose more
|
||
opportunities for fixing the partition boundaries here.
|
||
Also, the calculation of the dominance graph during verification
|
||
will assert if there are unreachable nodes. */
|
||
delete_unreachable_blocks ();
|
||
|
||
/* If there are partitions, do a sanity check on them: A basic block in
|
||
a cold partition cannot dominate a basic block in a hot partition.
|
||
Fixup any that now violate this requirement, as a result of edge
|
||
forwarding and unreachable block deletion. */
|
||
vec<basic_block> bbs_to_fix = find_partition_fixes (false);
|
||
|
||
/* Do the partition fixup after all necessary blocks have been converted to
|
||
cold, so that we only update the region crossings the minimum number of
|
||
places, which can require forcing edges to be non fallthru. */
|
||
while (! bbs_to_fix.is_empty ())
|
||
{
|
||
bb = bbs_to_fix.pop ();
|
||
fixup_new_cold_bb (bb);
|
||
}
|
||
}
|
||
|
||
/* Verify, in the basic block chain, that there is at most one switch
|
||
between hot/cold partitions. This condition will not be true until
|
||
after reorder_basic_blocks is called. */
|
||
|
||
static int
|
||
verify_hot_cold_block_grouping (void)
|
||
{
|
||
basic_block bb;
|
||
int err = 0;
|
||
bool switched_sections = false;
|
||
int current_partition = BB_UNPARTITIONED;
|
||
|
||
/* Even after bb reordering is complete, we go into cfglayout mode
|
||
again (in compgoto). Ensure we don't call this before going back
|
||
into linearized RTL when any layout fixes would have been committed. */
|
||
if (!crtl->bb_reorder_complete
|
||
|| current_ir_type () != IR_RTL_CFGRTL)
|
||
return err;
|
||
|
||
FOR_EACH_BB_FN (bb, cfun)
|
||
{
|
||
if (current_partition != BB_UNPARTITIONED
|
||
&& BB_PARTITION (bb) != current_partition)
|
||
{
|
||
if (switched_sections)
|
||
{
|
||
error ("multiple hot/cold transitions found (bb %i)",
|
||
bb->index);
|
||
err = 1;
|
||
}
|
||
else
|
||
switched_sections = true;
|
||
|
||
if (!crtl->has_bb_partition)
|
||
error ("partition found but function partition flag not set");
|
||
}
|
||
current_partition = BB_PARTITION (bb);
|
||
}
|
||
|
||
return err;
|
||
}
|
||
|
||
|
||
/* Perform several checks on the edges out of each block, such as
|
||
the consistency of the branch probabilities, the correctness
|
||
of hot/cold partition crossing edges, and the number of expected
|
||
successor edges. Also verify that the dominance relationship
|
||
between hot/cold blocks is sane. */
|
||
|
||
static int
|
||
rtl_verify_edges (void)
|
||
{
|
||
int err = 0;
|
||
basic_block bb;
|
||
|
||
FOR_EACH_BB_REVERSE_FN (bb, cfun)
|
||
{
|
||
int n_fallthru = 0, n_branch = 0, n_abnormal_call = 0, n_sibcall = 0;
|
||
int n_eh = 0, n_abnormal = 0;
|
||
edge e, fallthru = NULL;
|
||
edge_iterator ei;
|
||
rtx note;
|
||
bool has_crossing_edge = false;
|
||
|
||
if (JUMP_P (BB_END (bb))
|
||
&& (note = find_reg_note (BB_END (bb), REG_BR_PROB, NULL_RTX))
|
||
&& EDGE_COUNT (bb->succs) >= 2
|
||
&& any_condjump_p (BB_END (bb)))
|
||
{
|
||
if (XINT (note, 0) != BRANCH_EDGE (bb)->probability
|
||
&& profile_status_for_fn (cfun) != PROFILE_ABSENT)
|
||
{
|
||
error ("verify_flow_info: REG_BR_PROB does not match cfg %i %i",
|
||
XINT (note, 0), BRANCH_EDGE (bb)->probability);
|
||
err = 1;
|
||
}
|
||
}
|
||
|
||
FOR_EACH_EDGE (e, ei, bb->succs)
|
||
{
|
||
bool is_crossing;
|
||
|
||
if (e->flags & EDGE_FALLTHRU)
|
||
n_fallthru++, fallthru = e;
|
||
|
||
is_crossing = (BB_PARTITION (e->src) != BB_PARTITION (e->dest)
|
||
&& e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
|
||
&& e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun));
|
||
has_crossing_edge |= is_crossing;
|
||
if (e->flags & EDGE_CROSSING)
|
||
{
|
||
if (!is_crossing)
|
||
{
|
||
error ("EDGE_CROSSING incorrectly set across same section");
|
||
err = 1;
|
||
}
|
||
if (e->flags & EDGE_FALLTHRU)
|
||
{
|
||
error ("fallthru edge crosses section boundary in bb %i",
|
||
e->src->index);
|
||
err = 1;
|
||
}
|
||
if (e->flags & EDGE_EH)
|
||
{
|
||
error ("EH edge crosses section boundary in bb %i",
|
||
e->src->index);
|
||
err = 1;
|
||
}
|
||
if (JUMP_P (BB_END (bb)) && !CROSSING_JUMP_P (BB_END (bb)))
|
||
{
|
||
error ("No region crossing jump at section boundary in bb %i",
|
||
bb->index);
|
||
err = 1;
|
||
}
|
||
}
|
||
else if (is_crossing)
|
||
{
|
||
error ("EDGE_CROSSING missing across section boundary");
|
||
err = 1;
|
||
}
|
||
|
||
if ((e->flags & ~(EDGE_DFS_BACK
|
||
| EDGE_CAN_FALLTHRU
|
||
| EDGE_IRREDUCIBLE_LOOP
|
||
| EDGE_LOOP_EXIT
|
||
| EDGE_CROSSING
|
||
| EDGE_PRESERVE)) == 0)
|
||
n_branch++;
|
||
|
||
if (e->flags & EDGE_ABNORMAL_CALL)
|
||
n_abnormal_call++;
|
||
|
||
if (e->flags & EDGE_SIBCALL)
|
||
n_sibcall++;
|
||
|
||
if (e->flags & EDGE_EH)
|
||
n_eh++;
|
||
|
||
if (e->flags & EDGE_ABNORMAL)
|
||
n_abnormal++;
|
||
}
|
||
|
||
if (!has_crossing_edge
|
||
&& JUMP_P (BB_END (bb))
|
||
&& CROSSING_JUMP_P (BB_END (bb)))
|
||
{
|
||
print_rtl_with_bb (stderr, get_insns (), TDF_RTL | TDF_BLOCKS | TDF_DETAILS);
|
||
error ("Region crossing jump across same section in bb %i",
|
||
bb->index);
|
||
err = 1;
|
||
}
|
||
|
||
if (n_eh && !find_reg_note (BB_END (bb), REG_EH_REGION, NULL_RTX))
|
||
{
|
||
error ("missing REG_EH_REGION note at the end of bb %i", bb->index);
|
||
err = 1;
|
||
}
|
||
if (n_eh > 1)
|
||
{
|
||
error ("too many exception handling edges in bb %i", bb->index);
|
||
err = 1;
|
||
}
|
||
if (n_branch
|
||
&& (!JUMP_P (BB_END (bb))
|
||
|| (n_branch > 1 && (any_uncondjump_p (BB_END (bb))
|
||
|| any_condjump_p (BB_END (bb))))))
|
||
{
|
||
error ("too many outgoing branch edges from bb %i", bb->index);
|
||
err = 1;
|
||
}
|
||
if (n_fallthru && any_uncondjump_p (BB_END (bb)))
|
||
{
|
||
error ("fallthru edge after unconditional jump in bb %i", bb->index);
|
||
err = 1;
|
||
}
|
||
if (n_branch != 1 && any_uncondjump_p (BB_END (bb)))
|
||
{
|
||
error ("wrong number of branch edges after unconditional jump"
|
||
" in bb %i", bb->index);
|
||
err = 1;
|
||
}
|
||
if (n_branch != 1 && any_condjump_p (BB_END (bb))
|
||
&& JUMP_LABEL (BB_END (bb)) != BB_HEAD (fallthru->dest))
|
||
{
|
||
error ("wrong amount of branch edges after conditional jump"
|
||
" in bb %i", bb->index);
|
||
err = 1;
|
||
}
|
||
if (n_abnormal_call && !CALL_P (BB_END (bb)))
|
||
{
|
||
error ("abnormal call edges for non-call insn in bb %i", bb->index);
|
||
err = 1;
|
||
}
|
||
if (n_sibcall && !CALL_P (BB_END (bb)))
|
||
{
|
||
error ("sibcall edges for non-call insn in bb %i", bb->index);
|
||
err = 1;
|
||
}
|
||
if (n_abnormal > n_eh
|
||
&& !(CALL_P (BB_END (bb))
|
||
&& n_abnormal == n_abnormal_call + n_sibcall)
|
||
&& (!JUMP_P (BB_END (bb))
|
||
|| any_condjump_p (BB_END (bb))
|
||
|| any_uncondjump_p (BB_END (bb))))
|
||
{
|
||
error ("abnormal edges for no purpose in bb %i", bb->index);
|
||
err = 1;
|
||
}
|
||
}
|
||
|
||
/* If there are partitions, do a sanity check on them: A basic block in
|
||
a cold partition cannot dominate a basic block in a hot partition. */
|
||
if (crtl->has_bb_partition && !err)
|
||
{
|
||
vec<basic_block> bbs_to_fix = find_partition_fixes (true);
|
||
err = !bbs_to_fix.is_empty ();
|
||
}
|
||
|
||
/* Clean up. */
|
||
return err;
|
||
}
|
||
|
||
/* Checks on the instructions within blocks. Currently checks that each
|
||
block starts with a basic block note, and that basic block notes and
|
||
control flow jumps are not found in the middle of the block. */
|
||
|
||
static int
|
||
rtl_verify_bb_insns (void)
|
||
{
|
||
rtx_insn *x;
|
||
int err = 0;
|
||
basic_block bb;
|
||
|
||
FOR_EACH_BB_REVERSE_FN (bb, cfun)
|
||
{
|
||
/* Now check the header of basic
|
||
block. It ought to contain optional CODE_LABEL followed
|
||
by NOTE_BASIC_BLOCK. */
|
||
x = BB_HEAD (bb);
|
||
if (LABEL_P (x))
|
||
{
|
||
if (BB_END (bb) == x)
|
||
{
|
||
error ("NOTE_INSN_BASIC_BLOCK is missing for block %d",
|
||
bb->index);
|
||
err = 1;
|
||
}
|
||
|
||
x = NEXT_INSN (x);
|
||
}
|
||
|
||
if (!NOTE_INSN_BASIC_BLOCK_P (x) || NOTE_BASIC_BLOCK (x) != bb)
|
||
{
|
||
error ("NOTE_INSN_BASIC_BLOCK is missing for block %d",
|
||
bb->index);
|
||
err = 1;
|
||
}
|
||
|
||
if (BB_END (bb) == x)
|
||
/* Do checks for empty blocks here. */
|
||
;
|
||
else
|
||
for (x = NEXT_INSN (x); x; x = NEXT_INSN (x))
|
||
{
|
||
if (NOTE_INSN_BASIC_BLOCK_P (x))
|
||
{
|
||
error ("NOTE_INSN_BASIC_BLOCK %d in middle of basic block %d",
|
||
INSN_UID (x), bb->index);
|
||
err = 1;
|
||
}
|
||
|
||
if (x == BB_END (bb))
|
||
break;
|
||
|
||
if (control_flow_insn_p (x))
|
||
{
|
||
error ("in basic block %d:", bb->index);
|
||
fatal_insn ("flow control insn inside a basic block", x);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Clean up. */
|
||
return err;
|
||
}
|
||
|
||
/* Verify that block pointers for instructions in basic blocks, headers and
|
||
footers are set appropriately. */
|
||
|
||
static int
|
||
rtl_verify_bb_pointers (void)
|
||
{
|
||
int err = 0;
|
||
basic_block bb;
|
||
|
||
/* Check the general integrity of the basic blocks. */
|
||
FOR_EACH_BB_REVERSE_FN (bb, cfun)
|
||
{
|
||
rtx_insn *insn;
|
||
|
||
if (!(bb->flags & BB_RTL))
|
||
{
|
||
error ("BB_RTL flag not set for block %d", bb->index);
|
||
err = 1;
|
||
}
|
||
|
||
FOR_BB_INSNS (bb, insn)
|
||
if (BLOCK_FOR_INSN (insn) != bb)
|
||
{
|
||
error ("insn %d basic block pointer is %d, should be %d",
|
||
INSN_UID (insn),
|
||
BLOCK_FOR_INSN (insn) ? BLOCK_FOR_INSN (insn)->index : 0,
|
||
bb->index);
|
||
err = 1;
|
||
}
|
||
|
||
for (insn = BB_HEADER (bb); insn; insn = NEXT_INSN (insn))
|
||
if (!BARRIER_P (insn)
|
||
&& BLOCK_FOR_INSN (insn) != NULL)
|
||
{
|
||
error ("insn %d in header of bb %d has non-NULL basic block",
|
||
INSN_UID (insn), bb->index);
|
||
err = 1;
|
||
}
|
||
for (insn = BB_FOOTER (bb); insn; insn = NEXT_INSN (insn))
|
||
if (!BARRIER_P (insn)
|
||
&& BLOCK_FOR_INSN (insn) != NULL)
|
||
{
|
||
error ("insn %d in footer of bb %d has non-NULL basic block",
|
||
INSN_UID (insn), bb->index);
|
||
err = 1;
|
||
}
|
||
}
|
||
|
||
/* Clean up. */
|
||
return err;
|
||
}
|
||
|
||
/* Verify the CFG and RTL consistency common for both underlying RTL and
|
||
cfglayout RTL.
|
||
|
||
Currently it does following checks:
|
||
|
||
- overlapping of basic blocks
|
||
- insns with wrong BLOCK_FOR_INSN pointers
|
||
- headers of basic blocks (the NOTE_INSN_BASIC_BLOCK note)
|
||
- tails of basic blocks (ensure that boundary is necessary)
|
||
- scans body of the basic block for JUMP_INSN, CODE_LABEL
|
||
and NOTE_INSN_BASIC_BLOCK
|
||
- verify that no fall_thru edge crosses hot/cold partition boundaries
|
||
- verify that there are no pending RTL branch predictions
|
||
- verify that hot blocks are not dominated by cold blocks
|
||
|
||
In future it can be extended check a lot of other stuff as well
|
||
(reachability of basic blocks, life information, etc. etc.). */
|
||
|
||
static int
|
||
rtl_verify_flow_info_1 (void)
|
||
{
|
||
int err = 0;
|
||
|
||
err |= rtl_verify_bb_pointers ();
|
||
|
||
err |= rtl_verify_bb_insns ();
|
||
|
||
err |= rtl_verify_edges ();
|
||
|
||
return err;
|
||
}
|
||
|
||
/* Walk the instruction chain and verify that bb head/end pointers
|
||
are correct, and that instructions are in exactly one bb and have
|
||
correct block pointers. */
|
||
|
||
static int
|
||
rtl_verify_bb_insn_chain (void)
|
||
{
|
||
basic_block bb;
|
||
int err = 0;
|
||
rtx_insn *x;
|
||
rtx_insn *last_head = get_last_insn ();
|
||
basic_block *bb_info;
|
||
const int max_uid = get_max_uid ();
|
||
|
||
bb_info = XCNEWVEC (basic_block, max_uid);
|
||
|
||
FOR_EACH_BB_REVERSE_FN (bb, cfun)
|
||
{
|
||
rtx_insn *head = BB_HEAD (bb);
|
||
rtx_insn *end = BB_END (bb);
|
||
|
||
for (x = last_head; x != NULL_RTX; x = PREV_INSN (x))
|
||
{
|
||
/* Verify the end of the basic block is in the INSN chain. */
|
||
if (x == end)
|
||
break;
|
||
|
||
/* And that the code outside of basic blocks has NULL bb field. */
|
||
if (!BARRIER_P (x)
|
||
&& BLOCK_FOR_INSN (x) != NULL)
|
||
{
|
||
error ("insn %d outside of basic blocks has non-NULL bb field",
|
||
INSN_UID (x));
|
||
err = 1;
|
||
}
|
||
}
|
||
|
||
if (!x)
|
||
{
|
||
error ("end insn %d for block %d not found in the insn stream",
|
||
INSN_UID (end), bb->index);
|
||
err = 1;
|
||
}
|
||
|
||
/* Work backwards from the end to the head of the basic block
|
||
to verify the head is in the RTL chain. */
|
||
for (; x != NULL_RTX; x = PREV_INSN (x))
|
||
{
|
||
/* While walking over the insn chain, verify insns appear
|
||
in only one basic block. */
|
||
if (bb_info[INSN_UID (x)] != NULL)
|
||
{
|
||
error ("insn %d is in multiple basic blocks (%d and %d)",
|
||
INSN_UID (x), bb->index, bb_info[INSN_UID (x)]->index);
|
||
err = 1;
|
||
}
|
||
|
||
bb_info[INSN_UID (x)] = bb;
|
||
|
||
if (x == head)
|
||
break;
|
||
}
|
||
if (!x)
|
||
{
|
||
error ("head insn %d for block %d not found in the insn stream",
|
||
INSN_UID (head), bb->index);
|
||
err = 1;
|
||
}
|
||
|
||
last_head = PREV_INSN (x);
|
||
}
|
||
|
||
for (x = last_head; x != NULL_RTX; x = PREV_INSN (x))
|
||
{
|
||
/* Check that the code before the first basic block has NULL
|
||
bb field. */
|
||
if (!BARRIER_P (x)
|
||
&& BLOCK_FOR_INSN (x) != NULL)
|
||
{
|
||
error ("insn %d outside of basic blocks has non-NULL bb field",
|
||
INSN_UID (x));
|
||
err = 1;
|
||
}
|
||
}
|
||
free (bb_info);
|
||
|
||
return err;
|
||
}
|
||
|
||
/* Verify that fallthru edges point to adjacent blocks in layout order and
|
||
that barriers exist after non-fallthru blocks. */
|
||
|
||
static int
|
||
rtl_verify_fallthru (void)
|
||
{
|
||
basic_block bb;
|
||
int err = 0;
|
||
|
||
FOR_EACH_BB_REVERSE_FN (bb, cfun)
|
||
{
|
||
edge e;
|
||
|
||
e = find_fallthru_edge (bb->succs);
|
||
if (!e)
|
||
{
|
||
rtx_insn *insn;
|
||
|
||
/* Ensure existence of barrier in BB with no fallthru edges. */
|
||
for (insn = NEXT_INSN (BB_END (bb)); ; insn = NEXT_INSN (insn))
|
||
{
|
||
if (!insn || NOTE_INSN_BASIC_BLOCK_P (insn))
|
||
{
|
||
error ("missing barrier after block %i", bb->index);
|
||
err = 1;
|
||
break;
|
||
}
|
||
if (BARRIER_P (insn))
|
||
break;
|
||
}
|
||
}
|
||
else if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
|
||
&& e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
|
||
{
|
||
rtx_insn *insn;
|
||
|
||
if (e->src->next_bb != e->dest)
|
||
{
|
||
error
|
||
("verify_flow_info: Incorrect blocks for fallthru %i->%i",
|
||
e->src->index, e->dest->index);
|
||
err = 1;
|
||
}
|
||
else
|
||
for (insn = NEXT_INSN (BB_END (e->src)); insn != BB_HEAD (e->dest);
|
||
insn = NEXT_INSN (insn))
|
||
if (BARRIER_P (insn) || INSN_P (insn))
|
||
{
|
||
error ("verify_flow_info: Incorrect fallthru %i->%i",
|
||
e->src->index, e->dest->index);
|
||
fatal_insn ("wrong insn in the fallthru edge", insn);
|
||
err = 1;
|
||
}
|
||
}
|
||
}
|
||
|
||
return err;
|
||
}
|
||
|
||
/* Verify that blocks are laid out in consecutive order. While walking the
|
||
instructions, verify that all expected instructions are inside the basic
|
||
blocks, and that all returns are followed by barriers. */
|
||
|
||
static int
|
||
rtl_verify_bb_layout (void)
|
||
{
|
||
basic_block bb;
|
||
int err = 0;
|
||
rtx_insn *x;
|
||
int num_bb_notes;
|
||
rtx_insn * const rtx_first = get_insns ();
|
||
basic_block last_bb_seen = ENTRY_BLOCK_PTR_FOR_FN (cfun), curr_bb = NULL;
|
||
|
||
num_bb_notes = 0;
|
||
last_bb_seen = ENTRY_BLOCK_PTR_FOR_FN (cfun);
|
||
|
||
for (x = rtx_first; x; x = NEXT_INSN (x))
|
||
{
|
||
if (NOTE_INSN_BASIC_BLOCK_P (x))
|
||
{
|
||
bb = NOTE_BASIC_BLOCK (x);
|
||
|
||
num_bb_notes++;
|
||
if (bb != last_bb_seen->next_bb)
|
||
internal_error ("basic blocks not laid down consecutively");
|
||
|
||
curr_bb = last_bb_seen = bb;
|
||
}
|
||
|
||
if (!curr_bb)
|
||
{
|
||
switch (GET_CODE (x))
|
||
{
|
||
case BARRIER:
|
||
case NOTE:
|
||
break;
|
||
|
||
case CODE_LABEL:
|
||
/* An ADDR_VEC is placed outside any basic block. */
|
||
if (NEXT_INSN (x)
|
||
&& JUMP_TABLE_DATA_P (NEXT_INSN (x)))
|
||
x = NEXT_INSN (x);
|
||
|
||
/* But in any case, non-deletable labels can appear anywhere. */
|
||
break;
|
||
|
||
default:
|
||
fatal_insn ("insn outside basic block", x);
|
||
}
|
||
}
|
||
|
||
if (JUMP_P (x)
|
||
&& returnjump_p (x) && ! condjump_p (x)
|
||
&& ! (next_nonnote_insn (x) && BARRIER_P (next_nonnote_insn (x))))
|
||
fatal_insn ("return not followed by barrier", x);
|
||
|
||
if (curr_bb && x == BB_END (curr_bb))
|
||
curr_bb = NULL;
|
||
}
|
||
|
||
if (num_bb_notes != n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS)
|
||
internal_error
|
||
("number of bb notes in insn chain (%d) != n_basic_blocks (%d)",
|
||
num_bb_notes, n_basic_blocks_for_fn (cfun));
|
||
|
||
return err;
|
||
}
|
||
|
||
/* Verify the CFG and RTL consistency common for both underlying RTL and
|
||
cfglayout RTL, plus consistency checks specific to linearized RTL mode.
|
||
|
||
Currently it does following checks:
|
||
- all checks of rtl_verify_flow_info_1
|
||
- test head/end pointers
|
||
- check that blocks are laid out in consecutive order
|
||
- check that all insns are in the basic blocks
|
||
(except the switch handling code, barriers and notes)
|
||
- check that all returns are followed by barriers
|
||
- check that all fallthru edge points to the adjacent blocks
|
||
- verify that there is a single hot/cold partition boundary after bbro */
|
||
|
||
static int
|
||
rtl_verify_flow_info (void)
|
||
{
|
||
int err = 0;
|
||
|
||
err |= rtl_verify_flow_info_1 ();
|
||
|
||
err |= rtl_verify_bb_insn_chain ();
|
||
|
||
err |= rtl_verify_fallthru ();
|
||
|
||
err |= rtl_verify_bb_layout ();
|
||
|
||
err |= verify_hot_cold_block_grouping ();
|
||
|
||
return err;
|
||
}
|
||
|
||
/* Assume that the preceding pass has possibly eliminated jump instructions
|
||
or converted the unconditional jumps. Eliminate the edges from CFG.
|
||
Return true if any edges are eliminated. */
|
||
|
||
bool
|
||
purge_dead_edges (basic_block bb)
|
||
{
|
||
edge e;
|
||
rtx_insn *insn = BB_END (bb);
|
||
rtx note;
|
||
bool purged = false;
|
||
bool found;
|
||
edge_iterator ei;
|
||
|
||
if (DEBUG_INSN_P (insn) && insn != BB_HEAD (bb))
|
||
do
|
||
insn = PREV_INSN (insn);
|
||
while ((DEBUG_INSN_P (insn) || NOTE_P (insn)) && insn != BB_HEAD (bb));
|
||
|
||
/* If this instruction cannot trap, remove REG_EH_REGION notes. */
|
||
if (NONJUMP_INSN_P (insn)
|
||
&& (note = find_reg_note (insn, REG_EH_REGION, NULL)))
|
||
{
|
||
rtx eqnote;
|
||
|
||
if (! may_trap_p (PATTERN (insn))
|
||
|| ((eqnote = find_reg_equal_equiv_note (insn))
|
||
&& ! may_trap_p (XEXP (eqnote, 0))))
|
||
remove_note (insn, note);
|
||
}
|
||
|
||
/* Cleanup abnormal edges caused by exceptions or non-local gotos. */
|
||
for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
|
||
{
|
||
bool remove = false;
|
||
|
||
/* There are three types of edges we need to handle correctly here: EH
|
||
edges, abnormal call EH edges, and abnormal call non-EH edges. The
|
||
latter can appear when nonlocal gotos are used. */
|
||
if (e->flags & EDGE_ABNORMAL_CALL)
|
||
{
|
||
if (!CALL_P (insn))
|
||
remove = true;
|
||
else if (can_nonlocal_goto (insn))
|
||
;
|
||
else if ((e->flags & EDGE_EH) && can_throw_internal (insn))
|
||
;
|
||
else if (flag_tm && find_reg_note (insn, REG_TM, NULL))
|
||
;
|
||
else
|
||
remove = true;
|
||
}
|
||
else if (e->flags & EDGE_EH)
|
||
remove = !can_throw_internal (insn);
|
||
|
||
if (remove)
|
||
{
|
||
remove_edge (e);
|
||
df_set_bb_dirty (bb);
|
||
purged = true;
|
||
}
|
||
else
|
||
ei_next (&ei);
|
||
}
|
||
|
||
if (JUMP_P (insn))
|
||
{
|
||
rtx note;
|
||
edge b,f;
|
||
edge_iterator ei;
|
||
|
||
/* We do care only about conditional jumps and simplejumps. */
|
||
if (!any_condjump_p (insn)
|
||
&& !returnjump_p (insn)
|
||
&& !simplejump_p (insn))
|
||
return purged;
|
||
|
||
/* Branch probability/prediction notes are defined only for
|
||
condjumps. We've possibly turned condjump into simplejump. */
|
||
if (simplejump_p (insn))
|
||
{
|
||
note = find_reg_note (insn, REG_BR_PROB, NULL);
|
||
if (note)
|
||
remove_note (insn, note);
|
||
while ((note = find_reg_note (insn, REG_BR_PRED, NULL)))
|
||
remove_note (insn, note);
|
||
}
|
||
|
||
for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
|
||
{
|
||
/* Avoid abnormal flags to leak from computed jumps turned
|
||
into simplejumps. */
|
||
|
||
e->flags &= ~EDGE_ABNORMAL;
|
||
|
||
/* See if this edge is one we should keep. */
|
||
if ((e->flags & EDGE_FALLTHRU) && any_condjump_p (insn))
|
||
/* A conditional jump can fall through into the next
|
||
block, so we should keep the edge. */
|
||
{
|
||
ei_next (&ei);
|
||
continue;
|
||
}
|
||
else if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
|
||
&& BB_HEAD (e->dest) == JUMP_LABEL (insn))
|
||
/* If the destination block is the target of the jump,
|
||
keep the edge. */
|
||
{
|
||
ei_next (&ei);
|
||
continue;
|
||
}
|
||
else if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
|
||
&& returnjump_p (insn))
|
||
/* If the destination block is the exit block, and this
|
||
instruction is a return, then keep the edge. */
|
||
{
|
||
ei_next (&ei);
|
||
continue;
|
||
}
|
||
else if ((e->flags & EDGE_EH) && can_throw_internal (insn))
|
||
/* Keep the edges that correspond to exceptions thrown by
|
||
this instruction and rematerialize the EDGE_ABNORMAL
|
||
flag we just cleared above. */
|
||
{
|
||
e->flags |= EDGE_ABNORMAL;
|
||
ei_next (&ei);
|
||
continue;
|
||
}
|
||
|
||
/* We do not need this edge. */
|
||
df_set_bb_dirty (bb);
|
||
purged = true;
|
||
remove_edge (e);
|
||
}
|
||
|
||
if (EDGE_COUNT (bb->succs) == 0 || !purged)
|
||
return purged;
|
||
|
||
if (dump_file)
|
||
fprintf (dump_file, "Purged edges from bb %i\n", bb->index);
|
||
|
||
if (!optimize)
|
||
return purged;
|
||
|
||
/* Redistribute probabilities. */
|
||
if (single_succ_p (bb))
|
||
{
|
||
single_succ_edge (bb)->probability = REG_BR_PROB_BASE;
|
||
single_succ_edge (bb)->count = bb->count;
|
||
}
|
||
else
|
||
{
|
||
note = find_reg_note (insn, REG_BR_PROB, NULL);
|
||
if (!note)
|
||
return purged;
|
||
|
||
b = BRANCH_EDGE (bb);
|
||
f = FALLTHRU_EDGE (bb);
|
||
b->probability = XINT (note, 0);
|
||
f->probability = REG_BR_PROB_BASE - b->probability;
|
||
/* Update these to use GCOV_COMPUTE_SCALE. */
|
||
b->count = bb->count * b->probability / REG_BR_PROB_BASE;
|
||
f->count = bb->count * f->probability / REG_BR_PROB_BASE;
|
||
}
|
||
|
||
return purged;
|
||
}
|
||
else if (CALL_P (insn) && SIBLING_CALL_P (insn))
|
||
{
|
||
/* First, there should not be any EH or ABCALL edges resulting
|
||
from non-local gotos and the like. If there were, we shouldn't
|
||
have created the sibcall in the first place. Second, there
|
||
should of course never have been a fallthru edge. */
|
||
gcc_assert (single_succ_p (bb));
|
||
gcc_assert (single_succ_edge (bb)->flags
|
||
== (EDGE_SIBCALL | EDGE_ABNORMAL));
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* If we don't see a jump insn, we don't know exactly why the block would
|
||
have been broken at this point. Look for a simple, non-fallthru edge,
|
||
as these are only created by conditional branches. If we find such an
|
||
edge we know that there used to be a jump here and can then safely
|
||
remove all non-fallthru edges. */
|
||
found = false;
|
||
FOR_EACH_EDGE (e, ei, bb->succs)
|
||
if (! (e->flags & (EDGE_COMPLEX | EDGE_FALLTHRU)))
|
||
{
|
||
found = true;
|
||
break;
|
||
}
|
||
|
||
if (!found)
|
||
return purged;
|
||
|
||
/* Remove all but the fake and fallthru edges. The fake edge may be
|
||
the only successor for this block in the case of noreturn
|
||
calls. */
|
||
for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
|
||
{
|
||
if (!(e->flags & (EDGE_FALLTHRU | EDGE_FAKE)))
|
||
{
|
||
df_set_bb_dirty (bb);
|
||
remove_edge (e);
|
||
purged = true;
|
||
}
|
||
else
|
||
ei_next (&ei);
|
||
}
|
||
|
||
gcc_assert (single_succ_p (bb));
|
||
|
||
single_succ_edge (bb)->probability = REG_BR_PROB_BASE;
|
||
single_succ_edge (bb)->count = bb->count;
|
||
|
||
if (dump_file)
|
||
fprintf (dump_file, "Purged non-fallthru edges from bb %i\n",
|
||
bb->index);
|
||
return purged;
|
||
}
|
||
|
||
/* Search all basic blocks for potentially dead edges and purge them. Return
|
||
true if some edge has been eliminated. */
|
||
|
||
bool
|
||
purge_all_dead_edges (void)
|
||
{
|
||
int purged = false;
|
||
basic_block bb;
|
||
|
||
FOR_EACH_BB_FN (bb, cfun)
|
||
{
|
||
bool purged_here = purge_dead_edges (bb);
|
||
|
||
purged |= purged_here;
|
||
}
|
||
|
||
return purged;
|
||
}
|
||
|
||
/* This is used by a few passes that emit some instructions after abnormal
|
||
calls, moving the basic block's end, while they in fact do want to emit
|
||
them on the fallthru edge. Look for abnormal call edges, find backward
|
||
the call in the block and insert the instructions on the edge instead.
|
||
|
||
Similarly, handle instructions throwing exceptions internally.
|
||
|
||
Return true when instructions have been found and inserted on edges. */
|
||
|
||
bool
|
||
fixup_abnormal_edges (void)
|
||
{
|
||
bool inserted = false;
|
||
basic_block bb;
|
||
|
||
FOR_EACH_BB_FN (bb, cfun)
|
||
{
|
||
edge e;
|
||
edge_iterator ei;
|
||
|
||
/* Look for cases we are interested in - calls or instructions causing
|
||
exceptions. */
|
||
FOR_EACH_EDGE (e, ei, bb->succs)
|
||
if ((e->flags & EDGE_ABNORMAL_CALL)
|
||
|| ((e->flags & (EDGE_ABNORMAL | EDGE_EH))
|
||
== (EDGE_ABNORMAL | EDGE_EH)))
|
||
break;
|
||
|
||
if (e && !CALL_P (BB_END (bb)) && !can_throw_internal (BB_END (bb)))
|
||
{
|
||
rtx_insn *insn;
|
||
|
||
/* Get past the new insns generated. Allow notes, as the insns
|
||
may be already deleted. */
|
||
insn = BB_END (bb);
|
||
while ((NONJUMP_INSN_P (insn) || NOTE_P (insn))
|
||
&& !can_throw_internal (insn)
|
||
&& insn != BB_HEAD (bb))
|
||
insn = PREV_INSN (insn);
|
||
|
||
if (CALL_P (insn) || can_throw_internal (insn))
|
||
{
|
||
rtx_insn *stop, *next;
|
||
|
||
e = find_fallthru_edge (bb->succs);
|
||
|
||
stop = NEXT_INSN (BB_END (bb));
|
||
BB_END (bb) = insn;
|
||
|
||
for (insn = NEXT_INSN (insn); insn != stop; insn = next)
|
||
{
|
||
next = NEXT_INSN (insn);
|
||
if (INSN_P (insn))
|
||
{
|
||
delete_insn (insn);
|
||
|
||
/* Sometimes there's still the return value USE.
|
||
If it's placed after a trapping call (i.e. that
|
||
call is the last insn anyway), we have no fallthru
|
||
edge. Simply delete this use and don't try to insert
|
||
on the non-existent edge. */
|
||
if (GET_CODE (PATTERN (insn)) != USE)
|
||
{
|
||
/* We're not deleting it, we're moving it. */
|
||
insn->set_undeleted ();
|
||
SET_PREV_INSN (insn) = NULL_RTX;
|
||
SET_NEXT_INSN (insn) = NULL_RTX;
|
||
|
||
insert_insn_on_edge (insn, e);
|
||
inserted = true;
|
||
}
|
||
}
|
||
else if (!BARRIER_P (insn))
|
||
set_block_for_insn (insn, NULL);
|
||
}
|
||
}
|
||
|
||
/* It may be that we don't find any trapping insn. In this
|
||
case we discovered quite late that the insn that had been
|
||
marked as can_throw_internal in fact couldn't trap at all.
|
||
So we should in fact delete the EH edges out of the block. */
|
||
else
|
||
purge_dead_edges (bb);
|
||
}
|
||
}
|
||
|
||
return inserted;
|
||
}
|
||
|
||
/* Cut the insns from FIRST to LAST out of the insns stream. */
|
||
|
||
rtx_insn *
|
||
unlink_insn_chain (rtx_insn *first, rtx_insn *last)
|
||
{
|
||
rtx_insn *prevfirst = PREV_INSN (first);
|
||
rtx_insn *nextlast = NEXT_INSN (last);
|
||
|
||
SET_PREV_INSN (first) = NULL;
|
||
SET_NEXT_INSN (last) = NULL;
|
||
if (prevfirst)
|
||
SET_NEXT_INSN (prevfirst) = nextlast;
|
||
if (nextlast)
|
||
SET_PREV_INSN (nextlast) = prevfirst;
|
||
else
|
||
set_last_insn (prevfirst);
|
||
if (!prevfirst)
|
||
set_first_insn (nextlast);
|
||
return first;
|
||
}
|
||
|
||
/* Skip over inter-block insns occurring after BB which are typically
|
||
associated with BB (e.g., barriers). If there are any such insns,
|
||
we return the last one. Otherwise, we return the end of BB. */
|
||
|
||
static rtx_insn *
|
||
skip_insns_after_block (basic_block bb)
|
||
{
|
||
rtx_insn *insn, *last_insn, *next_head, *prev;
|
||
|
||
next_head = NULL;
|
||
if (bb->next_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
|
||
next_head = BB_HEAD (bb->next_bb);
|
||
|
||
for (last_insn = insn = BB_END (bb); (insn = NEXT_INSN (insn)) != 0; )
|
||
{
|
||
if (insn == next_head)
|
||
break;
|
||
|
||
switch (GET_CODE (insn))
|
||
{
|
||
case BARRIER:
|
||
last_insn = insn;
|
||
continue;
|
||
|
||
case NOTE:
|
||
switch (NOTE_KIND (insn))
|
||
{
|
||
case NOTE_INSN_BLOCK_END:
|
||
gcc_unreachable ();
|
||
continue;
|
||
default:
|
||
continue;
|
||
break;
|
||
}
|
||
break;
|
||
|
||
case CODE_LABEL:
|
||
if (NEXT_INSN (insn)
|
||
&& JUMP_TABLE_DATA_P (NEXT_INSN (insn)))
|
||
{
|
||
insn = NEXT_INSN (insn);
|
||
last_insn = insn;
|
||
continue;
|
||
}
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
break;
|
||
}
|
||
|
||
/* It is possible to hit contradictory sequence. For instance:
|
||
|
||
jump_insn
|
||
NOTE_INSN_BLOCK_BEG
|
||
barrier
|
||
|
||
Where barrier belongs to jump_insn, but the note does not. This can be
|
||
created by removing the basic block originally following
|
||
NOTE_INSN_BLOCK_BEG. In such case reorder the notes. */
|
||
|
||
for (insn = last_insn; insn != BB_END (bb); insn = prev)
|
||
{
|
||
prev = PREV_INSN (insn);
|
||
if (NOTE_P (insn))
|
||
switch (NOTE_KIND (insn))
|
||
{
|
||
case NOTE_INSN_BLOCK_END:
|
||
gcc_unreachable ();
|
||
break;
|
||
case NOTE_INSN_DELETED:
|
||
case NOTE_INSN_DELETED_LABEL:
|
||
case NOTE_INSN_DELETED_DEBUG_LABEL:
|
||
continue;
|
||
default:
|
||
reorder_insns (insn, insn, last_insn);
|
||
}
|
||
}
|
||
|
||
return last_insn;
|
||
}
|
||
|
||
/* Locate or create a label for a given basic block. */
|
||
|
||
static rtx_insn *
|
||
label_for_bb (basic_block bb)
|
||
{
|
||
rtx_insn *label = BB_HEAD (bb);
|
||
|
||
if (!LABEL_P (label))
|
||
{
|
||
if (dump_file)
|
||
fprintf (dump_file, "Emitting label for block %d\n", bb->index);
|
||
|
||
label = block_label (bb);
|
||
}
|
||
|
||
return label;
|
||
}
|
||
|
||
/* Locate the effective beginning and end of the insn chain for each
|
||
block, as defined by skip_insns_after_block above. */
|
||
|
||
static void
|
||
record_effective_endpoints (void)
|
||
{
|
||
rtx_insn *next_insn;
|
||
basic_block bb;
|
||
rtx_insn *insn;
|
||
|
||
for (insn = get_insns ();
|
||
insn
|
||
&& NOTE_P (insn)
|
||
&& NOTE_KIND (insn) != NOTE_INSN_BASIC_BLOCK;
|
||
insn = NEXT_INSN (insn))
|
||
continue;
|
||
/* No basic blocks at all? */
|
||
gcc_assert (insn);
|
||
|
||
if (PREV_INSN (insn))
|
||
cfg_layout_function_header =
|
||
unlink_insn_chain (get_insns (), PREV_INSN (insn));
|
||
else
|
||
cfg_layout_function_header = NULL;
|
||
|
||
next_insn = get_insns ();
|
||
FOR_EACH_BB_FN (bb, cfun)
|
||
{
|
||
rtx_insn *end;
|
||
|
||
if (PREV_INSN (BB_HEAD (bb)) && next_insn != BB_HEAD (bb))
|
||
BB_HEADER (bb) = unlink_insn_chain (next_insn,
|
||
PREV_INSN (BB_HEAD (bb)));
|
||
end = skip_insns_after_block (bb);
|
||
if (NEXT_INSN (BB_END (bb)) && BB_END (bb) != end)
|
||
BB_FOOTER (bb) = unlink_insn_chain (NEXT_INSN (BB_END (bb)), end);
|
||
next_insn = NEXT_INSN (BB_END (bb));
|
||
}
|
||
|
||
cfg_layout_function_footer = next_insn;
|
||
if (cfg_layout_function_footer)
|
||
cfg_layout_function_footer = unlink_insn_chain (cfg_layout_function_footer, get_last_insn ());
|
||
}
|
||
|
||
namespace {
|
||
|
||
const pass_data pass_data_into_cfg_layout_mode =
|
||
{
|
||
RTL_PASS, /* type */
|
||
"into_cfglayout", /* name */
|
||
OPTGROUP_NONE, /* optinfo_flags */
|
||
TV_CFG, /* tv_id */
|
||
0, /* properties_required */
|
||
PROP_cfglayout, /* properties_provided */
|
||
0, /* properties_destroyed */
|
||
0, /* todo_flags_start */
|
||
0, /* todo_flags_finish */
|
||
};
|
||
|
||
class pass_into_cfg_layout_mode : public rtl_opt_pass
|
||
{
|
||
public:
|
||
pass_into_cfg_layout_mode (gcc::context *ctxt)
|
||
: rtl_opt_pass (pass_data_into_cfg_layout_mode, ctxt)
|
||
{}
|
||
|
||
/* opt_pass methods: */
|
||
virtual unsigned int execute (function *)
|
||
{
|
||
cfg_layout_initialize (0);
|
||
return 0;
|
||
}
|
||
|
||
}; // class pass_into_cfg_layout_mode
|
||
|
||
} // anon namespace
|
||
|
||
rtl_opt_pass *
|
||
make_pass_into_cfg_layout_mode (gcc::context *ctxt)
|
||
{
|
||
return new pass_into_cfg_layout_mode (ctxt);
|
||
}
|
||
|
||
namespace {
|
||
|
||
const pass_data pass_data_outof_cfg_layout_mode =
|
||
{
|
||
RTL_PASS, /* type */
|
||
"outof_cfglayout", /* name */
|
||
OPTGROUP_NONE, /* optinfo_flags */
|
||
TV_CFG, /* tv_id */
|
||
0, /* properties_required */
|
||
0, /* properties_provided */
|
||
PROP_cfglayout, /* properties_destroyed */
|
||
0, /* todo_flags_start */
|
||
0, /* todo_flags_finish */
|
||
};
|
||
|
||
class pass_outof_cfg_layout_mode : public rtl_opt_pass
|
||
{
|
||
public:
|
||
pass_outof_cfg_layout_mode (gcc::context *ctxt)
|
||
: rtl_opt_pass (pass_data_outof_cfg_layout_mode, ctxt)
|
||
{}
|
||
|
||
/* opt_pass methods: */
|
||
virtual unsigned int execute (function *);
|
||
|
||
}; // class pass_outof_cfg_layout_mode
|
||
|
||
unsigned int
|
||
pass_outof_cfg_layout_mode::execute (function *fun)
|
||
{
|
||
basic_block bb;
|
||
|
||
FOR_EACH_BB_FN (bb, fun)
|
||
if (bb->next_bb != EXIT_BLOCK_PTR_FOR_FN (fun))
|
||
bb->aux = bb->next_bb;
|
||
|
||
cfg_layout_finalize ();
|
||
|
||
return 0;
|
||
}
|
||
|
||
} // anon namespace
|
||
|
||
rtl_opt_pass *
|
||
make_pass_outof_cfg_layout_mode (gcc::context *ctxt)
|
||
{
|
||
return new pass_outof_cfg_layout_mode (ctxt);
|
||
}
|
||
|
||
|
||
/* Link the basic blocks in the correct order, compacting the basic
|
||
block queue while at it. If STAY_IN_CFGLAYOUT_MODE is false, this
|
||
function also clears the basic block header and footer fields.
|
||
|
||
This function is usually called after a pass (e.g. tracer) finishes
|
||
some transformations while in cfglayout mode. The required sequence
|
||
of the basic blocks is in a linked list along the bb->aux field.
|
||
This functions re-links the basic block prev_bb and next_bb pointers
|
||
accordingly, and it compacts and renumbers the blocks.
|
||
|
||
FIXME: This currently works only for RTL, but the only RTL-specific
|
||
bits are the STAY_IN_CFGLAYOUT_MODE bits. The tracer pass was moved
|
||
to GIMPLE a long time ago, but it doesn't relink the basic block
|
||
chain. It could do that (to give better initial RTL) if this function
|
||
is made IR-agnostic (and moved to cfganal.c or cfg.c while at it). */
|
||
|
||
void
|
||
relink_block_chain (bool stay_in_cfglayout_mode)
|
||
{
|
||
basic_block bb, prev_bb;
|
||
int index;
|
||
|
||
/* Maybe dump the re-ordered sequence. */
|
||
if (dump_file)
|
||
{
|
||
fprintf (dump_file, "Reordered sequence:\n");
|
||
for (bb = ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb, index =
|
||
NUM_FIXED_BLOCKS;
|
||
bb;
|
||
bb = (basic_block) bb->aux, index++)
|
||
{
|
||
fprintf (dump_file, " %i ", index);
|
||
if (get_bb_original (bb))
|
||
fprintf (dump_file, "duplicate of %i ",
|
||
get_bb_original (bb)->index);
|
||
else if (forwarder_block_p (bb)
|
||
&& !LABEL_P (BB_HEAD (bb)))
|
||
fprintf (dump_file, "compensation ");
|
||
else
|
||
fprintf (dump_file, "bb %i ", bb->index);
|
||
fprintf (dump_file, " [%i]\n", bb->frequency);
|
||
}
|
||
}
|
||
|
||
/* Now reorder the blocks. */
|
||
prev_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
|
||
bb = ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb;
|
||
for (; bb; prev_bb = bb, bb = (basic_block) bb->aux)
|
||
{
|
||
bb->prev_bb = prev_bb;
|
||
prev_bb->next_bb = bb;
|
||
}
|
||
prev_bb->next_bb = EXIT_BLOCK_PTR_FOR_FN (cfun);
|
||
EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb = prev_bb;
|
||
|
||
/* Then, clean up the aux fields. */
|
||
FOR_ALL_BB_FN (bb, cfun)
|
||
{
|
||
bb->aux = NULL;
|
||
if (!stay_in_cfglayout_mode)
|
||
BB_HEADER (bb) = BB_FOOTER (bb) = NULL;
|
||
}
|
||
|
||
/* Maybe reset the original copy tables, they are not valid anymore
|
||
when we renumber the basic blocks in compact_blocks. If we are
|
||
are going out of cfglayout mode, don't re-allocate the tables. */
|
||
free_original_copy_tables ();
|
||
if (stay_in_cfglayout_mode)
|
||
initialize_original_copy_tables ();
|
||
|
||
/* Finally, put basic_block_info in the new order. */
|
||
compact_blocks ();
|
||
}
|
||
|
||
|
||
/* Given a reorder chain, rearrange the code to match. */
|
||
|
||
static void
|
||
fixup_reorder_chain (void)
|
||
{
|
||
basic_block bb;
|
||
rtx_insn *insn = NULL;
|
||
|
||
if (cfg_layout_function_header)
|
||
{
|
||
set_first_insn (cfg_layout_function_header);
|
||
insn = cfg_layout_function_header;
|
||
while (NEXT_INSN (insn))
|
||
insn = NEXT_INSN (insn);
|
||
}
|
||
|
||
/* First do the bulk reordering -- rechain the blocks without regard to
|
||
the needed changes to jumps and labels. */
|
||
|
||
for (bb = ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb; bb; bb = (basic_block)
|
||
bb->aux)
|
||
{
|
||
if (BB_HEADER (bb))
|
||
{
|
||
if (insn)
|
||
SET_NEXT_INSN (insn) = BB_HEADER (bb);
|
||
else
|
||
set_first_insn (BB_HEADER (bb));
|
||
SET_PREV_INSN (BB_HEADER (bb)) = insn;
|
||
insn = BB_HEADER (bb);
|
||
while (NEXT_INSN (insn))
|
||
insn = NEXT_INSN (insn);
|
||
}
|
||
if (insn)
|
||
SET_NEXT_INSN (insn) = BB_HEAD (bb);
|
||
else
|
||
set_first_insn (BB_HEAD (bb));
|
||
SET_PREV_INSN (BB_HEAD (bb)) = insn;
|
||
insn = BB_END (bb);
|
||
if (BB_FOOTER (bb))
|
||
{
|
||
SET_NEXT_INSN (insn) = BB_FOOTER (bb);
|
||
SET_PREV_INSN (BB_FOOTER (bb)) = insn;
|
||
while (NEXT_INSN (insn))
|
||
insn = NEXT_INSN (insn);
|
||
}
|
||
}
|
||
|
||
SET_NEXT_INSN (insn) = cfg_layout_function_footer;
|
||
if (cfg_layout_function_footer)
|
||
SET_PREV_INSN (cfg_layout_function_footer) = insn;
|
||
|
||
while (NEXT_INSN (insn))
|
||
insn = NEXT_INSN (insn);
|
||
|
||
set_last_insn (insn);
|
||
#ifdef ENABLE_CHECKING
|
||
verify_insn_chain ();
|
||
#endif
|
||
|
||
/* Now add jumps and labels as needed to match the blocks new
|
||
outgoing edges. */
|
||
|
||
for (bb = ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb; bb ; bb = (basic_block)
|
||
bb->aux)
|
||
{
|
||
edge e_fall, e_taken, e;
|
||
rtx_insn *bb_end_insn;
|
||
rtx ret_label = NULL_RTX;
|
||
basic_block nb;
|
||
edge_iterator ei;
|
||
|
||
if (EDGE_COUNT (bb->succs) == 0)
|
||
continue;
|
||
|
||
/* Find the old fallthru edge, and another non-EH edge for
|
||
a taken jump. */
|
||
e_taken = e_fall = NULL;
|
||
|
||
FOR_EACH_EDGE (e, ei, bb->succs)
|
||
if (e->flags & EDGE_FALLTHRU)
|
||
e_fall = e;
|
||
else if (! (e->flags & EDGE_EH))
|
||
e_taken = e;
|
||
|
||
bb_end_insn = BB_END (bb);
|
||
if (rtx_jump_insn *bb_end_jump = dyn_cast <rtx_jump_insn *> (bb_end_insn))
|
||
{
|
||
ret_label = JUMP_LABEL (bb_end_jump);
|
||
if (any_condjump_p (bb_end_jump))
|
||
{
|
||
/* This might happen if the conditional jump has side
|
||
effects and could therefore not be optimized away.
|
||
Make the basic block to end with a barrier in order
|
||
to prevent rtl_verify_flow_info from complaining. */
|
||
if (!e_fall)
|
||
{
|
||
gcc_assert (!onlyjump_p (bb_end_jump)
|
||
|| returnjump_p (bb_end_jump)
|
||
|| (e_taken->flags & EDGE_CROSSING));
|
||
emit_barrier_after (bb_end_jump);
|
||
continue;
|
||
}
|
||
|
||
/* If the old fallthru is still next, nothing to do. */
|
||
if (bb->aux == e_fall->dest
|
||
|| e_fall->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
|
||
continue;
|
||
|
||
/* The degenerated case of conditional jump jumping to the next
|
||
instruction can happen for jumps with side effects. We need
|
||
to construct a forwarder block and this will be done just
|
||
fine by force_nonfallthru below. */
|
||
if (!e_taken)
|
||
;
|
||
|
||
/* There is another special case: if *neither* block is next,
|
||
such as happens at the very end of a function, then we'll
|
||
need to add a new unconditional jump. Choose the taken
|
||
edge based on known or assumed probability. */
|
||
else if (bb->aux != e_taken->dest)
|
||
{
|
||
rtx note = find_reg_note (bb_end_jump, REG_BR_PROB, 0);
|
||
|
||
if (note
|
||
&& XINT (note, 0) < REG_BR_PROB_BASE / 2
|
||
&& invert_jump (bb_end_jump,
|
||
(e_fall->dest
|
||
== EXIT_BLOCK_PTR_FOR_FN (cfun)
|
||
? NULL_RTX
|
||
: label_for_bb (e_fall->dest)), 0))
|
||
{
|
||
e_fall->flags &= ~EDGE_FALLTHRU;
|
||
gcc_checking_assert (could_fall_through
|
||
(e_taken->src, e_taken->dest));
|
||
e_taken->flags |= EDGE_FALLTHRU;
|
||
update_br_prob_note (bb);
|
||
e = e_fall, e_fall = e_taken, e_taken = e;
|
||
}
|
||
}
|
||
|
||
/* If the "jumping" edge is a crossing edge, and the fall
|
||
through edge is non-crossing, leave things as they are. */
|
||
else if ((e_taken->flags & EDGE_CROSSING)
|
||
&& !(e_fall->flags & EDGE_CROSSING))
|
||
continue;
|
||
|
||
/* Otherwise we can try to invert the jump. This will
|
||
basically never fail, however, keep up the pretense. */
|
||
else if (invert_jump (bb_end_jump,
|
||
(e_fall->dest
|
||
== EXIT_BLOCK_PTR_FOR_FN (cfun)
|
||
? NULL_RTX
|
||
: label_for_bb (e_fall->dest)), 0))
|
||
{
|
||
e_fall->flags &= ~EDGE_FALLTHRU;
|
||
gcc_checking_assert (could_fall_through
|
||
(e_taken->src, e_taken->dest));
|
||
e_taken->flags |= EDGE_FALLTHRU;
|
||
update_br_prob_note (bb);
|
||
if (LABEL_NUSES (ret_label) == 0
|
||
&& single_pred_p (e_taken->dest))
|
||
delete_insn (ret_label);
|
||
continue;
|
||
}
|
||
}
|
||
else if (extract_asm_operands (PATTERN (bb_end_insn)) != NULL)
|
||
{
|
||
/* If the old fallthru is still next or if
|
||
asm goto doesn't have a fallthru (e.g. when followed by
|
||
__builtin_unreachable ()), nothing to do. */
|
||
if (! e_fall
|
||
|| bb->aux == e_fall->dest
|
||
|| e_fall->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
|
||
continue;
|
||
|
||
/* Otherwise we'll have to use the fallthru fixup below. */
|
||
}
|
||
else
|
||
{
|
||
/* Otherwise we have some return, switch or computed
|
||
jump. In the 99% case, there should not have been a
|
||
fallthru edge. */
|
||
gcc_assert (returnjump_p (bb_end_insn) || !e_fall);
|
||
continue;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* No fallthru implies a noreturn function with EH edges, or
|
||
something similarly bizarre. In any case, we don't need to
|
||
do anything. */
|
||
if (! e_fall)
|
||
continue;
|
||
|
||
/* If the fallthru block is still next, nothing to do. */
|
||
if (bb->aux == e_fall->dest)
|
||
continue;
|
||
|
||
/* A fallthru to exit block. */
|
||
if (e_fall->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
|
||
continue;
|
||
}
|
||
|
||
/* We got here if we need to add a new jump insn.
|
||
Note force_nonfallthru can delete E_FALL and thus we have to
|
||
save E_FALL->src prior to the call to force_nonfallthru. */
|
||
nb = force_nonfallthru_and_redirect (e_fall, e_fall->dest, ret_label);
|
||
if (nb)
|
||
{
|
||
nb->aux = bb->aux;
|
||
bb->aux = nb;
|
||
/* Don't process this new block. */
|
||
bb = nb;
|
||
}
|
||
}
|
||
|
||
relink_block_chain (/*stay_in_cfglayout_mode=*/false);
|
||
|
||
/* Annoying special case - jump around dead jumptables left in the code. */
|
||
FOR_EACH_BB_FN (bb, cfun)
|
||
{
|
||
edge e = find_fallthru_edge (bb->succs);
|
||
|
||
if (e && !can_fallthru (e->src, e->dest))
|
||
force_nonfallthru (e);
|
||
}
|
||
|
||
/* Ensure goto_locus from edges has some instructions with that locus
|
||
in RTL. */
|
||
if (!optimize)
|
||
FOR_EACH_BB_FN (bb, cfun)
|
||
{
|
||
edge e;
|
||
edge_iterator ei;
|
||
|
||
FOR_EACH_EDGE (e, ei, bb->succs)
|
||
if (LOCATION_LOCUS (e->goto_locus) != UNKNOWN_LOCATION
|
||
&& !(e->flags & EDGE_ABNORMAL))
|
||
{
|
||
edge e2;
|
||
edge_iterator ei2;
|
||
basic_block dest, nb;
|
||
rtx_insn *end;
|
||
|
||
insn = BB_END (e->src);
|
||
end = PREV_INSN (BB_HEAD (e->src));
|
||
while (insn != end
|
||
&& (!NONDEBUG_INSN_P (insn) || !INSN_HAS_LOCATION (insn)))
|
||
insn = PREV_INSN (insn);
|
||
if (insn != end
|
||
&& INSN_LOCATION (insn) == e->goto_locus)
|
||
continue;
|
||
if (simplejump_p (BB_END (e->src))
|
||
&& !INSN_HAS_LOCATION (BB_END (e->src)))
|
||
{
|
||
INSN_LOCATION (BB_END (e->src)) = e->goto_locus;
|
||
continue;
|
||
}
|
||
dest = e->dest;
|
||
if (dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
|
||
{
|
||
/* Non-fallthru edges to the exit block cannot be split. */
|
||
if (!(e->flags & EDGE_FALLTHRU))
|
||
continue;
|
||
}
|
||
else
|
||
{
|
||
insn = BB_HEAD (dest);
|
||
end = NEXT_INSN (BB_END (dest));
|
||
while (insn != end && !NONDEBUG_INSN_P (insn))
|
||
insn = NEXT_INSN (insn);
|
||
if (insn != end && INSN_HAS_LOCATION (insn)
|
||
&& INSN_LOCATION (insn) == e->goto_locus)
|
||
continue;
|
||
}
|
||
nb = split_edge (e);
|
||
if (!INSN_P (BB_END (nb)))
|
||
BB_END (nb) = emit_insn_after_noloc (gen_nop (), BB_END (nb),
|
||
nb);
|
||
INSN_LOCATION (BB_END (nb)) = e->goto_locus;
|
||
|
||
/* If there are other incoming edges to the destination block
|
||
with the same goto locus, redirect them to the new block as
|
||
well, this can prevent other such blocks from being created
|
||
in subsequent iterations of the loop. */
|
||
for (ei2 = ei_start (dest->preds); (e2 = ei_safe_edge (ei2)); )
|
||
if (LOCATION_LOCUS (e2->goto_locus) != UNKNOWN_LOCATION
|
||
&& !(e2->flags & (EDGE_ABNORMAL | EDGE_FALLTHRU))
|
||
&& e->goto_locus == e2->goto_locus)
|
||
redirect_edge_and_branch (e2, nb);
|
||
else
|
||
ei_next (&ei2);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Perform sanity checks on the insn chain.
|
||
1. Check that next/prev pointers are consistent in both the forward and
|
||
reverse direction.
|
||
2. Count insns in chain, going both directions, and check if equal.
|
||
3. Check that get_last_insn () returns the actual end of chain. */
|
||
|
||
DEBUG_FUNCTION void
|
||
verify_insn_chain (void)
|
||
{
|
||
rtx_insn *x, *prevx, *nextx;
|
||
int insn_cnt1, insn_cnt2;
|
||
|
||
for (prevx = NULL, insn_cnt1 = 1, x = get_insns ();
|
||
x != 0;
|
||
prevx = x, insn_cnt1++, x = NEXT_INSN (x))
|
||
gcc_assert (PREV_INSN (x) == prevx);
|
||
|
||
gcc_assert (prevx == get_last_insn ());
|
||
|
||
for (nextx = NULL, insn_cnt2 = 1, x = get_last_insn ();
|
||
x != 0;
|
||
nextx = x, insn_cnt2++, x = PREV_INSN (x))
|
||
gcc_assert (NEXT_INSN (x) == nextx);
|
||
|
||
gcc_assert (insn_cnt1 == insn_cnt2);
|
||
}
|
||
|
||
/* If we have assembler epilogues, the block falling through to exit must
|
||
be the last one in the reordered chain when we reach final. Ensure
|
||
that this condition is met. */
|
||
static void
|
||
fixup_fallthru_exit_predecessor (void)
|
||
{
|
||
edge e;
|
||
basic_block bb = NULL;
|
||
|
||
/* This transformation is not valid before reload, because we might
|
||
separate a call from the instruction that copies the return
|
||
value. */
|
||
gcc_assert (reload_completed);
|
||
|
||
e = find_fallthru_edge (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds);
|
||
if (e)
|
||
bb = e->src;
|
||
|
||
if (bb && bb->aux)
|
||
{
|
||
basic_block c = ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb;
|
||
|
||
/* If the very first block is the one with the fall-through exit
|
||
edge, we have to split that block. */
|
||
if (c == bb)
|
||
{
|
||
bb = split_block_after_labels (bb)->dest;
|
||
bb->aux = c->aux;
|
||
c->aux = bb;
|
||
BB_FOOTER (bb) = BB_FOOTER (c);
|
||
BB_FOOTER (c) = NULL;
|
||
}
|
||
|
||
while (c->aux != bb)
|
||
c = (basic_block) c->aux;
|
||
|
||
c->aux = bb->aux;
|
||
while (c->aux)
|
||
c = (basic_block) c->aux;
|
||
|
||
c->aux = bb;
|
||
bb->aux = NULL;
|
||
}
|
||
}
|
||
|
||
/* In case there are more than one fallthru predecessors of exit, force that
|
||
there is only one. */
|
||
|
||
static void
|
||
force_one_exit_fallthru (void)
|
||
{
|
||
edge e, predecessor = NULL;
|
||
bool more = false;
|
||
edge_iterator ei;
|
||
basic_block forwarder, bb;
|
||
|
||
FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
|
||
if (e->flags & EDGE_FALLTHRU)
|
||
{
|
||
if (predecessor == NULL)
|
||
predecessor = e;
|
||
else
|
||
{
|
||
more = true;
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (!more)
|
||
return;
|
||
|
||
/* Exit has several fallthru predecessors. Create a forwarder block for
|
||
them. */
|
||
forwarder = split_edge (predecessor);
|
||
for (ei = ei_start (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds);
|
||
(e = ei_safe_edge (ei)); )
|
||
{
|
||
if (e->src == forwarder
|
||
|| !(e->flags & EDGE_FALLTHRU))
|
||
ei_next (&ei);
|
||
else
|
||
redirect_edge_and_branch_force (e, forwarder);
|
||
}
|
||
|
||
/* Fix up the chain of blocks -- make FORWARDER immediately precede the
|
||
exit block. */
|
||
FOR_EACH_BB_FN (bb, cfun)
|
||
{
|
||
if (bb->aux == NULL && bb != forwarder)
|
||
{
|
||
bb->aux = forwarder;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Return true in case it is possible to duplicate the basic block BB. */
|
||
|
||
static bool
|
||
cfg_layout_can_duplicate_bb_p (const_basic_block bb)
|
||
{
|
||
/* Do not attempt to duplicate tablejumps, as we need to unshare
|
||
the dispatch table. This is difficult to do, as the instructions
|
||
computing jump destination may be hoisted outside the basic block. */
|
||
if (tablejump_p (BB_END (bb), NULL, NULL))
|
||
return false;
|
||
|
||
/* Do not duplicate blocks containing insns that can't be copied. */
|
||
if (targetm.cannot_copy_insn_p)
|
||
{
|
||
rtx_insn *insn = BB_HEAD (bb);
|
||
while (1)
|
||
{
|
||
if (INSN_P (insn) && targetm.cannot_copy_insn_p (insn))
|
||
return false;
|
||
if (insn == BB_END (bb))
|
||
break;
|
||
insn = NEXT_INSN (insn);
|
||
}
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
rtx_insn *
|
||
duplicate_insn_chain (rtx_insn *from, rtx_insn *to)
|
||
{
|
||
rtx_insn *insn, *next, *copy;
|
||
rtx_note *last;
|
||
|
||
/* Avoid updating of boundaries of previous basic block. The
|
||
note will get removed from insn stream in fixup. */
|
||
last = emit_note (NOTE_INSN_DELETED);
|
||
|
||
/* Create copy at the end of INSN chain. The chain will
|
||
be reordered later. */
|
||
for (insn = from; insn != NEXT_INSN (to); insn = NEXT_INSN (insn))
|
||
{
|
||
switch (GET_CODE (insn))
|
||
{
|
||
case DEBUG_INSN:
|
||
/* Don't duplicate label debug insns. */
|
||
if (TREE_CODE (INSN_VAR_LOCATION_DECL (insn)) == LABEL_DECL)
|
||
break;
|
||
/* FALLTHRU */
|
||
case INSN:
|
||
case CALL_INSN:
|
||
case JUMP_INSN:
|
||
copy = emit_copy_of_insn_after (insn, get_last_insn ());
|
||
if (JUMP_P (insn) && JUMP_LABEL (insn) != NULL_RTX
|
||
&& ANY_RETURN_P (JUMP_LABEL (insn)))
|
||
JUMP_LABEL (copy) = JUMP_LABEL (insn);
|
||
maybe_copy_prologue_epilogue_insn (insn, copy);
|
||
break;
|
||
|
||
case JUMP_TABLE_DATA:
|
||
/* Avoid copying of dispatch tables. We never duplicate
|
||
tablejumps, so this can hit only in case the table got
|
||
moved far from original jump.
|
||
Avoid copying following barrier as well if any
|
||
(and debug insns in between). */
|
||
for (next = NEXT_INSN (insn);
|
||
next != NEXT_INSN (to);
|
||
next = NEXT_INSN (next))
|
||
if (!DEBUG_INSN_P (next))
|
||
break;
|
||
if (next != NEXT_INSN (to) && BARRIER_P (next))
|
||
insn = next;
|
||
break;
|
||
|
||
case CODE_LABEL:
|
||
break;
|
||
|
||
case BARRIER:
|
||
emit_barrier ();
|
||
break;
|
||
|
||
case NOTE:
|
||
switch (NOTE_KIND (insn))
|
||
{
|
||
/* In case prologue is empty and function contain label
|
||
in first BB, we may want to copy the block. */
|
||
case NOTE_INSN_PROLOGUE_END:
|
||
|
||
case NOTE_INSN_DELETED:
|
||
case NOTE_INSN_DELETED_LABEL:
|
||
case NOTE_INSN_DELETED_DEBUG_LABEL:
|
||
/* No problem to strip these. */
|
||
case NOTE_INSN_FUNCTION_BEG:
|
||
/* There is always just single entry to function. */
|
||
case NOTE_INSN_BASIC_BLOCK:
|
||
/* We should only switch text sections once. */
|
||
case NOTE_INSN_SWITCH_TEXT_SECTIONS:
|
||
break;
|
||
|
||
case NOTE_INSN_EPILOGUE_BEG:
|
||
case NOTE_INSN_UPDATE_SJLJ_CONTEXT:
|
||
emit_note_copy (as_a <rtx_note *> (insn));
|
||
break;
|
||
|
||
default:
|
||
/* All other notes should have already been eliminated. */
|
||
gcc_unreachable ();
|
||
}
|
||
break;
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
}
|
||
insn = NEXT_INSN (last);
|
||
delete_insn (last);
|
||
return insn;
|
||
}
|
||
|
||
/* Create a duplicate of the basic block BB. */
|
||
|
||
static basic_block
|
||
cfg_layout_duplicate_bb (basic_block bb)
|
||
{
|
||
rtx_insn *insn;
|
||
basic_block new_bb;
|
||
|
||
insn = duplicate_insn_chain (BB_HEAD (bb), BB_END (bb));
|
||
new_bb = create_basic_block (insn,
|
||
insn ? get_last_insn () : NULL,
|
||
EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb);
|
||
|
||
BB_COPY_PARTITION (new_bb, bb);
|
||
if (BB_HEADER (bb))
|
||
{
|
||
insn = BB_HEADER (bb);
|
||
while (NEXT_INSN (insn))
|
||
insn = NEXT_INSN (insn);
|
||
insn = duplicate_insn_chain (BB_HEADER (bb), insn);
|
||
if (insn)
|
||
BB_HEADER (new_bb) = unlink_insn_chain (insn, get_last_insn ());
|
||
}
|
||
|
||
if (BB_FOOTER (bb))
|
||
{
|
||
insn = BB_FOOTER (bb);
|
||
while (NEXT_INSN (insn))
|
||
insn = NEXT_INSN (insn);
|
||
insn = duplicate_insn_chain (BB_FOOTER (bb), insn);
|
||
if (insn)
|
||
BB_FOOTER (new_bb) = unlink_insn_chain (insn, get_last_insn ());
|
||
}
|
||
|
||
return new_bb;
|
||
}
|
||
|
||
|
||
/* Main entry point to this module - initialize the datastructures for
|
||
CFG layout changes. It keeps LOOPS up-to-date if not null.
|
||
|
||
FLAGS is a set of additional flags to pass to cleanup_cfg(). */
|
||
|
||
void
|
||
cfg_layout_initialize (unsigned int flags)
|
||
{
|
||
rtx_insn_list *x;
|
||
basic_block bb;
|
||
|
||
/* Once bb partitioning is complete, cfg layout mode should not be
|
||
re-entered. Entering cfg layout mode may require fixups. As an
|
||
example, if edge forwarding performed when optimizing the cfg
|
||
layout required moving a block from the hot to the cold
|
||
section. This would create an illegal partitioning unless some
|
||
manual fixup was performed. */
|
||
gcc_assert (!(crtl->bb_reorder_complete
|
||
&& flag_reorder_blocks_and_partition));
|
||
|
||
initialize_original_copy_tables ();
|
||
|
||
cfg_layout_rtl_register_cfg_hooks ();
|
||
|
||
record_effective_endpoints ();
|
||
|
||
/* Make sure that the targets of non local gotos are marked. */
|
||
for (x = nonlocal_goto_handler_labels; x; x = x->next ())
|
||
{
|
||
bb = BLOCK_FOR_INSN (x->insn ());
|
||
bb->flags |= BB_NON_LOCAL_GOTO_TARGET;
|
||
}
|
||
|
||
cleanup_cfg (CLEANUP_CFGLAYOUT | flags);
|
||
}
|
||
|
||
/* Splits superblocks. */
|
||
void
|
||
break_superblocks (void)
|
||
{
|
||
sbitmap superblocks;
|
||
bool need = false;
|
||
basic_block bb;
|
||
|
||
superblocks = sbitmap_alloc (last_basic_block_for_fn (cfun));
|
||
bitmap_clear (superblocks);
|
||
|
||
FOR_EACH_BB_FN (bb, cfun)
|
||
if (bb->flags & BB_SUPERBLOCK)
|
||
{
|
||
bb->flags &= ~BB_SUPERBLOCK;
|
||
bitmap_set_bit (superblocks, bb->index);
|
||
need = true;
|
||
}
|
||
|
||
if (need)
|
||
{
|
||
rebuild_jump_labels (get_insns ());
|
||
find_many_sub_basic_blocks (superblocks);
|
||
}
|
||
|
||
free (superblocks);
|
||
}
|
||
|
||
/* Finalize the changes: reorder insn list according to the sequence specified
|
||
by aux pointers, enter compensation code, rebuild scope forest. */
|
||
|
||
void
|
||
cfg_layout_finalize (void)
|
||
{
|
||
#ifdef ENABLE_CHECKING
|
||
verify_flow_info ();
|
||
#endif
|
||
force_one_exit_fallthru ();
|
||
rtl_register_cfg_hooks ();
|
||
if (reload_completed && !targetm.have_epilogue ())
|
||
fixup_fallthru_exit_predecessor ();
|
||
fixup_reorder_chain ();
|
||
|
||
rebuild_jump_labels (get_insns ());
|
||
delete_dead_jumptables ();
|
||
|
||
#ifdef ENABLE_CHECKING
|
||
verify_insn_chain ();
|
||
verify_flow_info ();
|
||
#endif
|
||
}
|
||
|
||
|
||
/* Same as split_block but update cfg_layout structures. */
|
||
|
||
static basic_block
|
||
cfg_layout_split_block (basic_block bb, void *insnp)
|
||
{
|
||
rtx insn = (rtx) insnp;
|
||
basic_block new_bb = rtl_split_block (bb, insn);
|
||
|
||
BB_FOOTER (new_bb) = BB_FOOTER (bb);
|
||
BB_FOOTER (bb) = NULL;
|
||
|
||
return new_bb;
|
||
}
|
||
|
||
/* Redirect Edge to DEST. */
|
||
static edge
|
||
cfg_layout_redirect_edge_and_branch (edge e, basic_block dest)
|
||
{
|
||
basic_block src = e->src;
|
||
edge ret;
|
||
|
||
if (e->flags & (EDGE_ABNORMAL_CALL | EDGE_EH))
|
||
return NULL;
|
||
|
||
if (e->dest == dest)
|
||
return e;
|
||
|
||
if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
|
||
&& (ret = try_redirect_by_replacing_jump (e, dest, true)))
|
||
{
|
||
df_set_bb_dirty (src);
|
||
return ret;
|
||
}
|
||
|
||
if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun)
|
||
&& (e->flags & EDGE_FALLTHRU) && !(e->flags & EDGE_COMPLEX))
|
||
{
|
||
if (dump_file)
|
||
fprintf (dump_file, "Redirecting entry edge from bb %i to %i\n",
|
||
e->src->index, dest->index);
|
||
|
||
df_set_bb_dirty (e->src);
|
||
redirect_edge_succ (e, dest);
|
||
return e;
|
||
}
|
||
|
||
/* Redirect_edge_and_branch may decide to turn branch into fallthru edge
|
||
in the case the basic block appears to be in sequence. Avoid this
|
||
transformation. */
|
||
|
||
if (e->flags & EDGE_FALLTHRU)
|
||
{
|
||
/* Redirect any branch edges unified with the fallthru one. */
|
||
if (JUMP_P (BB_END (src))
|
||
&& label_is_jump_target_p (BB_HEAD (e->dest),
|
||
BB_END (src)))
|
||
{
|
||
edge redirected;
|
||
|
||
if (dump_file)
|
||
fprintf (dump_file, "Fallthru edge unified with branch "
|
||
"%i->%i redirected to %i\n",
|
||
e->src->index, e->dest->index, dest->index);
|
||
e->flags &= ~EDGE_FALLTHRU;
|
||
redirected = redirect_branch_edge (e, dest);
|
||
gcc_assert (redirected);
|
||
redirected->flags |= EDGE_FALLTHRU;
|
||
df_set_bb_dirty (redirected->src);
|
||
return redirected;
|
||
}
|
||
/* In case we are redirecting fallthru edge to the branch edge
|
||
of conditional jump, remove it. */
|
||
if (EDGE_COUNT (src->succs) == 2)
|
||
{
|
||
/* Find the edge that is different from E. */
|
||
edge s = EDGE_SUCC (src, EDGE_SUCC (src, 0) == e);
|
||
|
||
if (s->dest == dest
|
||
&& any_condjump_p (BB_END (src))
|
||
&& onlyjump_p (BB_END (src)))
|
||
delete_insn (BB_END (src));
|
||
}
|
||
if (dump_file)
|
||
fprintf (dump_file, "Redirecting fallthru edge %i->%i to %i\n",
|
||
e->src->index, e->dest->index, dest->index);
|
||
ret = redirect_edge_succ_nodup (e, dest);
|
||
}
|
||
else
|
||
ret = redirect_branch_edge (e, dest);
|
||
|
||
/* We don't want simplejumps in the insn stream during cfglayout. */
|
||
gcc_assert (!simplejump_p (BB_END (src)));
|
||
|
||
df_set_bb_dirty (src);
|
||
return ret;
|
||
}
|
||
|
||
/* Simple wrapper as we always can redirect fallthru edges. */
|
||
static basic_block
|
||
cfg_layout_redirect_edge_and_branch_force (edge e, basic_block dest)
|
||
{
|
||
edge redirected = cfg_layout_redirect_edge_and_branch (e, dest);
|
||
|
||
gcc_assert (redirected);
|
||
return NULL;
|
||
}
|
||
|
||
/* Same as delete_basic_block but update cfg_layout structures. */
|
||
|
||
static void
|
||
cfg_layout_delete_block (basic_block bb)
|
||
{
|
||
rtx_insn *insn, *next, *prev = PREV_INSN (BB_HEAD (bb)), *remaints;
|
||
rtx_insn **to;
|
||
|
||
if (BB_HEADER (bb))
|
||
{
|
||
next = BB_HEAD (bb);
|
||
if (prev)
|
||
SET_NEXT_INSN (prev) = BB_HEADER (bb);
|
||
else
|
||
set_first_insn (BB_HEADER (bb));
|
||
SET_PREV_INSN (BB_HEADER (bb)) = prev;
|
||
insn = BB_HEADER (bb);
|
||
while (NEXT_INSN (insn))
|
||
insn = NEXT_INSN (insn);
|
||
SET_NEXT_INSN (insn) = next;
|
||
SET_PREV_INSN (next) = insn;
|
||
}
|
||
next = NEXT_INSN (BB_END (bb));
|
||
if (BB_FOOTER (bb))
|
||
{
|
||
insn = BB_FOOTER (bb);
|
||
while (insn)
|
||
{
|
||
if (BARRIER_P (insn))
|
||
{
|
||
if (PREV_INSN (insn))
|
||
SET_NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
|
||
else
|
||
BB_FOOTER (bb) = NEXT_INSN (insn);
|
||
if (NEXT_INSN (insn))
|
||
SET_PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
|
||
}
|
||
if (LABEL_P (insn))
|
||
break;
|
||
insn = NEXT_INSN (insn);
|
||
}
|
||
if (BB_FOOTER (bb))
|
||
{
|
||
insn = BB_END (bb);
|
||
SET_NEXT_INSN (insn) = BB_FOOTER (bb);
|
||
SET_PREV_INSN (BB_FOOTER (bb)) = insn;
|
||
while (NEXT_INSN (insn))
|
||
insn = NEXT_INSN (insn);
|
||
SET_NEXT_INSN (insn) = next;
|
||
if (next)
|
||
SET_PREV_INSN (next) = insn;
|
||
else
|
||
set_last_insn (insn);
|
||
}
|
||
}
|
||
if (bb->next_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
|
||
to = &BB_HEADER (bb->next_bb);
|
||
else
|
||
to = &cfg_layout_function_footer;
|
||
|
||
rtl_delete_block (bb);
|
||
|
||
if (prev)
|
||
prev = NEXT_INSN (prev);
|
||
else
|
||
prev = get_insns ();
|
||
if (next)
|
||
next = PREV_INSN (next);
|
||
else
|
||
next = get_last_insn ();
|
||
|
||
if (next && NEXT_INSN (next) != prev)
|
||
{
|
||
remaints = unlink_insn_chain (prev, next);
|
||
insn = remaints;
|
||
while (NEXT_INSN (insn))
|
||
insn = NEXT_INSN (insn);
|
||
SET_NEXT_INSN (insn) = *to;
|
||
if (*to)
|
||
SET_PREV_INSN (*to) = insn;
|
||
*to = remaints;
|
||
}
|
||
}
|
||
|
||
/* Return true when blocks A and B can be safely merged. */
|
||
|
||
static bool
|
||
cfg_layout_can_merge_blocks_p (basic_block a, basic_block b)
|
||
{
|
||
/* If we are partitioning hot/cold basic blocks, we don't want to
|
||
mess up unconditional or indirect jumps that cross between hot
|
||
and cold sections.
|
||
|
||
Basic block partitioning may result in some jumps that appear to
|
||
be optimizable (or blocks that appear to be mergeable), but which really
|
||
must be left untouched (they are required to make it safely across
|
||
partition boundaries). See the comments at the top of
|
||
bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
|
||
|
||
if (BB_PARTITION (a) != BB_PARTITION (b))
|
||
return false;
|
||
|
||
/* Protect the loop latches. */
|
||
if (current_loops && b->loop_father->latch == b)
|
||
return false;
|
||
|
||
/* If we would end up moving B's instructions, make sure it doesn't fall
|
||
through into the exit block, since we cannot recover from a fallthrough
|
||
edge into the exit block occurring in the middle of a function. */
|
||
if (NEXT_INSN (BB_END (a)) != BB_HEAD (b))
|
||
{
|
||
edge e = find_fallthru_edge (b->succs);
|
||
if (e && e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
|
||
return false;
|
||
}
|
||
|
||
/* There must be exactly one edge in between the blocks. */
|
||
return (single_succ_p (a)
|
||
&& single_succ (a) == b
|
||
&& single_pred_p (b) == 1
|
||
&& a != b
|
||
/* Must be simple edge. */
|
||
&& !(single_succ_edge (a)->flags & EDGE_COMPLEX)
|
||
&& a != ENTRY_BLOCK_PTR_FOR_FN (cfun)
|
||
&& b != EXIT_BLOCK_PTR_FOR_FN (cfun)
|
||
/* If the jump insn has side effects, we can't kill the edge.
|
||
When not optimizing, try_redirect_by_replacing_jump will
|
||
not allow us to redirect an edge by replacing a table jump. */
|
||
&& (!JUMP_P (BB_END (a))
|
||
|| ((!optimize || reload_completed)
|
||
? simplejump_p (BB_END (a)) : onlyjump_p (BB_END (a)))));
|
||
}
|
||
|
||
/* Merge block A and B. The blocks must be mergeable. */
|
||
|
||
static void
|
||
cfg_layout_merge_blocks (basic_block a, basic_block b)
|
||
{
|
||
bool forwarder_p = (b->flags & BB_FORWARDER_BLOCK) != 0;
|
||
rtx_insn *insn;
|
||
|
||
gcc_checking_assert (cfg_layout_can_merge_blocks_p (a, b));
|
||
|
||
if (dump_file)
|
||
fprintf (dump_file, "Merging block %d into block %d...\n", b->index,
|
||
a->index);
|
||
|
||
/* If there was a CODE_LABEL beginning B, delete it. */
|
||
if (LABEL_P (BB_HEAD (b)))
|
||
{
|
||
delete_insn (BB_HEAD (b));
|
||
}
|
||
|
||
/* We should have fallthru edge in a, or we can do dummy redirection to get
|
||
it cleaned up. */
|
||
if (JUMP_P (BB_END (a)))
|
||
try_redirect_by_replacing_jump (EDGE_SUCC (a, 0), b, true);
|
||
gcc_assert (!JUMP_P (BB_END (a)));
|
||
|
||
/* When not optimizing and the edge is the only place in RTL which holds
|
||
some unique locus, emit a nop with that locus in between. */
|
||
if (!optimize)
|
||
emit_nop_for_unique_locus_between (a, b);
|
||
|
||
/* Move things from b->footer after a->footer. */
|
||
if (BB_FOOTER (b))
|
||
{
|
||
if (!BB_FOOTER (a))
|
||
BB_FOOTER (a) = BB_FOOTER (b);
|
||
else
|
||
{
|
||
rtx_insn *last = BB_FOOTER (a);
|
||
|
||
while (NEXT_INSN (last))
|
||
last = NEXT_INSN (last);
|
||
SET_NEXT_INSN (last) = BB_FOOTER (b);
|
||
SET_PREV_INSN (BB_FOOTER (b)) = last;
|
||
}
|
||
BB_FOOTER (b) = NULL;
|
||
}
|
||
|
||
/* Move things from b->header before a->footer.
|
||
Note that this may include dead tablejump data, but we don't clean
|
||
those up until we go out of cfglayout mode. */
|
||
if (BB_HEADER (b))
|
||
{
|
||
if (! BB_FOOTER (a))
|
||
BB_FOOTER (a) = BB_HEADER (b);
|
||
else
|
||
{
|
||
rtx_insn *last = BB_HEADER (b);
|
||
|
||
while (NEXT_INSN (last))
|
||
last = NEXT_INSN (last);
|
||
SET_NEXT_INSN (last) = BB_FOOTER (a);
|
||
SET_PREV_INSN (BB_FOOTER (a)) = last;
|
||
BB_FOOTER (a) = BB_HEADER (b);
|
||
}
|
||
BB_HEADER (b) = NULL;
|
||
}
|
||
|
||
/* In the case basic blocks are not adjacent, move them around. */
|
||
if (NEXT_INSN (BB_END (a)) != BB_HEAD (b))
|
||
{
|
||
insn = unlink_insn_chain (BB_HEAD (b), BB_END (b));
|
||
|
||
emit_insn_after_noloc (insn, BB_END (a), a);
|
||
}
|
||
/* Otherwise just re-associate the instructions. */
|
||
else
|
||
{
|
||
insn = BB_HEAD (b);
|
||
BB_END (a) = BB_END (b);
|
||
}
|
||
|
||
/* emit_insn_after_noloc doesn't call df_insn_change_bb.
|
||
We need to explicitly call. */
|
||
update_bb_for_insn_chain (insn, BB_END (b), a);
|
||
|
||
/* Skip possible DELETED_LABEL insn. */
|
||
if (!NOTE_INSN_BASIC_BLOCK_P (insn))
|
||
insn = NEXT_INSN (insn);
|
||
gcc_assert (NOTE_INSN_BASIC_BLOCK_P (insn));
|
||
BB_HEAD (b) = BB_END (b) = NULL;
|
||
delete_insn (insn);
|
||
|
||
df_bb_delete (b->index);
|
||
|
||
/* If B was a forwarder block, propagate the locus on the edge. */
|
||
if (forwarder_p
|
||
&& LOCATION_LOCUS (EDGE_SUCC (b, 0)->goto_locus) == UNKNOWN_LOCATION)
|
||
EDGE_SUCC (b, 0)->goto_locus = EDGE_SUCC (a, 0)->goto_locus;
|
||
|
||
if (dump_file)
|
||
fprintf (dump_file, "Merged blocks %d and %d.\n", a->index, b->index);
|
||
}
|
||
|
||
/* Split edge E. */
|
||
|
||
static basic_block
|
||
cfg_layout_split_edge (edge e)
|
||
{
|
||
basic_block new_bb =
|
||
create_basic_block (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
|
||
? NEXT_INSN (BB_END (e->src)) : get_insns (),
|
||
NULL_RTX, e->src);
|
||
|
||
if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
|
||
BB_COPY_PARTITION (new_bb, e->src);
|
||
else
|
||
BB_COPY_PARTITION (new_bb, e->dest);
|
||
make_edge (new_bb, e->dest, EDGE_FALLTHRU);
|
||
redirect_edge_and_branch_force (e, new_bb);
|
||
|
||
return new_bb;
|
||
}
|
||
|
||
/* Do postprocessing after making a forwarder block joined by edge FALLTHRU. */
|
||
|
||
static void
|
||
rtl_make_forwarder_block (edge fallthru ATTRIBUTE_UNUSED)
|
||
{
|
||
}
|
||
|
||
/* Return true if BB contains only labels or non-executable
|
||
instructions. */
|
||
|
||
static bool
|
||
rtl_block_empty_p (basic_block bb)
|
||
{
|
||
rtx_insn *insn;
|
||
|
||
if (bb == ENTRY_BLOCK_PTR_FOR_FN (cfun)
|
||
|| bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
|
||
return true;
|
||
|
||
FOR_BB_INSNS (bb, insn)
|
||
if (NONDEBUG_INSN_P (insn) && !any_uncondjump_p (insn))
|
||
return false;
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Split a basic block if it ends with a conditional branch and if
|
||
the other part of the block is not empty. */
|
||
|
||
static basic_block
|
||
rtl_split_block_before_cond_jump (basic_block bb)
|
||
{
|
||
rtx_insn *insn;
|
||
rtx_insn *split_point = NULL;
|
||
rtx_insn *last = NULL;
|
||
bool found_code = false;
|
||
|
||
FOR_BB_INSNS (bb, insn)
|
||
{
|
||
if (any_condjump_p (insn))
|
||
split_point = last;
|
||
else if (NONDEBUG_INSN_P (insn))
|
||
found_code = true;
|
||
last = insn;
|
||
}
|
||
|
||
/* Did not find everything. */
|
||
if (found_code && split_point)
|
||
return split_block (bb, split_point)->dest;
|
||
else
|
||
return NULL;
|
||
}
|
||
|
||
/* Return 1 if BB ends with a call, possibly followed by some
|
||
instructions that must stay with the call, 0 otherwise. */
|
||
|
||
static bool
|
||
rtl_block_ends_with_call_p (basic_block bb)
|
||
{
|
||
rtx_insn *insn = BB_END (bb);
|
||
|
||
while (!CALL_P (insn)
|
||
&& insn != BB_HEAD (bb)
|
||
&& (keep_with_call_p (insn)
|
||
|| NOTE_P (insn)
|
||
|| DEBUG_INSN_P (insn)))
|
||
insn = PREV_INSN (insn);
|
||
return (CALL_P (insn));
|
||
}
|
||
|
||
/* Return 1 if BB ends with a conditional branch, 0 otherwise. */
|
||
|
||
static bool
|
||
rtl_block_ends_with_condjump_p (const_basic_block bb)
|
||
{
|
||
return any_condjump_p (BB_END (bb));
|
||
}
|
||
|
||
/* Return true if we need to add fake edge to exit.
|
||
Helper function for rtl_flow_call_edges_add. */
|
||
|
||
static bool
|
||
need_fake_edge_p (const rtx_insn *insn)
|
||
{
|
||
if (!INSN_P (insn))
|
||
return false;
|
||
|
||
if ((CALL_P (insn)
|
||
&& !SIBLING_CALL_P (insn)
|
||
&& !find_reg_note (insn, REG_NORETURN, NULL)
|
||
&& !(RTL_CONST_OR_PURE_CALL_P (insn))))
|
||
return true;
|
||
|
||
return ((GET_CODE (PATTERN (insn)) == ASM_OPERANDS
|
||
&& MEM_VOLATILE_P (PATTERN (insn)))
|
||
|| (GET_CODE (PATTERN (insn)) == PARALLEL
|
||
&& asm_noperands (insn) != -1
|
||
&& MEM_VOLATILE_P (XVECEXP (PATTERN (insn), 0, 0)))
|
||
|| GET_CODE (PATTERN (insn)) == ASM_INPUT);
|
||
}
|
||
|
||
/* Add fake edges to the function exit for any non constant and non noreturn
|
||
calls, volatile inline assembly in the bitmap of blocks specified by
|
||
BLOCKS or to the whole CFG if BLOCKS is zero. Return the number of blocks
|
||
that were split.
|
||
|
||
The goal is to expose cases in which entering a basic block does not imply
|
||
that all subsequent instructions must be executed. */
|
||
|
||
static int
|
||
rtl_flow_call_edges_add (sbitmap blocks)
|
||
{
|
||
int i;
|
||
int blocks_split = 0;
|
||
int last_bb = last_basic_block_for_fn (cfun);
|
||
bool check_last_block = false;
|
||
|
||
if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
|
||
return 0;
|
||
|
||
if (! blocks)
|
||
check_last_block = true;
|
||
else
|
||
check_last_block = bitmap_bit_p (blocks,
|
||
EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb->index);
|
||
|
||
/* In the last basic block, before epilogue generation, there will be
|
||
a fallthru edge to EXIT. Special care is required if the last insn
|
||
of the last basic block is a call because make_edge folds duplicate
|
||
edges, which would result in the fallthru edge also being marked
|
||
fake, which would result in the fallthru edge being removed by
|
||
remove_fake_edges, which would result in an invalid CFG.
|
||
|
||
Moreover, we can't elide the outgoing fake edge, since the block
|
||
profiler needs to take this into account in order to solve the minimal
|
||
spanning tree in the case that the call doesn't return.
|
||
|
||
Handle this by adding a dummy instruction in a new last basic block. */
|
||
if (check_last_block)
|
||
{
|
||
basic_block bb = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
|
||
rtx_insn *insn = BB_END (bb);
|
||
|
||
/* Back up past insns that must be kept in the same block as a call. */
|
||
while (insn != BB_HEAD (bb)
|
||
&& keep_with_call_p (insn))
|
||
insn = PREV_INSN (insn);
|
||
|
||
if (need_fake_edge_p (insn))
|
||
{
|
||
edge e;
|
||
|
||
e = find_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun));
|
||
if (e)
|
||
{
|
||
insert_insn_on_edge (gen_use (const0_rtx), e);
|
||
commit_edge_insertions ();
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Now add fake edges to the function exit for any non constant
|
||
calls since there is no way that we can determine if they will
|
||
return or not... */
|
||
|
||
for (i = NUM_FIXED_BLOCKS; i < last_bb; i++)
|
||
{
|
||
basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
|
||
rtx_insn *insn;
|
||
rtx_insn *prev_insn;
|
||
|
||
if (!bb)
|
||
continue;
|
||
|
||
if (blocks && !bitmap_bit_p (blocks, i))
|
||
continue;
|
||
|
||
for (insn = BB_END (bb); ; insn = prev_insn)
|
||
{
|
||
prev_insn = PREV_INSN (insn);
|
||
if (need_fake_edge_p (insn))
|
||
{
|
||
edge e;
|
||
rtx_insn *split_at_insn = insn;
|
||
|
||
/* Don't split the block between a call and an insn that should
|
||
remain in the same block as the call. */
|
||
if (CALL_P (insn))
|
||
while (split_at_insn != BB_END (bb)
|
||
&& keep_with_call_p (NEXT_INSN (split_at_insn)))
|
||
split_at_insn = NEXT_INSN (split_at_insn);
|
||
|
||
/* The handling above of the final block before the epilogue
|
||
should be enough to verify that there is no edge to the exit
|
||
block in CFG already. Calling make_edge in such case would
|
||
cause us to mark that edge as fake and remove it later. */
|
||
|
||
#ifdef ENABLE_CHECKING
|
||
if (split_at_insn == BB_END (bb))
|
||
{
|
||
e = find_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun));
|
||
gcc_assert (e == NULL);
|
||
}
|
||
#endif
|
||
|
||
/* Note that the following may create a new basic block
|
||
and renumber the existing basic blocks. */
|
||
if (split_at_insn != BB_END (bb))
|
||
{
|
||
e = split_block (bb, split_at_insn);
|
||
if (e)
|
||
blocks_split++;
|
||
}
|
||
|
||
make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), EDGE_FAKE);
|
||
}
|
||
|
||
if (insn == BB_HEAD (bb))
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (blocks_split)
|
||
verify_flow_info ();
|
||
|
||
return blocks_split;
|
||
}
|
||
|
||
/* Add COMP_RTX as a condition at end of COND_BB. FIRST_HEAD is
|
||
the conditional branch target, SECOND_HEAD should be the fall-thru
|
||
there is no need to handle this here the loop versioning code handles
|
||
this. the reason for SECON_HEAD is that it is needed for condition
|
||
in trees, and this should be of the same type since it is a hook. */
|
||
static void
|
||
rtl_lv_add_condition_to_bb (basic_block first_head ,
|
||
basic_block second_head ATTRIBUTE_UNUSED,
|
||
basic_block cond_bb, void *comp_rtx)
|
||
{
|
||
rtx_code_label *label;
|
||
rtx_insn *seq, *jump;
|
||
rtx op0 = XEXP ((rtx)comp_rtx, 0);
|
||
rtx op1 = XEXP ((rtx)comp_rtx, 1);
|
||
enum rtx_code comp = GET_CODE ((rtx)comp_rtx);
|
||
machine_mode mode;
|
||
|
||
|
||
label = block_label (first_head);
|
||
mode = GET_MODE (op0);
|
||
if (mode == VOIDmode)
|
||
mode = GET_MODE (op1);
|
||
|
||
start_sequence ();
|
||
op0 = force_operand (op0, NULL_RTX);
|
||
op1 = force_operand (op1, NULL_RTX);
|
||
do_compare_rtx_and_jump (op0, op1, comp, 0, mode, NULL_RTX, NULL, label, -1);
|
||
jump = get_last_insn ();
|
||
JUMP_LABEL (jump) = label;
|
||
LABEL_NUSES (label)++;
|
||
seq = get_insns ();
|
||
end_sequence ();
|
||
|
||
/* Add the new cond, in the new head. */
|
||
emit_insn_after (seq, BB_END (cond_bb));
|
||
}
|
||
|
||
|
||
/* Given a block B with unconditional branch at its end, get the
|
||
store the return the branch edge and the fall-thru edge in
|
||
BRANCH_EDGE and FALLTHRU_EDGE respectively. */
|
||
static void
|
||
rtl_extract_cond_bb_edges (basic_block b, edge *branch_edge,
|
||
edge *fallthru_edge)
|
||
{
|
||
edge e = EDGE_SUCC (b, 0);
|
||
|
||
if (e->flags & EDGE_FALLTHRU)
|
||
{
|
||
*fallthru_edge = e;
|
||
*branch_edge = EDGE_SUCC (b, 1);
|
||
}
|
||
else
|
||
{
|
||
*branch_edge = e;
|
||
*fallthru_edge = EDGE_SUCC (b, 1);
|
||
}
|
||
}
|
||
|
||
void
|
||
init_rtl_bb_info (basic_block bb)
|
||
{
|
||
gcc_assert (!bb->il.x.rtl);
|
||
bb->il.x.head_ = NULL;
|
||
bb->il.x.rtl = ggc_cleared_alloc<rtl_bb_info> ();
|
||
}
|
||
|
||
/* Returns true if it is possible to remove edge E by redirecting
|
||
it to the destination of the other edge from E->src. */
|
||
|
||
static bool
|
||
rtl_can_remove_branch_p (const_edge e)
|
||
{
|
||
const_basic_block src = e->src;
|
||
const_basic_block target = EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest;
|
||
const rtx_insn *insn = BB_END (src);
|
||
rtx set;
|
||
|
||
/* The conditions are taken from try_redirect_by_replacing_jump. */
|
||
if (target == EXIT_BLOCK_PTR_FOR_FN (cfun))
|
||
return false;
|
||
|
||
if (e->flags & (EDGE_ABNORMAL_CALL | EDGE_EH))
|
||
return false;
|
||
|
||
if (BB_PARTITION (src) != BB_PARTITION (target))
|
||
return false;
|
||
|
||
if (!onlyjump_p (insn)
|
||
|| tablejump_p (insn, NULL, NULL))
|
||
return false;
|
||
|
||
set = single_set (insn);
|
||
if (!set || side_effects_p (set))
|
||
return false;
|
||
|
||
return true;
|
||
}
|
||
|
||
static basic_block
|
||
rtl_duplicate_bb (basic_block bb)
|
||
{
|
||
bb = cfg_layout_duplicate_bb (bb);
|
||
bb->aux = NULL;
|
||
return bb;
|
||
}
|
||
|
||
/* Do book-keeping of basic block BB for the profile consistency checker.
|
||
If AFTER_PASS is 0, do pre-pass accounting, or if AFTER_PASS is 1
|
||
then do post-pass accounting. Store the counting in RECORD. */
|
||
static void
|
||
rtl_account_profile_record (basic_block bb, int after_pass,
|
||
struct profile_record *record)
|
||
{
|
||
rtx_insn *insn;
|
||
FOR_BB_INSNS (bb, insn)
|
||
if (INSN_P (insn))
|
||
{
|
||
record->size[after_pass]
|
||
+= insn_rtx_cost (PATTERN (insn), false);
|
||
if (profile_status_for_fn (cfun) == PROFILE_READ)
|
||
record->time[after_pass]
|
||
+= insn_rtx_cost (PATTERN (insn), true) * bb->count;
|
||
else if (profile_status_for_fn (cfun) == PROFILE_GUESSED)
|
||
record->time[after_pass]
|
||
+= insn_rtx_cost (PATTERN (insn), true) * bb->frequency;
|
||
}
|
||
}
|
||
|
||
/* Implementation of CFG manipulation for linearized RTL. */
|
||
struct cfg_hooks rtl_cfg_hooks = {
|
||
"rtl",
|
||
rtl_verify_flow_info,
|
||
rtl_dump_bb,
|
||
rtl_dump_bb_for_graph,
|
||
rtl_create_basic_block,
|
||
rtl_redirect_edge_and_branch,
|
||
rtl_redirect_edge_and_branch_force,
|
||
rtl_can_remove_branch_p,
|
||
rtl_delete_block,
|
||
rtl_split_block,
|
||
rtl_move_block_after,
|
||
rtl_can_merge_blocks, /* can_merge_blocks_p */
|
||
rtl_merge_blocks,
|
||
rtl_predict_edge,
|
||
rtl_predicted_by_p,
|
||
cfg_layout_can_duplicate_bb_p,
|
||
rtl_duplicate_bb,
|
||
rtl_split_edge,
|
||
rtl_make_forwarder_block,
|
||
rtl_tidy_fallthru_edge,
|
||
rtl_force_nonfallthru,
|
||
rtl_block_ends_with_call_p,
|
||
rtl_block_ends_with_condjump_p,
|
||
rtl_flow_call_edges_add,
|
||
NULL, /* execute_on_growing_pred */
|
||
NULL, /* execute_on_shrinking_pred */
|
||
NULL, /* duplicate loop for trees */
|
||
NULL, /* lv_add_condition_to_bb */
|
||
NULL, /* lv_adjust_loop_header_phi*/
|
||
NULL, /* extract_cond_bb_edges */
|
||
NULL, /* flush_pending_stmts */
|
||
rtl_block_empty_p, /* block_empty_p */
|
||
rtl_split_block_before_cond_jump, /* split_block_before_cond_jump */
|
||
rtl_account_profile_record,
|
||
};
|
||
|
||
/* Implementation of CFG manipulation for cfg layout RTL, where
|
||
basic block connected via fallthru edges does not have to be adjacent.
|
||
This representation will hopefully become the default one in future
|
||
version of the compiler. */
|
||
|
||
struct cfg_hooks cfg_layout_rtl_cfg_hooks = {
|
||
"cfglayout mode",
|
||
rtl_verify_flow_info_1,
|
||
rtl_dump_bb,
|
||
rtl_dump_bb_for_graph,
|
||
cfg_layout_create_basic_block,
|
||
cfg_layout_redirect_edge_and_branch,
|
||
cfg_layout_redirect_edge_and_branch_force,
|
||
rtl_can_remove_branch_p,
|
||
cfg_layout_delete_block,
|
||
cfg_layout_split_block,
|
||
rtl_move_block_after,
|
||
cfg_layout_can_merge_blocks_p,
|
||
cfg_layout_merge_blocks,
|
||
rtl_predict_edge,
|
||
rtl_predicted_by_p,
|
||
cfg_layout_can_duplicate_bb_p,
|
||
cfg_layout_duplicate_bb,
|
||
cfg_layout_split_edge,
|
||
rtl_make_forwarder_block,
|
||
NULL, /* tidy_fallthru_edge */
|
||
rtl_force_nonfallthru,
|
||
rtl_block_ends_with_call_p,
|
||
rtl_block_ends_with_condjump_p,
|
||
rtl_flow_call_edges_add,
|
||
NULL, /* execute_on_growing_pred */
|
||
NULL, /* execute_on_shrinking_pred */
|
||
duplicate_loop_to_header_edge, /* duplicate loop for trees */
|
||
rtl_lv_add_condition_to_bb, /* lv_add_condition_to_bb */
|
||
NULL, /* lv_adjust_loop_header_phi*/
|
||
rtl_extract_cond_bb_edges, /* extract_cond_bb_edges */
|
||
NULL, /* flush_pending_stmts */
|
||
rtl_block_empty_p, /* block_empty_p */
|
||
rtl_split_block_before_cond_jump, /* split_block_before_cond_jump */
|
||
rtl_account_profile_record,
|
||
};
|
||
|
||
#include "gt-cfgrtl.h"
|