gcc/libgo/go/crypto/elliptic/p224.go
Ian Lance Taylor 4ccad563d2 libgo: Update to current sources.
From-SVN: r192704
2012-10-23 04:31:11 +00:00

766 lines
20 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package elliptic
// This is a constant-time, 32-bit implementation of P224. See FIPS 186-3,
// section D.2.2.
//
// See http://www.imperialviolet.org/2010/12/04/ecc.html ([1]) for background.
import (
"math/big"
)
var p224 p224Curve
type p224Curve struct {
*CurveParams
gx, gy, b p224FieldElement
}
func initP224() {
// See FIPS 186-3, section D.2.2
p224.CurveParams = new(CurveParams)
p224.P, _ = new(big.Int).SetString("26959946667150639794667015087019630673557916260026308143510066298881", 10)
p224.N, _ = new(big.Int).SetString("26959946667150639794667015087019625940457807714424391721682722368061", 10)
p224.B, _ = new(big.Int).SetString("b4050a850c04b3abf54132565044b0b7d7bfd8ba270b39432355ffb4", 16)
p224.Gx, _ = new(big.Int).SetString("b70e0cbd6bb4bf7f321390b94a03c1d356c21122343280d6115c1d21", 16)
p224.Gy, _ = new(big.Int).SetString("bd376388b5f723fb4c22dfe6cd4375a05a07476444d5819985007e34", 16)
p224.BitSize = 224
p224FromBig(&p224.gx, p224.Gx)
p224FromBig(&p224.gy, p224.Gy)
p224FromBig(&p224.b, p224.B)
}
// P224 returns a Curve which implements P-224 (see FIPS 186-3, section D.2.2)
func P224() Curve {
initonce.Do(initAll)
return p224
}
func (curve p224Curve) Params() *CurveParams {
return curve.CurveParams
}
func (curve p224Curve) IsOnCurve(bigX, bigY *big.Int) bool {
var x, y p224FieldElement
p224FromBig(&x, bigX)
p224FromBig(&y, bigY)
// y² = x³ - 3x + b
var tmp p224LargeFieldElement
var x3 p224FieldElement
p224Square(&x3, &x, &tmp)
p224Mul(&x3, &x3, &x, &tmp)
for i := 0; i < 8; i++ {
x[i] *= 3
}
p224Sub(&x3, &x3, &x)
p224Reduce(&x3)
p224Add(&x3, &x3, &curve.b)
p224Contract(&x3, &x3)
p224Square(&y, &y, &tmp)
p224Contract(&y, &y)
for i := 0; i < 8; i++ {
if y[i] != x3[i] {
return false
}
}
return true
}
func (p224Curve) Add(bigX1, bigY1, bigX2, bigY2 *big.Int) (x, y *big.Int) {
var x1, y1, z1, x2, y2, z2, x3, y3, z3 p224FieldElement
p224FromBig(&x1, bigX1)
p224FromBig(&y1, bigY1)
if bigX1.Sign() != 0 || bigY1.Sign() != 0 {
z1[0] = 1
}
p224FromBig(&x2, bigX2)
p224FromBig(&y2, bigY2)
if bigX2.Sign() != 0 || bigY2.Sign() != 0 {
z2[0] = 1
}
p224AddJacobian(&x3, &y3, &z3, &x1, &y1, &z1, &x2, &y2, &z2)
return p224ToAffine(&x3, &y3, &z3)
}
func (p224Curve) Double(bigX1, bigY1 *big.Int) (x, y *big.Int) {
var x1, y1, z1, x2, y2, z2 p224FieldElement
p224FromBig(&x1, bigX1)
p224FromBig(&y1, bigY1)
z1[0] = 1
p224DoubleJacobian(&x2, &y2, &z2, &x1, &y1, &z1)
return p224ToAffine(&x2, &y2, &z2)
}
func (p224Curve) ScalarMult(bigX1, bigY1 *big.Int, scalar []byte) (x, y *big.Int) {
var x1, y1, z1, x2, y2, z2 p224FieldElement
p224FromBig(&x1, bigX1)
p224FromBig(&y1, bigY1)
z1[0] = 1
p224ScalarMult(&x2, &y2, &z2, &x1, &y1, &z1, scalar)
return p224ToAffine(&x2, &y2, &z2)
}
func (curve p224Curve) ScalarBaseMult(scalar []byte) (x, y *big.Int) {
var z1, x2, y2, z2 p224FieldElement
z1[0] = 1
p224ScalarMult(&x2, &y2, &z2, &curve.gx, &curve.gy, &z1, scalar)
return p224ToAffine(&x2, &y2, &z2)
}
// Field element functions.
//
// The field that we're dealing with is /p where p = 2**224 - 2**96 + 1.
//
// Field elements are represented by a FieldElement, which is a typedef to an
// array of 8 uint32's. The value of a FieldElement, a, is:
// a[0] + 2**28·a[1] + 2**56·a[1] + ... + 2**196·a[7]
//
// Using 28-bit limbs means that there's only 4 bits of headroom, which is less
// than we would really like. But it has the useful feature that we hit 2**224
// exactly, making the reflections during a reduce much nicer.
type p224FieldElement [8]uint32
// p224P is the order of the field, represented as a p224FieldElement.
var p224P = [8]uint32{1, 0, 0, 0xffff000, 0xfffffff, 0xfffffff, 0xfffffff, 0xfffffff}
// p224IsZero returns 1 if a == 0 mod p and 0 otherwise.
//
// a[i] < 2**29
func p224IsZero(a *p224FieldElement) uint32 {
// Since a p224FieldElement contains 224 bits there are two possible
// representations of 0: 0 and p.
var minimal p224FieldElement
p224Contract(&minimal, a)
var isZero, isP uint32
for i, v := range minimal {
isZero |= v
isP |= v - p224P[i]
}
// If either isZero or isP is 0, then we should return 1.
isZero |= isZero >> 16
isZero |= isZero >> 8
isZero |= isZero >> 4
isZero |= isZero >> 2
isZero |= isZero >> 1
isP |= isP >> 16
isP |= isP >> 8
isP |= isP >> 4
isP |= isP >> 2
isP |= isP >> 1
// For isZero and isP, the LSB is 0 iff all the bits are zero.
result := isZero & isP
result = (^result) & 1
return result
}
// p224Add computes *out = a+b
//
// a[i] + b[i] < 2**32
func p224Add(out, a, b *p224FieldElement) {
for i := 0; i < 8; i++ {
out[i] = a[i] + b[i]
}
}
const two31p3 = 1<<31 + 1<<3
const two31m3 = 1<<31 - 1<<3
const two31m15m3 = 1<<31 - 1<<15 - 1<<3
// p224ZeroModP31 is 0 mod p where bit 31 is set in all limbs so that we can
// subtract smaller amounts without underflow. See the section "Subtraction" in
// [1] for reasoning.
var p224ZeroModP31 = []uint32{two31p3, two31m3, two31m3, two31m15m3, two31m3, two31m3, two31m3, two31m3}
// p224Sub computes *out = a-b
//
// a[i], b[i] < 2**30
// out[i] < 2**32
func p224Sub(out, a, b *p224FieldElement) {
for i := 0; i < 8; i++ {
out[i] = a[i] + p224ZeroModP31[i] - b[i]
}
}
// LargeFieldElement also represents an element of the field. The limbs are
// still spaced 28-bits apart and in little-endian order. So the limbs are at
// 0, 28, 56, ..., 392 bits, each 64-bits wide.
type p224LargeFieldElement [15]uint64
const two63p35 = 1<<63 + 1<<35
const two63m35 = 1<<63 - 1<<35
const two63m35m19 = 1<<63 - 1<<35 - 1<<19
// p224ZeroModP63 is 0 mod p where bit 63 is set in all limbs. See the section
// "Subtraction" in [1] for why.
var p224ZeroModP63 = [8]uint64{two63p35, two63m35, two63m35, two63m35, two63m35m19, two63m35, two63m35, two63m35}
const bottom12Bits = 0xfff
const bottom28Bits = 0xfffffff
// p224Mul computes *out = a*b
//
// a[i] < 2**29, b[i] < 2**30 (or vice versa)
// out[i] < 2**29
func p224Mul(out, a, b *p224FieldElement, tmp *p224LargeFieldElement) {
for i := 0; i < 15; i++ {
tmp[i] = 0
}
for i := 0; i < 8; i++ {
for j := 0; j < 8; j++ {
tmp[i+j] += uint64(a[i]) * uint64(b[j])
}
}
p224ReduceLarge(out, tmp)
}
// Square computes *out = a*a
//
// a[i] < 2**29
// out[i] < 2**29
func p224Square(out, a *p224FieldElement, tmp *p224LargeFieldElement) {
for i := 0; i < 15; i++ {
tmp[i] = 0
}
for i := 0; i < 8; i++ {
for j := 0; j <= i; j++ {
r := uint64(a[i]) * uint64(a[j])
if i == j {
tmp[i+j] += r
} else {
tmp[i+j] += r << 1
}
}
}
p224ReduceLarge(out, tmp)
}
// ReduceLarge converts a p224LargeFieldElement to a p224FieldElement.
//
// in[i] < 2**62
func p224ReduceLarge(out *p224FieldElement, in *p224LargeFieldElement) {
for i := 0; i < 8; i++ {
in[i] += p224ZeroModP63[i]
}
// Eliminate the coefficients at 2**224 and greater.
for i := 14; i >= 8; i-- {
in[i-8] -= in[i]
in[i-5] += (in[i] & 0xffff) << 12
in[i-4] += in[i] >> 16
}
in[8] = 0
// in[0..8] < 2**64
// As the values become small enough, we start to store them in |out|
// and use 32-bit operations.
for i := 1; i < 8; i++ {
in[i+1] += in[i] >> 28
out[i] = uint32(in[i] & bottom28Bits)
}
in[0] -= in[8]
out[3] += uint32(in[8]&0xffff) << 12
out[4] += uint32(in[8] >> 16)
// in[0] < 2**64
// out[3] < 2**29
// out[4] < 2**29
// out[1,2,5..7] < 2**28
out[0] = uint32(in[0] & bottom28Bits)
out[1] += uint32((in[0] >> 28) & bottom28Bits)
out[2] += uint32(in[0] >> 56)
// out[0] < 2**28
// out[1..4] < 2**29
// out[5..7] < 2**28
}
// Reduce reduces the coefficients of a to smaller bounds.
//
// On entry: a[i] < 2**31 + 2**30
// On exit: a[i] < 2**29
func p224Reduce(a *p224FieldElement) {
for i := 0; i < 7; i++ {
a[i+1] += a[i] >> 28
a[i] &= bottom28Bits
}
top := a[7] >> 28
a[7] &= bottom28Bits
// top < 2**4
mask := top
mask |= mask >> 2
mask |= mask >> 1
mask <<= 31
mask = uint32(int32(mask) >> 31)
// Mask is all ones if top != 0, all zero otherwise
a[0] -= top
a[3] += top << 12
// We may have just made a[0] negative but, if we did, then we must
// have added something to a[3], this it's > 2**12. Therefore we can
// carry down to a[0].
a[3] -= 1 & mask
a[2] += mask & (1<<28 - 1)
a[1] += mask & (1<<28 - 1)
a[0] += mask & (1 << 28)
}
// p224Invert calculates *out = in**-1 by computing in**(2**224 - 2**96 - 1),
// i.e. Fermat's little theorem.
func p224Invert(out, in *p224FieldElement) {
var f1, f2, f3, f4 p224FieldElement
var c p224LargeFieldElement
p224Square(&f1, in, &c) // 2
p224Mul(&f1, &f1, in, &c) // 2**2 - 1
p224Square(&f1, &f1, &c) // 2**3 - 2
p224Mul(&f1, &f1, in, &c) // 2**3 - 1
p224Square(&f2, &f1, &c) // 2**4 - 2
p224Square(&f2, &f2, &c) // 2**5 - 4
p224Square(&f2, &f2, &c) // 2**6 - 8
p224Mul(&f1, &f1, &f2, &c) // 2**6 - 1
p224Square(&f2, &f1, &c) // 2**7 - 2
for i := 0; i < 5; i++ { // 2**12 - 2**6
p224Square(&f2, &f2, &c)
}
p224Mul(&f2, &f2, &f1, &c) // 2**12 - 1
p224Square(&f3, &f2, &c) // 2**13 - 2
for i := 0; i < 11; i++ { // 2**24 - 2**12
p224Square(&f3, &f3, &c)
}
p224Mul(&f2, &f3, &f2, &c) // 2**24 - 1
p224Square(&f3, &f2, &c) // 2**25 - 2
for i := 0; i < 23; i++ { // 2**48 - 2**24
p224Square(&f3, &f3, &c)
}
p224Mul(&f3, &f3, &f2, &c) // 2**48 - 1
p224Square(&f4, &f3, &c) // 2**49 - 2
for i := 0; i < 47; i++ { // 2**96 - 2**48
p224Square(&f4, &f4, &c)
}
p224Mul(&f3, &f3, &f4, &c) // 2**96 - 1
p224Square(&f4, &f3, &c) // 2**97 - 2
for i := 0; i < 23; i++ { // 2**120 - 2**24
p224Square(&f4, &f4, &c)
}
p224Mul(&f2, &f4, &f2, &c) // 2**120 - 1
for i := 0; i < 6; i++ { // 2**126 - 2**6
p224Square(&f2, &f2, &c)
}
p224Mul(&f1, &f1, &f2, &c) // 2**126 - 1
p224Square(&f1, &f1, &c) // 2**127 - 2
p224Mul(&f1, &f1, in, &c) // 2**127 - 1
for i := 0; i < 97; i++ { // 2**224 - 2**97
p224Square(&f1, &f1, &c)
}
p224Mul(out, &f1, &f3, &c) // 2**224 - 2**96 - 1
}
// p224Contract converts a FieldElement to its unique, minimal form.
//
// On entry, in[i] < 2**29
// On exit, in[i] < 2**28
func p224Contract(out, in *p224FieldElement) {
copy(out[:], in[:])
for i := 0; i < 7; i++ {
out[i+1] += out[i] >> 28
out[i] &= bottom28Bits
}
top := out[7] >> 28
out[7] &= bottom28Bits
out[0] -= top
out[3] += top << 12
// We may just have made out[i] negative. So we carry down. If we made
// out[0] negative then we know that out[3] is sufficiently positive
// because we just added to it.
for i := 0; i < 3; i++ {
mask := uint32(int32(out[i]) >> 31)
out[i] += (1 << 28) & mask
out[i+1] -= 1 & mask
}
// We might have pushed out[3] over 2**28 so we perform another, partial,
// carry chain.
for i := 3; i < 7; i++ {
out[i+1] += out[i] >> 28
out[i] &= bottom28Bits
}
top = out[7] >> 28
out[7] &= bottom28Bits
// Eliminate top while maintaining the same value mod p.
out[0] -= top
out[3] += top << 12
// There are two cases to consider for out[3]:
// 1) The first time that we eliminated top, we didn't push out[3] over
// 2**28. In this case, the partial carry chain didn't change any values
// and top is zero.
// 2) We did push out[3] over 2**28 the first time that we eliminated top.
// The first value of top was in [0..16), therefore, prior to eliminating
// the first top, 0xfff1000 <= out[3] <= 0xfffffff. Therefore, after
// overflowing and being reduced by the second carry chain, out[3] <=
// 0xf000. Thus it cannot have overflowed when we eliminated top for the
// second time.
// Again, we may just have made out[0] negative, so do the same carry down.
// As before, if we made out[0] negative then we know that out[3] is
// sufficiently positive.
for i := 0; i < 3; i++ {
mask := uint32(int32(out[i]) >> 31)
out[i] += (1 << 28) & mask
out[i+1] -= 1 & mask
}
// Now we see if the value is >= p and, if so, subtract p.
// First we build a mask from the top four limbs, which must all be
// equal to bottom28Bits if the whole value is >= p. If top4AllOnes
// ends up with any zero bits in the bottom 28 bits, then this wasn't
// true.
top4AllOnes := uint32(0xffffffff)
for i := 4; i < 8; i++ {
top4AllOnes &= out[i]
}
top4AllOnes |= 0xf0000000
// Now we replicate any zero bits to all the bits in top4AllOnes.
top4AllOnes &= top4AllOnes >> 16
top4AllOnes &= top4AllOnes >> 8
top4AllOnes &= top4AllOnes >> 4
top4AllOnes &= top4AllOnes >> 2
top4AllOnes &= top4AllOnes >> 1
top4AllOnes = uint32(int32(top4AllOnes<<31) >> 31)
// Now we test whether the bottom three limbs are non-zero.
bottom3NonZero := out[0] | out[1] | out[2]
bottom3NonZero |= bottom3NonZero >> 16
bottom3NonZero |= bottom3NonZero >> 8
bottom3NonZero |= bottom3NonZero >> 4
bottom3NonZero |= bottom3NonZero >> 2
bottom3NonZero |= bottom3NonZero >> 1
bottom3NonZero = uint32(int32(bottom3NonZero<<31) >> 31)
// Everything depends on the value of out[3].
// If it's > 0xffff000 and top4AllOnes != 0 then the whole value is >= p
// If it's = 0xffff000 and top4AllOnes != 0 and bottom3NonZero != 0,
// then the whole value is >= p
// If it's < 0xffff000, then the whole value is < p
n := out[3] - 0xffff000
out3Equal := n
out3Equal |= out3Equal >> 16
out3Equal |= out3Equal >> 8
out3Equal |= out3Equal >> 4
out3Equal |= out3Equal >> 2
out3Equal |= out3Equal >> 1
out3Equal = ^uint32(int32(out3Equal<<31) >> 31)
// If out[3] > 0xffff000 then n's MSB will be zero.
out3GT := ^uint32(int32(n) >> 31)
mask := top4AllOnes & ((out3Equal & bottom3NonZero) | out3GT)
out[0] -= 1 & mask
out[3] -= 0xffff000 & mask
out[4] -= 0xfffffff & mask
out[5] -= 0xfffffff & mask
out[6] -= 0xfffffff & mask
out[7] -= 0xfffffff & mask
}
// Group element functions.
//
// These functions deal with group elements. The group is an elliptic curve
// group with a = -3 defined in FIPS 186-3, section D.2.2.
// p224AddJacobian computes *out = a+b where a != b.
func p224AddJacobian(x3, y3, z3, x1, y1, z1, x2, y2, z2 *p224FieldElement) {
// See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-p224Add-2007-bl
var z1z1, z2z2, u1, u2, s1, s2, h, i, j, r, v p224FieldElement
var c p224LargeFieldElement
z1IsZero := p224IsZero(z1)
z2IsZero := p224IsZero(z2)
// Z1Z1 = Z1²
p224Square(&z1z1, z1, &c)
// Z2Z2 = Z2²
p224Square(&z2z2, z2, &c)
// U1 = X1*Z2Z2
p224Mul(&u1, x1, &z2z2, &c)
// U2 = X2*Z1Z1
p224Mul(&u2, x2, &z1z1, &c)
// S1 = Y1*Z2*Z2Z2
p224Mul(&s1, z2, &z2z2, &c)
p224Mul(&s1, y1, &s1, &c)
// S2 = Y2*Z1*Z1Z1
p224Mul(&s2, z1, &z1z1, &c)
p224Mul(&s2, y2, &s2, &c)
// H = U2-U1
p224Sub(&h, &u2, &u1)
p224Reduce(&h)
xEqual := p224IsZero(&h)
// I = (2*H)²
for j := 0; j < 8; j++ {
i[j] = h[j] << 1
}
p224Reduce(&i)
p224Square(&i, &i, &c)
// J = H*I
p224Mul(&j, &h, &i, &c)
// r = 2*(S2-S1)
p224Sub(&r, &s2, &s1)
p224Reduce(&r)
yEqual := p224IsZero(&r)
if xEqual == 1 && yEqual == 1 && z1IsZero == 0 && z2IsZero == 0 {
p224DoubleJacobian(x3, y3, z3, x1, y1, z1)
return
}
for i := 0; i < 8; i++ {
r[i] <<= 1
}
p224Reduce(&r)
// V = U1*I
p224Mul(&v, &u1, &i, &c)
// Z3 = ((Z1+Z2)²-Z1Z1-Z2Z2)*H
p224Add(&z1z1, &z1z1, &z2z2)
p224Add(&z2z2, z1, z2)
p224Reduce(&z2z2)
p224Square(&z2z2, &z2z2, &c)
p224Sub(z3, &z2z2, &z1z1)
p224Reduce(z3)
p224Mul(z3, z3, &h, &c)
// X3 = r²-J-2*V
for i := 0; i < 8; i++ {
z1z1[i] = v[i] << 1
}
p224Add(&z1z1, &j, &z1z1)
p224Reduce(&z1z1)
p224Square(x3, &r, &c)
p224Sub(x3, x3, &z1z1)
p224Reduce(x3)
// Y3 = r*(V-X3)-2*S1*J
for i := 0; i < 8; i++ {
s1[i] <<= 1
}
p224Mul(&s1, &s1, &j, &c)
p224Sub(&z1z1, &v, x3)
p224Reduce(&z1z1)
p224Mul(&z1z1, &z1z1, &r, &c)
p224Sub(y3, &z1z1, &s1)
p224Reduce(y3)
p224CopyConditional(x3, x2, z1IsZero)
p224CopyConditional(x3, x1, z2IsZero)
p224CopyConditional(y3, y2, z1IsZero)
p224CopyConditional(y3, y1, z2IsZero)
p224CopyConditional(z3, z2, z1IsZero)
p224CopyConditional(z3, z1, z2IsZero)
}
// p224DoubleJacobian computes *out = a+a.
func p224DoubleJacobian(x3, y3, z3, x1, y1, z1 *p224FieldElement) {
var delta, gamma, beta, alpha, t p224FieldElement
var c p224LargeFieldElement
p224Square(&delta, z1, &c)
p224Square(&gamma, y1, &c)
p224Mul(&beta, x1, &gamma, &c)
// alpha = 3*(X1-delta)*(X1+delta)
p224Add(&t, x1, &delta)
for i := 0; i < 8; i++ {
t[i] += t[i] << 1
}
p224Reduce(&t)
p224Sub(&alpha, x1, &delta)
p224Reduce(&alpha)
p224Mul(&alpha, &alpha, &t, &c)
// Z3 = (Y1+Z1)²-gamma-delta
p224Add(z3, y1, z1)
p224Reduce(z3)
p224Square(z3, z3, &c)
p224Sub(z3, z3, &gamma)
p224Reduce(z3)
p224Sub(z3, z3, &delta)
p224Reduce(z3)
// X3 = alpha²-8*beta
for i := 0; i < 8; i++ {
delta[i] = beta[i] << 3
}
p224Reduce(&delta)
p224Square(x3, &alpha, &c)
p224Sub(x3, x3, &delta)
p224Reduce(x3)
// Y3 = alpha*(4*beta-X3)-8*gamma²
for i := 0; i < 8; i++ {
beta[i] <<= 2
}
p224Sub(&beta, &beta, x3)
p224Reduce(&beta)
p224Square(&gamma, &gamma, &c)
for i := 0; i < 8; i++ {
gamma[i] <<= 3
}
p224Reduce(&gamma)
p224Mul(y3, &alpha, &beta, &c)
p224Sub(y3, y3, &gamma)
p224Reduce(y3)
}
// p224CopyConditional sets *out = *in iff the least-significant-bit of control
// is true, and it runs in constant time.
func p224CopyConditional(out, in *p224FieldElement, control uint32) {
control <<= 31
control = uint32(int32(control) >> 31)
for i := 0; i < 8; i++ {
out[i] ^= (out[i] ^ in[i]) & control
}
}
func p224ScalarMult(outX, outY, outZ, inX, inY, inZ *p224FieldElement, scalar []byte) {
var xx, yy, zz p224FieldElement
for i := 0; i < 8; i++ {
outX[i] = 0
outY[i] = 0
outZ[i] = 0
}
for _, byte := range scalar {
for bitNum := uint(0); bitNum < 8; bitNum++ {
p224DoubleJacobian(outX, outY, outZ, outX, outY, outZ)
bit := uint32((byte >> (7 - bitNum)) & 1)
p224AddJacobian(&xx, &yy, &zz, inX, inY, inZ, outX, outY, outZ)
p224CopyConditional(outX, &xx, bit)
p224CopyConditional(outY, &yy, bit)
p224CopyConditional(outZ, &zz, bit)
}
}
}
// p224ToAffine converts from Jacobian to affine form.
func p224ToAffine(x, y, z *p224FieldElement) (*big.Int, *big.Int) {
var zinv, zinvsq, outx, outy p224FieldElement
var tmp p224LargeFieldElement
if isPointAtInfinity := p224IsZero(z); isPointAtInfinity == 1 {
return new(big.Int), new(big.Int)
}
p224Invert(&zinv, z)
p224Square(&zinvsq, &zinv, &tmp)
p224Mul(x, x, &zinvsq, &tmp)
p224Mul(&zinvsq, &zinvsq, &zinv, &tmp)
p224Mul(y, y, &zinvsq, &tmp)
p224Contract(&outx, x)
p224Contract(&outy, y)
return p224ToBig(&outx), p224ToBig(&outy)
}
// get28BitsFromEnd returns the least-significant 28 bits from buf>>shift,
// where buf is interpreted as a big-endian number.
func get28BitsFromEnd(buf []byte, shift uint) (uint32, []byte) {
var ret uint32
for i := uint(0); i < 4; i++ {
var b byte
if l := len(buf); l > 0 {
b = buf[l-1]
// We don't remove the byte if we're about to return and we're not
// reading all of it.
if i != 3 || shift == 4 {
buf = buf[:l-1]
}
}
ret |= uint32(b) << (8 * i) >> shift
}
ret &= bottom28Bits
return ret, buf
}
// p224FromBig sets *out = *in.
func p224FromBig(out *p224FieldElement, in *big.Int) {
bytes := in.Bytes()
out[0], bytes = get28BitsFromEnd(bytes, 0)
out[1], bytes = get28BitsFromEnd(bytes, 4)
out[2], bytes = get28BitsFromEnd(bytes, 0)
out[3], bytes = get28BitsFromEnd(bytes, 4)
out[4], bytes = get28BitsFromEnd(bytes, 0)
out[5], bytes = get28BitsFromEnd(bytes, 4)
out[6], bytes = get28BitsFromEnd(bytes, 0)
out[7], bytes = get28BitsFromEnd(bytes, 4)
}
// p224ToBig returns in as a big.Int.
func p224ToBig(in *p224FieldElement) *big.Int {
var buf [28]byte
buf[27] = byte(in[0])
buf[26] = byte(in[0] >> 8)
buf[25] = byte(in[0] >> 16)
buf[24] = byte(((in[0] >> 24) & 0x0f) | (in[1]<<4)&0xf0)
buf[23] = byte(in[1] >> 4)
buf[22] = byte(in[1] >> 12)
buf[21] = byte(in[1] >> 20)
buf[20] = byte(in[2])
buf[19] = byte(in[2] >> 8)
buf[18] = byte(in[2] >> 16)
buf[17] = byte(((in[2] >> 24) & 0x0f) | (in[3]<<4)&0xf0)
buf[16] = byte(in[3] >> 4)
buf[15] = byte(in[3] >> 12)
buf[14] = byte(in[3] >> 20)
buf[13] = byte(in[4])
buf[12] = byte(in[4] >> 8)
buf[11] = byte(in[4] >> 16)
buf[10] = byte(((in[4] >> 24) & 0x0f) | (in[5]<<4)&0xf0)
buf[9] = byte(in[5] >> 4)
buf[8] = byte(in[5] >> 12)
buf[7] = byte(in[5] >> 20)
buf[6] = byte(in[6])
buf[5] = byte(in[6] >> 8)
buf[4] = byte(in[6] >> 16)
buf[3] = byte(((in[6] >> 24) & 0x0f) | (in[7]<<4)&0xf0)
buf[2] = byte(in[7] >> 4)
buf[1] = byte(in[7] >> 12)
buf[0] = byte(in[7] >> 20)
return new(big.Int).SetBytes(buf[:])
}