gcc/libstdc++-v3/include/bits/stl_vector.h
Gabriel Dos Reis f1e888aea0 [multiple changes]
2002-04-16  Paolo Carlini <pcarlini@unitus.it>
        * testsuite/24_iterators/rel_ops.cc: New test.

2002-04-16  Gabriel Dos Reis  <gdr@merlin.codesourcery.com>

        * include/bits/type_traits.h (__normal_iterator): Declare in
        __gnu_cxx.  Adjust use at global namespace.
        * include/bits/stl_iterator.h (__normal_iterator): Move
        definition
        into __gnu_cxx::. Add more operator overloads.  Tidy existing
        ones.
        * include/bits/basic_string.h (basic_string): Adjust use of
        __normal_iterator.
        * include/bits/stl_vector.h (_Alloc>): Likewise.
        * src/concept-inst.cc (__gnu_cxx): __normal_iterator<> is now
        here.
        * src/string-inst.cc (operator==): Instantiate in __gnu_cxx.

From-SVN: r52348
2002-04-16 02:29:22 +00:00

1084 lines
36 KiB
C++

// Vector implementation -*- C++ -*-
// Copyright (C) 2001, 2002 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License along
// with this library; see the file COPYING. If not, write to the Free
// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
// USA.
// As a special exception, you may use this file as part of a free software
// library without restriction. Specifically, if other files instantiate
// templates or use macros or inline functions from this file, or you compile
// this file and link it with other files to produce an executable, this
// file does not by itself cause the resulting executable to be covered by
// the GNU General Public License. This exception does not however
// invalidate any other reasons why the executable file might be covered by
// the GNU General Public License.
/*
*
* Copyright (c) 1994
* Hewlett-Packard Company
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Hewlett-Packard Company makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*
*
* Copyright (c) 1996
* Silicon Graphics Computer Systems, Inc.
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Silicon Graphics makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*/
/** @file stl_vector.h
* This is an internal header file, included by other library headers.
* You should not attempt to use it directly.
*/
#ifndef __GLIBCPP_INTERNAL_VECTOR_H
#define __GLIBCPP_INTERNAL_VECTOR_H
#include <bits/stl_iterator_base_funcs.h>
#include <bits/functexcept.h>
#include <bits/concept_check.h>
namespace std
{
// The vector base class serves two purposes. First, its constructor
// and destructor allocate (but don't initialize) storage. This makes
// exception safety easier. Second, the base class encapsulates all of
// the differences between SGI-style allocators and standard-conforming
// allocators.
// Base class for ordinary allocators.
template <class _Tp, class _Allocator, bool _IsStatic>
class _Vector_alloc_base {
public:
typedef typename _Alloc_traits<_Tp, _Allocator>::allocator_type
allocator_type;
allocator_type get_allocator() const { return _M_data_allocator; }
_Vector_alloc_base(const allocator_type& __a)
: _M_data_allocator(__a), _M_start(0), _M_finish(0), _M_end_of_storage(0)
{}
protected:
allocator_type _M_data_allocator;
_Tp* _M_start;
_Tp* _M_finish;
_Tp* _M_end_of_storage;
_Tp* _M_allocate(size_t __n)
{ return _M_data_allocator.allocate(__n); }
void _M_deallocate(_Tp* __p, size_t __n)
{ if (__p) _M_data_allocator.deallocate(__p, __n); }
};
// Specialization for allocators that have the property that we don't
// actually have to store an allocator object.
template <class _Tp, class _Allocator>
class _Vector_alloc_base<_Tp, _Allocator, true> {
public:
typedef typename _Alloc_traits<_Tp, _Allocator>::allocator_type
allocator_type;
allocator_type get_allocator() const { return allocator_type(); }
_Vector_alloc_base(const allocator_type&)
: _M_start(0), _M_finish(0), _M_end_of_storage(0)
{}
protected:
_Tp* _M_start;
_Tp* _M_finish;
_Tp* _M_end_of_storage;
typedef typename _Alloc_traits<_Tp, _Allocator>::_Alloc_type _Alloc_type;
_Tp* _M_allocate(size_t __n)
{ return _Alloc_type::allocate(__n); }
void _M_deallocate(_Tp* __p, size_t __n)
{ _Alloc_type::deallocate(__p, __n);}
};
template <class _Tp, class _Alloc>
struct _Vector_base
: public _Vector_alloc_base<_Tp, _Alloc,
_Alloc_traits<_Tp, _Alloc>::_S_instanceless>
{
typedef _Vector_alloc_base<_Tp, _Alloc,
_Alloc_traits<_Tp, _Alloc>::_S_instanceless>
_Base;
typedef typename _Base::allocator_type allocator_type;
_Vector_base(const allocator_type& __a) : _Base(__a) {}
_Vector_base(size_t __n, const allocator_type& __a) : _Base(__a) {
_M_start = _M_allocate(__n);
_M_finish = _M_start;
_M_end_of_storage = _M_start + __n;
}
~_Vector_base() { _M_deallocate(_M_start, _M_end_of_storage - _M_start); }
};
/**
* @brief A standard container which offers fixed time access to individual
* elements in any order.
*
* @ingroup Containers
* @ingroup Sequences
*
* Meets the requirements of a <a href="tables.html#65">container</a>, a
* <a href="tables.html#66">reversible container</a>, and a
* <a href="tables.html#67">sequence</a>, including the
* <a href="tables.html#68">optional sequence requirements</a> with the
* %exception of @c push_front and @c pop_front.
*
* In some terminology a vector can be described as a dynamic C-style array,
* it offers fast and efficient access to individual elements in any order
* and saves the user from worrying about memory and size allocation.
* Subscripting ( [] ) access is also provided as with C-style arrays.
*/
template <class _Tp, class _Alloc = allocator<_Tp> >
class vector : protected _Vector_base<_Tp, _Alloc>
{
// concept requirements
__glibcpp_class_requires(_Tp, _SGIAssignableConcept)
private:
typedef _Vector_base<_Tp, _Alloc> _Base;
typedef vector<_Tp, _Alloc> vector_type;
public:
typedef _Tp value_type;
typedef value_type* pointer;
typedef const value_type* const_pointer;
typedef __gnu_cxx::__normal_iterator<pointer, vector_type> iterator;
typedef __gnu_cxx::__normal_iterator<const_pointer, vector_type>
const_iterator;
typedef value_type& reference;
typedef const value_type& const_reference;
typedef size_t size_type;
typedef ptrdiff_t difference_type;
typedef typename _Base::allocator_type allocator_type;
allocator_type get_allocator() const { return _Base::get_allocator(); }
typedef reverse_iterator<const_iterator> const_reverse_iterator;
typedef reverse_iterator<iterator> reverse_iterator;
protected:
using _Base::_M_allocate;
using _Base::_M_deallocate;
using _Base::_M_start;
using _Base::_M_finish;
using _Base::_M_end_of_storage;
protected:
void _M_insert_aux(iterator __position, const _Tp& __x);
void _M_insert_aux(iterator __position);
public:
/**
* Returns a read/write iterator that points to the first element in the
* vector. Iteration is done in ordinary element order.
*/
iterator begin() { return iterator (_M_start); }
/**
* Returns a read-only (constant) iterator that points to the first element
* in the vector. Iteration is done in ordinary element order.
*/
const_iterator begin() const
{ return const_iterator (_M_start); }
/**
* Returns a read/write iterator that points one past the last element in
* the vector. Iteration is done in ordinary element order.
*/
iterator end() { return iterator (_M_finish); }
/**
* Returns a read-only (constant) iterator that points one past the last
* element in the vector. Iteration is done in ordinary element order.
*/
const_iterator end() const { return const_iterator (_M_finish); }
/**
* Returns a read/write reverse iterator that points to the last element in
* the vector. Iteration is done in reverse element order.
*/
reverse_iterator rbegin()
{ return reverse_iterator(end()); }
/**
* Returns a read-only (constant) reverse iterator that points to the last
* element in the vector. Iteration is done in reverse element order.
*/
const_reverse_iterator rbegin() const
{ return const_reverse_iterator(end()); }
/**
* Returns a read/write reverse iterator that points to one before the
* first element in the vector. Iteration is done in reverse element
* order.
*/
reverse_iterator rend()
{ return reverse_iterator(begin()); }
/**
* Returns a read-only (constant) reverse iterator that points to one
* before the first element in the vector. Iteration is done in reverse
* element order.
*/
const_reverse_iterator rend() const
{ return const_reverse_iterator(begin()); }
/** Returns the number of elements in the vector. */
size_type size() const
{ return size_type(end() - begin()); }
/** Returns the size of the largest possible vector. */
size_type max_size() const
{ return size_type(-1) / sizeof(_Tp); }
/**
* Returns the amount of memory that has been alocated for the current
* elements (?).
*/
size_type capacity() const
{ return size_type(const_iterator(_M_end_of_storage) - begin()); }
/**
* Returns true if the vector is empty. (Thus begin() would equal end().)
*/
bool empty() const
{ return begin() == end(); }
/**
* @brief Subscript access to the data contained in the vector.
* @param n The element for which data should be accessed.
* @return Read/write reference to data.
*
* This operator allows for easy, array-style, data access.
* Note that data access with this operator is unchecked and out_of_range
* lookups are not defined. (For checked lookups see at().)
*/
reference operator[](size_type __n) { return *(begin() + __n); }
/**
* @brief Subscript access to the data contained in the vector.
* @param n The element for which data should be accessed.
* @return Read-only (constant) reference to data.
*
* This operator allows for easy, array-style, data access.
* Note that data access with this operator is unchecked and out_of_range
* lookups are not defined. (For checked lookups see at().)
*/
const_reference operator[](size_type __n) const { return *(begin() + __n); }
void _M_range_check(size_type __n) const {
if (__n >= this->size())
__throw_out_of_range("vector");
}
/**
* @brief Provides access to the data contained in the vector.
* @param n The element for which data should be accessed.
* @return Read/write reference to data.
*
* This function provides for safer data access. The parameter is first
* checked that it is in the range of the vector. The function throws
* out_of_range if the check fails.
*/
reference at(size_type __n)
{ _M_range_check(__n); return (*this)[__n]; }
/**
* @brief Provides access to the data contained in the vector.
* @param n The element for which data should be accessed.
* @return Read-only (constant) reference to data.
*
* This function provides for safer data access. The parameter is first
* checked that it is in the range of the vector. The function throws
* out_of_range if the check fails.
*/
const_reference at(size_type __n) const
{ _M_range_check(__n); return (*this)[__n]; }
explicit vector(const allocator_type& __a = allocator_type())
: _Base(__a) {}
vector(size_type __n, const _Tp& __value,
const allocator_type& __a = allocator_type())
: _Base(__n, __a)
{ _M_finish = uninitialized_fill_n(_M_start, __n, __value); }
explicit vector(size_type __n)
: _Base(__n, allocator_type())
{ _M_finish = uninitialized_fill_n(_M_start, __n, _Tp()); }
vector(const vector<_Tp, _Alloc>& __x)
: _Base(__x.size(), __x.get_allocator())
{ _M_finish = uninitialized_copy(__x.begin(), __x.end(), _M_start); }
// Check whether it's an integral type. If so, it's not an iterator.
template <class _InputIterator>
vector(_InputIterator __first, _InputIterator __last,
const allocator_type& __a = allocator_type())
: _Base(__a)
{
typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
_M_initialize_aux(__first, __last, _Integral());
}
template <class _Integer>
void _M_initialize_aux(_Integer __n, _Integer __value, __true_type)
{
_M_start = _M_allocate(__n);
_M_end_of_storage = _M_start + __n;
_M_finish = uninitialized_fill_n(_M_start, __n, __value);
}
template<class _InputIterator>
void
_M_initialize_aux(_InputIterator __first, _InputIterator __last, __false_type)
{
typedef typename iterator_traits<_InputIterator>::iterator_category _IterCategory;
_M_range_initialize(__first, __last, _IterCategory());
}
~vector()
{ _Destroy(_M_start, _M_finish); }
vector<_Tp, _Alloc>& operator=(const vector<_Tp, _Alloc>& __x);
/**
* @brief Attempt to preallocate enough memory for specified number of
* elements.
* @param n Number of elements required
*
* This function attempts to reserve enough memory for the vector to hold
* the specified number of elements. If the number requested is more than
* max_size() length_error is thrown.
*
* The advantage of this function is that if optimal code is a necessity
* and the user can determine the number of elements that will be required
* the user can reserve the memory and thus prevent a possible
* reallocation of memory and copy of vector data.
*/
void reserve(size_type __n) {
if (capacity() < __n) {
const size_type __old_size = size();
pointer __tmp = _M_allocate_and_copy(__n, _M_start, _M_finish);
_Destroy(_M_start, _M_finish);
_M_deallocate(_M_start, _M_end_of_storage - _M_start);
_M_start = __tmp;
_M_finish = __tmp + __old_size;
_M_end_of_storage = _M_start + __n;
}
}
// assign(), a generalized assignment member function. Two
// versions: one that takes a count, and one that takes a range.
// The range version is a member template, so we dispatch on whether
// or not the type is an integer.
/**
* @brief Assigns a given value or range to a vector.
* @param n Number of elements to be assigned.
* @param val Value to be assigned.
*
* This function can be used to assign a range to a vector or fill it
* with a specified number of copies of the given value.
* Note that the assignment completely changes the vector and that the
* resulting vector's size is the same as the number of elements assigned.
* Old data may be lost.
*/
void assign(size_type __n, const _Tp& __val) { _M_fill_assign(__n, __val); }
void _M_fill_assign(size_type __n, const _Tp& __val);
template<class _InputIterator>
void
assign(_InputIterator __first, _InputIterator __last)
{
typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
_M_assign_dispatch(__first, __last, _Integral());
}
template<class _Integer>
void
_M_assign_dispatch(_Integer __n, _Integer __val, __true_type)
{ _M_fill_assign((size_type) __n, (_Tp) __val); }
template<class _InputIter>
void
_M_assign_dispatch(_InputIter __first, _InputIter __last, __false_type)
{
typedef typename iterator_traits<_InputIter>::iterator_category _IterCategory;
_M_assign_aux(__first, __last, _IterCategory());
}
template <class _InputIterator>
void
_M_assign_aux(_InputIterator __first, _InputIterator __last,
input_iterator_tag);
template <class _ForwardIterator>
void
_M_assign_aux(_ForwardIterator __first, _ForwardIterator __last,
forward_iterator_tag);
/**
* Returns a read/write reference to the data at the first element of the
* vector.
*/
reference front() { return *begin(); }
/**
* Returns a read-only (constant) reference to the data at the first
* element of the vector.
*/
const_reference front() const { return *begin(); }
/**
* Returns a read/write reference to the data at the last element of the
* vector.
*/
reference back() { return *(end() - 1); }
/**
* Returns a read-only (constant) reference to the data at the first
* element of the vector.
*/
const_reference back() const { return *(end() - 1); }
/**
* @brief Add data to the end of the vector.
* @param x Data to be added.
*
* This is a typical stack operation. The function creates an element at
* the end of the vector and assigns the given data to it.
* Due to the nature of a vector this operation can be done in constant
* time if the vector has preallocated space available.
*/
void
push_back(const _Tp& __x)
{
if (_M_finish != _M_end_of_storage) {
_Construct(_M_finish, __x);
++_M_finish;
}
else
_M_insert_aux(end(), __x);
}
#ifdef _GLIBCPP_DEPRECATED
/**
* Add an element to the end of the vector. The element is
* default-constructed.
*
* @note You must define _GLIBCPP_DEPRECATED to make this visible; see
* c++config.h.
*/
void
push_back()
{
if (_M_finish != _M_end_of_storage) {
_Construct(_M_finish);
++_M_finish;
}
else
_M_insert_aux(end());
}
#endif
void
swap(vector<_Tp, _Alloc>& __x)
{
std::swap(_M_start, __x._M_start);
std::swap(_M_finish, __x._M_finish);
std::swap(_M_end_of_storage, __x._M_end_of_storage);
}
/**
* @brief Inserts given value into vector at specified element.
* @param position An iterator that points to the element where data
* should be inserted.
* @param x Data to be inserted.
* @return An iterator that points to the inserted data.
*
* This function will insert the given value into the specified location.
* Note that this kind of operation could be expensive for a vector and if
* it is frequently used the user should consider using std::list.
*/
iterator
insert(iterator __position, const _Tp& __x)
{
size_type __n = __position - begin();
if (_M_finish != _M_end_of_storage && __position == end()) {
_Construct(_M_finish, __x);
++_M_finish;
}
else
_M_insert_aux(iterator(__position), __x);
return begin() + __n;
}
/**
* @brief Inserts an empty element into the vector.
* @param position An iterator that points to the element where empty
* element should be inserted.
* @param x Data to be inserted.
* @return An iterator that points to the inserted element.
*
* This function will insert an empty element into the specified location.
* Note that this kind of operation could be expensive for a vector and if
* it is frequently used the user should consider using std::list.
*/
iterator
insert(iterator __position)
{
size_type __n = __position - begin();
if (_M_finish != _M_end_of_storage && __position == end()) {
_Construct(_M_finish);
++_M_finish;
}
else
_M_insert_aux(iterator(__position));
return begin() + __n;
}
// Check whether it's an integral type. If so, it's not an iterator.
template<class _InputIterator>
void
insert(iterator __pos, _InputIterator __first, _InputIterator __last)
{
typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
_M_insert_dispatch(__pos, __first, __last, _Integral());
}
template <class _Integer>
void
_M_insert_dispatch(iterator __pos, _Integer __n, _Integer __val, __true_type)
{ _M_fill_insert(__pos, static_cast<size_type>(__n), static_cast<_Tp>(__val)); }
template<class _InputIterator>
void
_M_insert_dispatch(iterator __pos,
_InputIterator __first, _InputIterator __last,
__false_type)
{
typedef typename iterator_traits<_InputIterator>::iterator_category _IterCategory;
_M_range_insert(__pos, __first, __last, _IterCategory());
}
/**
* @brief Inserts a number of copies of given data into the vector.
* @param position An iterator that points to the element where data
* should be inserted.
* @param n Amount of elements to be inserted.
* @param x Data to be inserted.
*
* This function will insert a specified number of copies of the given data
* into the specified location.
*
* Note that this kind of operation could be expensive for a vector and if
* it is frequently used the user should consider using std::list.
*/
void insert (iterator __pos, size_type __n, const _Tp& __x)
{ _M_fill_insert(__pos, __n, __x); }
void _M_fill_insert (iterator __pos, size_type __n, const _Tp& __x);
/**
* @brief Removes last element from vector.
*
* This is a typical stack operation. It allows us to shrink the vector by
* one.
*
* Note that no data is returned and if last element's data is needed it
* should be retrieved before pop_back() is called.
*/
void pop_back() {
--_M_finish;
_Destroy(_M_finish);
}
/**
* @brief Remove element at given position
* @param position Iterator pointing to element to be erased.
* @return Doc Me! (Iterator pointing to new element at old location?)
*
* This function will erase the element at the given position and thus
* shorten the vector by one.
*
* Note This operation could be expensive and if it is frequently used the
* user should consider using std::list. The user is also cautioned that
* this function only erases the element, and that if the element is itself
* a pointer, the pointed-to memory is not touched in any way. Managing
* the pointer is the user's responsibilty.
*/
iterator erase(iterator __position) {
if (__position + 1 != end())
copy(__position + 1, end(), __position);
--_M_finish;
_Destroy(_M_finish);
return __position;
}
/**
* @brief Remove a range of elements from a vector.
* @param first Iterator pointing to the first element to be erased.
* @param last Iterator pointing to the last element to be erased.
* @return Doc Me! (Iterator pointing to new element at old location?)
*
* This function will erase the elements in the given range and shorten the
* vector accordingly.
*
* Note This operation could be expensive and if it is frequently used the
* user should consider using std::list. The user is also cautioned that
* this function only erases the elements, and that if the elements
* themselves are pointers, the pointed-to memory is not touched in any
* way. Managing the pointer is the user's responsibilty.
*/
iterator erase(iterator __first, iterator __last) {
iterator __i(copy(__last, end(), __first));
_Destroy(__i, end());
_M_finish = _M_finish - (__last - __first);
return __first;
}
/**
* @brief Resizes the vector to the specified number of elements.
* @param new_size Number of elements the vector should contain.
* @param x Data with which new elements should be populated.
*
* This function will resize the vector to the specified number of
* elements. If the number is smaller than the vector's current size the
* vector is truncated, otherwise the vector is extended and new elements
* are populated with given data.
*/
void resize(size_type __new_size, const _Tp& __x) {
if (__new_size < size())
erase(begin() + __new_size, end());
else
insert(end(), __new_size - size(), __x);
}
/**
* @brief Resizes the vector to the specified number of elements.
* @param new_size Number of elements the vector should contain.
*
* This function will resize the vector to the specified number of
* elements. If the number is smaller than the vector's current size the
* vector is truncated, otherwise the vector is extended and new elements
* are left uninitialized.
*/
void resize(size_type __new_size) { resize(__new_size, _Tp()); }
/**
* Erases all elements in vector. Note that this function only erases the
* elements, and that if the elements themselves are pointers, the
* pointed-to memory is not touched in any way. Managing the pointer is
* the user's responsibilty.
*/
void clear() { erase(begin(), end()); }
protected:
template <class _ForwardIterator>
pointer _M_allocate_and_copy(size_type __n, _ForwardIterator __first,
_ForwardIterator __last)
{
pointer __result = _M_allocate(__n);
try {
uninitialized_copy(__first, __last, __result);
return __result;
}
catch(...)
{
_M_deallocate(__result, __n);
__throw_exception_again;
}
}
template <class _InputIterator>
void _M_range_initialize(_InputIterator __first,
_InputIterator __last, input_iterator_tag)
{
for ( ; __first != __last; ++__first)
push_back(*__first);
}
// This function is only called by the constructor.
template <class _ForwardIterator>
void _M_range_initialize(_ForwardIterator __first,
_ForwardIterator __last, forward_iterator_tag)
{
size_type __n = distance(__first, __last);
_M_start = _M_allocate(__n);
_M_end_of_storage = _M_start + __n;
_M_finish = uninitialized_copy(__first, __last, _M_start);
}
template <class _InputIterator>
void _M_range_insert(iterator __pos,
_InputIterator __first, _InputIterator __last,
input_iterator_tag);
template <class _ForwardIterator>
void _M_range_insert(iterator __pos,
_ForwardIterator __first, _ForwardIterator __last,
forward_iterator_tag);
};
template <class _Tp, class _Alloc>
inline bool
operator==(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
{
return __x.size() == __y.size() &&
equal(__x.begin(), __x.end(), __y.begin());
}
template <class _Tp, class _Alloc>
inline bool
operator<(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
{
return lexicographical_compare(__x.begin(), __x.end(),
__y.begin(), __y.end());
}
template <class _Tp, class _Alloc>
inline void swap(vector<_Tp, _Alloc>& __x, vector<_Tp, _Alloc>& __y)
{
__x.swap(__y);
}
template <class _Tp, class _Alloc>
inline bool
operator!=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y) {
return !(__x == __y);
}
template <class _Tp, class _Alloc>
inline bool
operator>(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y) {
return __y < __x;
}
template <class _Tp, class _Alloc>
inline bool
operator<=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y) {
return !(__y < __x);
}
template <class _Tp, class _Alloc>
inline bool
operator>=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y) {
return !(__x < __y);
}
template <class _Tp, class _Alloc>
vector<_Tp,_Alloc>&
vector<_Tp,_Alloc>::operator=(const vector<_Tp, _Alloc>& __x)
{
if (&__x != this) {
const size_type __xlen = __x.size();
if (__xlen > capacity()) {
pointer __tmp = _M_allocate_and_copy(__xlen, __x.begin(), __x.end());
_Destroy(_M_start, _M_finish);
_M_deallocate(_M_start, _M_end_of_storage - _M_start);
_M_start = __tmp;
_M_end_of_storage = _M_start + __xlen;
}
else if (size() >= __xlen) {
iterator __i(copy(__x.begin(), __x.end(), begin()));
_Destroy(__i, end());
}
else {
copy(__x.begin(), __x.begin() + size(), _M_start);
uninitialized_copy(__x.begin() + size(), __x.end(), _M_finish);
}
_M_finish = _M_start + __xlen;
}
return *this;
}
template <class _Tp, class _Alloc>
void vector<_Tp, _Alloc>::_M_fill_assign(size_t __n, const value_type& __val)
{
if (__n > capacity()) {
vector<_Tp, _Alloc> __tmp(__n, __val, get_allocator());
__tmp.swap(*this);
}
else if (__n > size()) {
fill(begin(), end(), __val);
_M_finish = uninitialized_fill_n(_M_finish, __n - size(), __val);
}
else
erase(fill_n(begin(), __n, __val), end());
}
template <class _Tp, class _Alloc> template <class _InputIter>
void vector<_Tp, _Alloc>::_M_assign_aux(_InputIter __first, _InputIter __last,
input_iterator_tag) {
iterator __cur(begin());
for ( ; __first != __last && __cur != end(); ++__cur, ++__first)
*__cur = *__first;
if (__first == __last)
erase(__cur, end());
else
insert(end(), __first, __last);
}
template <class _Tp, class _Alloc> template <class _ForwardIter>
void
vector<_Tp, _Alloc>::_M_assign_aux(_ForwardIter __first, _ForwardIter __last,
forward_iterator_tag) {
size_type __len = distance(__first, __last);
if (__len > capacity()) {
pointer __tmp(_M_allocate_and_copy(__len, __first, __last));
_Destroy(_M_start, _M_finish);
_M_deallocate(_M_start, _M_end_of_storage - _M_start);
_M_start = __tmp;
_M_end_of_storage = _M_finish = _M_start + __len;
}
else if (size() >= __len) {
iterator __new_finish(copy(__first, __last, _M_start));
_Destroy(__new_finish, end());
_M_finish = __new_finish.base();
}
else {
_ForwardIter __mid = __first;
advance(__mid, size());
copy(__first, __mid, _M_start);
_M_finish = uninitialized_copy(__mid, __last, _M_finish);
}
}
template <class _Tp, class _Alloc>
void
vector<_Tp, _Alloc>::_M_insert_aux(iterator __position, const _Tp& __x)
{
if (_M_finish != _M_end_of_storage) {
_Construct(_M_finish, *(_M_finish - 1));
++_M_finish;
_Tp __x_copy = __x;
copy_backward(__position, iterator(_M_finish - 2), iterator(_M_finish- 1));
*__position = __x_copy;
}
else {
const size_type __old_size = size();
const size_type __len = __old_size != 0 ? 2 * __old_size : 1;
iterator __new_start(_M_allocate(__len));
iterator __new_finish(__new_start);
try {
__new_finish = uninitialized_copy(iterator(_M_start), __position,
__new_start);
_Construct(__new_finish.base(), __x);
++__new_finish;
__new_finish = uninitialized_copy(__position, iterator(_M_finish),
__new_finish);
}
catch(...)
{
_Destroy(__new_start,__new_finish);
_M_deallocate(__new_start.base(),__len);
__throw_exception_again;
}
_Destroy(begin(), end());
_M_deallocate(_M_start, _M_end_of_storage - _M_start);
_M_start = __new_start.base();
_M_finish = __new_finish.base();
_M_end_of_storage = __new_start.base() + __len;
}
}
template <class _Tp, class _Alloc>
void
vector<_Tp, _Alloc>::_M_insert_aux(iterator __position)
{
if (_M_finish != _M_end_of_storage) {
_Construct(_M_finish, *(_M_finish - 1));
++_M_finish;
copy_backward(__position, iterator(_M_finish - 2),
iterator(_M_finish - 1));
*__position = _Tp();
}
else {
const size_type __old_size = size();
const size_type __len = __old_size != 0 ? 2 * __old_size : 1;
pointer __new_start = _M_allocate(__len);
pointer __new_finish = __new_start;
try {
__new_finish = uninitialized_copy(iterator(_M_start), __position,
__new_start);
_Construct(__new_finish);
++__new_finish;
__new_finish = uninitialized_copy(__position, iterator(_M_finish),
__new_finish);
}
catch(...)
{
_Destroy(__new_start,__new_finish);
_M_deallocate(__new_start,__len);
__throw_exception_again;
}
_Destroy(begin(), end());
_M_deallocate(_M_start, _M_end_of_storage - _M_start);
_M_start = __new_start;
_M_finish = __new_finish;
_M_end_of_storage = __new_start + __len;
}
}
template <class _Tp, class _Alloc>
void vector<_Tp, _Alloc>::_M_fill_insert(iterator __position, size_type __n,
const _Tp& __x)
{
if (__n != 0) {
if (size_type(_M_end_of_storage - _M_finish) >= __n) {
_Tp __x_copy = __x;
const size_type __elems_after = end() - __position;
iterator __old_finish(_M_finish);
if (__elems_after > __n) {
uninitialized_copy(_M_finish - __n, _M_finish, _M_finish);
_M_finish += __n;
copy_backward(__position, __old_finish - __n, __old_finish);
fill(__position, __position + __n, __x_copy);
}
else {
uninitialized_fill_n(_M_finish, __n - __elems_after, __x_copy);
_M_finish += __n - __elems_after;
uninitialized_copy(__position, __old_finish, _M_finish);
_M_finish += __elems_after;
fill(__position, __old_finish, __x_copy);
}
}
else {
const size_type __old_size = size();
const size_type __len = __old_size + max(__old_size, __n);
iterator __new_start(_M_allocate(__len));
iterator __new_finish(__new_start);
try {
__new_finish = uninitialized_copy(begin(), __position, __new_start);
__new_finish = uninitialized_fill_n(__new_finish, __n, __x);
__new_finish
= uninitialized_copy(__position, end(), __new_finish);
}
catch(...)
{
_Destroy(__new_start,__new_finish);
_M_deallocate(__new_start.base(),__len);
__throw_exception_again;
}
_Destroy(_M_start, _M_finish);
_M_deallocate(_M_start, _M_end_of_storage - _M_start);
_M_start = __new_start.base();
_M_finish = __new_finish.base();
_M_end_of_storage = __new_start.base() + __len;
}
}
}
template <class _Tp, class _Alloc> template <class _InputIterator>
void
vector<_Tp, _Alloc>::_M_range_insert(iterator __pos,
_InputIterator __first,
_InputIterator __last,
input_iterator_tag)
{
for ( ; __first != __last; ++__first) {
__pos = insert(__pos, *__first);
++__pos;
}
}
template <class _Tp, class _Alloc> template <class _ForwardIterator>
void
vector<_Tp, _Alloc>::_M_range_insert(iterator __position,
_ForwardIterator __first,
_ForwardIterator __last,
forward_iterator_tag)
{
if (__first != __last) {
size_type __n = distance(__first, __last);
if (size_type(_M_end_of_storage - _M_finish) >= __n) {
const size_type __elems_after = end() - __position;
iterator __old_finish(_M_finish);
if (__elems_after > __n) {
uninitialized_copy(_M_finish - __n, _M_finish, _M_finish);
_M_finish += __n;
copy_backward(__position, __old_finish - __n, __old_finish);
copy(__first, __last, __position);
}
else {
_ForwardIterator __mid = __first;
advance(__mid, __elems_after);
uninitialized_copy(__mid, __last, _M_finish);
_M_finish += __n - __elems_after;
uninitialized_copy(__position, __old_finish, _M_finish);
_M_finish += __elems_after;
copy(__first, __mid, __position);
}
}
else {
const size_type __old_size = size();
const size_type __len = __old_size + max(__old_size, __n);
iterator __new_start(_M_allocate(__len));
iterator __new_finish(__new_start);
try {
__new_finish = uninitialized_copy(iterator(_M_start),
__position, __new_start);
__new_finish = uninitialized_copy(__first, __last, __new_finish);
__new_finish
= uninitialized_copy(__position, iterator(_M_finish), __new_finish);
}
catch(...)
{
_Destroy(__new_start,__new_finish);
_M_deallocate(__new_start.base(), __len);
__throw_exception_again;
}
_Destroy(_M_start, _M_finish);
_M_deallocate(_M_start, _M_end_of_storage - _M_start);
_M_start = __new_start.base();
_M_finish = __new_finish.base();
_M_end_of_storage = __new_start.base() + __len;
}
}
}
} // namespace std
#endif /* __GLIBCPP_INTERNAL_VECTOR_H */
// Local Variables:
// mode:C++
// End: