gcc/gcc/range-op.cc
Jakub Jelinek 8d9254fc8a Update copyright years.
From-SVN: r279813
2020-01-01 12:51:42 +01:00

3114 lines
86 KiB
C++
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* Code for range operators.
Copyright (C) 2017-2020 Free Software Foundation, Inc.
Contributed by Andrew MacLeod <amacleod@redhat.com>
and Aldy Hernandez <aldyh@redhat.com>.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "insn-codes.h"
#include "rtl.h"
#include "tree.h"
#include "gimple.h"
#include "cfghooks.h"
#include "tree-pass.h"
#include "ssa.h"
#include "optabs-tree.h"
#include "gimple-pretty-print.h"
#include "diagnostic-core.h"
#include "flags.h"
#include "fold-const.h"
#include "stor-layout.h"
#include "calls.h"
#include "cfganal.h"
#include "gimple-fold.h"
#include "tree-eh.h"
#include "gimple-iterator.h"
#include "gimple-walk.h"
#include "tree-cfg.h"
#include "wide-int.h"
#include "range-op.h"
// Return the upper limit for a type.
static inline wide_int
max_limit (const_tree type)
{
return wi::max_value (TYPE_PRECISION (type) , TYPE_SIGN (type));
}
// Return the lower limit for a type.
static inline wide_int
min_limit (const_tree type)
{
return wi::min_value (TYPE_PRECISION (type) , TYPE_SIGN (type));
}
// If the range of either op1 or op2 is undefined, set the result to
// undefined and return TRUE.
inline bool
empty_range_check (value_range &r,
const value_range &op1, const value_range & op2)
{
if (op1.undefined_p () || op2.undefined_p ())
{
r.set_undefined ();
return true;
}
else
return false;
}
// Return TRUE if shifting by OP is undefined behavior, and set R to
// the appropriate range.
static inline bool
undefined_shift_range_check (value_range &r, tree type, const value_range op)
{
if (op.undefined_p ())
{
r = value_range ();
return true;
}
// Shifting by any values outside [0..prec-1], gets undefined
// behavior from the shift operation. We cannot even trust
// SHIFT_COUNT_TRUNCATED at this stage, because that applies to rtl
// shifts, and the operation at the tree level may be widened.
if (wi::lt_p (op.lower_bound (), 0, TYPE_SIGN (op.type ()))
|| wi::ge_p (op.upper_bound (),
TYPE_PRECISION (type), TYPE_SIGN (op.type ())))
{
r = value_range (type);
return true;
}
return false;
}
// Return TRUE if 0 is within [WMIN, WMAX].
static inline bool
wi_includes_zero_p (tree type, const wide_int &wmin, const wide_int &wmax)
{
signop sign = TYPE_SIGN (type);
return wi::le_p (wmin, 0, sign) && wi::ge_p (wmax, 0, sign);
}
// Return TRUE if [WMIN, WMAX] is the singleton 0.
static inline bool
wi_zero_p (tree type, const wide_int &wmin, const wide_int &wmax)
{
unsigned prec = TYPE_PRECISION (type);
return wmin == wmax && wi::eq_p (wmin, wi::zero (prec));
}
// Default wide_int fold operation returns [MIN, MAX].
void
range_operator::wi_fold (value_range &r, tree type,
const wide_int &lh_lb ATTRIBUTE_UNUSED,
const wide_int &lh_ub ATTRIBUTE_UNUSED,
const wide_int &rh_lb ATTRIBUTE_UNUSED,
const wide_int &rh_ub ATTRIBUTE_UNUSED) const
{
gcc_checking_assert (value_range::supports_type_p (type));
r = value_range (type);
}
// The default for fold is to break all ranges into sub-ranges and
// invoke the wi_fold method on each sub-range pair.
bool
range_operator::fold_range (value_range &r, tree type,
const value_range &lh,
const value_range &rh) const
{
gcc_checking_assert (value_range::supports_type_p (type));
if (empty_range_check (r, lh, rh))
return true;
value_range tmp;
r.set_undefined ();
for (unsigned x = 0; x < lh.num_pairs (); ++x)
for (unsigned y = 0; y < rh.num_pairs (); ++y)
{
wide_int lh_lb = lh.lower_bound (x);
wide_int lh_ub = lh.upper_bound (x);
wide_int rh_lb = rh.lower_bound (y);
wide_int rh_ub = rh.upper_bound (y);
wi_fold (tmp, type, lh_lb, lh_ub, rh_lb, rh_ub);
r.union_ (tmp);
if (r.varying_p ())
return true;
}
return true;
}
// The default for op1_range is to return false.
bool
range_operator::op1_range (value_range &r ATTRIBUTE_UNUSED,
tree type ATTRIBUTE_UNUSED,
const value_range &lhs ATTRIBUTE_UNUSED,
const value_range &op2 ATTRIBUTE_UNUSED) const
{
return false;
}
// The default for op2_range is to return false.
bool
range_operator::op2_range (value_range &r ATTRIBUTE_UNUSED,
tree type ATTRIBUTE_UNUSED,
const value_range &lhs ATTRIBUTE_UNUSED,
const value_range &op1 ATTRIBUTE_UNUSED) const
{
return false;
}
// Create and return a range from a pair of wide-ints that are known
// to have overflowed (or underflowed).
static void
value_range_from_overflowed_bounds (value_range &r, tree type,
const wide_int &wmin,
const wide_int &wmax)
{
const signop sgn = TYPE_SIGN (type);
const unsigned int prec = TYPE_PRECISION (type);
wide_int tmin = wide_int::from (wmin, prec, sgn);
wide_int tmax = wide_int::from (wmax, prec, sgn);
bool covers = false;
wide_int tem = tmin;
tmin = tmax + 1;
if (wi::cmp (tmin, tmax, sgn) < 0)
covers = true;
tmax = tem - 1;
if (wi::cmp (tmax, tem, sgn) > 0)
covers = true;
// If the anti-range would cover nothing, drop to varying.
// Likewise if the anti-range bounds are outside of the types
// values.
if (covers || wi::cmp (tmin, tmax, sgn) > 0)
r = value_range (type);
else
r = value_range (type, tmin, tmax, VR_ANTI_RANGE);
}
// Create and return a range from a pair of wide-ints. MIN_OVF and
// MAX_OVF describe any overflow that might have occurred while
// calculating WMIN and WMAX respectively.
static void
value_range_with_overflow (value_range &r, tree type,
const wide_int &wmin, const wide_int &wmax,
wi::overflow_type min_ovf = wi::OVF_NONE,
wi::overflow_type max_ovf = wi::OVF_NONE)
{
const signop sgn = TYPE_SIGN (type);
const unsigned int prec = TYPE_PRECISION (type);
const bool overflow_wraps = TYPE_OVERFLOW_WRAPS (type);
// For one bit precision if max != min, then the range covers all
// values.
if (prec == 1 && wi::ne_p (wmax, wmin))
{
r = value_range (type);
return;
}
if (overflow_wraps)
{
// If overflow wraps, truncate the values and adjust the range,
// kind, and bounds appropriately.
if ((min_ovf != wi::OVF_NONE) == (max_ovf != wi::OVF_NONE))
{
wide_int tmin = wide_int::from (wmin, prec, sgn);
wide_int tmax = wide_int::from (wmax, prec, sgn);
// If the limits are swapped, we wrapped around and cover
// the entire range.
if (wi::gt_p (tmin, tmax, sgn))
r = value_range (type);
else
// No overflow or both overflow or underflow. The range
// kind stays normal.
r = value_range (type, tmin, tmax);
return;
}
if ((min_ovf == wi::OVF_UNDERFLOW && max_ovf == wi::OVF_NONE)
|| (max_ovf == wi::OVF_OVERFLOW && min_ovf == wi::OVF_NONE))
value_range_from_overflowed_bounds (r, type, wmin, wmax);
else
// Other underflow and/or overflow, drop to VR_VARYING.
r = value_range (type);
}
else
{
// If overflow does not wrap, saturate to [MIN, MAX].
wide_int new_lb, new_ub;
if (min_ovf == wi::OVF_UNDERFLOW)
new_lb = wi::min_value (prec, sgn);
else if (min_ovf == wi::OVF_OVERFLOW)
new_lb = wi::max_value (prec, sgn);
else
new_lb = wmin;
if (max_ovf == wi::OVF_UNDERFLOW)
new_ub = wi::min_value (prec, sgn);
else if (max_ovf == wi::OVF_OVERFLOW)
new_ub = wi::max_value (prec, sgn);
else
new_ub = wmax;
r = value_range (type, new_lb, new_ub);
}
}
// Create and return a range from a pair of wide-ints. Canonicalize
// the case where the bounds are swapped. In which case, we transform
// [10,5] into [MIN,5][10,MAX].
static inline void
create_possibly_reversed_range (value_range &r, tree type,
const wide_int &new_lb, const wide_int &new_ub)
{
signop s = TYPE_SIGN (type);
// If the bounds are swapped, treat the result as if an overflow occured.
if (wi::gt_p (new_lb, new_ub, s))
value_range_from_overflowed_bounds (r, type, new_lb, new_ub);
else
// Otherwise its just a normal range.
r = value_range (type, new_lb, new_ub);
}
// Return a value_range instance that is a boolean TRUE.
static inline value_range
range_true (tree type)
{
unsigned prec = TYPE_PRECISION (type);
return value_range (type, wi::one (prec), wi::one (prec));
}
// Return a value_range instance that is a boolean FALSE.
static inline value_range
range_false (tree type)
{
unsigned prec = TYPE_PRECISION (type);
return value_range (type, wi::zero (prec), wi::zero (prec));
}
// Return a value_range that covers both true and false.
static inline value_range
range_true_and_false (tree type)
{
unsigned prec = TYPE_PRECISION (type);
return value_range (type, wi::zero (prec), wi::one (prec));
}
enum bool_range_state { BRS_FALSE, BRS_TRUE, BRS_EMPTY, BRS_FULL };
// Return the summary information about boolean range LHS. Return an
// "interesting" range in R. For EMPTY or FULL, return the equivalent
// range for TYPE, for BRS_TRUE and BRS false, return the negation of
// the bool range.
static bool_range_state
get_bool_state (value_range &r, const value_range &lhs, tree val_type)
{
// If there is no result, then this is unexecutable.
if (lhs.undefined_p ())
{
r.set_undefined ();
return BRS_EMPTY;
}
// If the bounds aren't the same, then it's not a constant.
if (!wi::eq_p (lhs.upper_bound (), lhs.lower_bound ()))
{
r.set_varying (val_type);
return BRS_FULL;
}
if (lhs.zero_p ())
return BRS_FALSE;
return BRS_TRUE;
}
class operator_equal : public range_operator
{
public:
virtual bool fold_range (value_range &r, tree type,
const value_range &op1,
const value_range &op2) const;
virtual bool op1_range (value_range &r, tree type,
const value_range &lhs,
const value_range &val) const;
virtual bool op2_range (value_range &r, tree type,
const value_range &lhs,
const value_range &val) const;
} op_equal;
bool
operator_equal::fold_range (value_range &r, tree type,
const value_range &op1,
const value_range &op2) const
{
if (empty_range_check (r, op1, op2))
return true;
// We can be sure the values are always equal or not if both ranges
// consist of a single value, and then compare them.
if (wi::eq_p (op1.lower_bound (), op1.upper_bound ())
&& wi::eq_p (op2.lower_bound (), op2.upper_bound ()))
{
if (wi::eq_p (op1.lower_bound (), op2.upper_bound()))
r = range_true (type);
else
r = range_false (type);
}
else
{
// If ranges do not intersect, we know the range is not equal,
// otherwise we don't know anything for sure.
r = op1;
r.intersect (op2);
if (r.undefined_p ())
r = range_false (type);
else
r = range_true_and_false (type);
}
return true;
}
bool
operator_equal::op1_range (value_range &r, tree type,
const value_range &lhs,
const value_range &op2) const
{
switch (get_bool_state (r, lhs, type))
{
case BRS_FALSE:
// If the result is false, the only time we know anything is
// if OP2 is a constant.
if (wi::eq_p (op2.lower_bound(), op2.upper_bound()))
{
r = op2;
r.invert ();
}
else
r.set_varying (type);
break;
case BRS_TRUE:
// If it's true, the result is the same as OP2.
r = op2;
break;
default:
break;
}
return true;
}
bool
operator_equal::op2_range (value_range &r, tree type,
const value_range &lhs,
const value_range &op1) const
{
return operator_equal::op1_range (r, type, lhs, op1);
}
class operator_not_equal : public range_operator
{
public:
virtual bool fold_range (value_range &r, tree type,
const value_range &op1,
const value_range &op2) const;
virtual bool op1_range (value_range &r, tree type,
const value_range &lhs,
const value_range &op2) const;
virtual bool op2_range (value_range &r, tree type,
const value_range &lhs,
const value_range &op1) const;
} op_not_equal;
bool
operator_not_equal::fold_range (value_range &r, tree type,
const value_range &op1,
const value_range &op2) const
{
if (empty_range_check (r, op1, op2))
return true;
// We can be sure the values are always equal or not if both ranges
// consist of a single value, and then compare them.
if (wi::eq_p (op1.lower_bound (), op1.upper_bound ())
&& wi::eq_p (op2.lower_bound (), op2.upper_bound ()))
{
if (wi::ne_p (op1.lower_bound (), op2.upper_bound()))
r = range_true (type);
else
r = range_false (type);
}
else
{
// If ranges do not intersect, we know the range is not equal,
// otherwise we don't know anything for sure.
r = op1;
r.intersect (op2);
if (r.undefined_p ())
r = range_true (type);
else
r = range_true_and_false (type);
}
return true;
}
bool
operator_not_equal::op1_range (value_range &r, tree type,
const value_range &lhs,
const value_range &op2) const
{
switch (get_bool_state (r, lhs, type))
{
case BRS_TRUE:
// If the result is true, the only time we know anything is if
// OP2 is a constant.
if (wi::eq_p (op2.lower_bound(), op2.upper_bound()))
{
r = op2;
r.invert ();
}
else
r.set_varying (type);
break;
case BRS_FALSE:
// If its true, the result is the same as OP2.
r = op2;
break;
default:
break;
}
return true;
}
bool
operator_not_equal::op2_range (value_range &r, tree type,
const value_range &lhs,
const value_range &op1) const
{
return operator_not_equal::op1_range (r, type, lhs, op1);
}
// (X < VAL) produces the range of [MIN, VAL - 1].
static void
build_lt (value_range &r, tree type, const wide_int &val)
{
wi::overflow_type ov;
wide_int lim = wi::sub (val, 1, TYPE_SIGN (type), &ov);
// If val - 1 underflows, check if X < MIN, which is an empty range.
if (ov)
r.set_undefined ();
else
r = value_range (type, min_limit (type), lim);
}
// (X <= VAL) produces the range of [MIN, VAL].
static void
build_le (value_range &r, tree type, const wide_int &val)
{
r = value_range (type, min_limit (type), val);
}
// (X > VAL) produces the range of [VAL + 1, MAX].
static void
build_gt (value_range &r, tree type, const wide_int &val)
{
wi::overflow_type ov;
wide_int lim = wi::add (val, 1, TYPE_SIGN (type), &ov);
// If val + 1 overflows, check is for X > MAX, which is an empty range.
if (ov)
r.set_undefined ();
else
r = value_range (type, lim, max_limit (type));
}
// (X >= val) produces the range of [VAL, MAX].
static void
build_ge (value_range &r, tree type, const wide_int &val)
{
r = value_range (type, val, max_limit (type));
}
class operator_lt : public range_operator
{
public:
virtual bool fold_range (value_range &r, tree type,
const value_range &op1,
const value_range &op2) const;
virtual bool op1_range (value_range &r, tree type,
const value_range &lhs,
const value_range &op2) const;
virtual bool op2_range (value_range &r, tree type,
const value_range &lhs,
const value_range &op1) const;
} op_lt;
bool
operator_lt::fold_range (value_range &r, tree type,
const value_range &op1,
const value_range &op2) const
{
if (empty_range_check (r, op1, op2))
return true;
signop sign = TYPE_SIGN (op1.type ());
gcc_checking_assert (sign == TYPE_SIGN (op2.type ()));
if (wi::lt_p (op1.upper_bound (), op2.lower_bound (), sign))
r = range_true (type);
else if (!wi::lt_p (op1.lower_bound (), op2.upper_bound (), sign))
r = range_false (type);
else
r = range_true_and_false (type);
return true;
}
bool
operator_lt::op1_range (value_range &r, tree type,
const value_range &lhs,
const value_range &op2) const
{
switch (get_bool_state (r, lhs, type))
{
case BRS_TRUE:
build_lt (r, type, op2.upper_bound ());
break;
case BRS_FALSE:
build_ge (r, type, op2.lower_bound ());
break;
default:
break;
}
return true;
}
bool
operator_lt::op2_range (value_range &r, tree type,
const value_range &lhs,
const value_range &op1) const
{
switch (get_bool_state (r, lhs, type))
{
case BRS_FALSE:
build_le (r, type, op1.upper_bound ());
break;
case BRS_TRUE:
build_gt (r, type, op1.lower_bound ());
break;
default:
break;
}
return true;
}
class operator_le : public range_operator
{
public:
virtual bool fold_range (value_range &r, tree type,
const value_range &op1,
const value_range &op2) const;
virtual bool op1_range (value_range &r, tree type,
const value_range &lhs,
const value_range &op2) const;
virtual bool op2_range (value_range &r, tree type,
const value_range &lhs,
const value_range &op1) const;
} op_le;
bool
operator_le::fold_range (value_range &r, tree type,
const value_range &op1,
const value_range &op2) const
{
if (empty_range_check (r, op1, op2))
return true;
signop sign = TYPE_SIGN (op1.type ());
gcc_checking_assert (sign == TYPE_SIGN (op2.type ()));
if (wi::le_p (op1.upper_bound (), op2.lower_bound (), sign))
r = range_true (type);
else if (!wi::le_p (op1.lower_bound (), op2.upper_bound (), sign))
r = range_false (type);
else
r = range_true_and_false (type);
return true;
}
bool
operator_le::op1_range (value_range &r, tree type,
const value_range &lhs,
const value_range &op2) const
{
switch (get_bool_state (r, lhs, type))
{
case BRS_TRUE:
build_le (r, type, op2.upper_bound ());
break;
case BRS_FALSE:
build_gt (r, type, op2.lower_bound ());
break;
default:
break;
}
return true;
}
bool
operator_le::op2_range (value_range &r, tree type,
const value_range &lhs,
const value_range &op1) const
{
switch (get_bool_state (r, lhs, type))
{
case BRS_FALSE:
build_lt (r, type, op1.upper_bound ());
break;
case BRS_TRUE:
build_ge (r, type, op1.lower_bound ());
break;
default:
break;
}
return true;
}
class operator_gt : public range_operator
{
public:
virtual bool fold_range (value_range &r, tree type,
const value_range &op1,
const value_range &op2) const;
virtual bool op1_range (value_range &r, tree type,
const value_range &lhs,
const value_range &op2) const;
virtual bool op2_range (value_range &r, tree type,
const value_range &lhs,
const value_range &op1) const;
} op_gt;
bool
operator_gt::fold_range (value_range &r, tree type,
const value_range &op1, const value_range &op2) const
{
if (empty_range_check (r, op1, op2))
return true;
signop sign = TYPE_SIGN (op1.type ());
gcc_checking_assert (sign == TYPE_SIGN (op2.type ()));
if (wi::gt_p (op1.lower_bound (), op2.upper_bound (), sign))
r = range_true (type);
else if (!wi::gt_p (op1.upper_bound (), op2.lower_bound (), sign))
r = range_false (type);
else
r = range_true_and_false (type);
return true;
}
bool
operator_gt::op1_range (value_range &r, tree type,
const value_range &lhs, const value_range &op2) const
{
switch (get_bool_state (r, lhs, type))
{
case BRS_TRUE:
build_gt (r, type, op2.lower_bound ());
break;
case BRS_FALSE:
build_le (r, type, op2.upper_bound ());
break;
default:
break;
}
return true;
}
bool
operator_gt::op2_range (value_range &r, tree type,
const value_range &lhs,
const value_range &op1) const
{
switch (get_bool_state (r, lhs, type))
{
case BRS_FALSE:
build_ge (r, type, op1.lower_bound ());
break;
case BRS_TRUE:
build_lt (r, type, op1.upper_bound ());
break;
default:
break;
}
return true;
}
class operator_ge : public range_operator
{
public:
virtual bool fold_range (value_range &r, tree type,
const value_range &op1,
const value_range &op2) const;
virtual bool op1_range (value_range &r, tree type,
const value_range &lhs,
const value_range &op2) const;
virtual bool op2_range (value_range &r, tree type,
const value_range &lhs,
const value_range &op1) const;
} op_ge;
bool
operator_ge::fold_range (value_range &r, tree type,
const value_range &op1,
const value_range &op2) const
{
if (empty_range_check (r, op1, op2))
return true;
signop sign = TYPE_SIGN (op1.type ());
gcc_checking_assert (sign == TYPE_SIGN (op2.type ()));
if (wi::ge_p (op1.lower_bound (), op2.upper_bound (), sign))
r = range_true (type);
else if (!wi::ge_p (op1.upper_bound (), op2.lower_bound (), sign))
r = range_false (type);
else
r = range_true_and_false (type);
return true;
}
bool
operator_ge::op1_range (value_range &r, tree type,
const value_range &lhs,
const value_range &op2) const
{
switch (get_bool_state (r, lhs, type))
{
case BRS_TRUE:
build_ge (r, type, op2.lower_bound ());
break;
case BRS_FALSE:
build_lt (r, type, op2.upper_bound ());
break;
default:
break;
}
return true;
}
bool
operator_ge::op2_range (value_range &r, tree type,
const value_range &lhs,
const value_range &op1) const
{
switch (get_bool_state (r, lhs, type))
{
case BRS_FALSE:
build_gt (r, type, op1.lower_bound ());
break;
case BRS_TRUE:
build_le (r, type, op1.upper_bound ());
break;
default:
break;
}
return true;
}
class operator_plus : public range_operator
{
public:
virtual bool op1_range (value_range &r, tree type,
const value_range &lhs,
const value_range &op2) const;
virtual bool op2_range (value_range &r, tree type,
const value_range &lhs,
const value_range &op1) const;
virtual void wi_fold (value_range &r, tree type,
const wide_int &lh_lb,
const wide_int &lh_ub,
const wide_int &rh_lb,
const wide_int &rh_ub) const;
} op_plus;
void
operator_plus::wi_fold (value_range &r, tree type,
const wide_int &lh_lb, const wide_int &lh_ub,
const wide_int &rh_lb, const wide_int &rh_ub) const
{
wi::overflow_type ov_lb, ov_ub;
signop s = TYPE_SIGN (type);
wide_int new_lb = wi::add (lh_lb, rh_lb, s, &ov_lb);
wide_int new_ub = wi::add (lh_ub, rh_ub, s, &ov_ub);
value_range_with_overflow (r, type, new_lb, new_ub, ov_lb, ov_ub);
}
bool
operator_plus::op1_range (value_range &r, tree type,
const value_range &lhs,
const value_range &op2) const
{
return range_op_handler (MINUS_EXPR, type)->fold_range (r, type, lhs, op2);
}
bool
operator_plus::op2_range (value_range &r, tree type,
const value_range &lhs,
const value_range &op1) const
{
return range_op_handler (MINUS_EXPR, type)->fold_range (r, type, lhs, op1);
}
class operator_minus : public range_operator
{
public:
virtual bool op1_range (value_range &r, tree type,
const value_range &lhs,
const value_range &op2) const;
virtual bool op2_range (value_range &r, tree type,
const value_range &lhs,
const value_range &op1) const;
virtual void wi_fold (value_range &r, tree type,
const wide_int &lh_lb,
const wide_int &lh_ub,
const wide_int &rh_lb,
const wide_int &rh_ub) const;
} op_minus;
void
operator_minus::wi_fold (value_range &r, tree type,
const wide_int &lh_lb, const wide_int &lh_ub,
const wide_int &rh_lb, const wide_int &rh_ub) const
{
wi::overflow_type ov_lb, ov_ub;
signop s = TYPE_SIGN (type);
wide_int new_lb = wi::sub (lh_lb, rh_ub, s, &ov_lb);
wide_int new_ub = wi::sub (lh_ub, rh_lb, s, &ov_ub);
value_range_with_overflow (r, type, new_lb, new_ub, ov_lb, ov_ub);
}
bool
operator_minus::op1_range (value_range &r, tree type,
const value_range &lhs,
const value_range &op2) const
{
return range_op_handler (PLUS_EXPR, type)->fold_range (r, type, lhs, op2);
}
bool
operator_minus::op2_range (value_range &r, tree type,
const value_range &lhs,
const value_range &op1) const
{
return fold_range (r, type, op1, lhs);
}
class operator_min : public range_operator
{
public:
virtual void wi_fold (value_range &r, tree type,
const wide_int &lh_lb,
const wide_int &lh_ub,
const wide_int &rh_lb,
const wide_int &rh_ub) const;
} op_min;
void
operator_min::wi_fold (value_range &r, tree type,
const wide_int &lh_lb, const wide_int &lh_ub,
const wide_int &rh_lb, const wide_int &rh_ub) const
{
signop s = TYPE_SIGN (type);
wide_int new_lb = wi::min (lh_lb, rh_lb, s);
wide_int new_ub = wi::min (lh_ub, rh_ub, s);
value_range_with_overflow (r, type, new_lb, new_ub);
}
class operator_max : public range_operator
{
public:
virtual void wi_fold (value_range &r, tree type,
const wide_int &lh_lb,
const wide_int &lh_ub,
const wide_int &rh_lb,
const wide_int &rh_ub) const;
} op_max;
void
operator_max::wi_fold (value_range &r, tree type,
const wide_int &lh_lb, const wide_int &lh_ub,
const wide_int &rh_lb, const wide_int &rh_ub) const
{
signop s = TYPE_SIGN (type);
wide_int new_lb = wi::max (lh_lb, rh_lb, s);
wide_int new_ub = wi::max (lh_ub, rh_ub, s);
value_range_with_overflow (r, type, new_lb, new_ub);
}
class cross_product_operator : public range_operator
{
public:
// Perform an operation between two wide-ints and place the result
// in R. Return true if the operation overflowed.
virtual bool wi_op_overflows (wide_int &r,
tree type,
const wide_int &,
const wide_int &) const = 0;
// Calculate the cross product of two sets of sub-ranges and return it.
void wi_cross_product (value_range &r, tree type,
const wide_int &lh_lb,
const wide_int &lh_ub,
const wide_int &rh_lb,
const wide_int &rh_ub) const;
};
// Calculate the cross product of two sets of ranges and return it.
//
// Multiplications, divisions and shifts are a bit tricky to handle,
// depending on the mix of signs we have in the two ranges, we need to
// operate on different values to get the minimum and maximum values
// for the new range. One approach is to figure out all the
// variations of range combinations and do the operations.
//
// However, this involves several calls to compare_values and it is
// pretty convoluted. It's simpler to do the 4 operations (MIN0 OP
// MIN1, MIN0 OP MAX1, MAX0 OP MIN1 and MAX0 OP MAX0 OP MAX1) and then
// figure the smallest and largest values to form the new range.
void
cross_product_operator::wi_cross_product (value_range &r, tree type,
const wide_int &lh_lb,
const wide_int &lh_ub,
const wide_int &rh_lb,
const wide_int &rh_ub) const
{
wide_int cp1, cp2, cp3, cp4;
// Default to varying.
r = value_range (type);
// Compute the 4 cross operations, bailing if we get an overflow we
// can't handle.
if (wi_op_overflows (cp1, type, lh_lb, rh_lb))
return;
if (wi::eq_p (lh_lb, lh_ub))
cp3 = cp1;
else if (wi_op_overflows (cp3, type, lh_ub, rh_lb))
return;
if (wi::eq_p (rh_lb, rh_ub))
cp2 = cp1;
else if (wi_op_overflows (cp2, type, lh_lb, rh_ub))
return;
if (wi::eq_p (lh_lb, lh_ub))
cp4 = cp2;
else if (wi_op_overflows (cp4, type, lh_ub, rh_ub))
return;
// Order pairs.
signop sign = TYPE_SIGN (type);
if (wi::gt_p (cp1, cp2, sign))
std::swap (cp1, cp2);
if (wi::gt_p (cp3, cp4, sign))
std::swap (cp3, cp4);
// Choose min and max from the ordered pairs.
wide_int res_lb = wi::min (cp1, cp3, sign);
wide_int res_ub = wi::max (cp2, cp4, sign);
value_range_with_overflow (r, type, res_lb, res_ub);
}
class operator_mult : public cross_product_operator
{
public:
virtual void wi_fold (value_range &r, tree type,
const wide_int &lh_lb,
const wide_int &lh_ub,
const wide_int &rh_lb,
const wide_int &rh_ub) const;
virtual bool wi_op_overflows (wide_int &res, tree type,
const wide_int &w0, const wide_int &w1) const;
} op_mult;
bool
operator_mult::wi_op_overflows (wide_int &res, tree type,
const wide_int &w0, const wide_int &w1) const
{
wi::overflow_type overflow = wi::OVF_NONE;
signop sign = TYPE_SIGN (type);
res = wi::mul (w0, w1, sign, &overflow);
if (overflow && TYPE_OVERFLOW_UNDEFINED (type))
{
// For multiplication, the sign of the overflow is given
// by the comparison of the signs of the operands.
if (sign == UNSIGNED || w0.sign_mask () == w1.sign_mask ())
res = wi::max_value (w0.get_precision (), sign);
else
res = wi::min_value (w0.get_precision (), sign);
return false;
}
return overflow;
}
void
operator_mult::wi_fold (value_range &r, tree type,
const wide_int &lh_lb, const wide_int &lh_ub,
const wide_int &rh_lb, const wide_int &rh_ub) const
{
if (TYPE_OVERFLOW_UNDEFINED (type))
{
wi_cross_product (r, type, lh_lb, lh_ub, rh_lb, rh_ub);
return;
}
// Multiply the ranges when overflow wraps. This is basically fancy
// code so we don't drop to varying with an unsigned
// [-3,-1]*[-3,-1].
//
// This test requires 2*prec bits if both operands are signed and
// 2*prec + 2 bits if either is not. Therefore, extend the values
// using the sign of the result to PREC2. From here on out,
// everthing is just signed math no matter what the input types
// were.
signop sign = TYPE_SIGN (type);
unsigned prec = TYPE_PRECISION (type);
widest2_int min0 = widest2_int::from (lh_lb, sign);
widest2_int max0 = widest2_int::from (lh_ub, sign);
widest2_int min1 = widest2_int::from (rh_lb, sign);
widest2_int max1 = widest2_int::from (rh_ub, sign);
widest2_int sizem1 = wi::mask <widest2_int> (prec, false);
widest2_int size = sizem1 + 1;
// Canonicalize the intervals.
if (sign == UNSIGNED)
{
if (wi::ltu_p (size, min0 + max0))
{
min0 -= size;
max0 -= size;
}
if (wi::ltu_p (size, min1 + max1))
{
min1 -= size;
max1 -= size;
}
}
// Sort the 4 products so that min is in prod0 and max is in
// prod3.
widest2_int prod0 = min0 * min1;
widest2_int prod1 = min0 * max1;
widest2_int prod2 = max0 * min1;
widest2_int prod3 = max0 * max1;
// min0min1 > max0max1
if (prod0 > prod3)
std::swap (prod0, prod3);
// min0max1 > max0min1
if (prod1 > prod2)
std::swap (prod1, prod2);
if (prod0 > prod1)
std::swap (prod0, prod1);
if (prod2 > prod3)
std::swap (prod2, prod3);
// diff = max - min
prod2 = prod3 - prod0;
if (wi::geu_p (prod2, sizem1))
// The range covers all values.
r = value_range (type);
else
{
wide_int new_lb = wide_int::from (prod0, prec, sign);
wide_int new_ub = wide_int::from (prod3, prec, sign);
create_possibly_reversed_range (r, type, new_lb, new_ub);
}
}
class operator_div : public cross_product_operator
{
public:
operator_div (enum tree_code c) { code = c; }
virtual void wi_fold (value_range &r, tree type,
const wide_int &lh_lb,
const wide_int &lh_ub,
const wide_int &rh_lb,
const wide_int &rh_ub) const;
virtual bool wi_op_overflows (wide_int &res, tree type,
const wide_int &, const wide_int &) const;
private:
enum tree_code code;
};
bool
operator_div::wi_op_overflows (wide_int &res, tree type,
const wide_int &w0, const wide_int &w1) const
{
if (w1 == 0)
return true;
wi::overflow_type overflow = wi::OVF_NONE;
signop sign = TYPE_SIGN (type);
switch (code)
{
case EXACT_DIV_EXPR:
// EXACT_DIV_EXPR is implemented as TRUNC_DIV_EXPR in
// operator_exact_divide. No need to handle it here.
gcc_unreachable ();
break;
case TRUNC_DIV_EXPR:
res = wi::div_trunc (w0, w1, sign, &overflow);
break;
case FLOOR_DIV_EXPR:
res = wi::div_floor (w0, w1, sign, &overflow);
break;
case ROUND_DIV_EXPR:
res = wi::div_round (w0, w1, sign, &overflow);
break;
case CEIL_DIV_EXPR:
res = wi::div_ceil (w0, w1, sign, &overflow);
break;
default:
gcc_unreachable ();
}
if (overflow && TYPE_OVERFLOW_UNDEFINED (type))
{
// For division, the only case is -INF / -1 = +INF.
res = wi::max_value (w0.get_precision (), sign);
return false;
}
return overflow;
}
void
operator_div::wi_fold (value_range &r, tree type,
const wide_int &lh_lb, const wide_int &lh_ub,
const wide_int &rh_lb, const wide_int &rh_ub) const
{
// If we know we will divide by zero, return undefined.
if (rh_lb == 0 && rh_ub == 0)
{
r = value_range ();
return;
}
const wide_int dividend_min = lh_lb;
const wide_int dividend_max = lh_ub;
const wide_int divisor_min = rh_lb;
const wide_int divisor_max = rh_ub;
signop sign = TYPE_SIGN (type);
unsigned prec = TYPE_PRECISION (type);
wide_int extra_min, extra_max;
// If we know we won't divide by zero, just do the division.
if (!wi_includes_zero_p (type, divisor_min, divisor_max))
{
wi_cross_product (r, type, dividend_min, dividend_max,
divisor_min, divisor_max);
return;
}
// If flag_non_call_exceptions, we must not eliminate a division by zero.
if (cfun->can_throw_non_call_exceptions)
{
r = value_range (type);
return;
}
// If we're definitely dividing by zero, there's nothing to do.
if (wi_zero_p (type, divisor_min, divisor_max))
{
r = value_range ();
return;
}
// Perform the division in 2 parts, [LB, -1] and [1, UB], which will
// skip any division by zero.
// First divide by the negative numbers, if any.
if (wi::neg_p (divisor_min, sign))
wi_cross_product (r, type, dividend_min, dividend_max,
divisor_min, wi::minus_one (prec));
else
r = value_range ();
// Then divide by the non-zero positive numbers, if any.
if (wi::gt_p (divisor_max, wi::zero (prec), sign))
{
value_range tmp;
wi_cross_product (tmp, type, dividend_min, dividend_max,
wi::one (prec), divisor_max);
r.union_ (tmp);
}
// We shouldn't still have undefined here.
gcc_checking_assert (!r.undefined_p ());
}
operator_div op_trunc_div (TRUNC_DIV_EXPR);
operator_div op_floor_div (FLOOR_DIV_EXPR);
operator_div op_round_div (ROUND_DIV_EXPR);
operator_div op_ceil_div (CEIL_DIV_EXPR);
class operator_exact_divide : public operator_div
{
public:
operator_exact_divide () : operator_div (TRUNC_DIV_EXPR) { }
virtual bool op1_range (value_range &r, tree type,
const value_range &lhs,
const value_range &op2) const;
} op_exact_div;
bool
operator_exact_divide::op1_range (value_range &r, tree type,
const value_range &lhs,
const value_range &op2) const
{
tree offset;
// [2, 4] = op1 / [3,3] since its exact divide, no need to worry about
// remainders in the endpoints, so op1 = [2,4] * [3,3] = [6,12].
// We wont bother trying to enumerate all the in between stuff :-P
// TRUE accuraacy is [6,6][9,9][12,12]. This is unlikely to matter most of
// the time however.
// If op2 is a multiple of 2, we would be able to set some non-zero bits.
if (op2.singleton_p (&offset)
&& !integer_zerop (offset))
return range_op_handler (MULT_EXPR, type)->fold_range (r, type, lhs, op2);
return false;
}
class operator_lshift : public cross_product_operator
{
public:
virtual bool fold_range (value_range &r, tree type,
const value_range &op1,
const value_range &op2) const;
virtual void wi_fold (value_range &r, tree type,
const wide_int &lh_lb, const wide_int &lh_ub,
const wide_int &rh_lb, const wide_int &rh_ub) const;
virtual bool wi_op_overflows (wide_int &res,
tree type,
const wide_int &,
const wide_int &) const;
} op_lshift;
bool
operator_lshift::fold_range (value_range &r, tree type,
const value_range &op1,
const value_range &op2) const
{
if (undefined_shift_range_check (r, type, op2))
return true;
// Transform left shifts by constants into multiplies.
if (op2.singleton_p ())
{
unsigned shift = op2.lower_bound ().to_uhwi ();
wide_int tmp = wi::set_bit_in_zero (shift, TYPE_PRECISION (type));
value_range mult (type, tmp, tmp);
// Force wrapping multiplication.
bool saved_flag_wrapv = flag_wrapv;
bool saved_flag_wrapv_pointer = flag_wrapv_pointer;
flag_wrapv = 1;
flag_wrapv_pointer = 1;
bool b = range_op_handler (MULT_EXPR, type)->fold_range (r, type, op1,
mult);
flag_wrapv = saved_flag_wrapv;
flag_wrapv_pointer = saved_flag_wrapv_pointer;
return b;
}
else
// Otherwise, invoke the generic fold routine.
return range_operator::fold_range (r, type, op1, op2);
}
void
operator_lshift::wi_fold (value_range &r, tree type,
const wide_int &lh_lb, const wide_int &lh_ub,
const wide_int &rh_lb, const wide_int &rh_ub) const
{
signop sign = TYPE_SIGN (type);
unsigned prec = TYPE_PRECISION (type);
int overflow_pos = sign == SIGNED ? prec - 1 : prec;
int bound_shift = overflow_pos - rh_ub.to_shwi ();
// If bound_shift == HOST_BITS_PER_WIDE_INT, the llshift can
// overflow. However, for that to happen, rh.max needs to be zero,
// which means rh is a singleton range of zero, which means it
// should be handled by the lshift fold_range above.
wide_int bound = wi::set_bit_in_zero (bound_shift, prec);
wide_int complement = ~(bound - 1);
wide_int low_bound, high_bound;
bool in_bounds = false;
if (sign == UNSIGNED)
{
low_bound = bound;
high_bound = complement;
if (wi::ltu_p (lh_ub, low_bound))
{
// [5, 6] << [1, 2] == [10, 24].
// We're shifting out only zeroes, the value increases
// monotonically.
in_bounds = true;
}
else if (wi::ltu_p (high_bound, lh_lb))
{
// [0xffffff00, 0xffffffff] << [1, 2]
// == [0xfffffc00, 0xfffffffe].
// We're shifting out only ones, the value decreases
// monotonically.
in_bounds = true;
}
}
else
{
// [-1, 1] << [1, 2] == [-4, 4]
low_bound = complement;
high_bound = bound;
if (wi::lts_p (lh_ub, high_bound)
&& wi::lts_p (low_bound, lh_lb))
{
// For non-negative numbers, we're shifting out only zeroes,
// the value increases monotonically. For negative numbers,
// we're shifting out only ones, the value decreases
// monotonically.
in_bounds = true;
}
}
if (in_bounds)
wi_cross_product (r, type, lh_lb, lh_ub, rh_lb, rh_ub);
else
r = value_range (type);
}
bool
operator_lshift::wi_op_overflows (wide_int &res, tree type,
const wide_int &w0, const wide_int &w1) const
{
signop sign = TYPE_SIGN (type);
if (wi::neg_p (w1))
{
// It's unclear from the C standard whether shifts can overflow.
// The following code ignores overflow; perhaps a C standard
// interpretation ruling is needed.
res = wi::rshift (w0, -w1, sign);
}
else
res = wi::lshift (w0, w1);
return false;
}
class operator_rshift : public cross_product_operator
{
public:
virtual bool fold_range (value_range &r, tree type,
const value_range &op1,
const value_range &op2) const;
virtual void wi_fold (value_range &r, tree type,
const wide_int &lh_lb,
const wide_int &lh_ub,
const wide_int &rh_lb,
const wide_int &rh_ub) const;
virtual bool wi_op_overflows (wide_int &res,
tree type,
const wide_int &w0,
const wide_int &w1) const;
} op_rshift;
bool
operator_rshift::wi_op_overflows (wide_int &res,
tree type,
const wide_int &w0,
const wide_int &w1) const
{
signop sign = TYPE_SIGN (type);
if (wi::neg_p (w1))
res = wi::lshift (w0, -w1);
else
{
// It's unclear from the C standard whether shifts can overflow.
// The following code ignores overflow; perhaps a C standard
// interpretation ruling is needed.
res = wi::rshift (w0, w1, sign);
}
return false;
}
bool
operator_rshift::fold_range (value_range &r, tree type,
const value_range &op1,
const value_range &op2) const
{
// Invoke the generic fold routine if not undefined..
if (undefined_shift_range_check (r, type, op2))
return true;
return range_operator::fold_range (r, type, op1, op2);
}
void
operator_rshift::wi_fold (value_range &r, tree type,
const wide_int &lh_lb, const wide_int &lh_ub,
const wide_int &rh_lb, const wide_int &rh_ub) const
{
wi_cross_product (r, type, lh_lb, lh_ub, rh_lb, rh_ub);
}
class operator_cast: public range_operator
{
public:
virtual bool fold_range (value_range &r, tree type,
const value_range &op1,
const value_range &op2) const;
virtual bool op1_range (value_range &r, tree type,
const value_range &lhs,
const value_range &op2) const;
} op_convert;
bool
operator_cast::fold_range (value_range &r, tree type ATTRIBUTE_UNUSED,
const value_range &lh,
const value_range &rh) const
{
if (empty_range_check (r, lh, rh))
return true;
tree inner = lh.type ();
tree outer = rh.type ();
gcc_checking_assert (rh.varying_p ());
gcc_checking_assert (types_compatible_p (outer, type));
signop inner_sign = TYPE_SIGN (inner);
signop outer_sign = TYPE_SIGN (outer);
unsigned inner_prec = TYPE_PRECISION (inner);
unsigned outer_prec = TYPE_PRECISION (outer);
// Start with an empty range and add subranges.
r = value_range ();
for (unsigned x = 0; x < lh.num_pairs (); ++x)
{
wide_int lh_lb = lh.lower_bound (x);
wide_int lh_ub = lh.upper_bound (x);
// If the conversion is not truncating we can convert the min
// and max values and canonicalize the resulting range.
// Otherwise, we can do the conversion if the size of the range
// is less than what the precision of the target type can
// represent.
if (outer_prec >= inner_prec
|| wi::rshift (wi::sub (lh_ub, lh_lb),
wi::uhwi (outer_prec, inner_prec),
inner_sign) == 0)
{
wide_int min = wide_int::from (lh_lb, outer_prec, inner_sign);
wide_int max = wide_int::from (lh_ub, outer_prec, inner_sign);
if (!wi::eq_p (min, wi::min_value (outer_prec, outer_sign))
|| !wi::eq_p (max, wi::max_value (outer_prec, outer_sign)))
{
value_range tmp;
create_possibly_reversed_range (tmp, type, min, max);
r.union_ (tmp);
continue;
}
}
r = value_range (type);
break;
}
return true;
}
bool
operator_cast::op1_range (value_range &r, tree type,
const value_range &lhs,
const value_range &op2) const
{
tree lhs_type = lhs.type ();
value_range tmp;
gcc_checking_assert (types_compatible_p (op2.type(), type));
// If the precision of the LHS is smaller than the precision of the
// RHS, then there would be truncation of the value on the RHS, and
// so we can tell nothing about it.
if (TYPE_PRECISION (lhs_type) < TYPE_PRECISION (type))
{
// If we've been passed an actual value for the RHS rather than
// the type, see if it fits the LHS, and if so, then we can allow
// it.
fold_range (r, lhs_type, op2, value_range (lhs_type));
fold_range (tmp, type, r, value_range (type));
if (tmp == op2)
{
// We know the value of the RHS fits in the LHS type, so
// convert the LHS and remove any values that arent in OP2.
fold_range (r, type, lhs, value_range (type));
r.intersect (op2);
return true;
}
// Special case if the LHS is a boolean. A 0 means the RHS is
// zero, and a 1 means the RHS is non-zero.
if (TREE_CODE (lhs_type) == BOOLEAN_TYPE)
{
// If the LHS is unknown, the result is whatever op2 already is.
if (!lhs.singleton_p ())
{
r = op2;
return true;
}
// Boolean casts are weird in GCC. It's actually an implied
// mask with 0x01, so all that is known is whether the
// rightmost bit is 0 or 1, which implies the only value
// *not* in the RHS is 0 or -1.
unsigned prec = TYPE_PRECISION (type);
if (lhs.zero_p ())
r = value_range (type, wi::minus_one (prec), wi::minus_one (prec),
VR_ANTI_RANGE);
else
r = value_range (type, wi::zero (prec), wi::zero (prec),
VR_ANTI_RANGE);
// And intersect it with what we know about op2.
r.intersect (op2);
}
else
// Otherwise we'll have to assume it's whatever we know about op2.
r = op2;
return true;
}
// If the LHS precision is greater than the rhs precision, the LHS
// range is restricted to the range of the RHS by this
// assignment.
if (TYPE_PRECISION (lhs_type) > TYPE_PRECISION (type))
{
// Cast the range of the RHS to the type of the LHS.
fold_range (tmp, lhs_type, value_range (type), value_range (lhs_type));
// Intersect this with the LHS range will produce the range, which
// will be cast to the RHS type before returning.
tmp.intersect (lhs);
}
else
tmp = lhs;
// Cast the calculated range to the type of the RHS.
fold_range (r, type, tmp, value_range (type));
return true;
}
class operator_logical_and : public range_operator
{
public:
virtual bool fold_range (value_range &r, tree type,
const value_range &lh,
const value_range &rh) const;
virtual bool op1_range (value_range &r, tree type,
const value_range &lhs,
const value_range &op2) const;
virtual bool op2_range (value_range &r, tree type,
const value_range &lhs,
const value_range &op1) const;
} op_logical_and;
bool
operator_logical_and::fold_range (value_range &r, tree type,
const value_range &lh,
const value_range &rh) const
{
if (empty_range_check (r, lh, rh))
return true;
// 0 && anything is 0.
if ((wi::eq_p (lh.lower_bound (), 0) && wi::eq_p (lh.upper_bound (), 0))
|| (wi::eq_p (lh.lower_bound (), 0) && wi::eq_p (rh.upper_bound (), 0)))
r = range_false (type);
else if (lh.contains_p (build_zero_cst (lh.type ()))
|| rh.contains_p (build_zero_cst (rh.type ())))
// To reach this point, there must be a logical 1 on each side, and
// the only remaining question is whether there is a zero or not.
r = range_true_and_false (type);
else
r = range_true (type);
return true;
}
bool
operator_logical_and::op1_range (value_range &r, tree type,
const value_range &lhs,
const value_range &op2 ATTRIBUTE_UNUSED) const
{
switch (get_bool_state (r, lhs, type))
{
case BRS_TRUE:
// A true result means both sides of the AND must be true.
r = range_true (type);
break;
default:
// Any other result means only one side has to be false, the
// other side can be anything. So we cannott be sure of any
// result here.
r = range_true_and_false (type);
break;
}
return true;
}
bool
operator_logical_and::op2_range (value_range &r, tree type,
const value_range &lhs,
const value_range &op1) const
{
return operator_logical_and::op1_range (r, type, lhs, op1);
}
class operator_bitwise_and : public range_operator
{
public:
virtual bool op1_range (value_range &r, tree type,
const value_range &lhs,
const value_range &op2) const;
virtual bool op2_range (value_range &r, tree type,
const value_range &lhs,
const value_range &op1) const;
virtual void wi_fold (value_range &r, tree type,
const wide_int &lh_lb,
const wide_int &lh_ub,
const wide_int &rh_lb,
const wide_int &rh_ub) const;
} op_bitwise_and;
// Optimize BIT_AND_EXPR and BIT_IOR_EXPR in terms of a mask if
// possible. Basically, see if we can optimize:
//
// [LB, UB] op Z
// into:
// [LB op Z, UB op Z]
//
// If the optimization was successful, accumulate the range in R and
// return TRUE.
static bool
wi_optimize_and_or (value_range &r,
enum tree_code code,
tree type,
const wide_int &lh_lb, const wide_int &lh_ub,
const wide_int &rh_lb, const wide_int &rh_ub)
{
// Calculate the singleton mask among the ranges, if any.
wide_int lower_bound, upper_bound, mask;
if (wi::eq_p (rh_lb, rh_ub))
{
mask = rh_lb;
lower_bound = lh_lb;
upper_bound = lh_ub;
}
else if (wi::eq_p (lh_lb, lh_ub))
{
mask = lh_lb;
lower_bound = rh_lb;
upper_bound = rh_ub;
}
else
return false;
// If Z is a constant which (for op | its bitwise not) has n
// consecutive least significant bits cleared followed by m 1
// consecutive bits set immediately above it and either
// m + n == precision, or (x >> (m + n)) == (y >> (m + n)).
//
// The least significant n bits of all the values in the range are
// cleared or set, the m bits above it are preserved and any bits
// above these are required to be the same for all values in the
// range.
wide_int w = mask;
int m = 0, n = 0;
if (code == BIT_IOR_EXPR)
w = ~w;
if (wi::eq_p (w, 0))
n = w.get_precision ();
else
{
n = wi::ctz (w);
w = ~(w | wi::mask (n, false, w.get_precision ()));
if (wi::eq_p (w, 0))
m = w.get_precision () - n;
else
m = wi::ctz (w) - n;
}
wide_int new_mask = wi::mask (m + n, true, w.get_precision ());
if ((new_mask & lower_bound) != (new_mask & upper_bound))
return false;
wide_int res_lb, res_ub;
if (code == BIT_AND_EXPR)
{
res_lb = wi::bit_and (lower_bound, mask);
res_ub = wi::bit_and (upper_bound, mask);
}
else if (code == BIT_IOR_EXPR)
{
res_lb = wi::bit_or (lower_bound, mask);
res_ub = wi::bit_or (upper_bound, mask);
}
else
gcc_unreachable ();
value_range_with_overflow (r, type, res_lb, res_ub);
return true;
}
// For range [LB, UB] compute two wide_int bit masks.
//
// In the MAYBE_NONZERO bit mask, if some bit is unset, it means that
// for all numbers in the range the bit is 0, otherwise it might be 0
// or 1.
//
// In the MUSTBE_NONZERO bit mask, if some bit is set, it means that
// for all numbers in the range the bit is 1, otherwise it might be 0
// or 1.
void
wi_set_zero_nonzero_bits (tree type,
const wide_int &lb, const wide_int &ub,
wide_int &maybe_nonzero,
wide_int &mustbe_nonzero)
{
signop sign = TYPE_SIGN (type);
if (wi::eq_p (lb, ub))
maybe_nonzero = mustbe_nonzero = lb;
else if (wi::ge_p (lb, 0, sign) || wi::lt_p (ub, 0, sign))
{
wide_int xor_mask = lb ^ ub;
maybe_nonzero = lb | ub;
mustbe_nonzero = lb & ub;
if (xor_mask != 0)
{
wide_int mask = wi::mask (wi::floor_log2 (xor_mask), false,
maybe_nonzero.get_precision ());
maybe_nonzero = maybe_nonzero | mask;
mustbe_nonzero = wi::bit_and_not (mustbe_nonzero, mask);
}
}
else
{
maybe_nonzero = wi::minus_one (lb.get_precision ());
mustbe_nonzero = wi::zero (lb.get_precision ());
}
}
void
operator_bitwise_and::wi_fold (value_range &r, tree type,
const wide_int &lh_lb,
const wide_int &lh_ub,
const wide_int &rh_lb,
const wide_int &rh_ub) const
{
if (wi_optimize_and_or (r, BIT_AND_EXPR, type, lh_lb, lh_ub, rh_lb, rh_ub))
return;
wide_int maybe_nonzero_lh, mustbe_nonzero_lh;
wide_int maybe_nonzero_rh, mustbe_nonzero_rh;
wi_set_zero_nonzero_bits (type, lh_lb, lh_ub,
maybe_nonzero_lh, mustbe_nonzero_lh);
wi_set_zero_nonzero_bits (type, rh_lb, rh_ub,
maybe_nonzero_rh, mustbe_nonzero_rh);
wide_int new_lb = mustbe_nonzero_lh & mustbe_nonzero_rh;
wide_int new_ub = maybe_nonzero_lh & maybe_nonzero_rh;
signop sign = TYPE_SIGN (type);
unsigned prec = TYPE_PRECISION (type);
// If both input ranges contain only negative values, we can
// truncate the result range maximum to the minimum of the
// input range maxima.
if (wi::lt_p (lh_ub, 0, sign) && wi::lt_p (rh_ub, 0, sign))
{
new_ub = wi::min (new_ub, lh_ub, sign);
new_ub = wi::min (new_ub, rh_ub, sign);
}
// If either input range contains only non-negative values
// we can truncate the result range maximum to the respective
// maximum of the input range.
if (wi::ge_p (lh_lb, 0, sign))
new_ub = wi::min (new_ub, lh_ub, sign);
if (wi::ge_p (rh_lb, 0, sign))
new_ub = wi::min (new_ub, rh_ub, sign);
// PR68217: In case of signed & sign-bit-CST should
// result in [-INF, 0] instead of [-INF, INF].
if (wi::gt_p (new_lb, new_ub, sign))
{
wide_int sign_bit = wi::set_bit_in_zero (prec - 1, prec);
if (sign == SIGNED
&& ((wi::eq_p (lh_lb, lh_ub)
&& !wi::cmps (lh_lb, sign_bit))
|| (wi::eq_p (rh_lb, rh_ub)
&& !wi::cmps (rh_lb, sign_bit))))
{
new_lb = wi::min_value (prec, sign);
new_ub = wi::zero (prec);
}
}
// If the limits got swapped around, return varying.
if (wi::gt_p (new_lb, new_ub,sign))
r = value_range (type);
else
value_range_with_overflow (r, type, new_lb, new_ub);
}
bool
operator_bitwise_and::op1_range (value_range &r, tree type,
const value_range &lhs,
const value_range &op2) const
{
// If this is really a logical wi_fold, call that.
if (types_compatible_p (type, boolean_type_node))
return op_logical_and.op1_range (r, type, lhs, op2);
// For now do nothing with bitwise AND of value_range's.
r.set_varying (type);
return true;
}
bool
operator_bitwise_and::op2_range (value_range &r, tree type,
const value_range &lhs,
const value_range &op1) const
{
return operator_bitwise_and::op1_range (r, type, lhs, op1);
}
class operator_logical_or : public range_operator
{
public:
virtual bool fold_range (value_range &r, tree type,
const value_range &lh,
const value_range &rh) const;
virtual bool op1_range (value_range &r, tree type,
const value_range &lhs,
const value_range &op2) const;
virtual bool op2_range (value_range &r, tree type,
const value_range &lhs,
const value_range &op1) const;
} op_logical_or;
bool
operator_logical_or::fold_range (value_range &r, tree type ATTRIBUTE_UNUSED,
const value_range &lh,
const value_range &rh) const
{
if (empty_range_check (r, lh, rh))
return true;
r = lh;
r.union_ (rh);
return true;
}
bool
operator_logical_or::op1_range (value_range &r, tree type,
const value_range &lhs,
const value_range &op2 ATTRIBUTE_UNUSED) const
{
switch (get_bool_state (r, lhs, type))
{
case BRS_FALSE:
// A false result means both sides of the OR must be false.
r = range_false (type);
break;
default:
// Any other result means only one side has to be true, the
// other side can be anything. so we can't be sure of any result
// here.
r = range_true_and_false (type);
break;
}
return true;
}
bool
operator_logical_or::op2_range (value_range &r, tree type,
const value_range &lhs,
const value_range &op1) const
{
return operator_logical_or::op1_range (r, type, lhs, op1);
}
class operator_bitwise_or : public range_operator
{
public:
virtual bool op1_range (value_range &r, tree type,
const value_range &lhs,
const value_range &op2) const;
virtual bool op2_range (value_range &r, tree type,
const value_range &lhs,
const value_range &op1) const;
virtual void wi_fold (value_range &r, tree type,
const wide_int &lh_lb,
const wide_int &lh_ub,
const wide_int &rh_lb,
const wide_int &rh_ub) const;
} op_bitwise_or;
void
operator_bitwise_or::wi_fold (value_range &r, tree type,
const wide_int &lh_lb,
const wide_int &lh_ub,
const wide_int &rh_lb,
const wide_int &rh_ub) const
{
if (wi_optimize_and_or (r, BIT_IOR_EXPR, type, lh_lb, lh_ub, rh_lb, rh_ub))
return;
wide_int maybe_nonzero_lh, mustbe_nonzero_lh;
wide_int maybe_nonzero_rh, mustbe_nonzero_rh;
wi_set_zero_nonzero_bits (type, lh_lb, lh_ub,
maybe_nonzero_lh, mustbe_nonzero_lh);
wi_set_zero_nonzero_bits (type, rh_lb, rh_ub,
maybe_nonzero_rh, mustbe_nonzero_rh);
wide_int new_lb = mustbe_nonzero_lh | mustbe_nonzero_rh;
wide_int new_ub = maybe_nonzero_lh | maybe_nonzero_rh;
signop sign = TYPE_SIGN (type);
// If the input ranges contain only positive values we can
// truncate the minimum of the result range to the maximum
// of the input range minima.
if (wi::ge_p (lh_lb, 0, sign)
&& wi::ge_p (rh_lb, 0, sign))
{
new_lb = wi::max (new_lb, lh_lb, sign);
new_lb = wi::max (new_lb, rh_lb, sign);
}
// If either input range contains only negative values
// we can truncate the minimum of the result range to the
// respective minimum range.
if (wi::lt_p (lh_ub, 0, sign))
new_lb = wi::max (new_lb, lh_lb, sign);
if (wi::lt_p (rh_ub, 0, sign))
new_lb = wi::max (new_lb, rh_lb, sign);
// If the limits got swapped around, return varying.
if (wi::gt_p (new_lb, new_ub,sign))
r = value_range (type);
else
value_range_with_overflow (r, type, new_lb, new_ub);
}
bool
operator_bitwise_or::op1_range (value_range &r, tree type,
const value_range &lhs,
const value_range &op2) const
{
// If this is really a logical wi_fold, call that.
if (types_compatible_p (type, boolean_type_node))
return op_logical_or.op1_range (r, type, lhs, op2);
// For now do nothing with bitwise OR of value_range's.
r.set_varying (type);
return true;
}
bool
operator_bitwise_or::op2_range (value_range &r, tree type,
const value_range &lhs,
const value_range &op1) const
{
return operator_bitwise_or::op1_range (r, type, lhs, op1);
}
class operator_bitwise_xor : public range_operator
{
public:
virtual void wi_fold (value_range &r, tree type,
const wide_int &lh_lb,
const wide_int &lh_ub,
const wide_int &rh_lb,
const wide_int &rh_ub) const;
} op_bitwise_xor;
void
operator_bitwise_xor::wi_fold (value_range &r, tree type,
const wide_int &lh_lb,
const wide_int &lh_ub,
const wide_int &rh_lb,
const wide_int &rh_ub) const
{
signop sign = TYPE_SIGN (type);
wide_int maybe_nonzero_lh, mustbe_nonzero_lh;
wide_int maybe_nonzero_rh, mustbe_nonzero_rh;
wi_set_zero_nonzero_bits (type, lh_lb, lh_ub,
maybe_nonzero_lh, mustbe_nonzero_lh);
wi_set_zero_nonzero_bits (type, rh_lb, rh_ub,
maybe_nonzero_rh, mustbe_nonzero_rh);
wide_int result_zero_bits = ((mustbe_nonzero_lh & mustbe_nonzero_rh)
| ~(maybe_nonzero_lh | maybe_nonzero_rh));
wide_int result_one_bits
= (wi::bit_and_not (mustbe_nonzero_lh, maybe_nonzero_rh)
| wi::bit_and_not (mustbe_nonzero_rh, maybe_nonzero_lh));
wide_int new_ub = ~result_zero_bits;
wide_int new_lb = result_one_bits;
// If the range has all positive or all negative values, the result
// is better than VARYING.
if (wi::lt_p (new_lb, 0, sign) || wi::ge_p (new_ub, 0, sign))
value_range_with_overflow (r, type, new_lb, new_ub);
else
r = value_range (type);
}
class operator_trunc_mod : public range_operator
{
public:
virtual void wi_fold (value_range &r, tree type,
const wide_int &lh_lb,
const wide_int &lh_ub,
const wide_int &rh_lb,
const wide_int &rh_ub) const;
} op_trunc_mod;
void
operator_trunc_mod::wi_fold (value_range &r, tree type,
const wide_int &lh_lb,
const wide_int &lh_ub,
const wide_int &rh_lb,
const wide_int &rh_ub) const
{
wide_int new_lb, new_ub, tmp;
signop sign = TYPE_SIGN (type);
unsigned prec = TYPE_PRECISION (type);
// Mod 0 is undefined. Return undefined.
if (wi_zero_p (type, rh_lb, rh_ub))
{
r = value_range ();
return;
}
// ABS (A % B) < ABS (B) and either 0 <= A % B <= A or A <= A % B <= 0.
new_ub = rh_ub - 1;
if (sign == SIGNED)
{
tmp = -1 - rh_lb;
new_ub = wi::smax (new_ub, tmp);
}
if (sign == UNSIGNED)
new_lb = wi::zero (prec);
else
{
new_lb = -new_ub;
tmp = lh_lb;
if (wi::gts_p (tmp, 0))
tmp = wi::zero (prec);
new_lb = wi::smax (new_lb, tmp);
}
tmp = lh_ub;
if (sign == SIGNED && wi::neg_p (tmp))
tmp = wi::zero (prec);
new_ub = wi::min (new_ub, tmp, sign);
value_range_with_overflow (r, type, new_lb, new_ub);
}
class operator_logical_not : public range_operator
{
public:
virtual bool fold_range (value_range &r, tree type,
const value_range &lh,
const value_range &rh) const;
virtual bool op1_range (value_range &r, tree type,
const value_range &lhs,
const value_range &op2) const;
} op_logical_not;
// Folding a logical NOT, oddly enough, involves doing nothing on the
// forward pass through. During the initial walk backwards, the
// logical NOT reversed the desired outcome on the way back, so on the
// way forward all we do is pass the range forward.
//
// b_2 = x_1 < 20
// b_3 = !b_2
// if (b_3)
// to determine the TRUE branch, walking backward
// if (b_3) if ([1,1])
// b_3 = !b_2 [1,1] = ![0,0]
// b_2 = x_1 < 20 [0,0] = x_1 < 20, false, so x_1 == [20, 255]
// which is the result we are looking for.. so.. pass it through.
bool
operator_logical_not::fold_range (value_range &r, tree type,
const value_range &lh,
const value_range &rh ATTRIBUTE_UNUSED) const
{
if (empty_range_check (r, lh, rh))
return true;
if (lh.varying_p () || lh.undefined_p ())
r = lh;
else
{
r = lh;
r.invert ();
}
gcc_checking_assert (lh.type() == type);
return true;
}
bool
operator_logical_not::op1_range (value_range &r,
tree type ATTRIBUTE_UNUSED,
const value_range &lhs,
const value_range &op2 ATTRIBUTE_UNUSED) const
{
r = lhs;
if (!lhs.varying_p () && !lhs.undefined_p ())
r.invert ();
return true;
}
class operator_bitwise_not : public range_operator
{
public:
virtual bool fold_range (value_range &r, tree type,
const value_range &lh,
const value_range &rh) const;
virtual bool op1_range (value_range &r, tree type,
const value_range &lhs,
const value_range &op2) const;
} op_bitwise_not;
bool
operator_bitwise_not::fold_range (value_range &r, tree type,
const value_range &lh,
const value_range &rh) const
{
if (empty_range_check (r, lh, rh))
return true;
// ~X is simply -1 - X.
value_range minusone (type, wi::minus_one (TYPE_PRECISION (type)),
wi::minus_one (TYPE_PRECISION (type)));
return range_op_handler (MINUS_EXPR, type)->fold_range (r, type, minusone,
lh);
}
bool
operator_bitwise_not::op1_range (value_range &r, tree type,
const value_range &lhs,
const value_range &op2) const
{
// ~X is -1 - X and since bitwise NOT is involutary...do it again.
return fold_range (r, type, lhs, op2);
}
class operator_cst : public range_operator
{
public:
virtual bool fold_range (value_range &r, tree type,
const value_range &op1,
const value_range &op2) const;
} op_integer_cst;
bool
operator_cst::fold_range (value_range &r, tree type ATTRIBUTE_UNUSED,
const value_range &lh,
const value_range &rh ATTRIBUTE_UNUSED) const
{
r = lh;
return true;
}
class operator_identity : public range_operator
{
public:
virtual bool fold_range (value_range &r, tree type,
const value_range &op1,
const value_range &op2) const;
virtual bool op1_range (value_range &r, tree type,
const value_range &lhs,
const value_range &op2) const;
} op_identity;
bool
operator_identity::fold_range (value_range &r, tree type ATTRIBUTE_UNUSED,
const value_range &lh,
const value_range &rh ATTRIBUTE_UNUSED) const
{
r = lh;
return true;
}
bool
operator_identity::op1_range (value_range &r, tree type ATTRIBUTE_UNUSED,
const value_range &lhs,
const value_range &op2 ATTRIBUTE_UNUSED) const
{
r = lhs;
return true;
}
class operator_abs : public range_operator
{
public:
virtual void wi_fold (value_range &r, tree type,
const wide_int &lh_lb,
const wide_int &lh_ub,
const wide_int &rh_lb,
const wide_int &rh_ub) const;
virtual bool op1_range (value_range &r, tree type,
const value_range &lhs,
const value_range &op2) const;
} op_abs;
void
operator_abs::wi_fold (value_range &r, tree type,
const wide_int &lh_lb, const wide_int &lh_ub,
const wide_int &rh_lb ATTRIBUTE_UNUSED,
const wide_int &rh_ub ATTRIBUTE_UNUSED) const
{
wide_int min, max;
signop sign = TYPE_SIGN (type);
unsigned prec = TYPE_PRECISION (type);
// Pass through LH for the easy cases.
if (sign == UNSIGNED || wi::ge_p (lh_lb, 0, sign))
{
r = value_range (type, lh_lb, lh_ub);
return;
}
// -TYPE_MIN_VALUE = TYPE_MIN_VALUE with flag_wrapv so we can't get
// a useful range.
wide_int min_value = wi::min_value (prec, sign);
wide_int max_value = wi::max_value (prec, sign);
if (!TYPE_OVERFLOW_UNDEFINED (type) && wi::eq_p (lh_lb, min_value))
{
r = value_range (type);
return;
}
// ABS_EXPR may flip the range around, if the original range
// included negative values.
if (wi::eq_p (lh_lb, min_value))
min = max_value;
else
min = wi::abs (lh_lb);
if (wi::eq_p (lh_ub, min_value))
max = max_value;
else
max = wi::abs (lh_ub);
// If the range contains zero then we know that the minimum value in the
// range will be zero.
if (wi::le_p (lh_lb, 0, sign) && wi::ge_p (lh_ub, 0, sign))
{
if (wi::gt_p (min, max, sign))
max = min;
min = wi::zero (prec);
}
else
{
// If the range was reversed, swap MIN and MAX.
if (wi::gt_p (min, max, sign))
std::swap (min, max);
}
// If the new range has its limits swapped around (MIN > MAX), then
// the operation caused one of them to wrap around. The only thing
// we know is that the result is positive.
if (wi::gt_p (min, max, sign))
{
min = wi::zero (prec);
max = max_value;
}
r = value_range (type, min, max);
}
bool
operator_abs::op1_range (value_range &r, tree type,
const value_range &lhs,
const value_range &op2) const
{
if (empty_range_check (r, lhs, op2))
return true;
if (TYPE_UNSIGNED (type))
{
r = lhs;
return true;
}
// Start with the positives because negatives are an impossible result.
value_range positives = range_positives (type);
positives.intersect (lhs);
r = positives;
// Then add the negative of each pair:
// ABS(op1) = [5,20] would yield op1 => [-20,-5][5,20].
for (unsigned i = 0; i < positives.num_pairs (); ++i)
r.union_ (value_range (type,
-positives.upper_bound (i),
-positives.lower_bound (i)));
return true;
}
class operator_absu : public range_operator
{
public:
virtual void wi_fold (value_range &r, tree type,
const wide_int &lh_lb, const wide_int &lh_ub,
const wide_int &rh_lb, const wide_int &rh_ub) const;
} op_absu;
void
operator_absu::wi_fold (value_range &r, tree type,
const wide_int &lh_lb, const wide_int &lh_ub,
const wide_int &rh_lb ATTRIBUTE_UNUSED,
const wide_int &rh_ub ATTRIBUTE_UNUSED) const
{
wide_int new_lb, new_ub;
// Pass through VR0 the easy cases.
if (wi::ges_p (lh_lb, 0))
{
new_lb = lh_lb;
new_ub = lh_ub;
}
else
{
new_lb = wi::abs (lh_lb);
new_ub = wi::abs (lh_ub);
// If the range contains zero then we know that the minimum
// value in the range will be zero.
if (wi::ges_p (lh_ub, 0))
{
if (wi::gtu_p (new_lb, new_ub))
new_ub = new_lb;
new_lb = wi::zero (TYPE_PRECISION (type));
}
else
std::swap (new_lb, new_ub);
}
gcc_checking_assert (TYPE_UNSIGNED (type));
r = value_range (type, new_lb, new_ub);
}
class operator_negate : public range_operator
{
public:
virtual bool fold_range (value_range &r, tree type,
const value_range &op1,
const value_range &op2) const;
virtual bool op1_range (value_range &r, tree type,
const value_range &lhs,
const value_range &op2) const;
} op_negate;
bool
operator_negate::fold_range (value_range &r, tree type,
const value_range &lh,
const value_range &rh) const
{
if (empty_range_check (r, lh, rh))
return true;
// -X is simply 0 - X.
return range_op_handler (MINUS_EXPR, type)->fold_range (r, type,
range_zero (type),
lh);
}
bool
operator_negate::op1_range (value_range &r, tree type,
const value_range &lhs,
const value_range &op2) const
{
// NEGATE is involutory.
return fold_range (r, type, lhs, op2);
}
class operator_addr_expr : public range_operator
{
public:
virtual bool fold_range (value_range &r, tree type,
const value_range &op1,
const value_range &op2) const;
virtual bool op1_range (value_range &r, tree type,
const value_range &lhs,
const value_range &op2) const;
} op_addr;
bool
operator_addr_expr::fold_range (value_range &r, tree type,
const value_range &lh,
const value_range &rh) const
{
if (empty_range_check (r, lh, rh))
return true;
// Return a non-null pointer of the LHS type (passed in op2).
if (lh.zero_p ())
r = range_zero (type);
else if (!lh.contains_p (build_zero_cst (lh.type ())))
r = range_nonzero (type);
else
r = value_range (type);
return true;
}
bool
operator_addr_expr::op1_range (value_range &r, tree type,
const value_range &lhs,
const value_range &op2) const
{
return operator_addr_expr::fold_range (r, type, lhs, op2);
}
class pointer_plus_operator : public range_operator
{
public:
virtual void wi_fold (value_range &r, tree type,
const wide_int &lh_lb,
const wide_int &lh_ub,
const wide_int &rh_lb,
const wide_int &rh_ub) const;
} op_pointer_plus;
void
pointer_plus_operator::wi_fold (value_range &r, tree type,
const wide_int &lh_lb,
const wide_int &lh_ub,
const wide_int &rh_lb,
const wide_int &rh_ub) const
{
// For pointer types, we are really only interested in asserting
// whether the expression evaluates to non-NULL.
//
// With -fno-delete-null-pointer-checks we need to be more
// conservative. As some object might reside at address 0,
// then some offset could be added to it and the same offset
// subtracted again and the result would be NULL.
// E.g.
// static int a[12]; where &a[0] is NULL and
// ptr = &a[6];
// ptr -= 6;
// ptr will be NULL here, even when there is POINTER_PLUS_EXPR
// where the first range doesn't include zero and the second one
// doesn't either. As the second operand is sizetype (unsigned),
// consider all ranges where the MSB could be set as possible
// subtractions where the result might be NULL.
if ((!wi_includes_zero_p (type, lh_lb, lh_ub)
|| !wi_includes_zero_p (type, rh_lb, rh_ub))
&& !TYPE_OVERFLOW_WRAPS (type)
&& (flag_delete_null_pointer_checks
|| !wi::sign_mask (rh_ub)))
r = range_nonzero (type);
else if (lh_lb == lh_ub && lh_lb == 0
&& rh_lb == rh_ub && rh_lb == 0)
r = range_zero (type);
else
r = value_range (type);
}
class pointer_min_max_operator : public range_operator
{
public:
virtual void wi_fold (value_range & r, tree type,
const wide_int &lh_lb, const wide_int &lh_ub,
const wide_int &rh_lb, const wide_int &rh_ub) const;
} op_ptr_min_max;
void
pointer_min_max_operator::wi_fold (value_range &r, tree type,
const wide_int &lh_lb,
const wide_int &lh_ub,
const wide_int &rh_lb,
const wide_int &rh_ub) const
{
// For MIN/MAX expressions with pointers, we only care about
// nullness. If both are non null, then the result is nonnull.
// If both are null, then the result is null. Otherwise they
// are varying.
if (!wi_includes_zero_p (type, lh_lb, lh_ub)
&& !wi_includes_zero_p (type, rh_lb, rh_ub))
r = range_nonzero (type);
else if (wi_zero_p (type, lh_lb, lh_ub) && wi_zero_p (type, rh_lb, rh_ub))
r = range_zero (type);
else
r = value_range (type);
}
class pointer_and_operator : public range_operator
{
public:
virtual void wi_fold (value_range &r, tree type,
const wide_int &lh_lb, const wide_int &lh_ub,
const wide_int &rh_lb, const wide_int &rh_ub) const;
} op_pointer_and;
void
pointer_and_operator::wi_fold (value_range &r, tree type,
const wide_int &lh_lb,
const wide_int &lh_ub,
const wide_int &rh_lb ATTRIBUTE_UNUSED,
const wide_int &rh_ub ATTRIBUTE_UNUSED) const
{
// For pointer types, we are really only interested in asserting
// whether the expression evaluates to non-NULL.
if (wi_zero_p (type, lh_lb, lh_ub) || wi_zero_p (type, lh_lb, lh_ub))
r = range_zero (type);
else
r = value_range (type);
}
class pointer_or_operator : public range_operator
{
public:
virtual void wi_fold (value_range &r, tree type,
const wide_int &lh_lb, const wide_int &lh_ub,
const wide_int &rh_lb, const wide_int &rh_ub) const;
} op_pointer_or;
void
pointer_or_operator::wi_fold (value_range &r, tree type,
const wide_int &lh_lb,
const wide_int &lh_ub,
const wide_int &rh_lb,
const wide_int &rh_ub) const
{
// For pointer types, we are really only interested in asserting
// whether the expression evaluates to non-NULL.
if (!wi_includes_zero_p (type, lh_lb, lh_ub)
&& !wi_includes_zero_p (type, rh_lb, rh_ub))
r = range_nonzero (type);
else if (wi_zero_p (type, lh_lb, lh_ub) && wi_zero_p (type, rh_lb, rh_ub))
r = range_zero (type);
else
r = value_range (type);
}
// This implements the range operator tables as local objects in this file.
class range_op_table
{
public:
inline range_operator *operator[] (enum tree_code code);
protected:
void set (enum tree_code code, range_operator &op);
private:
range_operator *m_range_tree[MAX_TREE_CODES];
};
// Return a pointer to the range_operator instance, if there is one
// associated with tree_code CODE.
range_operator *
range_op_table::operator[] (enum tree_code code)
{
gcc_checking_assert (code > 0 && code < MAX_TREE_CODES);
return m_range_tree[code];
}
// Add OP to the handler table for CODE.
void
range_op_table::set (enum tree_code code, range_operator &op)
{
gcc_checking_assert (m_range_tree[code] == NULL);
m_range_tree[code] = &op;
}
// Instantiate a range op table for integral operations.
class integral_table : public range_op_table
{
public:
integral_table ();
} integral_tree_table;
integral_table::integral_table ()
{
set (EQ_EXPR, op_equal);
set (NE_EXPR, op_not_equal);
set (LT_EXPR, op_lt);
set (LE_EXPR, op_le);
set (GT_EXPR, op_gt);
set (GE_EXPR, op_ge);
set (PLUS_EXPR, op_plus);
set (MINUS_EXPR, op_minus);
set (MIN_EXPR, op_min);
set (MAX_EXPR, op_max);
set (MULT_EXPR, op_mult);
set (TRUNC_DIV_EXPR, op_trunc_div);
set (FLOOR_DIV_EXPR, op_floor_div);
set (ROUND_DIV_EXPR, op_round_div);
set (CEIL_DIV_EXPR, op_ceil_div);
set (EXACT_DIV_EXPR, op_exact_div);
set (LSHIFT_EXPR, op_lshift);
set (RSHIFT_EXPR, op_rshift);
set (NOP_EXPR, op_convert);
set (CONVERT_EXPR, op_convert);
set (TRUTH_AND_EXPR, op_logical_and);
set (BIT_AND_EXPR, op_bitwise_and);
set (TRUTH_OR_EXPR, op_logical_or);
set (BIT_IOR_EXPR, op_bitwise_or);
set (BIT_XOR_EXPR, op_bitwise_xor);
set (TRUNC_MOD_EXPR, op_trunc_mod);
set (TRUTH_NOT_EXPR, op_logical_not);
set (BIT_NOT_EXPR, op_bitwise_not);
set (INTEGER_CST, op_integer_cst);
set (SSA_NAME, op_identity);
set (PAREN_EXPR, op_identity);
set (OBJ_TYPE_REF, op_identity);
set (ABS_EXPR, op_abs);
set (ABSU_EXPR, op_absu);
set (NEGATE_EXPR, op_negate);
set (ADDR_EXPR, op_addr);
}
// Instantiate a range op table for pointer operations.
class pointer_table : public range_op_table
{
public:
pointer_table ();
} pointer_tree_table;
pointer_table::pointer_table ()
{
set (BIT_AND_EXPR, op_pointer_and);
set (BIT_IOR_EXPR, op_pointer_or);
set (MIN_EXPR, op_ptr_min_max);
set (MAX_EXPR, op_ptr_min_max);
set (POINTER_PLUS_EXPR, op_pointer_plus);
set (EQ_EXPR, op_equal);
set (NE_EXPR, op_not_equal);
set (LT_EXPR, op_lt);
set (LE_EXPR, op_le);
set (GT_EXPR, op_gt);
set (GE_EXPR, op_ge);
set (SSA_NAME, op_identity);
set (ADDR_EXPR, op_addr);
set (NOP_EXPR, op_convert);
set (CONVERT_EXPR, op_convert);
set (BIT_NOT_EXPR, op_bitwise_not);
set (BIT_XOR_EXPR, op_bitwise_xor);
}
// The tables are hidden and accessed via a simple extern function.
range_operator *
range_op_handler (enum tree_code code, tree type)
{
// First check if there is apointer specialization.
if (POINTER_TYPE_P (type))
return pointer_tree_table[code];
return integral_tree_table[code];
}
// Cast the range in R to TYPE.
void
range_cast (value_range &r, tree type)
{
value_range tmp = r;
range_operator *op = range_op_handler (CONVERT_EXPR, type);
// Call op_convert, if it fails, the result is varying.
if (!op->fold_range (r, type, tmp, value_range (type)))
r = value_range (type);
}
#if CHECKING_P
#include "selftest.h"
#include "stor-layout.h"
namespace selftest
{
#define INT(N) build_int_cst (integer_type_node, (N))
#define UINT(N) build_int_cstu (unsigned_type_node, (N))
#define INT16(N) build_int_cst (short_integer_type_node, (N))
#define UINT16(N) build_int_cstu (short_unsigned_type_node, (N))
#define INT64(N) build_int_cstu (long_long_integer_type_node, (N))
#define UINT64(N) build_int_cstu (long_long_unsigned_type_node, (N))
#define UINT128(N) build_int_cstu (u128_type, (N))
#define UCHAR(N) build_int_cstu (unsigned_char_type_node, (N))
#define SCHAR(N) build_int_cst (signed_char_type_node, (N))
// Run all of the selftests within this file.
void
range_tests ()
{
tree u128_type = build_nonstandard_integer_type (128, /*unsigned=*/1);
value_range i1, i2, i3;
value_range r0, r1, rold;
// Test that NOT(255) is [0..254] in 8-bit land.
value_range not_255 (UCHAR (255), UCHAR (255), VR_ANTI_RANGE);
ASSERT_TRUE (not_255 == value_range (UCHAR (0), UCHAR (254)));
// Test that NOT(0) is [1..255] in 8-bit land.
value_range not_zero = range_nonzero (unsigned_char_type_node);
ASSERT_TRUE (not_zero == value_range (UCHAR (1), UCHAR (255)));
// Check that [0,127][0x..ffffff80,0x..ffffff]
// => ~[128, 0x..ffffff7f].
r0 = value_range (UINT128 (0), UINT128 (127));
tree high = build_minus_one_cst (u128_type);
// low = -1 - 127 => 0x..ffffff80.
tree low = fold_build2 (MINUS_EXPR, u128_type, high, UINT128(127));
r1 = value_range (low, high); // [0x..ffffff80, 0x..ffffffff]
// r0 = [0,127][0x..ffffff80,0x..fffffff].
r0.union_ (r1);
// r1 = [128, 0x..ffffff7f].
r1 = value_range (UINT128(128),
fold_build2 (MINUS_EXPR, u128_type,
build_minus_one_cst (u128_type),
UINT128(128)));
r0.invert ();
ASSERT_TRUE (r0 == r1);
r0.set_varying (integer_type_node);
tree minint = wide_int_to_tree (integer_type_node, r0.lower_bound ());
tree maxint = wide_int_to_tree (integer_type_node, r0.upper_bound ());
r0.set_varying (short_integer_type_node);
tree minshort = wide_int_to_tree (short_integer_type_node, r0.lower_bound ());
tree maxshort = wide_int_to_tree (short_integer_type_node, r0.upper_bound ());
r0.set_varying (unsigned_type_node);
tree maxuint = wide_int_to_tree (unsigned_type_node, r0.upper_bound ());
// Check that ~[0,5] => [6,MAX] for unsigned int.
r0 = value_range (UINT (0), UINT (5));
r0.invert ();
ASSERT_TRUE (r0 == value_range (UINT(6), maxuint));
// Check that ~[10,MAX] => [0,9] for unsigned int.
r0 = value_range (UINT(10), maxuint);
r0.invert ();
ASSERT_TRUE (r0 == value_range (UINT (0), UINT (9)));
// Check that ~[0,5] => [6,MAX] for unsigned 128-bit numbers.
r0 = value_range (UINT128 (0), UINT128 (5), VR_ANTI_RANGE);
r1 = value_range (UINT128(6), build_minus_one_cst (u128_type));
ASSERT_TRUE (r0 == r1);
// Check that [~5] is really [-MIN,4][6,MAX].
r0 = value_range (INT (5), INT (5), VR_ANTI_RANGE);
r1 = value_range (minint, INT (4));
r1.union_ (value_range (INT (6), maxint));
ASSERT_FALSE (r1.undefined_p ());
ASSERT_TRUE (r0 == r1);
r1 = value_range (INT (5), INT (5));
value_range r2 (r1);
ASSERT_TRUE (r1 == r2);
r1 = value_range (INT (5), INT (10));
r1 = value_range (integer_type_node,
wi::to_wide (INT (5)), wi::to_wide (INT (10)));
ASSERT_TRUE (r1.contains_p (INT (7)));
r1 = value_range (SCHAR (0), SCHAR (20));
ASSERT_TRUE (r1.contains_p (SCHAR(15)));
ASSERT_FALSE (r1.contains_p (SCHAR(300)));
// If a range is in any way outside of the range for the converted
// to range, default to the range for the new type.
if (TYPE_PRECISION (TREE_TYPE (maxint))
> TYPE_PRECISION (short_integer_type_node))
{
r1 = value_range (integer_zero_node, maxint);
range_cast (r1, short_integer_type_node);
ASSERT_TRUE (r1.lower_bound () == wi::to_wide (minshort)
&& r1.upper_bound() == wi::to_wide (maxshort));
}
// (unsigned char)[-5,-1] => [251,255].
r0 = rold = value_range (SCHAR (-5), SCHAR (-1));
range_cast (r0, unsigned_char_type_node);
ASSERT_TRUE (r0 == value_range (UCHAR (251), UCHAR (255)));
range_cast (r0, signed_char_type_node);
ASSERT_TRUE (r0 == rold);
// (signed char)[15, 150] => [-128,-106][15,127].
r0 = rold = value_range (UCHAR (15), UCHAR (150));
range_cast (r0, signed_char_type_node);
r1 = value_range (SCHAR (15), SCHAR (127));
r2 = value_range (SCHAR (-128), SCHAR (-106));
r1.union_ (r2);
ASSERT_TRUE (r1 == r0);
range_cast (r0, unsigned_char_type_node);
ASSERT_TRUE (r0 == rold);
// (unsigned char)[-5, 5] => [0,5][251,255].
r0 = rold = value_range (SCHAR (-5), SCHAR (5));
range_cast (r0, unsigned_char_type_node);
r1 = value_range (UCHAR (251), UCHAR (255));
r2 = value_range (UCHAR (0), UCHAR (5));
r1.union_ (r2);
ASSERT_TRUE (r0 == r1);
range_cast (r0, signed_char_type_node);
ASSERT_TRUE (r0 == rold);
// (unsigned char)[-5,5] => [0,5][251,255].
r0 = value_range (INT (-5), INT (5));
range_cast (r0, unsigned_char_type_node);
r1 = value_range (UCHAR (0), UCHAR (5));
r1.union_ (value_range (UCHAR (251), UCHAR (255)));
ASSERT_TRUE (r0 == r1);
// (unsigned char)[5U,1974U] => [0,255].
r0 = value_range (UINT (5), UINT (1974));
range_cast (r0, unsigned_char_type_node);
ASSERT_TRUE (r0 == value_range (UCHAR (0), UCHAR (255)));
range_cast (r0, integer_type_node);
// Going to a wider range should not sign extend.
ASSERT_TRUE (r0 == value_range (INT (0), INT (255)));
// (unsigned char)[-350,15] => [0,255].
r0 = value_range (INT (-350), INT (15));
range_cast (r0, unsigned_char_type_node);
ASSERT_TRUE (r0 == (value_range
(TYPE_MIN_VALUE (unsigned_char_type_node),
TYPE_MAX_VALUE (unsigned_char_type_node))));
// Casting [-120,20] from signed char to unsigned short.
// => [0, 20][0xff88, 0xffff].
r0 = value_range (SCHAR (-120), SCHAR (20));
range_cast (r0, short_unsigned_type_node);
r1 = value_range (UINT16 (0), UINT16 (20));
r2 = value_range (UINT16 (0xff88), UINT16 (0xffff));
r1.union_ (r2);
ASSERT_TRUE (r0 == r1);
// A truncating cast back to signed char will work because [-120, 20]
// is representable in signed char.
range_cast (r0, signed_char_type_node);
ASSERT_TRUE (r0 == value_range (SCHAR (-120), SCHAR (20)));
// unsigned char -> signed short
// (signed short)[(unsigned char)25, (unsigned char)250]
// => [(signed short)25, (signed short)250]
r0 = rold = value_range (UCHAR (25), UCHAR (250));
range_cast (r0, short_integer_type_node);
r1 = value_range (INT16 (25), INT16 (250));
ASSERT_TRUE (r0 == r1);
range_cast (r0, unsigned_char_type_node);
ASSERT_TRUE (r0 == rold);
// Test casting a wider signed [-MIN,MAX] to a nar`rower unsigned.
r0 = value_range (TYPE_MIN_VALUE (long_long_integer_type_node),
TYPE_MAX_VALUE (long_long_integer_type_node));
range_cast (r0, short_unsigned_type_node);
r1 = value_range (TYPE_MIN_VALUE (short_unsigned_type_node),
TYPE_MAX_VALUE (short_unsigned_type_node));
ASSERT_TRUE (r0 == r1);
// NOT([10,20]) ==> [-MIN,9][21,MAX].
r0 = r1 = value_range (INT (10), INT (20));
r2 = value_range (minint, INT(9));
r2.union_ (value_range (INT(21), maxint));
ASSERT_FALSE (r2.undefined_p ());
r1.invert ();
ASSERT_TRUE (r1 == r2);
// Test that NOT(NOT(x)) == x.
r2.invert ();
ASSERT_TRUE (r0 == r2);
// Test that booleans and their inverse work as expected.
r0 = range_zero (boolean_type_node);
ASSERT_TRUE (r0 == value_range (build_zero_cst (boolean_type_node),
build_zero_cst (boolean_type_node)));
r0.invert ();
ASSERT_TRUE (r0 == value_range (build_one_cst (boolean_type_node),
build_one_cst (boolean_type_node)));
// Casting NONZERO to a narrower type will wrap/overflow so
// it's just the entire range for the narrower type.
//
// "NOT 0 at signed 32-bits" ==> [-MIN_32,-1][1, +MAX_32]. This is
// is outside of the range of a smaller range, return the full
// smaller range.
if (TYPE_PRECISION (integer_type_node)
> TYPE_PRECISION (short_integer_type_node))
{
r0 = range_nonzero (integer_type_node);
range_cast (r0, short_integer_type_node);
r1 = value_range (TYPE_MIN_VALUE (short_integer_type_node),
TYPE_MAX_VALUE (short_integer_type_node));
ASSERT_TRUE (r0 == r1);
}
// Casting NONZERO from a narrower signed to a wider signed.
//
// NONZERO signed 16-bits is [-MIN_16,-1][1, +MAX_16].
// Converting this to 32-bits signed is [-MIN_16,-1][1, +MAX_16].
r0 = range_nonzero (short_integer_type_node);
range_cast (r0, integer_type_node);
r1 = value_range (INT (-32768), INT (-1));
r2 = value_range (INT (1), INT (32767));
r1.union_ (r2);
ASSERT_TRUE (r0 == r1);
// Make sure NULL and non-NULL of pointer types work, and that
// inverses of them are consistent.
tree voidp = build_pointer_type (void_type_node);
r0 = range_zero (voidp);
r1 = r0;
r0.invert ();
r0.invert ();
ASSERT_TRUE (r0 == r1);
// [10,20] U [15, 30] => [10, 30].
r0 = value_range (INT (10), INT (20));
r1 = value_range (INT (15), INT (30));
r0.union_ (r1);
ASSERT_TRUE (r0 == value_range (INT (10), INT (30)));
// [15,40] U [] => [15,40].
r0 = value_range (INT (15), INT (40));
r1.set_undefined ();
r0.union_ (r1);
ASSERT_TRUE (r0 == value_range (INT (15), INT (40)));
// [10,20] U [10,10] => [10,20].
r0 = value_range (INT (10), INT (20));
r1 = value_range (INT (10), INT (10));
r0.union_ (r1);
ASSERT_TRUE (r0 == value_range (INT (10), INT (20)));
// [10,20] U [9,9] => [9,20].
r0 = value_range (INT (10), INT (20));
r1 = value_range (INT (9), INT (9));
r0.union_ (r1);
ASSERT_TRUE (r0 == value_range (INT (9), INT (20)));
// [10,20] ^ [15,30] => [15,20].
r0 = value_range (INT (10), INT (20));
r1 = value_range (INT (15), INT (30));
r0.intersect (r1);
ASSERT_TRUE (r0 == value_range (INT (15), INT (20)));
// Test the internal sanity of wide_int's wrt HWIs.
ASSERT_TRUE (wi::max_value (TYPE_PRECISION (boolean_type_node),
TYPE_SIGN (boolean_type_node))
== wi::uhwi (1, TYPE_PRECISION (boolean_type_node)));
// Test zero_p().
r0 = value_range (INT (0), INT (0));
ASSERT_TRUE (r0.zero_p ());
// Test nonzero_p().
r0 = value_range (INT (0), INT (0));
r0.invert ();
ASSERT_TRUE (r0.nonzero_p ());
}
} // namespace selftest
#endif // CHECKING_P