bddc98e135
2011-03-30 Vladimir Makarov <vmakarov@redhat.com> PR middle-end/48367 * ira-costs.c (find_costs_and_classes): Fix a typo in i_mem_cost calculation. From-SVN: r171767
2193 lines
66 KiB
C
2193 lines
66 KiB
C
/* IRA hard register and memory cost calculation for allocnos or pseudos.
|
||
Copyright (C) 2006, 2007, 2008, 2009, 2010, 2011
|
||
Free Software Foundation, Inc.
|
||
Contributed by Vladimir Makarov <vmakarov@redhat.com>.
|
||
|
||
This file is part of GCC.
|
||
|
||
GCC is free software; you can redistribute it and/or modify it under
|
||
the terms of the GNU General Public License as published by the Free
|
||
Software Foundation; either version 3, or (at your option) any later
|
||
version.
|
||
|
||
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
||
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||
for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GCC; see the file COPYING3. If not see
|
||
<http://www.gnu.org/licenses/>. */
|
||
|
||
#include "config.h"
|
||
#include "system.h"
|
||
#include "coretypes.h"
|
||
#include "tm.h"
|
||
#include "hard-reg-set.h"
|
||
#include "rtl.h"
|
||
#include "expr.h"
|
||
#include "tm_p.h"
|
||
#include "flags.h"
|
||
#include "basic-block.h"
|
||
#include "regs.h"
|
||
#include "addresses.h"
|
||
#include "insn-config.h"
|
||
#include "recog.h"
|
||
#include "reload.h"
|
||
#include "diagnostic-core.h"
|
||
#include "target.h"
|
||
#include "params.h"
|
||
#include "ira-int.h"
|
||
|
||
/* The flags is set up every time when we calculate pseudo register
|
||
classes through function ira_set_pseudo_classes. */
|
||
static bool pseudo_classes_defined_p = false;
|
||
|
||
/* TRUE if we work with allocnos. Otherwise we work with pseudos. */
|
||
static bool allocno_p;
|
||
|
||
/* Number of elements in arrays `in_inc_dec' and `costs'. */
|
||
static int cost_elements_num;
|
||
|
||
#ifdef FORBIDDEN_INC_DEC_CLASSES
|
||
/* Indexed by n, is TRUE if allocno or pseudo with number N is used in
|
||
an auto-inc or auto-dec context. */
|
||
static bool *in_inc_dec;
|
||
#endif
|
||
|
||
/* The `costs' struct records the cost of using hard registers of each
|
||
class considered for the calculation and of using memory for each
|
||
allocno or pseudo. */
|
||
struct costs
|
||
{
|
||
int mem_cost;
|
||
/* Costs for register classes start here. We process only some
|
||
allocno classes. */
|
||
int cost[1];
|
||
};
|
||
|
||
#define max_struct_costs_size \
|
||
(this_target_ira_int->x_max_struct_costs_size)
|
||
#define init_cost \
|
||
(this_target_ira_int->x_init_cost)
|
||
#define temp_costs \
|
||
(this_target_ira_int->x_temp_costs)
|
||
#define op_costs \
|
||
(this_target_ira_int->x_op_costs)
|
||
#define this_op_costs \
|
||
(this_target_ira_int->x_this_op_costs)
|
||
|
||
/* Costs of each class for each allocno or pseudo. */
|
||
static struct costs *costs;
|
||
|
||
/* Accumulated costs of each class for each allocno. */
|
||
static struct costs *total_allocno_costs;
|
||
|
||
/* It is the current size of struct costs. */
|
||
static int struct_costs_size;
|
||
|
||
/* Return pointer to structure containing costs of allocno or pseudo
|
||
with given NUM in array ARR. */
|
||
#define COSTS(arr, num) \
|
||
((struct costs *) ((char *) (arr) + (num) * struct_costs_size))
|
||
|
||
/* Return index in COSTS when processing reg with REGNO. */
|
||
#define COST_INDEX(regno) (allocno_p \
|
||
? ALLOCNO_NUM (ira_curr_regno_allocno_map[regno]) \
|
||
: (int) regno)
|
||
|
||
/* Record register class preferences of each allocno or pseudo. Null
|
||
value means no preferences. It happens on the 1st iteration of the
|
||
cost calculation. */
|
||
static enum reg_class *pref;
|
||
|
||
/* Allocated buffers for pref. */
|
||
static enum reg_class *pref_buffer;
|
||
|
||
/* Record allocno class of each allocno with the same regno. */
|
||
static enum reg_class *regno_aclass;
|
||
|
||
/* Record cost gains for not allocating a register with an invariant
|
||
equivalence. */
|
||
static int *regno_equiv_gains;
|
||
|
||
/* Execution frequency of the current insn. */
|
||
static int frequency;
|
||
|
||
|
||
|
||
/* Info about reg classes whose costs are calculated for a pseudo. */
|
||
struct cost_classes
|
||
{
|
||
/* Number of the cost classes in the subsequent array. */
|
||
int num;
|
||
/* Container of the cost classes. */
|
||
enum reg_class classes[N_REG_CLASSES];
|
||
/* Map reg class -> index of the reg class in the previous array.
|
||
-1 if it is not a cost classe. */
|
||
int index[N_REG_CLASSES];
|
||
/* Map hard regno index of first class in array CLASSES containing
|
||
the hard regno, -1 otherwise. */
|
||
int hard_regno_index[FIRST_PSEUDO_REGISTER];
|
||
};
|
||
|
||
/* Types of pointers to the structure above. */
|
||
typedef struct cost_classes *cost_classes_t;
|
||
typedef const struct cost_classes *const_cost_classes_t;
|
||
|
||
/* Info about cost classes for each pseudo. */
|
||
static cost_classes_t *regno_cost_classes;
|
||
|
||
/* Returns hash value for cost classes info V. */
|
||
static hashval_t
|
||
cost_classes_hash (const void *v)
|
||
{
|
||
const_cost_classes_t hv = (const_cost_classes_t) v;
|
||
|
||
return iterative_hash (&hv->classes, sizeof (enum reg_class) * hv->num, 0);
|
||
}
|
||
|
||
/* Compares cost classes info V1 and V2. */
|
||
static int
|
||
cost_classes_eq (const void *v1, const void *v2)
|
||
{
|
||
const_cost_classes_t hv1 = (const_cost_classes_t) v1;
|
||
const_cost_classes_t hv2 = (const_cost_classes_t) v2;
|
||
|
||
return hv1->num == hv2->num && memcmp (hv1->classes, hv2->classes,
|
||
sizeof (enum reg_class) * hv1->num);
|
||
}
|
||
|
||
/* Delete cost classes info V from the hash table. */
|
||
static void
|
||
cost_classes_del (void *v)
|
||
{
|
||
ira_free (v);
|
||
}
|
||
|
||
/* Hash table of unique cost classes. */
|
||
static htab_t cost_classes_htab;
|
||
|
||
/* Map allocno class -> cost classes for pseudo of given allocno
|
||
class. */
|
||
static cost_classes_t cost_classes_aclass_cache[N_REG_CLASSES];
|
||
|
||
/* Map mode -> cost classes for pseudo of give mode. */
|
||
static cost_classes_t cost_classes_mode_cache[MAX_MACHINE_MODE];
|
||
|
||
/* Initialize info about the cost classes for each pseudo. */
|
||
static void
|
||
initiate_regno_cost_classes (void)
|
||
{
|
||
int size = sizeof (cost_classes_t) * max_reg_num ();
|
||
|
||
regno_cost_classes = (cost_classes_t *) ira_allocate (size);
|
||
memset (regno_cost_classes, 0, size);
|
||
memset (cost_classes_aclass_cache, 0,
|
||
sizeof (cost_classes_t) * N_REG_CLASSES);
|
||
memset (cost_classes_mode_cache, 0,
|
||
sizeof (cost_classes_t) * MAX_MACHINE_MODE);
|
||
cost_classes_htab
|
||
= htab_create (200, cost_classes_hash, cost_classes_eq, cost_classes_del);
|
||
}
|
||
|
||
/* Create new cost classes from cost classes FROM and set up members
|
||
index and hard_regno_index. Return the new classes. The function
|
||
implements some common code of two functions
|
||
setup_regno_cost_classes_by_aclass and
|
||
setup_regno_cost_classes_by_mode. */
|
||
static cost_classes_t
|
||
setup_cost_classes (cost_classes_t from)
|
||
{
|
||
cost_classes_t classes_ptr;
|
||
enum reg_class cl;
|
||
int i, j, hard_regno;
|
||
|
||
classes_ptr = (cost_classes_t) ira_allocate (sizeof (struct cost_classes));
|
||
classes_ptr->num = from->num;
|
||
for (i = 0; i < N_REG_CLASSES; i++)
|
||
classes_ptr->index[i] = -1;
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
classes_ptr->hard_regno_index[i] = -1;
|
||
for (i = 0; i < from->num; i++)
|
||
{
|
||
cl = classes_ptr->classes[i] = from->classes[i];
|
||
classes_ptr->index[cl] = i;
|
||
for (j = ira_class_hard_regs_num[cl] - 1; j >= 0; j--)
|
||
{
|
||
hard_regno = ira_class_hard_regs[cl][j];
|
||
if (classes_ptr->hard_regno_index[hard_regno] < 0)
|
||
classes_ptr->hard_regno_index[hard_regno] = i;
|
||
}
|
||
}
|
||
return classes_ptr;
|
||
}
|
||
|
||
/* Setup cost classes for pseudo REGNO whose allocno class is ACLASS.
|
||
This function is used when we know an initial approximation of
|
||
allocno class of the pseudo already, e.g. on the second iteration
|
||
of class cost calculation or after class cost calculation in
|
||
register-pressure sensitive insn scheduling or register-pressure
|
||
sensitive loop-invariant motion. */
|
||
static void
|
||
setup_regno_cost_classes_by_aclass (int regno, enum reg_class aclass)
|
||
{
|
||
static struct cost_classes classes;
|
||
cost_classes_t classes_ptr;
|
||
enum reg_class cl;
|
||
int i;
|
||
PTR *slot;
|
||
HARD_REG_SET temp, temp2;
|
||
|
||
if ((classes_ptr = cost_classes_aclass_cache[aclass]) == NULL)
|
||
{
|
||
COPY_HARD_REG_SET (temp, reg_class_contents[aclass]);
|
||
AND_COMPL_HARD_REG_SET (temp, ira_no_alloc_regs);
|
||
classes.num = 0;
|
||
for (i = 0; i < ira_important_classes_num; i++)
|
||
{
|
||
cl = ira_important_classes[i];
|
||
COPY_HARD_REG_SET (temp2, reg_class_contents[cl]);
|
||
AND_COMPL_HARD_REG_SET (temp2, ira_no_alloc_regs);
|
||
if (! ira_reg_pressure_class_p[cl]
|
||
&& hard_reg_set_subset_p (temp2, temp) && cl != aclass)
|
||
continue;
|
||
classes.classes[classes.num++] = cl;
|
||
}
|
||
slot = htab_find_slot (cost_classes_htab, &classes, INSERT);
|
||
if (*slot == NULL)
|
||
{
|
||
classes_ptr = setup_cost_classes (&classes);
|
||
*slot = classes_ptr;
|
||
}
|
||
classes_ptr = cost_classes_aclass_cache[aclass] = (cost_classes_t) *slot;
|
||
}
|
||
regno_cost_classes[regno] = classes_ptr;
|
||
}
|
||
|
||
/* Setup cost classes for pseudo REGNO with MODE. Usage of MODE can
|
||
decrease number of cost classes for the pseudo, if hard registers
|
||
of some important classes can not hold a value of MODE. So the
|
||
pseudo can not get hard register of some important classes and cost
|
||
calculation for such important classes is only waisting CPU
|
||
time. */
|
||
static void
|
||
setup_regno_cost_classes_by_mode (int regno, enum machine_mode mode)
|
||
{
|
||
static struct cost_classes classes;
|
||
cost_classes_t classes_ptr;
|
||
enum reg_class cl;
|
||
int i;
|
||
PTR *slot;
|
||
HARD_REG_SET temp;
|
||
|
||
if ((classes_ptr = cost_classes_mode_cache[mode]) == NULL)
|
||
{
|
||
classes.num = 0;
|
||
for (i = 0; i < ira_important_classes_num; i++)
|
||
{
|
||
cl = ira_important_classes[i];
|
||
COPY_HARD_REG_SET (temp, ira_prohibited_class_mode_regs[cl][mode]);
|
||
IOR_HARD_REG_SET (temp, ira_no_alloc_regs);
|
||
if (hard_reg_set_subset_p (reg_class_contents[cl], temp))
|
||
continue;
|
||
classes.classes[classes.num++] = cl;
|
||
}
|
||
slot = htab_find_slot (cost_classes_htab, &classes, INSERT);
|
||
if (*slot == NULL)
|
||
{
|
||
classes_ptr = setup_cost_classes (&classes);
|
||
*slot = classes_ptr;
|
||
}
|
||
cost_classes_mode_cache[mode] = (cost_classes_t) *slot;
|
||
}
|
||
regno_cost_classes[regno] = classes_ptr;
|
||
}
|
||
|
||
/* Finilize info about the cost classes for each pseudo. */
|
||
static void
|
||
finish_regno_cost_classes (void)
|
||
{
|
||
ira_free (regno_cost_classes);
|
||
htab_delete (cost_classes_htab);
|
||
}
|
||
|
||
|
||
|
||
/* Compute the cost of loading X into (if TO_P is TRUE) or from (if
|
||
TO_P is FALSE) a register of class RCLASS in mode MODE. X must not
|
||
be a pseudo register. */
|
||
static int
|
||
copy_cost (rtx x, enum machine_mode mode, reg_class_t rclass, bool to_p,
|
||
secondary_reload_info *prev_sri)
|
||
{
|
||
secondary_reload_info sri;
|
||
reg_class_t secondary_class = NO_REGS;
|
||
|
||
/* If X is a SCRATCH, there is actually nothing to move since we are
|
||
assuming optimal allocation. */
|
||
if (GET_CODE (x) == SCRATCH)
|
||
return 0;
|
||
|
||
/* Get the class we will actually use for a reload. */
|
||
rclass = targetm.preferred_reload_class (x, rclass);
|
||
|
||
/* If we need a secondary reload for an intermediate, the cost is
|
||
that to load the input into the intermediate register, then to
|
||
copy it. */
|
||
sri.prev_sri = prev_sri;
|
||
sri.extra_cost = 0;
|
||
secondary_class = targetm.secondary_reload (to_p, x, rclass, mode, &sri);
|
||
|
||
if (secondary_class != NO_REGS)
|
||
{
|
||
if (!move_cost[mode])
|
||
init_move_cost (mode);
|
||
return (move_cost[mode][(int) secondary_class][(int) rclass]
|
||
+ sri.extra_cost
|
||
+ copy_cost (x, mode, secondary_class, to_p, &sri));
|
||
}
|
||
|
||
/* For memory, use the memory move cost, for (hard) registers, use
|
||
the cost to move between the register classes, and use 2 for
|
||
everything else (constants). */
|
||
if (MEM_P (x) || rclass == NO_REGS)
|
||
return sri.extra_cost
|
||
+ ira_memory_move_cost[mode][(int) rclass][to_p != 0];
|
||
else if (REG_P (x))
|
||
{
|
||
if (!move_cost[mode])
|
||
init_move_cost (mode);
|
||
return (sri.extra_cost
|
||
+ move_cost[mode][REGNO_REG_CLASS (REGNO (x))][(int) rclass]);
|
||
}
|
||
else
|
||
/* If this is a constant, we may eventually want to call rtx_cost
|
||
here. */
|
||
return sri.extra_cost + COSTS_N_INSNS (1);
|
||
}
|
||
|
||
|
||
|
||
/* Record the cost of using memory or hard registers of various
|
||
classes for the operands in INSN.
|
||
|
||
N_ALTS is the number of alternatives.
|
||
N_OPS is the number of operands.
|
||
OPS is an array of the operands.
|
||
MODES are the modes of the operands, in case any are VOIDmode.
|
||
CONSTRAINTS are the constraints to use for the operands. This array
|
||
is modified by this procedure.
|
||
|
||
This procedure works alternative by alternative. For each
|
||
alternative we assume that we will be able to allocate all allocnos
|
||
to their ideal register class and calculate the cost of using that
|
||
alternative. Then we compute, for each operand that is a
|
||
pseudo-register, the cost of having the allocno allocated to each
|
||
register class and using it in that alternative. To this cost is
|
||
added the cost of the alternative.
|
||
|
||
The cost of each class for this insn is its lowest cost among all
|
||
the alternatives. */
|
||
static void
|
||
record_reg_classes (int n_alts, int n_ops, rtx *ops,
|
||
enum machine_mode *modes, const char **constraints,
|
||
rtx insn, enum reg_class *pref)
|
||
{
|
||
int alt;
|
||
int i, j, k;
|
||
rtx set;
|
||
int insn_allows_mem[MAX_RECOG_OPERANDS];
|
||
|
||
for (i = 0; i < n_ops; i++)
|
||
insn_allows_mem[i] = 0;
|
||
|
||
/* Process each alternative, each time minimizing an operand's cost
|
||
with the cost for each operand in that alternative. */
|
||
for (alt = 0; alt < n_alts; alt++)
|
||
{
|
||
enum reg_class classes[MAX_RECOG_OPERANDS];
|
||
int allows_mem[MAX_RECOG_OPERANDS];
|
||
enum reg_class rclass;
|
||
int alt_fail = 0;
|
||
int alt_cost = 0, op_cost_add;
|
||
|
||
if (!recog_data.alternative_enabled_p[alt])
|
||
{
|
||
for (i = 0; i < recog_data.n_operands; i++)
|
||
constraints[i] = skip_alternative (constraints[i]);
|
||
|
||
continue;
|
||
}
|
||
|
||
for (i = 0; i < n_ops; i++)
|
||
{
|
||
unsigned char c;
|
||
const char *p = constraints[i];
|
||
rtx op = ops[i];
|
||
enum machine_mode mode = modes[i];
|
||
int allows_addr = 0;
|
||
int win = 0;
|
||
|
||
/* Initially show we know nothing about the register class. */
|
||
classes[i] = NO_REGS;
|
||
allows_mem[i] = 0;
|
||
|
||
/* If this operand has no constraints at all, we can
|
||
conclude nothing about it since anything is valid. */
|
||
if (*p == 0)
|
||
{
|
||
if (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER)
|
||
memset (this_op_costs[i], 0, struct_costs_size);
|
||
continue;
|
||
}
|
||
|
||
/* If this alternative is only relevant when this operand
|
||
matches a previous operand, we do different things
|
||
depending on whether this operand is a allocno-reg or not.
|
||
We must process any modifiers for the operand before we
|
||
can make this test. */
|
||
while (*p == '%' || *p == '=' || *p == '+' || *p == '&')
|
||
p++;
|
||
|
||
if (p[0] >= '0' && p[0] <= '0' + i && (p[1] == ',' || p[1] == 0))
|
||
{
|
||
/* Copy class and whether memory is allowed from the
|
||
matching alternative. Then perform any needed cost
|
||
computations and/or adjustments. */
|
||
j = p[0] - '0';
|
||
classes[i] = classes[j];
|
||
allows_mem[i] = allows_mem[j];
|
||
if (allows_mem[i])
|
||
insn_allows_mem[i] = 1;
|
||
|
||
if (! REG_P (op) || REGNO (op) < FIRST_PSEUDO_REGISTER)
|
||
{
|
||
/* If this matches the other operand, we have no
|
||
added cost and we win. */
|
||
if (rtx_equal_p (ops[j], op))
|
||
win = 1;
|
||
/* If we can put the other operand into a register,
|
||
add to the cost of this alternative the cost to
|
||
copy this operand to the register used for the
|
||
other operand. */
|
||
else if (classes[j] != NO_REGS)
|
||
{
|
||
alt_cost += copy_cost (op, mode, classes[j], 1, NULL);
|
||
win = 1;
|
||
}
|
||
}
|
||
else if (! REG_P (ops[j])
|
||
|| REGNO (ops[j]) < FIRST_PSEUDO_REGISTER)
|
||
{
|
||
/* This op is an allocno but the one it matches is
|
||
not. */
|
||
|
||
/* If we can't put the other operand into a
|
||
register, this alternative can't be used. */
|
||
|
||
if (classes[j] == NO_REGS)
|
||
alt_fail = 1;
|
||
/* Otherwise, add to the cost of this alternative
|
||
the cost to copy the other operand to the hard
|
||
register used for this operand. */
|
||
else
|
||
alt_cost += copy_cost (ops[j], mode, classes[j], 1, NULL);
|
||
}
|
||
else
|
||
{
|
||
/* The costs of this operand are not the same as the
|
||
other operand since move costs are not symmetric.
|
||
Moreover, if we cannot tie them, this alternative
|
||
needs to do a copy, which is one insn. */
|
||
struct costs *pp = this_op_costs[i];
|
||
int *pp_costs = pp->cost;
|
||
cost_classes_t cost_classes_ptr
|
||
= regno_cost_classes[REGNO (op)];
|
||
enum reg_class *cost_classes = cost_classes_ptr->classes;
|
||
bool in_p = recog_data.operand_type[i] != OP_OUT;
|
||
bool out_p = recog_data.operand_type[i] != OP_IN;
|
||
enum reg_class op_class = classes[i];
|
||
move_table *move_in_cost, *move_out_cost;
|
||
|
||
ira_init_register_move_cost_if_necessary (mode);
|
||
if (! in_p)
|
||
{
|
||
ira_assert (out_p);
|
||
move_out_cost = ira_may_move_out_cost[mode];
|
||
for (k = cost_classes_ptr->num - 1; k >= 0; k--)
|
||
{
|
||
rclass = cost_classes[k];
|
||
pp_costs[k]
|
||
= move_out_cost[op_class][rclass] * frequency;
|
||
}
|
||
}
|
||
else if (! out_p)
|
||
{
|
||
ira_assert (in_p);
|
||
move_in_cost = ira_may_move_in_cost[mode];
|
||
for (k = cost_classes_ptr->num - 1; k >= 0; k--)
|
||
{
|
||
rclass = cost_classes[k];
|
||
pp_costs[k]
|
||
= move_in_cost[rclass][op_class] * frequency;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
move_in_cost = ira_may_move_in_cost[mode];
|
||
move_out_cost = ira_may_move_out_cost[mode];
|
||
for (k = cost_classes_ptr->num - 1; k >= 0; k--)
|
||
{
|
||
rclass = cost_classes[k];
|
||
pp_costs[k] = ((move_in_cost[rclass][op_class]
|
||
+ move_out_cost[op_class][rclass])
|
||
* frequency);
|
||
}
|
||
}
|
||
|
||
/* If the alternative actually allows memory, make
|
||
things a bit cheaper since we won't need an extra
|
||
insn to load it. */
|
||
pp->mem_cost
|
||
= ((out_p ? ira_memory_move_cost[mode][op_class][0] : 0)
|
||
+ (in_p ? ira_memory_move_cost[mode][op_class][1] : 0)
|
||
- allows_mem[i]) * frequency;
|
||
|
||
/* If we have assigned a class to this allocno in
|
||
our first pass, add a cost to this alternative
|
||
corresponding to what we would add if this
|
||
allocno were not in the appropriate class. */
|
||
if (pref)
|
||
{
|
||
enum reg_class pref_class = pref[COST_INDEX (REGNO (op))];
|
||
|
||
if (pref_class == NO_REGS)
|
||
alt_cost
|
||
+= ((out_p
|
||
? ira_memory_move_cost[mode][op_class][0] : 0)
|
||
+ (in_p
|
||
? ira_memory_move_cost[mode][op_class][1]
|
||
: 0));
|
||
else if (ira_reg_class_intersect
|
||
[pref_class][op_class] == NO_REGS)
|
||
alt_cost
|
||
+= ira_register_move_cost[mode][pref_class][op_class];
|
||
}
|
||
if (REGNO (ops[i]) != REGNO (ops[j])
|
||
&& ! find_reg_note (insn, REG_DEAD, op))
|
||
alt_cost += 2;
|
||
|
||
/* This is in place of ordinary cost computation for
|
||
this operand, so skip to the end of the
|
||
alternative (should be just one character). */
|
||
while (*p && *p++ != ',')
|
||
;
|
||
|
||
constraints[i] = p;
|
||
continue;
|
||
}
|
||
}
|
||
|
||
/* Scan all the constraint letters. See if the operand
|
||
matches any of the constraints. Collect the valid
|
||
register classes and see if this operand accepts
|
||
memory. */
|
||
while ((c = *p))
|
||
{
|
||
switch (c)
|
||
{
|
||
case ',':
|
||
break;
|
||
case '*':
|
||
/* Ignore the next letter for this pass. */
|
||
c = *++p;
|
||
break;
|
||
|
||
case '?':
|
||
alt_cost += 2;
|
||
case '!': case '#': case '&':
|
||
case '0': case '1': case '2': case '3': case '4':
|
||
case '5': case '6': case '7': case '8': case '9':
|
||
break;
|
||
|
||
case 'p':
|
||
allows_addr = 1;
|
||
win = address_operand (op, GET_MODE (op));
|
||
/* We know this operand is an address, so we want it
|
||
to be allocated to a register that can be the
|
||
base of an address, i.e. BASE_REG_CLASS. */
|
||
classes[i]
|
||
= ira_reg_class_subunion[classes[i]]
|
||
[base_reg_class (VOIDmode, ADDRESS, SCRATCH)];
|
||
break;
|
||
|
||
case 'm': case 'o': case 'V':
|
||
/* It doesn't seem worth distinguishing between
|
||
offsettable and non-offsettable addresses
|
||
here. */
|
||
insn_allows_mem[i] = allows_mem[i] = 1;
|
||
if (MEM_P (op))
|
||
win = 1;
|
||
break;
|
||
|
||
case '<':
|
||
if (MEM_P (op)
|
||
&& (GET_CODE (XEXP (op, 0)) == PRE_DEC
|
||
|| GET_CODE (XEXP (op, 0)) == POST_DEC))
|
||
win = 1;
|
||
break;
|
||
|
||
case '>':
|
||
if (MEM_P (op)
|
||
&& (GET_CODE (XEXP (op, 0)) == PRE_INC
|
||
|| GET_CODE (XEXP (op, 0)) == POST_INC))
|
||
win = 1;
|
||
break;
|
||
|
||
case 'E':
|
||
case 'F':
|
||
if (GET_CODE (op) == CONST_DOUBLE
|
||
|| (GET_CODE (op) == CONST_VECTOR
|
||
&& (GET_MODE_CLASS (GET_MODE (op))
|
||
== MODE_VECTOR_FLOAT)))
|
||
win = 1;
|
||
break;
|
||
|
||
case 'G':
|
||
case 'H':
|
||
if (GET_CODE (op) == CONST_DOUBLE
|
||
&& CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, c, p))
|
||
win = 1;
|
||
break;
|
||
|
||
case 's':
|
||
if (CONST_INT_P (op)
|
||
|| (GET_CODE (op) == CONST_DOUBLE
|
||
&& GET_MODE (op) == VOIDmode))
|
||
break;
|
||
|
||
case 'i':
|
||
if (CONSTANT_P (op)
|
||
&& (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op)))
|
||
win = 1;
|
||
break;
|
||
|
||
case 'n':
|
||
if (CONST_INT_P (op)
|
||
|| (GET_CODE (op) == CONST_DOUBLE
|
||
&& GET_MODE (op) == VOIDmode))
|
||
win = 1;
|
||
break;
|
||
|
||
case 'I':
|
||
case 'J':
|
||
case 'K':
|
||
case 'L':
|
||
case 'M':
|
||
case 'N':
|
||
case 'O':
|
||
case 'P':
|
||
if (CONST_INT_P (op)
|
||
&& CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), c, p))
|
||
win = 1;
|
||
break;
|
||
|
||
case 'X':
|
||
win = 1;
|
||
break;
|
||
|
||
case 'g':
|
||
if (MEM_P (op)
|
||
|| (CONSTANT_P (op)
|
||
&& (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))))
|
||
win = 1;
|
||
insn_allows_mem[i] = allows_mem[i] = 1;
|
||
case 'r':
|
||
classes[i] = ira_reg_class_subunion[classes[i]][GENERAL_REGS];
|
||
break;
|
||
|
||
default:
|
||
if (REG_CLASS_FROM_CONSTRAINT (c, p) != NO_REGS)
|
||
classes[i] = ira_reg_class_subunion[classes[i]]
|
||
[REG_CLASS_FROM_CONSTRAINT (c, p)];
|
||
#ifdef EXTRA_CONSTRAINT_STR
|
||
else if (EXTRA_CONSTRAINT_STR (op, c, p))
|
||
win = 1;
|
||
|
||
if (EXTRA_MEMORY_CONSTRAINT (c, p))
|
||
{
|
||
/* Every MEM can be reloaded to fit. */
|
||
insn_allows_mem[i] = allows_mem[i] = 1;
|
||
if (MEM_P (op))
|
||
win = 1;
|
||
}
|
||
if (EXTRA_ADDRESS_CONSTRAINT (c, p))
|
||
{
|
||
/* Every address can be reloaded to fit. */
|
||
allows_addr = 1;
|
||
if (address_operand (op, GET_MODE (op)))
|
||
win = 1;
|
||
/* We know this operand is an address, so we
|
||
want it to be allocated to a hard register
|
||
that can be the base of an address,
|
||
i.e. BASE_REG_CLASS. */
|
||
classes[i]
|
||
= ira_reg_class_subunion[classes[i]]
|
||
[base_reg_class (VOIDmode, ADDRESS, SCRATCH)];
|
||
}
|
||
#endif
|
||
break;
|
||
}
|
||
p += CONSTRAINT_LEN (c, p);
|
||
if (c == ',')
|
||
break;
|
||
}
|
||
|
||
constraints[i] = p;
|
||
|
||
/* How we account for this operand now depends on whether it
|
||
is a pseudo register or not. If it is, we first check if
|
||
any register classes are valid. If not, we ignore this
|
||
alternative, since we want to assume that all allocnos get
|
||
allocated for register preferencing. If some register
|
||
class is valid, compute the costs of moving the allocno
|
||
into that class. */
|
||
if (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER)
|
||
{
|
||
if (classes[i] == NO_REGS)
|
||
{
|
||
/* We must always fail if the operand is a REG, but
|
||
we did not find a suitable class.
|
||
|
||
Otherwise we may perform an uninitialized read
|
||
from this_op_costs after the `continue' statement
|
||
below. */
|
||
alt_fail = 1;
|
||
}
|
||
else
|
||
{
|
||
unsigned int regno = REGNO (op);
|
||
struct costs *pp = this_op_costs[i];
|
||
int *pp_costs = pp->cost;
|
||
cost_classes_t cost_classes_ptr = regno_cost_classes[regno];
|
||
enum reg_class *cost_classes = cost_classes_ptr->classes;
|
||
bool in_p = recog_data.operand_type[i] != OP_OUT;
|
||
bool out_p = recog_data.operand_type[i] != OP_IN;
|
||
enum reg_class op_class = classes[i];
|
||
move_table *move_in_cost, *move_out_cost;
|
||
|
||
ira_init_register_move_cost_if_necessary (mode);
|
||
if (! in_p)
|
||
{
|
||
ira_assert (out_p);
|
||
move_out_cost = ira_may_move_out_cost[mode];
|
||
for (k = cost_classes_ptr->num - 1; k >= 0; k--)
|
||
{
|
||
rclass = cost_classes[k];
|
||
pp_costs[k]
|
||
= move_out_cost[op_class][rclass] * frequency;
|
||
}
|
||
}
|
||
else if (! out_p)
|
||
{
|
||
ira_assert (in_p);
|
||
move_in_cost = ira_may_move_in_cost[mode];
|
||
for (k = cost_classes_ptr->num - 1; k >= 0; k--)
|
||
{
|
||
rclass = cost_classes[k];
|
||
pp_costs[k]
|
||
= move_in_cost[rclass][op_class] * frequency;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
move_in_cost = ira_may_move_in_cost[mode];
|
||
move_out_cost = ira_may_move_out_cost[mode];
|
||
for (k = cost_classes_ptr->num - 1; k >= 0; k--)
|
||
{
|
||
rclass = cost_classes[k];
|
||
pp_costs[k] = ((move_in_cost[rclass][op_class]
|
||
+ move_out_cost[op_class][rclass])
|
||
* frequency);
|
||
}
|
||
}
|
||
|
||
/* If the alternative actually allows memory, make
|
||
things a bit cheaper since we won't need an extra
|
||
insn to load it. */
|
||
pp->mem_cost
|
||
= ((out_p ? ira_memory_move_cost[mode][op_class][0] : 0)
|
||
+ (in_p ? ira_memory_move_cost[mode][op_class][1] : 0)
|
||
- allows_mem[i]) * frequency;
|
||
/* If we have assigned a class to this allocno in
|
||
our first pass, add a cost to this alternative
|
||
corresponding to what we would add if this
|
||
allocno were not in the appropriate class. */
|
||
if (pref)
|
||
{
|
||
enum reg_class pref_class = pref[COST_INDEX (REGNO (op))];
|
||
|
||
if (pref_class == NO_REGS)
|
||
alt_cost
|
||
+= ((out_p
|
||
? ira_memory_move_cost[mode][op_class][0] : 0)
|
||
+ (in_p
|
||
? ira_memory_move_cost[mode][op_class][1]
|
||
: 0));
|
||
else if (ira_reg_class_intersect[pref_class][op_class]
|
||
== NO_REGS)
|
||
alt_cost += ira_register_move_cost[mode][pref_class][op_class];
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Otherwise, if this alternative wins, either because we
|
||
have already determined that or if we have a hard
|
||
register of the proper class, there is no cost for this
|
||
alternative. */
|
||
else if (win || (REG_P (op)
|
||
&& reg_fits_class_p (op, classes[i],
|
||
0, GET_MODE (op))))
|
||
;
|
||
|
||
/* If registers are valid, the cost of this alternative
|
||
includes copying the object to and/or from a
|
||
register. */
|
||
else if (classes[i] != NO_REGS)
|
||
{
|
||
if (recog_data.operand_type[i] != OP_OUT)
|
||
alt_cost += copy_cost (op, mode, classes[i], 1, NULL);
|
||
|
||
if (recog_data.operand_type[i] != OP_IN)
|
||
alt_cost += copy_cost (op, mode, classes[i], 0, NULL);
|
||
}
|
||
/* The only other way this alternative can be used is if
|
||
this is a constant that could be placed into memory. */
|
||
else if (CONSTANT_P (op) && (allows_addr || allows_mem[i]))
|
||
alt_cost += ira_memory_move_cost[mode][classes[i]][1];
|
||
else
|
||
alt_fail = 1;
|
||
}
|
||
|
||
if (alt_fail)
|
||
continue;
|
||
|
||
op_cost_add = alt_cost * frequency;
|
||
/* Finally, update the costs with the information we've
|
||
calculated about this alternative. */
|
||
for (i = 0; i < n_ops; i++)
|
||
if (REG_P (ops[i]) && REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
|
||
{
|
||
struct costs *pp = op_costs[i], *qq = this_op_costs[i];
|
||
int *pp_costs = pp->cost, *qq_costs = qq->cost;
|
||
int scale = 1 + (recog_data.operand_type[i] == OP_INOUT);
|
||
cost_classes_t cost_classes_ptr
|
||
= regno_cost_classes[REGNO (ops[i])];
|
||
|
||
pp->mem_cost = MIN (pp->mem_cost,
|
||
(qq->mem_cost + op_cost_add) * scale);
|
||
|
||
for (k = cost_classes_ptr->num - 1; k >= 0; k--)
|
||
pp_costs[k]
|
||
= MIN (pp_costs[k], (qq_costs[k] + op_cost_add) * scale);
|
||
}
|
||
}
|
||
|
||
if (allocno_p)
|
||
for (i = 0; i < n_ops; i++)
|
||
{
|
||
ira_allocno_t a;
|
||
rtx op = ops[i];
|
||
|
||
if (! REG_P (op) || REGNO (op) < FIRST_PSEUDO_REGISTER)
|
||
continue;
|
||
a = ira_curr_regno_allocno_map [REGNO (op)];
|
||
if (! ALLOCNO_BAD_SPILL_P (a) && insn_allows_mem[i] == 0)
|
||
ALLOCNO_BAD_SPILL_P (a) = true;
|
||
}
|
||
|
||
/* If this insn is a single set copying operand 1 to operand 0 and
|
||
one operand is an allocno with the other a hard reg or an allocno
|
||
that prefers a hard register that is in its own register class
|
||
then we may want to adjust the cost of that register class to -1.
|
||
|
||
Avoid the adjustment if the source does not die to avoid
|
||
stressing of register allocator by preferrencing two colliding
|
||
registers into single class.
|
||
|
||
Also avoid the adjustment if a copy between hard registers of the
|
||
class is expensive (ten times the cost of a default copy is
|
||
considered arbitrarily expensive). This avoids losing when the
|
||
preferred class is very expensive as the source of a copy
|
||
instruction. */
|
||
if ((set = single_set (insn)) != 0
|
||
&& ops[0] == SET_DEST (set) && ops[1] == SET_SRC (set)
|
||
&& REG_P (ops[0]) && REG_P (ops[1])
|
||
&& find_regno_note (insn, REG_DEAD, REGNO (ops[1])))
|
||
for (i = 0; i <= 1; i++)
|
||
if (REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER
|
||
&& REGNO (ops[!i]) < FIRST_PSEUDO_REGISTER)
|
||
{
|
||
unsigned int regno = REGNO (ops[i]);
|
||
unsigned int other_regno = REGNO (ops[!i]);
|
||
enum machine_mode mode = GET_MODE (ops[!i]);
|
||
cost_classes_t cost_classes_ptr = regno_cost_classes[regno];
|
||
enum reg_class *cost_classes = cost_classes_ptr->classes;
|
||
enum reg_class rclass;
|
||
int nr;
|
||
|
||
for (k = cost_classes_ptr->num - 1; k >= 0; k--)
|
||
{
|
||
rclass = cost_classes[k];
|
||
if (TEST_HARD_REG_BIT (reg_class_contents[rclass], other_regno)
|
||
&& (reg_class_size[rclass]
|
||
== (unsigned) CLASS_MAX_NREGS (rclass, mode)))
|
||
{
|
||
if (reg_class_size[rclass] == 1)
|
||
op_costs[i]->cost[k] = -frequency;
|
||
else
|
||
{
|
||
for (nr = 0;
|
||
nr < hard_regno_nregs[other_regno][mode];
|
||
nr++)
|
||
if (! TEST_HARD_REG_BIT (reg_class_contents[rclass],
|
||
other_regno + nr))
|
||
break;
|
||
|
||
if (nr == hard_regno_nregs[other_regno][mode])
|
||
op_costs[i]->cost[k] = -frequency;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
|
||
/* Wrapper around REGNO_OK_FOR_INDEX_P, to allow pseudo registers. */
|
||
static inline bool
|
||
ok_for_index_p_nonstrict (rtx reg)
|
||
{
|
||
unsigned regno = REGNO (reg);
|
||
|
||
return regno >= FIRST_PSEUDO_REGISTER || REGNO_OK_FOR_INDEX_P (regno);
|
||
}
|
||
|
||
/* A version of regno_ok_for_base_p for use here, when all
|
||
pseudo-registers should count as OK. Arguments as for
|
||
regno_ok_for_base_p. */
|
||
static inline bool
|
||
ok_for_base_p_nonstrict (rtx reg, enum machine_mode mode,
|
||
enum rtx_code outer_code, enum rtx_code index_code)
|
||
{
|
||
unsigned regno = REGNO (reg);
|
||
|
||
if (regno >= FIRST_PSEUDO_REGISTER)
|
||
return true;
|
||
return ok_for_base_p_1 (regno, mode, outer_code, index_code);
|
||
}
|
||
|
||
/* Record the pseudo registers we must reload into hard registers in a
|
||
subexpression of a memory address, X.
|
||
|
||
If CONTEXT is 0, we are looking at the base part of an address,
|
||
otherwise we are looking at the index part.
|
||
|
||
MODE is the mode of the memory reference; OUTER_CODE and INDEX_CODE
|
||
give the context that the rtx appears in. These three arguments
|
||
are passed down to base_reg_class.
|
||
|
||
SCALE is twice the amount to multiply the cost by (it is twice so
|
||
we can represent half-cost adjustments). */
|
||
static void
|
||
record_address_regs (enum machine_mode mode, rtx x, int context,
|
||
enum rtx_code outer_code, enum rtx_code index_code,
|
||
int scale)
|
||
{
|
||
enum rtx_code code = GET_CODE (x);
|
||
enum reg_class rclass;
|
||
|
||
if (context == 1)
|
||
rclass = INDEX_REG_CLASS;
|
||
else
|
||
rclass = base_reg_class (mode, outer_code, index_code);
|
||
|
||
switch (code)
|
||
{
|
||
case CONST_INT:
|
||
case CONST:
|
||
case CC0:
|
||
case PC:
|
||
case SYMBOL_REF:
|
||
case LABEL_REF:
|
||
return;
|
||
|
||
case PLUS:
|
||
/* When we have an address that is a sum, we must determine
|
||
whether registers are "base" or "index" regs. If there is a
|
||
sum of two registers, we must choose one to be the "base".
|
||
Luckily, we can use the REG_POINTER to make a good choice
|
||
most of the time. We only need to do this on machines that
|
||
can have two registers in an address and where the base and
|
||
index register classes are different.
|
||
|
||
??? This code used to set REGNO_POINTER_FLAG in some cases,
|
||
but that seems bogus since it should only be set when we are
|
||
sure the register is being used as a pointer. */
|
||
{
|
||
rtx arg0 = XEXP (x, 0);
|
||
rtx arg1 = XEXP (x, 1);
|
||
enum rtx_code code0 = GET_CODE (arg0);
|
||
enum rtx_code code1 = GET_CODE (arg1);
|
||
|
||
/* Look inside subregs. */
|
||
if (code0 == SUBREG)
|
||
arg0 = SUBREG_REG (arg0), code0 = GET_CODE (arg0);
|
||
if (code1 == SUBREG)
|
||
arg1 = SUBREG_REG (arg1), code1 = GET_CODE (arg1);
|
||
|
||
/* If this machine only allows one register per address, it
|
||
must be in the first operand. */
|
||
if (MAX_REGS_PER_ADDRESS == 1)
|
||
record_address_regs (mode, arg0, 0, PLUS, code1, scale);
|
||
|
||
/* If index and base registers are the same on this machine,
|
||
just record registers in any non-constant operands. We
|
||
assume here, as well as in the tests below, that all
|
||
addresses are in canonical form. */
|
||
else if (INDEX_REG_CLASS == base_reg_class (VOIDmode, PLUS, SCRATCH))
|
||
{
|
||
record_address_regs (mode, arg0, context, PLUS, code1, scale);
|
||
if (! CONSTANT_P (arg1))
|
||
record_address_regs (mode, arg1, context, PLUS, code0, scale);
|
||
}
|
||
|
||
/* If the second operand is a constant integer, it doesn't
|
||
change what class the first operand must be. */
|
||
else if (code1 == CONST_INT || code1 == CONST_DOUBLE)
|
||
record_address_regs (mode, arg0, context, PLUS, code1, scale);
|
||
/* If the second operand is a symbolic constant, the first
|
||
operand must be an index register. */
|
||
else if (code1 == SYMBOL_REF || code1 == CONST || code1 == LABEL_REF)
|
||
record_address_regs (mode, arg0, 1, PLUS, code1, scale);
|
||
/* If both operands are registers but one is already a hard
|
||
register of index or reg-base class, give the other the
|
||
class that the hard register is not. */
|
||
else if (code0 == REG && code1 == REG
|
||
&& REGNO (arg0) < FIRST_PSEUDO_REGISTER
|
||
&& (ok_for_base_p_nonstrict (arg0, mode, PLUS, REG)
|
||
|| ok_for_index_p_nonstrict (arg0)))
|
||
record_address_regs (mode, arg1,
|
||
ok_for_base_p_nonstrict (arg0, mode, PLUS, REG)
|
||
? 1 : 0,
|
||
PLUS, REG, scale);
|
||
else if (code0 == REG && code1 == REG
|
||
&& REGNO (arg1) < FIRST_PSEUDO_REGISTER
|
||
&& (ok_for_base_p_nonstrict (arg1, mode, PLUS, REG)
|
||
|| ok_for_index_p_nonstrict (arg1)))
|
||
record_address_regs (mode, arg0,
|
||
ok_for_base_p_nonstrict (arg1, mode, PLUS, REG)
|
||
? 1 : 0,
|
||
PLUS, REG, scale);
|
||
/* If one operand is known to be a pointer, it must be the
|
||
base with the other operand the index. Likewise if the
|
||
other operand is a MULT. */
|
||
else if ((code0 == REG && REG_POINTER (arg0)) || code1 == MULT)
|
||
{
|
||
record_address_regs (mode, arg0, 0, PLUS, code1, scale);
|
||
record_address_regs (mode, arg1, 1, PLUS, code0, scale);
|
||
}
|
||
else if ((code1 == REG && REG_POINTER (arg1)) || code0 == MULT)
|
||
{
|
||
record_address_regs (mode, arg0, 1, PLUS, code1, scale);
|
||
record_address_regs (mode, arg1, 0, PLUS, code0, scale);
|
||
}
|
||
/* Otherwise, count equal chances that each might be a base or
|
||
index register. This case should be rare. */
|
||
else
|
||
{
|
||
record_address_regs (mode, arg0, 0, PLUS, code1, scale / 2);
|
||
record_address_regs (mode, arg0, 1, PLUS, code1, scale / 2);
|
||
record_address_regs (mode, arg1, 0, PLUS, code0, scale / 2);
|
||
record_address_regs (mode, arg1, 1, PLUS, code0, scale / 2);
|
||
}
|
||
}
|
||
break;
|
||
|
||
/* Double the importance of an allocno that is incremented or
|
||
decremented, since it would take two extra insns if it ends
|
||
up in the wrong place. */
|
||
case POST_MODIFY:
|
||
case PRE_MODIFY:
|
||
record_address_regs (mode, XEXP (x, 0), 0, code,
|
||
GET_CODE (XEXP (XEXP (x, 1), 1)), 2 * scale);
|
||
if (REG_P (XEXP (XEXP (x, 1), 1)))
|
||
record_address_regs (mode, XEXP (XEXP (x, 1), 1), 1, code, REG,
|
||
2 * scale);
|
||
break;
|
||
|
||
case POST_INC:
|
||
case PRE_INC:
|
||
case POST_DEC:
|
||
case PRE_DEC:
|
||
/* Double the importance of an allocno that is incremented or
|
||
decremented, since it would take two extra insns if it ends
|
||
up in the wrong place. If the operand is a pseudo-register,
|
||
show it is being used in an INC_DEC context. */
|
||
#ifdef FORBIDDEN_INC_DEC_CLASSES
|
||
if (REG_P (XEXP (x, 0))
|
||
&& REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER)
|
||
in_inc_dec[COST_INDEX (REGNO (XEXP (x, 0)))] = true;
|
||
#endif
|
||
record_address_regs (mode, XEXP (x, 0), 0, code, SCRATCH, 2 * scale);
|
||
break;
|
||
|
||
case REG:
|
||
{
|
||
struct costs *pp;
|
||
int *pp_costs;
|
||
enum reg_class i;
|
||
int k, regno, add_cost;
|
||
cost_classes_t cost_classes_ptr;
|
||
enum reg_class *cost_classes;
|
||
move_table *move_in_cost;
|
||
|
||
if (REGNO (x) < FIRST_PSEUDO_REGISTER)
|
||
break;
|
||
|
||
regno = REGNO (x);
|
||
if (allocno_p)
|
||
ALLOCNO_BAD_SPILL_P (ira_curr_regno_allocno_map[regno]) = true;
|
||
pp = COSTS (costs, COST_INDEX (regno));
|
||
add_cost = (ira_memory_move_cost[Pmode][rclass][1] * scale) / 2;
|
||
if (INT_MAX - add_cost < pp->mem_cost)
|
||
pp->mem_cost = INT_MAX;
|
||
else
|
||
pp->mem_cost += add_cost;
|
||
cost_classes_ptr = regno_cost_classes[regno];
|
||
cost_classes = cost_classes_ptr->classes;
|
||
pp_costs = pp->cost;
|
||
ira_init_register_move_cost_if_necessary (Pmode);
|
||
move_in_cost = ira_may_move_in_cost[Pmode];
|
||
for (k = cost_classes_ptr->num - 1; k >= 0; k--)
|
||
{
|
||
i = cost_classes[k];
|
||
add_cost = (move_in_cost[i][rclass] * scale) / 2;
|
||
if (INT_MAX - add_cost < pp_costs[k])
|
||
pp_costs[k] = INT_MAX;
|
||
else
|
||
pp_costs[k] += add_cost;
|
||
}
|
||
}
|
||
break;
|
||
|
||
default:
|
||
{
|
||
const char *fmt = GET_RTX_FORMAT (code);
|
||
int i;
|
||
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
||
if (fmt[i] == 'e')
|
||
record_address_regs (mode, XEXP (x, i), context, code, SCRATCH,
|
||
scale);
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
|
||
/* Calculate the costs of insn operands. */
|
||
static void
|
||
record_operand_costs (rtx insn, enum reg_class *pref)
|
||
{
|
||
const char *constraints[MAX_RECOG_OPERANDS];
|
||
enum machine_mode modes[MAX_RECOG_OPERANDS];
|
||
int i;
|
||
|
||
for (i = 0; i < recog_data.n_operands; i++)
|
||
{
|
||
constraints[i] = recog_data.constraints[i];
|
||
modes[i] = recog_data.operand_mode[i];
|
||
}
|
||
|
||
/* If we get here, we are set up to record the costs of all the
|
||
operands for this insn. Start by initializing the costs. Then
|
||
handle any address registers. Finally record the desired classes
|
||
for any allocnos, doing it twice if some pair of operands are
|
||
commutative. */
|
||
for (i = 0; i < recog_data.n_operands; i++)
|
||
{
|
||
memcpy (op_costs[i], init_cost, struct_costs_size);
|
||
|
||
if (GET_CODE (recog_data.operand[i]) == SUBREG)
|
||
recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
|
||
|
||
if (MEM_P (recog_data.operand[i]))
|
||
record_address_regs (GET_MODE (recog_data.operand[i]),
|
||
XEXP (recog_data.operand[i], 0),
|
||
0, MEM, SCRATCH, frequency * 2);
|
||
else if (constraints[i][0] == 'p'
|
||
|| EXTRA_ADDRESS_CONSTRAINT (constraints[i][0],
|
||
constraints[i]))
|
||
record_address_regs (VOIDmode, recog_data.operand[i], 0, ADDRESS,
|
||
SCRATCH, frequency * 2);
|
||
}
|
||
|
||
/* Check for commutative in a separate loop so everything will have
|
||
been initialized. We must do this even if one operand is a
|
||
constant--see addsi3 in m68k.md. */
|
||
for (i = 0; i < (int) recog_data.n_operands - 1; i++)
|
||
if (constraints[i][0] == '%')
|
||
{
|
||
const char *xconstraints[MAX_RECOG_OPERANDS];
|
||
int j;
|
||
|
||
/* Handle commutative operands by swapping the constraints.
|
||
We assume the modes are the same. */
|
||
for (j = 0; j < recog_data.n_operands; j++)
|
||
xconstraints[j] = constraints[j];
|
||
|
||
xconstraints[i] = constraints[i+1];
|
||
xconstraints[i+1] = constraints[i];
|
||
record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
|
||
recog_data.operand, modes,
|
||
xconstraints, insn, pref);
|
||
}
|
||
record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
|
||
recog_data.operand, modes,
|
||
constraints, insn, pref);
|
||
}
|
||
|
||
|
||
|
||
/* Process one insn INSN. Scan it and record each time it would save
|
||
code to put a certain allocnos in a certain class. Return the last
|
||
insn processed, so that the scan can be continued from there. */
|
||
static rtx
|
||
scan_one_insn (rtx insn)
|
||
{
|
||
enum rtx_code pat_code;
|
||
rtx set, note;
|
||
int i, k;
|
||
bool counted_mem;
|
||
|
||
if (!NONDEBUG_INSN_P (insn))
|
||
return insn;
|
||
|
||
pat_code = GET_CODE (PATTERN (insn));
|
||
if (pat_code == USE || pat_code == CLOBBER || pat_code == ASM_INPUT
|
||
|| pat_code == ADDR_VEC || pat_code == ADDR_DIFF_VEC)
|
||
return insn;
|
||
|
||
counted_mem = false;
|
||
set = single_set (insn);
|
||
extract_insn (insn);
|
||
|
||
/* If this insn loads a parameter from its stack slot, then it
|
||
represents a savings, rather than a cost, if the parameter is
|
||
stored in memory. Record this fact.
|
||
|
||
Similarly if we're loading other constants from memory (constant
|
||
pool, TOC references, small data areas, etc) and this is the only
|
||
assignment to the destination pseudo. */
|
||
if (set != 0 && REG_P (SET_DEST (set)) && MEM_P (SET_SRC (set))
|
||
&& (note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) != NULL_RTX
|
||
&& ((MEM_P (XEXP (note, 0)))
|
||
|| (CONSTANT_P (XEXP (note, 0))
|
||
&& LEGITIMATE_CONSTANT_P (XEXP (note, 0))
|
||
&& REG_N_SETS (REGNO (SET_DEST (set))) == 1)))
|
||
{
|
||
enum reg_class cl = GENERAL_REGS;
|
||
rtx reg = SET_DEST (set);
|
||
int num = COST_INDEX (REGNO (reg));
|
||
|
||
COSTS (costs, num)->mem_cost
|
||
-= ira_memory_move_cost[GET_MODE (reg)][cl][1] * frequency;
|
||
record_address_regs (GET_MODE (SET_SRC (set)), XEXP (SET_SRC (set), 0),
|
||
0, MEM, SCRATCH, frequency * 2);
|
||
counted_mem = true;
|
||
}
|
||
|
||
record_operand_costs (insn, pref);
|
||
|
||
/* Now add the cost for each operand to the total costs for its
|
||
allocno. */
|
||
for (i = 0; i < recog_data.n_operands; i++)
|
||
if (REG_P (recog_data.operand[i])
|
||
&& REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER)
|
||
{
|
||
int regno = REGNO (recog_data.operand[i]);
|
||
struct costs *p = COSTS (costs, COST_INDEX (regno));
|
||
struct costs *q = op_costs[i];
|
||
int *p_costs = p->cost, *q_costs = q->cost;
|
||
cost_classes_t cost_classes_ptr = regno_cost_classes[regno];
|
||
int add_cost;
|
||
|
||
/* If the already accounted for the memory "cost" above, don't
|
||
do so again. */
|
||
if (!counted_mem)
|
||
{
|
||
add_cost = q->mem_cost;
|
||
if (add_cost > 0 && INT_MAX - add_cost < p->mem_cost)
|
||
p->mem_cost = INT_MAX;
|
||
else
|
||
p->mem_cost += add_cost;
|
||
}
|
||
for (k = cost_classes_ptr->num - 1; k >= 0; k--)
|
||
{
|
||
add_cost = q_costs[k];
|
||
if (add_cost > 0 && INT_MAX - add_cost < p_costs[k])
|
||
p_costs[k] = INT_MAX;
|
||
else
|
||
p_costs[k] += add_cost;
|
||
}
|
||
}
|
||
|
||
return insn;
|
||
}
|
||
|
||
|
||
|
||
/* Print allocnos costs to file F. */
|
||
static void
|
||
print_allocno_costs (FILE *f)
|
||
{
|
||
int k;
|
||
ira_allocno_t a;
|
||
ira_allocno_iterator ai;
|
||
|
||
ira_assert (allocno_p);
|
||
fprintf (f, "\n");
|
||
FOR_EACH_ALLOCNO (a, ai)
|
||
{
|
||
int i, rclass;
|
||
basic_block bb;
|
||
int regno = ALLOCNO_REGNO (a);
|
||
cost_classes_t cost_classes_ptr = regno_cost_classes[regno];
|
||
enum reg_class *cost_classes = cost_classes_ptr->classes;
|
||
|
||
i = ALLOCNO_NUM (a);
|
||
fprintf (f, " a%d(r%d,", i, regno);
|
||
if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
|
||
fprintf (f, "b%d", bb->index);
|
||
else
|
||
fprintf (f, "l%d", ALLOCNO_LOOP_TREE_NODE (a)->loop->num);
|
||
fprintf (f, ") costs:");
|
||
for (k = 0; k < cost_classes_ptr->num; k++)
|
||
{
|
||
rclass = cost_classes[k];
|
||
if (contains_reg_of_mode[rclass][PSEUDO_REGNO_MODE (regno)]
|
||
#ifdef FORBIDDEN_INC_DEC_CLASSES
|
||
&& (! in_inc_dec[i] || ! forbidden_inc_dec_class[rclass])
|
||
#endif
|
||
#ifdef CANNOT_CHANGE_MODE_CLASS
|
||
&& ! invalid_mode_change_p (regno, (enum reg_class) rclass)
|
||
#endif
|
||
)
|
||
{
|
||
fprintf (f, " %s:%d", reg_class_names[rclass],
|
||
COSTS (costs, i)->cost[k]);
|
||
if (flag_ira_region == IRA_REGION_ALL
|
||
|| flag_ira_region == IRA_REGION_MIXED)
|
||
fprintf (f, ",%d", COSTS (total_allocno_costs, i)->cost[k]);
|
||
}
|
||
}
|
||
fprintf (f, " MEM:%i", COSTS (costs, i)->mem_cost);
|
||
if (flag_ira_region == IRA_REGION_ALL
|
||
|| flag_ira_region == IRA_REGION_MIXED)
|
||
fprintf (f, ",%d", COSTS (total_allocno_costs, i)->mem_cost);
|
||
fprintf (f, "\n");
|
||
}
|
||
}
|
||
|
||
/* Print pseudo costs to file F. */
|
||
static void
|
||
print_pseudo_costs (FILE *f)
|
||
{
|
||
int regno, k;
|
||
int rclass;
|
||
cost_classes_t cost_classes_ptr;
|
||
enum reg_class *cost_classes;
|
||
|
||
ira_assert (! allocno_p);
|
||
fprintf (f, "\n");
|
||
for (regno = max_reg_num () - 1; regno >= FIRST_PSEUDO_REGISTER; regno--)
|
||
{
|
||
if (REG_N_REFS (regno) <= 0)
|
||
continue;
|
||
cost_classes_ptr = regno_cost_classes[regno];
|
||
cost_classes = cost_classes_ptr->classes;
|
||
fprintf (f, " r%d costs:", regno);
|
||
for (k = 0; k < cost_classes_ptr->num; k++)
|
||
{
|
||
rclass = cost_classes[k];
|
||
if (contains_reg_of_mode[rclass][PSEUDO_REGNO_MODE (regno)]
|
||
#ifdef FORBIDDEN_INC_DEC_CLASSES
|
||
&& (! in_inc_dec[regno] || ! forbidden_inc_dec_class[rclass])
|
||
#endif
|
||
#ifdef CANNOT_CHANGE_MODE_CLASS
|
||
&& ! invalid_mode_change_p (regno, (enum reg_class) rclass)
|
||
#endif
|
||
)
|
||
fprintf (f, " %s:%d", reg_class_names[rclass],
|
||
COSTS (costs, regno)->cost[k]);
|
||
}
|
||
fprintf (f, " MEM:%i\n", COSTS (costs, regno)->mem_cost);
|
||
}
|
||
}
|
||
|
||
/* Traverse the BB represented by LOOP_TREE_NODE to update the allocno
|
||
costs. */
|
||
static void
|
||
process_bb_for_costs (basic_block bb)
|
||
{
|
||
rtx insn;
|
||
|
||
frequency = REG_FREQ_FROM_BB (bb);
|
||
if (frequency == 0)
|
||
frequency = 1;
|
||
FOR_BB_INSNS (bb, insn)
|
||
insn = scan_one_insn (insn);
|
||
}
|
||
|
||
/* Traverse the BB represented by LOOP_TREE_NODE to update the allocno
|
||
costs. */
|
||
static void
|
||
process_bb_node_for_costs (ira_loop_tree_node_t loop_tree_node)
|
||
{
|
||
basic_block bb;
|
||
|
||
bb = loop_tree_node->bb;
|
||
if (bb != NULL)
|
||
process_bb_for_costs (bb);
|
||
}
|
||
|
||
/* Find costs of register classes and memory for allocnos or pseudos
|
||
and their best costs. Set up preferred, alternative and allocno
|
||
classes for pseudos. */
|
||
static void
|
||
find_costs_and_classes (FILE *dump_file)
|
||
{
|
||
int i, k, start, max_cost_classes_num;
|
||
int pass;
|
||
basic_block bb;
|
||
enum reg_class *regno_best_class;
|
||
|
||
init_recog ();
|
||
#ifdef FORBIDDEN_INC_DEC_CLASSES
|
||
in_inc_dec = ira_allocate (sizeof (bool) * cost_elements_num);
|
||
#endif /* FORBIDDEN_INC_DEC_CLASSES */
|
||
regno_best_class
|
||
= (enum reg_class *) ira_allocate (max_reg_num ()
|
||
* sizeof (enum reg_class));
|
||
for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
|
||
regno_best_class[i] = NO_REGS;
|
||
if (!resize_reg_info () && allocno_p
|
||
&& pseudo_classes_defined_p && flag_expensive_optimizations)
|
||
{
|
||
ira_allocno_t a;
|
||
ira_allocno_iterator ai;
|
||
|
||
pref = pref_buffer;
|
||
max_cost_classes_num = 1;
|
||
FOR_EACH_ALLOCNO (a, ai)
|
||
{
|
||
pref[ALLOCNO_NUM (a)] = reg_preferred_class (ALLOCNO_REGNO (a));
|
||
setup_regno_cost_classes_by_aclass
|
||
(ALLOCNO_REGNO (a), pref[ALLOCNO_NUM (a)]);
|
||
max_cost_classes_num
|
||
= MAX (max_cost_classes_num,
|
||
regno_cost_classes[ALLOCNO_REGNO (a)]->num);
|
||
}
|
||
start = 1;
|
||
}
|
||
else
|
||
{
|
||
pref = NULL;
|
||
max_cost_classes_num = ira_important_classes_num;
|
||
for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
|
||
if (regno_reg_rtx[i] != NULL_RTX)
|
||
setup_regno_cost_classes_by_mode (i, PSEUDO_REGNO_MODE (i));
|
||
else
|
||
setup_regno_cost_classes_by_aclass (i, ALL_REGS);
|
||
start = 0;
|
||
}
|
||
if (allocno_p)
|
||
/* Clear the flag for the next compiled function. */
|
||
pseudo_classes_defined_p = false;
|
||
/* Normally we scan the insns once and determine the best class to
|
||
use for each allocno. However, if -fexpensive-optimizations are
|
||
on, we do so twice, the second time using the tentative best
|
||
classes to guide the selection. */
|
||
for (pass = start; pass <= flag_expensive_optimizations; pass++)
|
||
{
|
||
if ((!allocno_p || internal_flag_ira_verbose > 0) && dump_file)
|
||
fprintf (dump_file,
|
||
"\nPass %i for finding pseudo/allocno costs\n\n", pass);
|
||
|
||
if (pass != start)
|
||
{
|
||
max_cost_classes_num = 1;
|
||
for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
|
||
{
|
||
setup_regno_cost_classes_by_aclass (i, regno_best_class[i]);
|
||
max_cost_classes_num
|
||
= MAX (max_cost_classes_num, regno_cost_classes[i]->num);
|
||
}
|
||
}
|
||
|
||
struct_costs_size
|
||
= sizeof (struct costs) + sizeof (int) * (max_cost_classes_num - 1);
|
||
/* Zero out our accumulation of the cost of each class for each
|
||
allocno. */
|
||
memset (costs, 0, cost_elements_num * struct_costs_size);
|
||
#ifdef FORBIDDEN_INC_DEC_CLASSES
|
||
memset (in_inc_dec, 0, cost_elements_num * sizeof (bool));
|
||
#endif
|
||
|
||
if (allocno_p)
|
||
{
|
||
/* Scan the instructions and record each time it would save code
|
||
to put a certain allocno in a certain class. */
|
||
ira_traverse_loop_tree (true, ira_loop_tree_root,
|
||
process_bb_node_for_costs, NULL);
|
||
|
||
memcpy (total_allocno_costs, costs,
|
||
max_struct_costs_size * ira_allocnos_num);
|
||
}
|
||
else
|
||
{
|
||
basic_block bb;
|
||
|
||
FOR_EACH_BB (bb)
|
||
process_bb_for_costs (bb);
|
||
}
|
||
|
||
if (pass == 0)
|
||
pref = pref_buffer;
|
||
|
||
/* Now for each allocno look at how desirable each class is and
|
||
find which class is preferred. */
|
||
for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
|
||
{
|
||
ira_allocno_t a, parent_a;
|
||
int rclass, a_num, parent_a_num, add_cost;
|
||
ira_loop_tree_node_t parent;
|
||
int best_cost, allocno_cost;
|
||
enum reg_class best, alt_class;
|
||
#ifdef FORBIDDEN_INC_DEC_CLASSES
|
||
int inc_dec_p = false;
|
||
#endif
|
||
cost_classes_t cost_classes_ptr = regno_cost_classes[i];
|
||
enum reg_class *cost_classes = cost_classes_ptr->classes;
|
||
int *i_costs = temp_costs->cost;
|
||
int i_mem_cost;
|
||
int equiv_savings = regno_equiv_gains[i];
|
||
|
||
if (! allocno_p)
|
||
{
|
||
if (regno_reg_rtx[i] == NULL_RTX)
|
||
continue;
|
||
#ifdef FORBIDDEN_INC_DEC_CLASSES
|
||
inc_dec_p = in_inc_dec[i];
|
||
#endif
|
||
memcpy (temp_costs, COSTS (costs, i), struct_costs_size);
|
||
i_mem_cost = temp_costs->mem_cost;
|
||
}
|
||
else
|
||
{
|
||
if (ira_regno_allocno_map[i] == NULL)
|
||
continue;
|
||
memset (temp_costs, 0, struct_costs_size);
|
||
i_mem_cost = 0;
|
||
/* Find cost of all allocnos with the same regno. */
|
||
for (a = ira_regno_allocno_map[i];
|
||
a != NULL;
|
||
a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
|
||
{
|
||
int *a_costs, *p_costs;
|
||
|
||
a_num = ALLOCNO_NUM (a);
|
||
if ((flag_ira_region == IRA_REGION_ALL
|
||
|| flag_ira_region == IRA_REGION_MIXED)
|
||
&& (parent = ALLOCNO_LOOP_TREE_NODE (a)->parent) != NULL
|
||
&& (parent_a = parent->regno_allocno_map[i]) != NULL
|
||
/* There are no caps yet. */
|
||
&& bitmap_bit_p (ALLOCNO_LOOP_TREE_NODE
|
||
(a)->border_allocnos,
|
||
ALLOCNO_NUM (a)))
|
||
{
|
||
/* Propagate costs to upper levels in the region
|
||
tree. */
|
||
parent_a_num = ALLOCNO_NUM (parent_a);
|
||
a_costs = COSTS (total_allocno_costs, a_num)->cost;
|
||
p_costs = COSTS (total_allocno_costs, parent_a_num)->cost;
|
||
for (k = cost_classes_ptr->num - 1; k >= 0; k--)
|
||
{
|
||
add_cost = a_costs[k];
|
||
if (add_cost > 0 && INT_MAX - add_cost < p_costs[k])
|
||
p_costs[k] = INT_MAX;
|
||
else
|
||
p_costs[k] += add_cost;
|
||
}
|
||
add_cost = COSTS (total_allocno_costs, a_num)->mem_cost;
|
||
if (add_cost > 0
|
||
&& (INT_MAX - add_cost
|
||
< COSTS (total_allocno_costs,
|
||
parent_a_num)->mem_cost))
|
||
COSTS (total_allocno_costs, parent_a_num)->mem_cost
|
||
= INT_MAX;
|
||
else
|
||
COSTS (total_allocno_costs, parent_a_num)->mem_cost
|
||
+= add_cost;
|
||
|
||
}
|
||
a_costs = COSTS (costs, a_num)->cost;
|
||
for (k = cost_classes_ptr->num - 1; k >= 0; k--)
|
||
{
|
||
add_cost = a_costs[k];
|
||
if (add_cost > 0 && INT_MAX - add_cost < i_costs[k])
|
||
i_costs[k] = INT_MAX;
|
||
else
|
||
i_costs[k] += add_cost;
|
||
}
|
||
add_cost = COSTS (costs, a_num)->mem_cost;
|
||
if (add_cost > 0 && INT_MAX - add_cost < i_mem_cost)
|
||
i_mem_cost = INT_MAX;
|
||
else
|
||
i_mem_cost += add_cost;
|
||
#ifdef FORBIDDEN_INC_DEC_CLASSES
|
||
if (in_inc_dec[a_num])
|
||
inc_dec_p = true;
|
||
#endif
|
||
}
|
||
}
|
||
if (equiv_savings < 0)
|
||
temp_costs->mem_cost = -equiv_savings;
|
||
else if (equiv_savings > 0)
|
||
{
|
||
temp_costs->mem_cost = 0;
|
||
for (k = cost_classes_ptr->num - 1; k >= 0; k--)
|
||
i_costs[k] += equiv_savings;
|
||
}
|
||
|
||
best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
|
||
best = ALL_REGS;
|
||
alt_class = NO_REGS;
|
||
/* Find best common class for all allocnos with the same
|
||
regno. */
|
||
for (k = 0; k < cost_classes_ptr->num; k++)
|
||
{
|
||
rclass = cost_classes[k];
|
||
/* Ignore classes that are too small for this operand or
|
||
invalid for an operand that was auto-incremented. */
|
||
if (! contains_reg_of_mode[rclass][PSEUDO_REGNO_MODE (i)]
|
||
#ifdef FORBIDDEN_INC_DEC_CLASSES
|
||
|| (inc_dec_p && forbidden_inc_dec_class[rclass])
|
||
#endif
|
||
#ifdef CANNOT_CHANGE_MODE_CLASS
|
||
|| invalid_mode_change_p (i, (enum reg_class) rclass)
|
||
#endif
|
||
)
|
||
continue;
|
||
if (i_costs[k] < best_cost)
|
||
{
|
||
best_cost = i_costs[k];
|
||
best = (enum reg_class) rclass;
|
||
}
|
||
else if (i_costs[k] == best_cost)
|
||
best = ira_reg_class_subunion[best][rclass];
|
||
if (pass == flag_expensive_optimizations
|
||
&& i_costs[k] < i_mem_cost
|
||
&& (reg_class_size[reg_class_subunion[alt_class][rclass]]
|
||
> reg_class_size[alt_class]))
|
||
alt_class = reg_class_subunion[alt_class][rclass];
|
||
}
|
||
alt_class = ira_allocno_class_translate[alt_class];
|
||
if (best_cost > i_mem_cost)
|
||
regno_aclass[i] = NO_REGS;
|
||
else
|
||
{
|
||
/* Make the common class the biggest class of best and
|
||
alt_class. */
|
||
regno_aclass[i]
|
||
= ira_reg_class_superunion[best][alt_class];
|
||
ira_assert (regno_aclass[i] != NO_REGS
|
||
&& ira_reg_allocno_class_p[regno_aclass[i]]);
|
||
}
|
||
if (pass == flag_expensive_optimizations)
|
||
{
|
||
if (best_cost > i_mem_cost)
|
||
best = alt_class = NO_REGS;
|
||
else if (best == alt_class)
|
||
alt_class = NO_REGS;
|
||
setup_reg_classes (i, best, alt_class, regno_aclass[i]);
|
||
if ((!allocno_p || internal_flag_ira_verbose > 2)
|
||
&& dump_file != NULL)
|
||
fprintf (dump_file,
|
||
" r%d: preferred %s, alternative %s, allocno %s\n",
|
||
i, reg_class_names[best], reg_class_names[alt_class],
|
||
reg_class_names[regno_aclass[i]]);
|
||
}
|
||
regno_best_class[i] = best;
|
||
if (! allocno_p)
|
||
{
|
||
pref[i] = best_cost > i_mem_cost ? NO_REGS : best;
|
||
continue;
|
||
}
|
||
for (a = ira_regno_allocno_map[i];
|
||
a != NULL;
|
||
a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
|
||
{
|
||
a_num = ALLOCNO_NUM (a);
|
||
if (regno_aclass[i] == NO_REGS)
|
||
best = NO_REGS;
|
||
else
|
||
{
|
||
int *total_a_costs = COSTS (total_allocno_costs, a_num)->cost;
|
||
int *a_costs = COSTS (costs, a_num)->cost;
|
||
|
||
/* Finding best class which is subset of the common
|
||
class. */
|
||
best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
|
||
allocno_cost = best_cost;
|
||
best = ALL_REGS;
|
||
for (k = 0; k < cost_classes_ptr->num; k++)
|
||
{
|
||
rclass = cost_classes[k];
|
||
if (! ira_class_subset_p[rclass][regno_aclass[i]])
|
||
continue;
|
||
/* Ignore classes that are too small for this
|
||
operand or invalid for an operand that was
|
||
auto-incremented. */
|
||
if (! contains_reg_of_mode[rclass][PSEUDO_REGNO_MODE (i)]
|
||
#ifdef FORBIDDEN_INC_DEC_CLASSES
|
||
|| (inc_dec_p && forbidden_inc_dec_class[rclass])
|
||
#endif
|
||
#ifdef CANNOT_CHANGE_MODE_CLASS
|
||
|| invalid_mode_change_p (i, (enum reg_class) rclass)
|
||
#endif
|
||
)
|
||
;
|
||
else if (total_a_costs[k] < best_cost)
|
||
{
|
||
best_cost = total_a_costs[k];
|
||
allocno_cost = a_costs[k];
|
||
best = (enum reg_class) rclass;
|
||
}
|
||
else if (total_a_costs[k] == best_cost)
|
||
{
|
||
best = ira_reg_class_subunion[best][rclass];
|
||
allocno_cost = MAX (allocno_cost, a_costs[k]);
|
||
}
|
||
}
|
||
ALLOCNO_CLASS_COST (a) = allocno_cost;
|
||
}
|
||
if (internal_flag_ira_verbose > 2 && dump_file != NULL
|
||
&& (pass == 0 || pref[a_num] != best))
|
||
{
|
||
fprintf (dump_file, " a%d (r%d,", a_num, i);
|
||
if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
|
||
fprintf (dump_file, "b%d", bb->index);
|
||
else
|
||
fprintf (dump_file, "l%d",
|
||
ALLOCNO_LOOP_TREE_NODE (a)->loop->num);
|
||
fprintf (dump_file, ") best %s, allocno %s\n",
|
||
reg_class_names[best],
|
||
reg_class_names[regno_aclass[i]]);
|
||
}
|
||
pref[a_num] = best;
|
||
}
|
||
}
|
||
|
||
if (internal_flag_ira_verbose > 4 && dump_file)
|
||
{
|
||
if (allocno_p)
|
||
print_allocno_costs (dump_file);
|
||
else
|
||
print_pseudo_costs (dump_file);
|
||
fprintf (dump_file,"\n");
|
||
}
|
||
}
|
||
ira_free (regno_best_class);
|
||
#ifdef FORBIDDEN_INC_DEC_CLASSES
|
||
ira_free (in_inc_dec);
|
||
#endif
|
||
}
|
||
|
||
|
||
|
||
/* Process moves involving hard regs to modify allocno hard register
|
||
costs. We can do this only after determining allocno class. If a
|
||
hard register forms a register class, than moves with the hard
|
||
register are already taken into account in class costs for the
|
||
allocno. */
|
||
static void
|
||
process_bb_node_for_hard_reg_moves (ira_loop_tree_node_t loop_tree_node)
|
||
{
|
||
int i, freq, cost, src_regno, dst_regno, hard_regno;
|
||
bool to_p;
|
||
ira_allocno_t a;
|
||
enum reg_class rclass, hard_reg_class;
|
||
enum machine_mode mode;
|
||
basic_block bb;
|
||
rtx insn, set, src, dst;
|
||
|
||
bb = loop_tree_node->bb;
|
||
if (bb == NULL)
|
||
return;
|
||
freq = REG_FREQ_FROM_BB (bb);
|
||
if (freq == 0)
|
||
freq = 1;
|
||
FOR_BB_INSNS (bb, insn)
|
||
{
|
||
if (!NONDEBUG_INSN_P (insn))
|
||
continue;
|
||
set = single_set (insn);
|
||
if (set == NULL_RTX)
|
||
continue;
|
||
dst = SET_DEST (set);
|
||
src = SET_SRC (set);
|
||
if (! REG_P (dst) || ! REG_P (src))
|
||
continue;
|
||
dst_regno = REGNO (dst);
|
||
src_regno = REGNO (src);
|
||
if (dst_regno >= FIRST_PSEUDO_REGISTER
|
||
&& src_regno < FIRST_PSEUDO_REGISTER)
|
||
{
|
||
hard_regno = src_regno;
|
||
to_p = true;
|
||
a = ira_curr_regno_allocno_map[dst_regno];
|
||
}
|
||
else if (src_regno >= FIRST_PSEUDO_REGISTER
|
||
&& dst_regno < FIRST_PSEUDO_REGISTER)
|
||
{
|
||
hard_regno = dst_regno;
|
||
to_p = false;
|
||
a = ira_curr_regno_allocno_map[src_regno];
|
||
}
|
||
else
|
||
continue;
|
||
rclass = ALLOCNO_CLASS (a);
|
||
if (! TEST_HARD_REG_BIT (reg_class_contents[rclass], hard_regno))
|
||
continue;
|
||
i = ira_class_hard_reg_index[rclass][hard_regno];
|
||
if (i < 0)
|
||
continue;
|
||
mode = ALLOCNO_MODE (a);
|
||
hard_reg_class = REGNO_REG_CLASS (hard_regno);
|
||
ira_init_register_move_cost_if_necessary (mode);
|
||
cost
|
||
= (to_p ? ira_register_move_cost[mode][hard_reg_class][rclass]
|
||
: ira_register_move_cost[mode][rclass][hard_reg_class]) * freq;
|
||
ira_allocate_and_set_costs (&ALLOCNO_HARD_REG_COSTS (a), rclass,
|
||
ALLOCNO_CLASS_COST (a));
|
||
ira_allocate_and_set_costs (&ALLOCNO_CONFLICT_HARD_REG_COSTS (a),
|
||
rclass, 0);
|
||
ALLOCNO_HARD_REG_COSTS (a)[i] -= cost;
|
||
ALLOCNO_CONFLICT_HARD_REG_COSTS (a)[i] -= cost;
|
||
ALLOCNO_CLASS_COST (a) = MIN (ALLOCNO_CLASS_COST (a),
|
||
ALLOCNO_HARD_REG_COSTS (a)[i]);
|
||
}
|
||
}
|
||
|
||
/* After we find hard register and memory costs for allocnos, define
|
||
its class and modify hard register cost because insns moving
|
||
allocno to/from hard registers. */
|
||
static void
|
||
setup_allocno_class_and_costs (void)
|
||
{
|
||
int i, j, n, regno, hard_regno, num;
|
||
int *reg_costs;
|
||
enum reg_class aclass, rclass;
|
||
ira_allocno_t a;
|
||
ira_allocno_iterator ai;
|
||
cost_classes_t cost_classes_ptr;
|
||
|
||
ira_assert (allocno_p);
|
||
FOR_EACH_ALLOCNO (a, ai)
|
||
{
|
||
i = ALLOCNO_NUM (a);
|
||
regno = ALLOCNO_REGNO (a);
|
||
aclass = regno_aclass[regno];
|
||
cost_classes_ptr = regno_cost_classes[regno];
|
||
ira_assert (pref[i] == NO_REGS || aclass != NO_REGS);
|
||
ALLOCNO_MEMORY_COST (a) = COSTS (costs, i)->mem_cost;
|
||
ira_set_allocno_class (a, aclass);
|
||
if (aclass == NO_REGS)
|
||
continue;
|
||
if (optimize && ALLOCNO_CLASS (a) != pref[i])
|
||
{
|
||
n = ira_class_hard_regs_num[aclass];
|
||
ALLOCNO_HARD_REG_COSTS (a)
|
||
= reg_costs = ira_allocate_cost_vector (aclass);
|
||
for (j = n - 1; j >= 0; j--)
|
||
{
|
||
hard_regno = ira_class_hard_regs[aclass][j];
|
||
if (TEST_HARD_REG_BIT (reg_class_contents[pref[i]], hard_regno))
|
||
reg_costs[j] = ALLOCNO_CLASS_COST (a);
|
||
else
|
||
{
|
||
rclass = REGNO_REG_CLASS (hard_regno);
|
||
num = cost_classes_ptr->index[rclass];
|
||
if (num < 0)
|
||
{
|
||
num = cost_classes_ptr->hard_regno_index[hard_regno];
|
||
ira_assert (num >= 0);
|
||
}
|
||
reg_costs[j] = COSTS (costs, i)->cost[num];
|
||
}
|
||
}
|
||
}
|
||
}
|
||
if (optimize)
|
||
ira_traverse_loop_tree (true, ira_loop_tree_root,
|
||
process_bb_node_for_hard_reg_moves, NULL);
|
||
}
|
||
|
||
|
||
|
||
/* Function called once during compiler work. */
|
||
void
|
||
ira_init_costs_once (void)
|
||
{
|
||
int i;
|
||
|
||
init_cost = NULL;
|
||
for (i = 0; i < MAX_RECOG_OPERANDS; i++)
|
||
{
|
||
op_costs[i] = NULL;
|
||
this_op_costs[i] = NULL;
|
||
}
|
||
temp_costs = NULL;
|
||
}
|
||
|
||
/* Free allocated temporary cost vectors. */
|
||
static void
|
||
free_ira_costs (void)
|
||
{
|
||
int i;
|
||
|
||
if (init_cost != NULL)
|
||
free (init_cost);
|
||
init_cost = NULL;
|
||
for (i = 0; i < MAX_RECOG_OPERANDS; i++)
|
||
{
|
||
if (op_costs[i] != NULL)
|
||
free (op_costs[i]);
|
||
if (this_op_costs[i] != NULL)
|
||
free (this_op_costs[i]);
|
||
op_costs[i] = this_op_costs[i] = NULL;
|
||
}
|
||
if (temp_costs != NULL)
|
||
free (temp_costs);
|
||
temp_costs = NULL;
|
||
}
|
||
|
||
/* This is called each time register related information is
|
||
changed. */
|
||
void
|
||
ira_init_costs (void)
|
||
{
|
||
int i;
|
||
|
||
free_ira_costs ();
|
||
max_struct_costs_size
|
||
= sizeof (struct costs) + sizeof (int) * (ira_important_classes_num - 1);
|
||
/* Don't use ira_allocate because vectors live through several IRA
|
||
calls. */
|
||
init_cost = (struct costs *) xmalloc (max_struct_costs_size);
|
||
init_cost->mem_cost = 1000000;
|
||
for (i = 0; i < ira_important_classes_num; i++)
|
||
init_cost->cost[i] = 1000000;
|
||
for (i = 0; i < MAX_RECOG_OPERANDS; i++)
|
||
{
|
||
op_costs[i] = (struct costs *) xmalloc (max_struct_costs_size);
|
||
this_op_costs[i] = (struct costs *) xmalloc (max_struct_costs_size);
|
||
}
|
||
temp_costs = (struct costs *) xmalloc (max_struct_costs_size);
|
||
}
|
||
|
||
/* Function called once at the end of compiler work. */
|
||
void
|
||
ira_finish_costs_once (void)
|
||
{
|
||
free_ira_costs ();
|
||
}
|
||
|
||
|
||
|
||
/* Common initialization function for ira_costs and
|
||
ira_set_pseudo_classes. */
|
||
static void
|
||
init_costs (void)
|
||
{
|
||
init_subregs_of_mode ();
|
||
costs = (struct costs *) ira_allocate (max_struct_costs_size
|
||
* cost_elements_num);
|
||
pref_buffer = (enum reg_class *) ira_allocate (sizeof (enum reg_class)
|
||
* cost_elements_num);
|
||
regno_aclass = (enum reg_class *) ira_allocate (sizeof (enum reg_class)
|
||
* max_reg_num ());
|
||
regno_equiv_gains = (int *) ira_allocate (sizeof (int) * max_reg_num ());
|
||
memset (regno_equiv_gains, 0, sizeof (int) * max_reg_num ());
|
||
}
|
||
|
||
/* Common finalization function for ira_costs and
|
||
ira_set_pseudo_classes. */
|
||
static void
|
||
finish_costs (void)
|
||
{
|
||
finish_subregs_of_mode ();
|
||
ira_free (regno_equiv_gains);
|
||
ira_free (regno_aclass);
|
||
ira_free (pref_buffer);
|
||
ira_free (costs);
|
||
}
|
||
|
||
/* Entry function which defines register class, memory and hard
|
||
register costs for each allocno. */
|
||
void
|
||
ira_costs (void)
|
||
{
|
||
allocno_p = true;
|
||
cost_elements_num = ira_allocnos_num;
|
||
init_costs ();
|
||
total_allocno_costs = (struct costs *) ira_allocate (max_struct_costs_size
|
||
* ira_allocnos_num);
|
||
initiate_regno_cost_classes ();
|
||
calculate_elim_costs_all_insns ();
|
||
find_costs_and_classes (ira_dump_file);
|
||
setup_allocno_class_and_costs ();
|
||
finish_regno_cost_classes ();
|
||
finish_costs ();
|
||
ira_free (total_allocno_costs);
|
||
}
|
||
|
||
/* Entry function which defines classes for pseudos. */
|
||
void
|
||
ira_set_pseudo_classes (FILE *dump_file)
|
||
{
|
||
allocno_p = false;
|
||
internal_flag_ira_verbose = flag_ira_verbose;
|
||
cost_elements_num = max_reg_num ();
|
||
init_costs ();
|
||
initiate_regno_cost_classes ();
|
||
find_costs_and_classes (dump_file);
|
||
finish_regno_cost_classes ();
|
||
pseudo_classes_defined_p = true;
|
||
finish_costs ();
|
||
}
|
||
|
||
|
||
|
||
/* Change hard register costs for allocnos which lives through
|
||
function calls. This is called only when we found all intersected
|
||
calls during building allocno live ranges. */
|
||
void
|
||
ira_tune_allocno_costs (void)
|
||
{
|
||
int j, n, regno;
|
||
int cost, min_cost, *reg_costs;
|
||
enum reg_class aclass, rclass;
|
||
enum machine_mode mode;
|
||
ira_allocno_t a;
|
||
ira_allocno_iterator ai;
|
||
ira_allocno_object_iterator oi;
|
||
ira_object_t obj;
|
||
bool skip_p;
|
||
|
||
FOR_EACH_ALLOCNO (a, ai)
|
||
{
|
||
aclass = ALLOCNO_CLASS (a);
|
||
if (aclass == NO_REGS)
|
||
continue;
|
||
mode = ALLOCNO_MODE (a);
|
||
n = ira_class_hard_regs_num[aclass];
|
||
min_cost = INT_MAX;
|
||
if (ALLOCNO_CALLS_CROSSED_NUM (a) != 0)
|
||
{
|
||
ira_allocate_and_set_costs
|
||
(&ALLOCNO_HARD_REG_COSTS (a), aclass,
|
||
ALLOCNO_CLASS_COST (a));
|
||
reg_costs = ALLOCNO_HARD_REG_COSTS (a);
|
||
for (j = n - 1; j >= 0; j--)
|
||
{
|
||
regno = ira_class_hard_regs[aclass][j];
|
||
skip_p = false;
|
||
FOR_EACH_ALLOCNO_OBJECT (a, obj, oi)
|
||
{
|
||
if (! ira_hard_reg_not_in_set_p (regno, mode,
|
||
OBJECT_CONFLICT_HARD_REGS
|
||
(obj)))
|
||
{
|
||
skip_p = true;
|
||
break;
|
||
}
|
||
}
|
||
if (skip_p)
|
||
continue;
|
||
rclass = REGNO_REG_CLASS (regno);
|
||
cost = 0;
|
||
if (! ira_hard_reg_not_in_set_p (regno, mode, call_used_reg_set)
|
||
|| HARD_REGNO_CALL_PART_CLOBBERED (regno, mode))
|
||
cost += (ALLOCNO_CALL_FREQ (a)
|
||
* (ira_memory_move_cost[mode][rclass][0]
|
||
+ ira_memory_move_cost[mode][rclass][1]));
|
||
#ifdef IRA_HARD_REGNO_ADD_COST_MULTIPLIER
|
||
cost += ((ira_memory_move_cost[mode][rclass][0]
|
||
+ ira_memory_move_cost[mode][rclass][1])
|
||
* ALLOCNO_FREQ (a)
|
||
* IRA_HARD_REGNO_ADD_COST_MULTIPLIER (regno) / 2);
|
||
#endif
|
||
if (INT_MAX - cost < reg_costs[j])
|
||
reg_costs[j] = INT_MAX;
|
||
else
|
||
reg_costs[j] += cost;
|
||
if (min_cost > reg_costs[j])
|
||
min_cost = reg_costs[j];
|
||
}
|
||
}
|
||
if (min_cost != INT_MAX)
|
||
ALLOCNO_CLASS_COST (a) = min_cost;
|
||
|
||
/* Some targets allow pseudos to be allocated to unaligned sequences
|
||
of hard registers. However, selecting an unaligned sequence can
|
||
unnecessarily restrict later allocations. So increase the cost of
|
||
unaligned hard regs to encourage the use of aligned hard regs. */
|
||
{
|
||
const int nregs = ira_reg_class_max_nregs[aclass][ALLOCNO_MODE (a)];
|
||
|
||
if (nregs > 1)
|
||
{
|
||
ira_allocate_and_set_costs
|
||
(&ALLOCNO_HARD_REG_COSTS (a), aclass, ALLOCNO_CLASS_COST (a));
|
||
reg_costs = ALLOCNO_HARD_REG_COSTS (a);
|
||
for (j = n - 1; j >= 0; j--)
|
||
{
|
||
regno = ira_non_ordered_class_hard_regs[aclass][j];
|
||
if ((regno % nregs) != 0)
|
||
{
|
||
int index = ira_class_hard_reg_index[aclass][regno];
|
||
ira_assert (index != -1);
|
||
reg_costs[index] += ALLOCNO_FREQ (a);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Add COST to the estimated gain for eliminating REGNO with its
|
||
equivalence. If COST is zero, record that no such elimination is
|
||
possible. */
|
||
|
||
void
|
||
ira_adjust_equiv_reg_cost (unsigned regno, int cost)
|
||
{
|
||
if (cost == 0)
|
||
regno_equiv_gains[regno] = 0;
|
||
else
|
||
regno_equiv_gains[regno] += cost;
|
||
}
|