e7868dc6a7
gcc/ChangeLog: PR tree-optimization/92765 * gimple-fold.c (get_range_strlen_tree): Handle MEM_REF and PARM_DECL. * tree-ssa-strlen.c (compute_string_length): Remove. (determine_min_objsize): Remove. (get_len_or_size): Add an argument. Call get_range_strlen_dynamic. Avoid using type size as the upper bound on string length. (handle_builtin_string_cmp): Add an argument. Adjust. (strlen_check_and_optimize_call): Pass additional argument to handle_builtin_string_cmp. gcc/testsuite/ChangeLog: PR tree-optimization/92765 * g++.dg/tree-ssa/strlenopt-1.C: New test. * g++.dg/tree-ssa/strlenopt-2.C: New test. * gcc.dg/Warray-bounds-58.c: New test. * gcc.dg/Wrestrict-20.c: Avoid a valid -Wformat-overflow. * gcc.dg/Wstring-compare.c: Xfail a test. * gcc.dg/strcmpopt_2.c: Disable tests. * gcc.dg/strcmpopt_4.c: Adjust tests. * gcc.dg/strcmpopt_10.c: New test. * gcc.dg/strcmpopt_11.c: New test. * gcc.dg/strlenopt-69.c: Disable tests. * gcc.dg/strlenopt-92.c: New test. * gcc.dg/strlenopt-93.c: New test. * gcc.dg/strlenopt.h: Declare calloc. * gcc.dg/tree-ssa/pr92056.c: Xfail tests until pr93518 is resolved. * gcc.dg/tree-ssa/builtin-sprintf-warn-23.c: Correct test (pr93517).
7916 lines
242 KiB
C
7916 lines
242 KiB
C
/* Statement simplification on GIMPLE.
|
|
Copyright (C) 2010-2020 Free Software Foundation, Inc.
|
|
Split out from tree-ssa-ccp.c.
|
|
|
|
This file is part of GCC.
|
|
|
|
GCC is free software; you can redistribute it and/or modify it
|
|
under the terms of the GNU General Public License as published by the
|
|
Free Software Foundation; either version 3, or (at your option) any
|
|
later version.
|
|
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GCC; see the file COPYING3. If not see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#include "config.h"
|
|
#include "system.h"
|
|
#include "coretypes.h"
|
|
#include "backend.h"
|
|
#include "target.h"
|
|
#include "rtl.h"
|
|
#include "tree.h"
|
|
#include "gimple.h"
|
|
#include "predict.h"
|
|
#include "ssa.h"
|
|
#include "cgraph.h"
|
|
#include "gimple-pretty-print.h"
|
|
#include "gimple-ssa-warn-restrict.h"
|
|
#include "fold-const.h"
|
|
#include "stmt.h"
|
|
#include "expr.h"
|
|
#include "stor-layout.h"
|
|
#include "dumpfile.h"
|
|
#include "gimple-fold.h"
|
|
#include "gimplify.h"
|
|
#include "gimple-iterator.h"
|
|
#include "tree-into-ssa.h"
|
|
#include "tree-dfa.h"
|
|
#include "tree-object-size.h"
|
|
#include "tree-ssa.h"
|
|
#include "tree-ssa-propagate.h"
|
|
#include "ipa-utils.h"
|
|
#include "tree-ssa-address.h"
|
|
#include "langhooks.h"
|
|
#include "gimplify-me.h"
|
|
#include "dbgcnt.h"
|
|
#include "builtins.h"
|
|
#include "tree-eh.h"
|
|
#include "gimple-match.h"
|
|
#include "gomp-constants.h"
|
|
#include "optabs-query.h"
|
|
#include "omp-general.h"
|
|
#include "tree-cfg.h"
|
|
#include "fold-const-call.h"
|
|
#include "stringpool.h"
|
|
#include "attribs.h"
|
|
#include "asan.h"
|
|
#include "diagnostic-core.h"
|
|
#include "intl.h"
|
|
#include "calls.h"
|
|
#include "tree-vector-builder.h"
|
|
#include "tree-ssa-strlen.h"
|
|
#include "varasm.h"
|
|
|
|
enum strlen_range_kind {
|
|
/* Compute the exact constant string length. */
|
|
SRK_STRLEN,
|
|
/* Compute the maximum constant string length. */
|
|
SRK_STRLENMAX,
|
|
/* Compute a range of string lengths bounded by object sizes. When
|
|
the length of a string cannot be determined, consider as the upper
|
|
bound the size of the enclosing object the string may be a member
|
|
or element of. Also determine the size of the largest character
|
|
array the string may refer to. */
|
|
SRK_LENRANGE,
|
|
/* Determine the integer value of the argument (not string length). */
|
|
SRK_INT_VALUE
|
|
};
|
|
|
|
static bool
|
|
get_range_strlen (tree, bitmap *, strlen_range_kind, c_strlen_data *, unsigned);
|
|
|
|
/* Return true when DECL can be referenced from current unit.
|
|
FROM_DECL (if non-null) specify constructor of variable DECL was taken from.
|
|
We can get declarations that are not possible to reference for various
|
|
reasons:
|
|
|
|
1) When analyzing C++ virtual tables.
|
|
C++ virtual tables do have known constructors even
|
|
when they are keyed to other compilation unit.
|
|
Those tables can contain pointers to methods and vars
|
|
in other units. Those methods have both STATIC and EXTERNAL
|
|
set.
|
|
2) In WHOPR mode devirtualization might lead to reference
|
|
to method that was partitioned elsehwere.
|
|
In this case we have static VAR_DECL or FUNCTION_DECL
|
|
that has no corresponding callgraph/varpool node
|
|
declaring the body.
|
|
3) COMDAT functions referred by external vtables that
|
|
we devirtualize only during final compilation stage.
|
|
At this time we already decided that we will not output
|
|
the function body and thus we can't reference the symbol
|
|
directly. */
|
|
|
|
static bool
|
|
can_refer_decl_in_current_unit_p (tree decl, tree from_decl)
|
|
{
|
|
varpool_node *vnode;
|
|
struct cgraph_node *node;
|
|
symtab_node *snode;
|
|
|
|
if (DECL_ABSTRACT_P (decl))
|
|
return false;
|
|
|
|
/* We are concerned only about static/external vars and functions. */
|
|
if ((!TREE_STATIC (decl) && !DECL_EXTERNAL (decl))
|
|
|| !VAR_OR_FUNCTION_DECL_P (decl))
|
|
return true;
|
|
|
|
/* Static objects can be referred only if they are defined and not optimized
|
|
out yet. */
|
|
if (!TREE_PUBLIC (decl))
|
|
{
|
|
if (DECL_EXTERNAL (decl))
|
|
return false;
|
|
/* Before we start optimizing unreachable code we can be sure all
|
|
static objects are defined. */
|
|
if (symtab->function_flags_ready)
|
|
return true;
|
|
snode = symtab_node::get (decl);
|
|
if (!snode || !snode->definition)
|
|
return false;
|
|
node = dyn_cast <cgraph_node *> (snode);
|
|
return !node || !node->inlined_to;
|
|
}
|
|
|
|
/* We will later output the initializer, so we can refer to it.
|
|
So we are concerned only when DECL comes from initializer of
|
|
external var or var that has been optimized out. */
|
|
if (!from_decl
|
|
|| !VAR_P (from_decl)
|
|
|| (!DECL_EXTERNAL (from_decl)
|
|
&& (vnode = varpool_node::get (from_decl)) != NULL
|
|
&& vnode->definition)
|
|
|| (flag_ltrans
|
|
&& (vnode = varpool_node::get (from_decl)) != NULL
|
|
&& vnode->in_other_partition))
|
|
return true;
|
|
/* We are folding reference from external vtable. The vtable may reffer
|
|
to a symbol keyed to other compilation unit. The other compilation
|
|
unit may be in separate DSO and the symbol may be hidden. */
|
|
if (DECL_VISIBILITY_SPECIFIED (decl)
|
|
&& DECL_EXTERNAL (decl)
|
|
&& DECL_VISIBILITY (decl) != VISIBILITY_DEFAULT
|
|
&& (!(snode = symtab_node::get (decl)) || !snode->in_other_partition))
|
|
return false;
|
|
/* When function is public, we always can introduce new reference.
|
|
Exception are the COMDAT functions where introducing a direct
|
|
reference imply need to include function body in the curren tunit. */
|
|
if (TREE_PUBLIC (decl) && !DECL_COMDAT (decl))
|
|
return true;
|
|
/* We have COMDAT. We are going to check if we still have definition
|
|
or if the definition is going to be output in other partition.
|
|
Bypass this when gimplifying; all needed functions will be produced.
|
|
|
|
As observed in PR20991 for already optimized out comdat virtual functions
|
|
it may be tempting to not necessarily give up because the copy will be
|
|
output elsewhere when corresponding vtable is output.
|
|
This is however not possible - ABI specify that COMDATs are output in
|
|
units where they are used and when the other unit was compiled with LTO
|
|
it is possible that vtable was kept public while the function itself
|
|
was privatized. */
|
|
if (!symtab->function_flags_ready)
|
|
return true;
|
|
|
|
snode = symtab_node::get (decl);
|
|
if (!snode
|
|
|| ((!snode->definition || DECL_EXTERNAL (decl))
|
|
&& (!snode->in_other_partition
|
|
|| (!snode->forced_by_abi && !snode->force_output))))
|
|
return false;
|
|
node = dyn_cast <cgraph_node *> (snode);
|
|
return !node || !node->inlined_to;
|
|
}
|
|
|
|
/* Create a temporary for TYPE for a statement STMT. If the current function
|
|
is in SSA form, a SSA name is created. Otherwise a temporary register
|
|
is made. */
|
|
|
|
tree
|
|
create_tmp_reg_or_ssa_name (tree type, gimple *stmt)
|
|
{
|
|
if (gimple_in_ssa_p (cfun))
|
|
return make_ssa_name (type, stmt);
|
|
else
|
|
return create_tmp_reg (type);
|
|
}
|
|
|
|
/* CVAL is value taken from DECL_INITIAL of variable. Try to transform it into
|
|
acceptable form for is_gimple_min_invariant.
|
|
FROM_DECL (if non-NULL) specify variable whose constructor contains CVAL. */
|
|
|
|
tree
|
|
canonicalize_constructor_val (tree cval, tree from_decl)
|
|
{
|
|
if (CONSTANT_CLASS_P (cval))
|
|
return cval;
|
|
|
|
tree orig_cval = cval;
|
|
STRIP_NOPS (cval);
|
|
if (TREE_CODE (cval) == POINTER_PLUS_EXPR
|
|
&& TREE_CODE (TREE_OPERAND (cval, 1)) == INTEGER_CST)
|
|
{
|
|
tree ptr = TREE_OPERAND (cval, 0);
|
|
if (is_gimple_min_invariant (ptr))
|
|
cval = build1_loc (EXPR_LOCATION (cval),
|
|
ADDR_EXPR, TREE_TYPE (ptr),
|
|
fold_build2 (MEM_REF, TREE_TYPE (TREE_TYPE (ptr)),
|
|
ptr,
|
|
fold_convert (ptr_type_node,
|
|
TREE_OPERAND (cval, 1))));
|
|
}
|
|
if (TREE_CODE (cval) == ADDR_EXPR)
|
|
{
|
|
tree base = NULL_TREE;
|
|
if (TREE_CODE (TREE_OPERAND (cval, 0)) == COMPOUND_LITERAL_EXPR)
|
|
{
|
|
base = COMPOUND_LITERAL_EXPR_DECL (TREE_OPERAND (cval, 0));
|
|
if (base)
|
|
TREE_OPERAND (cval, 0) = base;
|
|
}
|
|
else
|
|
base = get_base_address (TREE_OPERAND (cval, 0));
|
|
if (!base)
|
|
return NULL_TREE;
|
|
|
|
if (VAR_OR_FUNCTION_DECL_P (base)
|
|
&& !can_refer_decl_in_current_unit_p (base, from_decl))
|
|
return NULL_TREE;
|
|
if (TREE_TYPE (base) == error_mark_node)
|
|
return NULL_TREE;
|
|
if (VAR_P (base))
|
|
TREE_ADDRESSABLE (base) = 1;
|
|
else if (TREE_CODE (base) == FUNCTION_DECL)
|
|
{
|
|
/* Make sure we create a cgraph node for functions we'll reference.
|
|
They can be non-existent if the reference comes from an entry
|
|
of an external vtable for example. */
|
|
cgraph_node::get_create (base);
|
|
}
|
|
/* Fixup types in global initializers. */
|
|
if (TREE_TYPE (TREE_TYPE (cval)) != TREE_TYPE (TREE_OPERAND (cval, 0)))
|
|
cval = build_fold_addr_expr (TREE_OPERAND (cval, 0));
|
|
|
|
if (!useless_type_conversion_p (TREE_TYPE (orig_cval), TREE_TYPE (cval)))
|
|
cval = fold_convert (TREE_TYPE (orig_cval), cval);
|
|
return cval;
|
|
}
|
|
/* In CONSTRUCTORs we may see unfolded constants like (int (*) ()) 0. */
|
|
if (TREE_CODE (cval) == INTEGER_CST)
|
|
{
|
|
if (TREE_OVERFLOW_P (cval))
|
|
cval = drop_tree_overflow (cval);
|
|
if (!useless_type_conversion_p (TREE_TYPE (orig_cval), TREE_TYPE (cval)))
|
|
cval = fold_convert (TREE_TYPE (orig_cval), cval);
|
|
return cval;
|
|
}
|
|
return orig_cval;
|
|
}
|
|
|
|
/* If SYM is a constant variable with known value, return the value.
|
|
NULL_TREE is returned otherwise. */
|
|
|
|
tree
|
|
get_symbol_constant_value (tree sym)
|
|
{
|
|
tree val = ctor_for_folding (sym);
|
|
if (val != error_mark_node)
|
|
{
|
|
if (val)
|
|
{
|
|
val = canonicalize_constructor_val (unshare_expr (val), sym);
|
|
if (val && is_gimple_min_invariant (val))
|
|
return val;
|
|
else
|
|
return NULL_TREE;
|
|
}
|
|
/* Variables declared 'const' without an initializer
|
|
have zero as the initializer if they may not be
|
|
overridden at link or run time. */
|
|
if (!val
|
|
&& is_gimple_reg_type (TREE_TYPE (sym)))
|
|
return build_zero_cst (TREE_TYPE (sym));
|
|
}
|
|
|
|
return NULL_TREE;
|
|
}
|
|
|
|
|
|
|
|
/* Subroutine of fold_stmt. We perform several simplifications of the
|
|
memory reference tree EXPR and make sure to re-gimplify them properly
|
|
after propagation of constant addresses. IS_LHS is true if the
|
|
reference is supposed to be an lvalue. */
|
|
|
|
static tree
|
|
maybe_fold_reference (tree expr, bool is_lhs)
|
|
{
|
|
tree result;
|
|
|
|
if ((TREE_CODE (expr) == VIEW_CONVERT_EXPR
|
|
|| TREE_CODE (expr) == REALPART_EXPR
|
|
|| TREE_CODE (expr) == IMAGPART_EXPR)
|
|
&& CONSTANT_CLASS_P (TREE_OPERAND (expr, 0)))
|
|
return fold_unary_loc (EXPR_LOCATION (expr),
|
|
TREE_CODE (expr),
|
|
TREE_TYPE (expr),
|
|
TREE_OPERAND (expr, 0));
|
|
else if (TREE_CODE (expr) == BIT_FIELD_REF
|
|
&& CONSTANT_CLASS_P (TREE_OPERAND (expr, 0)))
|
|
return fold_ternary_loc (EXPR_LOCATION (expr),
|
|
TREE_CODE (expr),
|
|
TREE_TYPE (expr),
|
|
TREE_OPERAND (expr, 0),
|
|
TREE_OPERAND (expr, 1),
|
|
TREE_OPERAND (expr, 2));
|
|
|
|
if (!is_lhs
|
|
&& (result = fold_const_aggregate_ref (expr))
|
|
&& is_gimple_min_invariant (result))
|
|
return result;
|
|
|
|
return NULL_TREE;
|
|
}
|
|
|
|
|
|
/* Attempt to fold an assignment statement pointed-to by SI. Returns a
|
|
replacement rhs for the statement or NULL_TREE if no simplification
|
|
could be made. It is assumed that the operands have been previously
|
|
folded. */
|
|
|
|
static tree
|
|
fold_gimple_assign (gimple_stmt_iterator *si)
|
|
{
|
|
gimple *stmt = gsi_stmt (*si);
|
|
enum tree_code subcode = gimple_assign_rhs_code (stmt);
|
|
location_t loc = gimple_location (stmt);
|
|
|
|
tree result = NULL_TREE;
|
|
|
|
switch (get_gimple_rhs_class (subcode))
|
|
{
|
|
case GIMPLE_SINGLE_RHS:
|
|
{
|
|
tree rhs = gimple_assign_rhs1 (stmt);
|
|
|
|
if (TREE_CLOBBER_P (rhs))
|
|
return NULL_TREE;
|
|
|
|
if (REFERENCE_CLASS_P (rhs))
|
|
return maybe_fold_reference (rhs, false);
|
|
|
|
else if (TREE_CODE (rhs) == OBJ_TYPE_REF)
|
|
{
|
|
tree val = OBJ_TYPE_REF_EXPR (rhs);
|
|
if (is_gimple_min_invariant (val))
|
|
return val;
|
|
else if (flag_devirtualize && virtual_method_call_p (rhs))
|
|
{
|
|
bool final;
|
|
vec <cgraph_node *>targets
|
|
= possible_polymorphic_call_targets (rhs, stmt, &final);
|
|
if (final && targets.length () <= 1 && dbg_cnt (devirt))
|
|
{
|
|
if (dump_enabled_p ())
|
|
{
|
|
dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, stmt,
|
|
"resolving virtual function address "
|
|
"reference to function %s\n",
|
|
targets.length () == 1
|
|
? targets[0]->name ()
|
|
: "NULL");
|
|
}
|
|
if (targets.length () == 1)
|
|
{
|
|
val = fold_convert (TREE_TYPE (val),
|
|
build_fold_addr_expr_loc
|
|
(loc, targets[0]->decl));
|
|
STRIP_USELESS_TYPE_CONVERSION (val);
|
|
}
|
|
else
|
|
/* We cannot use __builtin_unreachable here because it
|
|
cannot have address taken. */
|
|
val = build_int_cst (TREE_TYPE (val), 0);
|
|
return val;
|
|
}
|
|
}
|
|
}
|
|
|
|
else if (TREE_CODE (rhs) == ADDR_EXPR)
|
|
{
|
|
tree ref = TREE_OPERAND (rhs, 0);
|
|
tree tem = maybe_fold_reference (ref, true);
|
|
if (tem
|
|
&& TREE_CODE (tem) == MEM_REF
|
|
&& integer_zerop (TREE_OPERAND (tem, 1)))
|
|
result = fold_convert (TREE_TYPE (rhs), TREE_OPERAND (tem, 0));
|
|
else if (tem)
|
|
result = fold_convert (TREE_TYPE (rhs),
|
|
build_fold_addr_expr_loc (loc, tem));
|
|
else if (TREE_CODE (ref) == MEM_REF
|
|
&& integer_zerop (TREE_OPERAND (ref, 1)))
|
|
result = fold_convert (TREE_TYPE (rhs), TREE_OPERAND (ref, 0));
|
|
|
|
if (result)
|
|
{
|
|
/* Strip away useless type conversions. Both the
|
|
NON_LVALUE_EXPR that may have been added by fold, and
|
|
"useless" type conversions that might now be apparent
|
|
due to propagation. */
|
|
STRIP_USELESS_TYPE_CONVERSION (result);
|
|
|
|
if (result != rhs && valid_gimple_rhs_p (result))
|
|
return result;
|
|
}
|
|
}
|
|
|
|
else if (TREE_CODE (rhs) == CONSTRUCTOR
|
|
&& TREE_CODE (TREE_TYPE (rhs)) == VECTOR_TYPE)
|
|
{
|
|
/* Fold a constant vector CONSTRUCTOR to VECTOR_CST. */
|
|
unsigned i;
|
|
tree val;
|
|
|
|
FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (rhs), i, val)
|
|
if (! CONSTANT_CLASS_P (val))
|
|
return NULL_TREE;
|
|
|
|
return build_vector_from_ctor (TREE_TYPE (rhs),
|
|
CONSTRUCTOR_ELTS (rhs));
|
|
}
|
|
|
|
else if (DECL_P (rhs))
|
|
return get_symbol_constant_value (rhs);
|
|
}
|
|
break;
|
|
|
|
case GIMPLE_UNARY_RHS:
|
|
break;
|
|
|
|
case GIMPLE_BINARY_RHS:
|
|
break;
|
|
|
|
case GIMPLE_TERNARY_RHS:
|
|
result = fold_ternary_loc (loc, subcode,
|
|
TREE_TYPE (gimple_assign_lhs (stmt)),
|
|
gimple_assign_rhs1 (stmt),
|
|
gimple_assign_rhs2 (stmt),
|
|
gimple_assign_rhs3 (stmt));
|
|
|
|
if (result)
|
|
{
|
|
STRIP_USELESS_TYPE_CONVERSION (result);
|
|
if (valid_gimple_rhs_p (result))
|
|
return result;
|
|
}
|
|
break;
|
|
|
|
case GIMPLE_INVALID_RHS:
|
|
gcc_unreachable ();
|
|
}
|
|
|
|
return NULL_TREE;
|
|
}
|
|
|
|
|
|
/* Replace a statement at *SI_P with a sequence of statements in STMTS,
|
|
adjusting the replacement stmts location and virtual operands.
|
|
If the statement has a lhs the last stmt in the sequence is expected
|
|
to assign to that lhs. */
|
|
|
|
static void
|
|
gsi_replace_with_seq_vops (gimple_stmt_iterator *si_p, gimple_seq stmts)
|
|
{
|
|
gimple *stmt = gsi_stmt (*si_p);
|
|
|
|
if (gimple_has_location (stmt))
|
|
annotate_all_with_location (stmts, gimple_location (stmt));
|
|
|
|
/* First iterate over the replacement statements backward, assigning
|
|
virtual operands to their defining statements. */
|
|
gimple *laststore = NULL;
|
|
for (gimple_stmt_iterator i = gsi_last (stmts);
|
|
!gsi_end_p (i); gsi_prev (&i))
|
|
{
|
|
gimple *new_stmt = gsi_stmt (i);
|
|
if ((gimple_assign_single_p (new_stmt)
|
|
&& !is_gimple_reg (gimple_assign_lhs (new_stmt)))
|
|
|| (is_gimple_call (new_stmt)
|
|
&& (gimple_call_flags (new_stmt)
|
|
& (ECF_NOVOPS | ECF_PURE | ECF_CONST | ECF_NORETURN)) == 0))
|
|
{
|
|
tree vdef;
|
|
if (!laststore)
|
|
vdef = gimple_vdef (stmt);
|
|
else
|
|
vdef = make_ssa_name (gimple_vop (cfun), new_stmt);
|
|
gimple_set_vdef (new_stmt, vdef);
|
|
if (vdef && TREE_CODE (vdef) == SSA_NAME)
|
|
SSA_NAME_DEF_STMT (vdef) = new_stmt;
|
|
laststore = new_stmt;
|
|
}
|
|
}
|
|
|
|
/* Second iterate over the statements forward, assigning virtual
|
|
operands to their uses. */
|
|
tree reaching_vuse = gimple_vuse (stmt);
|
|
for (gimple_stmt_iterator i = gsi_start (stmts);
|
|
!gsi_end_p (i); gsi_next (&i))
|
|
{
|
|
gimple *new_stmt = gsi_stmt (i);
|
|
/* If the new statement possibly has a VUSE, update it with exact SSA
|
|
name we know will reach this one. */
|
|
if (gimple_has_mem_ops (new_stmt))
|
|
gimple_set_vuse (new_stmt, reaching_vuse);
|
|
gimple_set_modified (new_stmt, true);
|
|
if (gimple_vdef (new_stmt))
|
|
reaching_vuse = gimple_vdef (new_stmt);
|
|
}
|
|
|
|
/* If the new sequence does not do a store release the virtual
|
|
definition of the original statement. */
|
|
if (reaching_vuse
|
|
&& reaching_vuse == gimple_vuse (stmt))
|
|
{
|
|
tree vdef = gimple_vdef (stmt);
|
|
if (vdef
|
|
&& TREE_CODE (vdef) == SSA_NAME)
|
|
{
|
|
unlink_stmt_vdef (stmt);
|
|
release_ssa_name (vdef);
|
|
}
|
|
}
|
|
|
|
/* Finally replace the original statement with the sequence. */
|
|
gsi_replace_with_seq (si_p, stmts, false);
|
|
}
|
|
|
|
/* Convert EXPR into a GIMPLE value suitable for substitution on the
|
|
RHS of an assignment. Insert the necessary statements before
|
|
iterator *SI_P. The statement at *SI_P, which must be a GIMPLE_CALL
|
|
is replaced. If the call is expected to produces a result, then it
|
|
is replaced by an assignment of the new RHS to the result variable.
|
|
If the result is to be ignored, then the call is replaced by a
|
|
GIMPLE_NOP. A proper VDEF chain is retained by making the first
|
|
VUSE and the last VDEF of the whole sequence be the same as the replaced
|
|
statement and using new SSA names for stores in between. */
|
|
|
|
void
|
|
gimplify_and_update_call_from_tree (gimple_stmt_iterator *si_p, tree expr)
|
|
{
|
|
tree lhs;
|
|
gimple *stmt, *new_stmt;
|
|
gimple_stmt_iterator i;
|
|
gimple_seq stmts = NULL;
|
|
|
|
stmt = gsi_stmt (*si_p);
|
|
|
|
gcc_assert (is_gimple_call (stmt));
|
|
|
|
push_gimplify_context (gimple_in_ssa_p (cfun));
|
|
|
|
lhs = gimple_call_lhs (stmt);
|
|
if (lhs == NULL_TREE)
|
|
{
|
|
gimplify_and_add (expr, &stmts);
|
|
/* We can end up with folding a memcpy of an empty class assignment
|
|
which gets optimized away by C++ gimplification. */
|
|
if (gimple_seq_empty_p (stmts))
|
|
{
|
|
pop_gimplify_context (NULL);
|
|
if (gimple_in_ssa_p (cfun))
|
|
{
|
|
unlink_stmt_vdef (stmt);
|
|
release_defs (stmt);
|
|
}
|
|
gsi_replace (si_p, gimple_build_nop (), false);
|
|
return;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
tree tmp = force_gimple_operand (expr, &stmts, false, NULL_TREE);
|
|
new_stmt = gimple_build_assign (lhs, tmp);
|
|
i = gsi_last (stmts);
|
|
gsi_insert_after_without_update (&i, new_stmt,
|
|
GSI_CONTINUE_LINKING);
|
|
}
|
|
|
|
pop_gimplify_context (NULL);
|
|
|
|
gsi_replace_with_seq_vops (si_p, stmts);
|
|
}
|
|
|
|
|
|
/* Replace the call at *GSI with the gimple value VAL. */
|
|
|
|
void
|
|
replace_call_with_value (gimple_stmt_iterator *gsi, tree val)
|
|
{
|
|
gimple *stmt = gsi_stmt (*gsi);
|
|
tree lhs = gimple_call_lhs (stmt);
|
|
gimple *repl;
|
|
if (lhs)
|
|
{
|
|
if (!useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (val)))
|
|
val = fold_convert (TREE_TYPE (lhs), val);
|
|
repl = gimple_build_assign (lhs, val);
|
|
}
|
|
else
|
|
repl = gimple_build_nop ();
|
|
tree vdef = gimple_vdef (stmt);
|
|
if (vdef && TREE_CODE (vdef) == SSA_NAME)
|
|
{
|
|
unlink_stmt_vdef (stmt);
|
|
release_ssa_name (vdef);
|
|
}
|
|
gsi_replace (gsi, repl, false);
|
|
}
|
|
|
|
/* Replace the call at *GSI with the new call REPL and fold that
|
|
again. */
|
|
|
|
static void
|
|
replace_call_with_call_and_fold (gimple_stmt_iterator *gsi, gimple *repl)
|
|
{
|
|
gimple *stmt = gsi_stmt (*gsi);
|
|
gimple_call_set_lhs (repl, gimple_call_lhs (stmt));
|
|
gimple_set_location (repl, gimple_location (stmt));
|
|
gimple_move_vops (repl, stmt);
|
|
gsi_replace (gsi, repl, false);
|
|
fold_stmt (gsi);
|
|
}
|
|
|
|
/* Return true if VAR is a VAR_DECL or a component thereof. */
|
|
|
|
static bool
|
|
var_decl_component_p (tree var)
|
|
{
|
|
tree inner = var;
|
|
while (handled_component_p (inner))
|
|
inner = TREE_OPERAND (inner, 0);
|
|
return (DECL_P (inner)
|
|
|| (TREE_CODE (inner) == MEM_REF
|
|
&& TREE_CODE (TREE_OPERAND (inner, 0)) == ADDR_EXPR));
|
|
}
|
|
|
|
/* Return TRUE if the SIZE argument, representing the size of an
|
|
object, is in a range of values of which exactly zero is valid. */
|
|
|
|
static bool
|
|
size_must_be_zero_p (tree size)
|
|
{
|
|
if (integer_zerop (size))
|
|
return true;
|
|
|
|
if (TREE_CODE (size) != SSA_NAME || !INTEGRAL_TYPE_P (TREE_TYPE (size)))
|
|
return false;
|
|
|
|
tree type = TREE_TYPE (size);
|
|
int prec = TYPE_PRECISION (type);
|
|
|
|
/* Compute the value of SSIZE_MAX, the largest positive value that
|
|
can be stored in ssize_t, the signed counterpart of size_t. */
|
|
wide_int ssize_max = wi::lshift (wi::one (prec), prec - 1) - 1;
|
|
value_range valid_range (build_int_cst (type, 0),
|
|
wide_int_to_tree (type, ssize_max));
|
|
value_range vr;
|
|
get_range_info (size, vr);
|
|
vr.intersect (&valid_range);
|
|
return vr.zero_p ();
|
|
}
|
|
|
|
/* Fold function call to builtin mem{{,p}cpy,move}. Try to detect and
|
|
diagnose (otherwise undefined) overlapping copies without preventing
|
|
folding. When folded, GCC guarantees that overlapping memcpy has
|
|
the same semantics as memmove. Call to the library memcpy need not
|
|
provide the same guarantee. Return false if no simplification can
|
|
be made. */
|
|
|
|
static bool
|
|
gimple_fold_builtin_memory_op (gimple_stmt_iterator *gsi,
|
|
tree dest, tree src, enum built_in_function code)
|
|
{
|
|
gimple *stmt = gsi_stmt (*gsi);
|
|
tree lhs = gimple_call_lhs (stmt);
|
|
tree len = gimple_call_arg (stmt, 2);
|
|
tree destvar, srcvar;
|
|
location_t loc = gimple_location (stmt);
|
|
|
|
/* If the LEN parameter is a constant zero or in range where
|
|
the only valid value is zero, return DEST. */
|
|
if (size_must_be_zero_p (len))
|
|
{
|
|
gimple *repl;
|
|
if (gimple_call_lhs (stmt))
|
|
repl = gimple_build_assign (gimple_call_lhs (stmt), dest);
|
|
else
|
|
repl = gimple_build_nop ();
|
|
tree vdef = gimple_vdef (stmt);
|
|
if (vdef && TREE_CODE (vdef) == SSA_NAME)
|
|
{
|
|
unlink_stmt_vdef (stmt);
|
|
release_ssa_name (vdef);
|
|
}
|
|
gsi_replace (gsi, repl, false);
|
|
return true;
|
|
}
|
|
|
|
/* If SRC and DEST are the same (and not volatile), return
|
|
DEST{,+LEN,+LEN-1}. */
|
|
if (operand_equal_p (src, dest, 0))
|
|
{
|
|
/* Avoid diagnosing exact overlap in calls to __builtin_memcpy.
|
|
It's safe and may even be emitted by GCC itself (see bug
|
|
32667). */
|
|
unlink_stmt_vdef (stmt);
|
|
if (gimple_vdef (stmt) && TREE_CODE (gimple_vdef (stmt)) == SSA_NAME)
|
|
release_ssa_name (gimple_vdef (stmt));
|
|
if (!lhs)
|
|
{
|
|
gsi_replace (gsi, gimple_build_nop (), false);
|
|
return true;
|
|
}
|
|
goto done;
|
|
}
|
|
else
|
|
{
|
|
tree srctype, desttype;
|
|
unsigned int src_align, dest_align;
|
|
tree off0;
|
|
const char *tmp_str;
|
|
unsigned HOST_WIDE_INT tmp_len;
|
|
|
|
/* Build accesses at offset zero with a ref-all character type. */
|
|
off0 = build_int_cst (build_pointer_type_for_mode (char_type_node,
|
|
ptr_mode, true), 0);
|
|
|
|
/* If we can perform the copy efficiently with first doing all loads
|
|
and then all stores inline it that way. Currently efficiently
|
|
means that we can load all the memory into a single integer
|
|
register which is what MOVE_MAX gives us. */
|
|
src_align = get_pointer_alignment (src);
|
|
dest_align = get_pointer_alignment (dest);
|
|
if (tree_fits_uhwi_p (len)
|
|
&& compare_tree_int (len, MOVE_MAX) <= 0
|
|
/* FIXME: Don't transform copies from strings with known length.
|
|
Until GCC 9 this prevented a case in gcc.dg/strlenopt-8.c
|
|
from being handled, and the case was XFAILed for that reason.
|
|
Now that it is handled and the XFAIL removed, as soon as other
|
|
strlenopt tests that rely on it for passing are adjusted, this
|
|
hack can be removed. */
|
|
&& !c_strlen (src, 1)
|
|
&& !((tmp_str = c_getstr (src, &tmp_len)) != NULL
|
|
&& memchr (tmp_str, 0, tmp_len) == NULL))
|
|
{
|
|
unsigned ilen = tree_to_uhwi (len);
|
|
if (pow2p_hwi (ilen))
|
|
{
|
|
/* Detect out-of-bounds accesses without issuing warnings.
|
|
Avoid folding out-of-bounds copies but to avoid false
|
|
positives for unreachable code defer warning until after
|
|
DCE has worked its magic.
|
|
-Wrestrict is still diagnosed. */
|
|
if (int warning = check_bounds_or_overlap (as_a <gcall *>(stmt),
|
|
dest, src, len, len,
|
|
false, false))
|
|
if (warning != OPT_Wrestrict)
|
|
return false;
|
|
|
|
scalar_int_mode mode;
|
|
tree type = lang_hooks.types.type_for_size (ilen * 8, 1);
|
|
if (type
|
|
&& is_a <scalar_int_mode> (TYPE_MODE (type), &mode)
|
|
&& GET_MODE_SIZE (mode) * BITS_PER_UNIT == ilen * 8
|
|
/* If the destination pointer is not aligned we must be able
|
|
to emit an unaligned store. */
|
|
&& (dest_align >= GET_MODE_ALIGNMENT (mode)
|
|
|| !targetm.slow_unaligned_access (mode, dest_align)
|
|
|| (optab_handler (movmisalign_optab, mode)
|
|
!= CODE_FOR_nothing)))
|
|
{
|
|
tree srctype = type;
|
|
tree desttype = type;
|
|
if (src_align < GET_MODE_ALIGNMENT (mode))
|
|
srctype = build_aligned_type (type, src_align);
|
|
tree srcmem = fold_build2 (MEM_REF, srctype, src, off0);
|
|
tree tem = fold_const_aggregate_ref (srcmem);
|
|
if (tem)
|
|
srcmem = tem;
|
|
else if (src_align < GET_MODE_ALIGNMENT (mode)
|
|
&& targetm.slow_unaligned_access (mode, src_align)
|
|
&& (optab_handler (movmisalign_optab, mode)
|
|
== CODE_FOR_nothing))
|
|
srcmem = NULL_TREE;
|
|
if (srcmem)
|
|
{
|
|
gimple *new_stmt;
|
|
if (is_gimple_reg_type (TREE_TYPE (srcmem)))
|
|
{
|
|
new_stmt = gimple_build_assign (NULL_TREE, srcmem);
|
|
srcmem
|
|
= create_tmp_reg_or_ssa_name (TREE_TYPE (srcmem),
|
|
new_stmt);
|
|
gimple_assign_set_lhs (new_stmt, srcmem);
|
|
gimple_set_vuse (new_stmt, gimple_vuse (stmt));
|
|
gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT);
|
|
}
|
|
if (dest_align < GET_MODE_ALIGNMENT (mode))
|
|
desttype = build_aligned_type (type, dest_align);
|
|
new_stmt
|
|
= gimple_build_assign (fold_build2 (MEM_REF, desttype,
|
|
dest, off0),
|
|
srcmem);
|
|
gimple_move_vops (new_stmt, stmt);
|
|
if (!lhs)
|
|
{
|
|
gsi_replace (gsi, new_stmt, false);
|
|
return true;
|
|
}
|
|
gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT);
|
|
goto done;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (code == BUILT_IN_MEMMOVE)
|
|
{
|
|
/* Both DEST and SRC must be pointer types.
|
|
??? This is what old code did. Is the testing for pointer types
|
|
really mandatory?
|
|
|
|
If either SRC is readonly or length is 1, we can use memcpy. */
|
|
if (!dest_align || !src_align)
|
|
return false;
|
|
if (readonly_data_expr (src)
|
|
|| (tree_fits_uhwi_p (len)
|
|
&& (MIN (src_align, dest_align) / BITS_PER_UNIT
|
|
>= tree_to_uhwi (len))))
|
|
{
|
|
tree fn = builtin_decl_implicit (BUILT_IN_MEMCPY);
|
|
if (!fn)
|
|
return false;
|
|
gimple_call_set_fndecl (stmt, fn);
|
|
gimple_call_set_arg (stmt, 0, dest);
|
|
gimple_call_set_arg (stmt, 1, src);
|
|
fold_stmt (gsi);
|
|
return true;
|
|
}
|
|
|
|
/* If *src and *dest can't overlap, optimize into memcpy as well. */
|
|
if (TREE_CODE (src) == ADDR_EXPR
|
|
&& TREE_CODE (dest) == ADDR_EXPR)
|
|
{
|
|
tree src_base, dest_base, fn;
|
|
poly_int64 src_offset = 0, dest_offset = 0;
|
|
poly_uint64 maxsize;
|
|
|
|
srcvar = TREE_OPERAND (src, 0);
|
|
src_base = get_addr_base_and_unit_offset (srcvar, &src_offset);
|
|
if (src_base == NULL)
|
|
src_base = srcvar;
|
|
destvar = TREE_OPERAND (dest, 0);
|
|
dest_base = get_addr_base_and_unit_offset (destvar,
|
|
&dest_offset);
|
|
if (dest_base == NULL)
|
|
dest_base = destvar;
|
|
if (!poly_int_tree_p (len, &maxsize))
|
|
maxsize = -1;
|
|
if (SSA_VAR_P (src_base)
|
|
&& SSA_VAR_P (dest_base))
|
|
{
|
|
if (operand_equal_p (src_base, dest_base, 0)
|
|
&& ranges_maybe_overlap_p (src_offset, maxsize,
|
|
dest_offset, maxsize))
|
|
return false;
|
|
}
|
|
else if (TREE_CODE (src_base) == MEM_REF
|
|
&& TREE_CODE (dest_base) == MEM_REF)
|
|
{
|
|
if (! operand_equal_p (TREE_OPERAND (src_base, 0),
|
|
TREE_OPERAND (dest_base, 0), 0))
|
|
return false;
|
|
poly_offset_int full_src_offset
|
|
= mem_ref_offset (src_base) + src_offset;
|
|
poly_offset_int full_dest_offset
|
|
= mem_ref_offset (dest_base) + dest_offset;
|
|
if (ranges_maybe_overlap_p (full_src_offset, maxsize,
|
|
full_dest_offset, maxsize))
|
|
return false;
|
|
}
|
|
else
|
|
return false;
|
|
|
|
fn = builtin_decl_implicit (BUILT_IN_MEMCPY);
|
|
if (!fn)
|
|
return false;
|
|
gimple_call_set_fndecl (stmt, fn);
|
|
gimple_call_set_arg (stmt, 0, dest);
|
|
gimple_call_set_arg (stmt, 1, src);
|
|
fold_stmt (gsi);
|
|
return true;
|
|
}
|
|
|
|
/* If the destination and source do not alias optimize into
|
|
memcpy as well. */
|
|
if ((is_gimple_min_invariant (dest)
|
|
|| TREE_CODE (dest) == SSA_NAME)
|
|
&& (is_gimple_min_invariant (src)
|
|
|| TREE_CODE (src) == SSA_NAME))
|
|
{
|
|
ao_ref destr, srcr;
|
|
ao_ref_init_from_ptr_and_size (&destr, dest, len);
|
|
ao_ref_init_from_ptr_and_size (&srcr, src, len);
|
|
if (!refs_may_alias_p_1 (&destr, &srcr, false))
|
|
{
|
|
tree fn;
|
|
fn = builtin_decl_implicit (BUILT_IN_MEMCPY);
|
|
if (!fn)
|
|
return false;
|
|
gimple_call_set_fndecl (stmt, fn);
|
|
gimple_call_set_arg (stmt, 0, dest);
|
|
gimple_call_set_arg (stmt, 1, src);
|
|
fold_stmt (gsi);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
if (!tree_fits_shwi_p (len))
|
|
return false;
|
|
if (!POINTER_TYPE_P (TREE_TYPE (src))
|
|
|| !POINTER_TYPE_P (TREE_TYPE (dest)))
|
|
return false;
|
|
/* In the following try to find a type that is most natural to be
|
|
used for the memcpy source and destination and that allows
|
|
the most optimization when memcpy is turned into a plain assignment
|
|
using that type. In theory we could always use a char[len] type
|
|
but that only gains us that the destination and source possibly
|
|
no longer will have their address taken. */
|
|
srctype = TREE_TYPE (TREE_TYPE (src));
|
|
if (TREE_CODE (srctype) == ARRAY_TYPE
|
|
&& !tree_int_cst_equal (TYPE_SIZE_UNIT (srctype), len))
|
|
srctype = TREE_TYPE (srctype);
|
|
desttype = TREE_TYPE (TREE_TYPE (dest));
|
|
if (TREE_CODE (desttype) == ARRAY_TYPE
|
|
&& !tree_int_cst_equal (TYPE_SIZE_UNIT (desttype), len))
|
|
desttype = TREE_TYPE (desttype);
|
|
if (TREE_ADDRESSABLE (srctype)
|
|
|| TREE_ADDRESSABLE (desttype))
|
|
return false;
|
|
|
|
/* Make sure we are not copying using a floating-point mode or
|
|
a type whose size possibly does not match its precision. */
|
|
if (FLOAT_MODE_P (TYPE_MODE (desttype))
|
|
|| TREE_CODE (desttype) == BOOLEAN_TYPE
|
|
|| TREE_CODE (desttype) == ENUMERAL_TYPE)
|
|
desttype = bitwise_type_for_mode (TYPE_MODE (desttype));
|
|
if (FLOAT_MODE_P (TYPE_MODE (srctype))
|
|
|| TREE_CODE (srctype) == BOOLEAN_TYPE
|
|
|| TREE_CODE (srctype) == ENUMERAL_TYPE)
|
|
srctype = bitwise_type_for_mode (TYPE_MODE (srctype));
|
|
if (!srctype)
|
|
srctype = desttype;
|
|
if (!desttype)
|
|
desttype = srctype;
|
|
if (!srctype)
|
|
return false;
|
|
|
|
src_align = get_pointer_alignment (src);
|
|
dest_align = get_pointer_alignment (dest);
|
|
|
|
/* Choose between src and destination type for the access based
|
|
on alignment, whether the access constitutes a register access
|
|
and whether it may actually expose a declaration for SSA rewrite
|
|
or SRA decomposition. */
|
|
destvar = NULL_TREE;
|
|
srcvar = NULL_TREE;
|
|
if (TREE_CODE (dest) == ADDR_EXPR
|
|
&& var_decl_component_p (TREE_OPERAND (dest, 0))
|
|
&& tree_int_cst_equal (TYPE_SIZE_UNIT (desttype), len)
|
|
&& dest_align >= TYPE_ALIGN (desttype)
|
|
&& (is_gimple_reg_type (desttype)
|
|
|| src_align >= TYPE_ALIGN (desttype)))
|
|
destvar = fold_build2 (MEM_REF, desttype, dest, off0);
|
|
else if (TREE_CODE (src) == ADDR_EXPR
|
|
&& var_decl_component_p (TREE_OPERAND (src, 0))
|
|
&& tree_int_cst_equal (TYPE_SIZE_UNIT (srctype), len)
|
|
&& src_align >= TYPE_ALIGN (srctype)
|
|
&& (is_gimple_reg_type (srctype)
|
|
|| dest_align >= TYPE_ALIGN (srctype)))
|
|
srcvar = fold_build2 (MEM_REF, srctype, src, off0);
|
|
if (srcvar == NULL_TREE && destvar == NULL_TREE)
|
|
return false;
|
|
|
|
/* Now that we chose an access type express the other side in
|
|
terms of it if the target allows that with respect to alignment
|
|
constraints. */
|
|
if (srcvar == NULL_TREE)
|
|
{
|
|
if (src_align >= TYPE_ALIGN (desttype))
|
|
srcvar = fold_build2 (MEM_REF, desttype, src, off0);
|
|
else
|
|
{
|
|
if (STRICT_ALIGNMENT)
|
|
return false;
|
|
srctype = build_aligned_type (TYPE_MAIN_VARIANT (desttype),
|
|
src_align);
|
|
srcvar = fold_build2 (MEM_REF, srctype, src, off0);
|
|
}
|
|
}
|
|
else if (destvar == NULL_TREE)
|
|
{
|
|
if (dest_align >= TYPE_ALIGN (srctype))
|
|
destvar = fold_build2 (MEM_REF, srctype, dest, off0);
|
|
else
|
|
{
|
|
if (STRICT_ALIGNMENT)
|
|
return false;
|
|
desttype = build_aligned_type (TYPE_MAIN_VARIANT (srctype),
|
|
dest_align);
|
|
destvar = fold_build2 (MEM_REF, desttype, dest, off0);
|
|
}
|
|
}
|
|
|
|
/* Same as above, detect out-of-bounds accesses without issuing
|
|
warnings. Avoid folding out-of-bounds copies but to avoid
|
|
false positives for unreachable code defer warning until
|
|
after DCE has worked its magic.
|
|
-Wrestrict is still diagnosed. */
|
|
if (int warning = check_bounds_or_overlap (as_a <gcall *>(stmt),
|
|
dest, src, len, len,
|
|
false, false))
|
|
if (warning != OPT_Wrestrict)
|
|
return false;
|
|
|
|
gimple *new_stmt;
|
|
if (is_gimple_reg_type (TREE_TYPE (srcvar)))
|
|
{
|
|
tree tem = fold_const_aggregate_ref (srcvar);
|
|
if (tem)
|
|
srcvar = tem;
|
|
if (! is_gimple_min_invariant (srcvar))
|
|
{
|
|
new_stmt = gimple_build_assign (NULL_TREE, srcvar);
|
|
srcvar = create_tmp_reg_or_ssa_name (TREE_TYPE (srcvar),
|
|
new_stmt);
|
|
gimple_assign_set_lhs (new_stmt, srcvar);
|
|
gimple_set_vuse (new_stmt, gimple_vuse (stmt));
|
|
gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT);
|
|
}
|
|
new_stmt = gimple_build_assign (destvar, srcvar);
|
|
goto set_vop_and_replace;
|
|
}
|
|
|
|
/* We get an aggregate copy. Use an unsigned char[] type to
|
|
perform the copying to preserve padding and to avoid any issues
|
|
with TREE_ADDRESSABLE types or float modes behavior on copying. */
|
|
desttype = build_array_type_nelts (unsigned_char_type_node,
|
|
tree_to_uhwi (len));
|
|
srctype = desttype;
|
|
if (src_align > TYPE_ALIGN (srctype))
|
|
srctype = build_aligned_type (srctype, src_align);
|
|
if (dest_align > TYPE_ALIGN (desttype))
|
|
desttype = build_aligned_type (desttype, dest_align);
|
|
new_stmt
|
|
= gimple_build_assign (fold_build2 (MEM_REF, desttype, dest, off0),
|
|
fold_build2 (MEM_REF, srctype, src, off0));
|
|
set_vop_and_replace:
|
|
gimple_move_vops (new_stmt, stmt);
|
|
if (!lhs)
|
|
{
|
|
gsi_replace (gsi, new_stmt, false);
|
|
return true;
|
|
}
|
|
gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT);
|
|
}
|
|
|
|
done:
|
|
gimple_seq stmts = NULL;
|
|
if (code == BUILT_IN_MEMCPY || code == BUILT_IN_MEMMOVE)
|
|
len = NULL_TREE;
|
|
else if (code == BUILT_IN_MEMPCPY)
|
|
{
|
|
len = gimple_convert_to_ptrofftype (&stmts, loc, len);
|
|
dest = gimple_build (&stmts, loc, POINTER_PLUS_EXPR,
|
|
TREE_TYPE (dest), dest, len);
|
|
}
|
|
else
|
|
gcc_unreachable ();
|
|
|
|
gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
|
|
gimple *repl = gimple_build_assign (lhs, dest);
|
|
gsi_replace (gsi, repl, false);
|
|
return true;
|
|
}
|
|
|
|
/* Transform a call to built-in bcmp(a, b, len) at *GSI into one
|
|
to built-in memcmp (a, b, len). */
|
|
|
|
static bool
|
|
gimple_fold_builtin_bcmp (gimple_stmt_iterator *gsi)
|
|
{
|
|
tree fn = builtin_decl_implicit (BUILT_IN_MEMCMP);
|
|
|
|
if (!fn)
|
|
return false;
|
|
|
|
/* Transform bcmp (a, b, len) into memcmp (a, b, len). */
|
|
|
|
gimple *stmt = gsi_stmt (*gsi);
|
|
tree a = gimple_call_arg (stmt, 0);
|
|
tree b = gimple_call_arg (stmt, 1);
|
|
tree len = gimple_call_arg (stmt, 2);
|
|
|
|
gimple *repl = gimple_build_call (fn, 3, a, b, len);
|
|
replace_call_with_call_and_fold (gsi, repl);
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Transform a call to built-in bcopy (src, dest, len) at *GSI into one
|
|
to built-in memmove (dest, src, len). */
|
|
|
|
static bool
|
|
gimple_fold_builtin_bcopy (gimple_stmt_iterator *gsi)
|
|
{
|
|
tree fn = builtin_decl_implicit (BUILT_IN_MEMMOVE);
|
|
|
|
if (!fn)
|
|
return false;
|
|
|
|
/* bcopy has been removed from POSIX in Issue 7 but Issue 6 specifies
|
|
it's quivalent to memmove (not memcpy). Transform bcopy (src, dest,
|
|
len) into memmove (dest, src, len). */
|
|
|
|
gimple *stmt = gsi_stmt (*gsi);
|
|
tree src = gimple_call_arg (stmt, 0);
|
|
tree dest = gimple_call_arg (stmt, 1);
|
|
tree len = gimple_call_arg (stmt, 2);
|
|
|
|
gimple *repl = gimple_build_call (fn, 3, dest, src, len);
|
|
gimple_call_set_fntype (as_a <gcall *> (stmt), TREE_TYPE (fn));
|
|
replace_call_with_call_and_fold (gsi, repl);
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Transform a call to built-in bzero (dest, len) at *GSI into one
|
|
to built-in memset (dest, 0, len). */
|
|
|
|
static bool
|
|
gimple_fold_builtin_bzero (gimple_stmt_iterator *gsi)
|
|
{
|
|
tree fn = builtin_decl_implicit (BUILT_IN_MEMSET);
|
|
|
|
if (!fn)
|
|
return false;
|
|
|
|
/* Transform bzero (dest, len) into memset (dest, 0, len). */
|
|
|
|
gimple *stmt = gsi_stmt (*gsi);
|
|
tree dest = gimple_call_arg (stmt, 0);
|
|
tree len = gimple_call_arg (stmt, 1);
|
|
|
|
gimple_seq seq = NULL;
|
|
gimple *repl = gimple_build_call (fn, 3, dest, integer_zero_node, len);
|
|
gimple_seq_add_stmt_without_update (&seq, repl);
|
|
gsi_replace_with_seq_vops (gsi, seq);
|
|
fold_stmt (gsi);
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Fold function call to builtin memset or bzero at *GSI setting the
|
|
memory of size LEN to VAL. Return whether a simplification was made. */
|
|
|
|
static bool
|
|
gimple_fold_builtin_memset (gimple_stmt_iterator *gsi, tree c, tree len)
|
|
{
|
|
gimple *stmt = gsi_stmt (*gsi);
|
|
tree etype;
|
|
unsigned HOST_WIDE_INT length, cval;
|
|
|
|
/* If the LEN parameter is zero, return DEST. */
|
|
if (integer_zerop (len))
|
|
{
|
|
replace_call_with_value (gsi, gimple_call_arg (stmt, 0));
|
|
return true;
|
|
}
|
|
|
|
if (! tree_fits_uhwi_p (len))
|
|
return false;
|
|
|
|
if (TREE_CODE (c) != INTEGER_CST)
|
|
return false;
|
|
|
|
tree dest = gimple_call_arg (stmt, 0);
|
|
tree var = dest;
|
|
if (TREE_CODE (var) != ADDR_EXPR)
|
|
return false;
|
|
|
|
var = TREE_OPERAND (var, 0);
|
|
if (TREE_THIS_VOLATILE (var))
|
|
return false;
|
|
|
|
etype = TREE_TYPE (var);
|
|
if (TREE_CODE (etype) == ARRAY_TYPE)
|
|
etype = TREE_TYPE (etype);
|
|
|
|
if (!INTEGRAL_TYPE_P (etype)
|
|
&& !POINTER_TYPE_P (etype))
|
|
return NULL_TREE;
|
|
|
|
if (! var_decl_component_p (var))
|
|
return NULL_TREE;
|
|
|
|
length = tree_to_uhwi (len);
|
|
if (GET_MODE_SIZE (SCALAR_INT_TYPE_MODE (etype)) != length
|
|
|| get_pointer_alignment (dest) / BITS_PER_UNIT < length)
|
|
return NULL_TREE;
|
|
|
|
if (length > HOST_BITS_PER_WIDE_INT / BITS_PER_UNIT)
|
|
return NULL_TREE;
|
|
|
|
if (integer_zerop (c))
|
|
cval = 0;
|
|
else
|
|
{
|
|
if (CHAR_BIT != 8 || BITS_PER_UNIT != 8 || HOST_BITS_PER_WIDE_INT > 64)
|
|
return NULL_TREE;
|
|
|
|
cval = TREE_INT_CST_LOW (c);
|
|
cval &= 0xff;
|
|
cval |= cval << 8;
|
|
cval |= cval << 16;
|
|
cval |= (cval << 31) << 1;
|
|
}
|
|
|
|
var = fold_build2 (MEM_REF, etype, dest, build_int_cst (ptr_type_node, 0));
|
|
gimple *store = gimple_build_assign (var, build_int_cst_type (etype, cval));
|
|
gimple_move_vops (store, stmt);
|
|
gsi_insert_before (gsi, store, GSI_SAME_STMT);
|
|
if (gimple_call_lhs (stmt))
|
|
{
|
|
gimple *asgn = gimple_build_assign (gimple_call_lhs (stmt), dest);
|
|
gsi_replace (gsi, asgn, false);
|
|
}
|
|
else
|
|
{
|
|
gimple_stmt_iterator gsi2 = *gsi;
|
|
gsi_prev (gsi);
|
|
gsi_remove (&gsi2, true);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Helper of get_range_strlen for ARG that is not an SSA_NAME. */
|
|
|
|
static bool
|
|
get_range_strlen_tree (tree arg, bitmap *visited, strlen_range_kind rkind,
|
|
c_strlen_data *pdata, unsigned eltsize)
|
|
{
|
|
gcc_assert (TREE_CODE (arg) != SSA_NAME);
|
|
|
|
/* The length computed by this invocation of the function. */
|
|
tree val = NULL_TREE;
|
|
|
|
/* True if VAL is an optimistic (tight) bound determined from
|
|
the size of the character array in which the string may be
|
|
stored. In that case, the computed VAL is used to set
|
|
PDATA->MAXBOUND. */
|
|
bool tight_bound = false;
|
|
|
|
/* We can end up with &(*iftmp_1)[0] here as well, so handle it. */
|
|
if (TREE_CODE (arg) == ADDR_EXPR
|
|
&& TREE_CODE (TREE_OPERAND (arg, 0)) == ARRAY_REF)
|
|
{
|
|
tree op = TREE_OPERAND (arg, 0);
|
|
if (integer_zerop (TREE_OPERAND (op, 1)))
|
|
{
|
|
tree aop0 = TREE_OPERAND (op, 0);
|
|
if (TREE_CODE (aop0) == INDIRECT_REF
|
|
&& TREE_CODE (TREE_OPERAND (aop0, 0)) == SSA_NAME)
|
|
return get_range_strlen (TREE_OPERAND (aop0, 0), visited, rkind,
|
|
pdata, eltsize);
|
|
}
|
|
else if (TREE_CODE (TREE_OPERAND (op, 0)) == COMPONENT_REF
|
|
&& rkind == SRK_LENRANGE)
|
|
{
|
|
/* Fail if an array is the last member of a struct object
|
|
since it could be treated as a (fake) flexible array
|
|
member. */
|
|
tree idx = TREE_OPERAND (op, 1);
|
|
|
|
arg = TREE_OPERAND (op, 0);
|
|
tree optype = TREE_TYPE (arg);
|
|
if (tree dom = TYPE_DOMAIN (optype))
|
|
if (tree bound = TYPE_MAX_VALUE (dom))
|
|
if (TREE_CODE (bound) == INTEGER_CST
|
|
&& TREE_CODE (idx) == INTEGER_CST
|
|
&& tree_int_cst_lt (bound, idx))
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (rkind == SRK_INT_VALUE)
|
|
{
|
|
/* We are computing the maximum value (not string length). */
|
|
val = arg;
|
|
if (TREE_CODE (val) != INTEGER_CST
|
|
|| tree_int_cst_sgn (val) < 0)
|
|
return false;
|
|
}
|
|
else
|
|
{
|
|
c_strlen_data lendata = { };
|
|
val = c_strlen (arg, 1, &lendata, eltsize);
|
|
|
|
if (!val && lendata.decl)
|
|
{
|
|
/* ARG refers to an unterminated const character array.
|
|
DATA.DECL with size DATA.LEN. */
|
|
val = lendata.minlen;
|
|
pdata->decl = lendata.decl;
|
|
}
|
|
}
|
|
|
|
/* Set if VAL represents the maximum length based on array size (set
|
|
when exact length cannot be determined). */
|
|
bool maxbound = false;
|
|
|
|
if (!val && rkind == SRK_LENRANGE)
|
|
{
|
|
if (TREE_CODE (arg) == ADDR_EXPR)
|
|
return get_range_strlen (TREE_OPERAND (arg, 0), visited, rkind,
|
|
pdata, eltsize);
|
|
|
|
if (TREE_CODE (arg) == ARRAY_REF)
|
|
{
|
|
tree optype = TREE_TYPE (TREE_OPERAND (arg, 0));
|
|
|
|
/* Determine the "innermost" array type. */
|
|
while (TREE_CODE (optype) == ARRAY_TYPE
|
|
&& TREE_CODE (TREE_TYPE (optype)) == ARRAY_TYPE)
|
|
optype = TREE_TYPE (optype);
|
|
|
|
/* Avoid arrays of pointers. */
|
|
tree eltype = TREE_TYPE (optype);
|
|
if (TREE_CODE (optype) != ARRAY_TYPE
|
|
|| !INTEGRAL_TYPE_P (eltype))
|
|
return false;
|
|
|
|
/* Fail when the array bound is unknown or zero. */
|
|
val = TYPE_SIZE_UNIT (optype);
|
|
if (!val || integer_zerop (val))
|
|
return false;
|
|
|
|
val = fold_build2 (MINUS_EXPR, TREE_TYPE (val), val,
|
|
integer_one_node);
|
|
|
|
/* Set the minimum size to zero since the string in
|
|
the array could have zero length. */
|
|
pdata->minlen = ssize_int (0);
|
|
|
|
tight_bound = true;
|
|
}
|
|
else if (TREE_CODE (arg) == COMPONENT_REF
|
|
&& (TREE_CODE (TREE_TYPE (TREE_OPERAND (arg, 1)))
|
|
== ARRAY_TYPE))
|
|
{
|
|
/* Use the type of the member array to determine the upper
|
|
bound on the length of the array. This may be overly
|
|
optimistic if the array itself isn't NUL-terminated and
|
|
the caller relies on the subsequent member to contain
|
|
the NUL but that would only be considered valid if
|
|
the array were the last member of a struct. */
|
|
|
|
tree fld = TREE_OPERAND (arg, 1);
|
|
|
|
tree optype = TREE_TYPE (fld);
|
|
|
|
/* Determine the "innermost" array type. */
|
|
while (TREE_CODE (optype) == ARRAY_TYPE
|
|
&& TREE_CODE (TREE_TYPE (optype)) == ARRAY_TYPE)
|
|
optype = TREE_TYPE (optype);
|
|
|
|
/* Fail when the array bound is unknown or zero. */
|
|
val = TYPE_SIZE_UNIT (optype);
|
|
if (!val || integer_zerop (val))
|
|
return false;
|
|
val = fold_build2 (MINUS_EXPR, TREE_TYPE (val), val,
|
|
integer_one_node);
|
|
|
|
/* Set the minimum size to zero since the string in
|
|
the array could have zero length. */
|
|
pdata->minlen = ssize_int (0);
|
|
|
|
/* The array size determined above is an optimistic bound
|
|
on the length. If the array isn't nul-terminated the
|
|
length computed by the library function would be greater.
|
|
Even though using strlen to cross the subobject boundary
|
|
is undefined, avoid drawing conclusions from the member
|
|
type about the length here. */
|
|
tight_bound = true;
|
|
}
|
|
else if (TREE_CODE (arg) == MEM_REF
|
|
&& TREE_CODE (TREE_TYPE (arg)) == ARRAY_TYPE
|
|
&& TREE_CODE (TREE_TYPE (TREE_TYPE (arg))) == INTEGER_TYPE
|
|
&& TREE_CODE (TREE_OPERAND (arg, 0)) == ADDR_EXPR)
|
|
{
|
|
/* Handle a MEM_REF into a DECL accessing an array of integers,
|
|
being conservative about references to extern structures with
|
|
flexible array members that can be initialized to arbitrary
|
|
numbers of elements as an extension (static structs are okay).
|
|
FIXME: Make this less conservative -- see
|
|
component_ref_size in tree.c. */
|
|
tree ref = TREE_OPERAND (TREE_OPERAND (arg, 0), 0);
|
|
if ((TREE_CODE (ref) == PARM_DECL || VAR_P (ref))
|
|
&& (decl_binds_to_current_def_p (ref)
|
|
|| !array_at_struct_end_p (arg)))
|
|
{
|
|
/* Fail if the offset is out of bounds. Such accesses
|
|
should be diagnosed at some point. */
|
|
val = DECL_SIZE_UNIT (ref);
|
|
if (!val || integer_zerop (val))
|
|
return false;
|
|
|
|
poly_offset_int psiz = wi::to_offset (val);
|
|
poly_offset_int poff = mem_ref_offset (arg);
|
|
if (known_le (psiz, poff))
|
|
return false;
|
|
|
|
pdata->minlen = ssize_int (0);
|
|
|
|
/* Subtract the offset and one for the terminating nul. */
|
|
psiz -= poff;
|
|
psiz -= 1;
|
|
val = wide_int_to_tree (TREE_TYPE (val), psiz);
|
|
/* Since VAL reflects the size of a declared object
|
|
rather the type of the access it is not a tight bound. */
|
|
}
|
|
}
|
|
else if (TREE_CODE (arg) == PARM_DECL || VAR_P (arg))
|
|
{
|
|
/* Avoid handling pointers to arrays. GCC might misuse
|
|
a pointer to an array of one bound to point to an array
|
|
object of a greater bound. */
|
|
tree argtype = TREE_TYPE (arg);
|
|
if (TREE_CODE (argtype) == ARRAY_TYPE)
|
|
{
|
|
val = TYPE_SIZE_UNIT (argtype);
|
|
if (!val
|
|
|| TREE_CODE (val) != INTEGER_CST
|
|
|| integer_zerop (val))
|
|
return false;
|
|
val = wide_int_to_tree (TREE_TYPE (val),
|
|
wi::sub (wi::to_wide (val), 1));
|
|
|
|
/* Set the minimum size to zero since the string in
|
|
the array could have zero length. */
|
|
pdata->minlen = ssize_int (0);
|
|
}
|
|
}
|
|
maxbound = true;
|
|
}
|
|
|
|
if (!val)
|
|
return false;
|
|
|
|
/* Adjust the lower bound on the string length as necessary. */
|
|
if (!pdata->minlen
|
|
|| (rkind != SRK_STRLEN
|
|
&& TREE_CODE (pdata->minlen) == INTEGER_CST
|
|
&& TREE_CODE (val) == INTEGER_CST
|
|
&& tree_int_cst_lt (val, pdata->minlen)))
|
|
pdata->minlen = val;
|
|
|
|
if (pdata->maxbound && TREE_CODE (pdata->maxbound) == INTEGER_CST)
|
|
{
|
|
/* Adjust the tighter (more optimistic) string length bound
|
|
if necessary and proceed to adjust the more conservative
|
|
bound. */
|
|
if (TREE_CODE (val) == INTEGER_CST)
|
|
{
|
|
if (tree_int_cst_lt (pdata->maxbound, val))
|
|
pdata->maxbound = val;
|
|
}
|
|
else
|
|
pdata->maxbound = val;
|
|
}
|
|
else if (pdata->maxbound || maxbound)
|
|
/* Set PDATA->MAXBOUND only if it either isn't INTEGER_CST or
|
|
if VAL corresponds to the maximum length determined based
|
|
on the type of the object. */
|
|
pdata->maxbound = val;
|
|
|
|
if (tight_bound)
|
|
{
|
|
/* VAL computed above represents an optimistically tight bound
|
|
on the length of the string based on the referenced object's
|
|
or subobject's type. Determine the conservative upper bound
|
|
based on the enclosing object's size if possible. */
|
|
if (rkind == SRK_LENRANGE)
|
|
{
|
|
poly_int64 offset;
|
|
tree base = get_addr_base_and_unit_offset (arg, &offset);
|
|
if (!base)
|
|
{
|
|
/* When the call above fails due to a non-constant offset
|
|
assume the offset is zero and use the size of the whole
|
|
enclosing object instead. */
|
|
base = get_base_address (arg);
|
|
offset = 0;
|
|
}
|
|
/* If the base object is a pointer no upper bound on the length
|
|
can be determined. Otherwise the maximum length is equal to
|
|
the size of the enclosing object minus the offset of
|
|
the referenced subobject minus 1 (for the terminating nul). */
|
|
tree type = TREE_TYPE (base);
|
|
if (TREE_CODE (type) == POINTER_TYPE
|
|
|| (TREE_CODE (base) != PARM_DECL && !VAR_P (base))
|
|
|| !(val = DECL_SIZE_UNIT (base)))
|
|
val = build_all_ones_cst (size_type_node);
|
|
else
|
|
{
|
|
val = DECL_SIZE_UNIT (base);
|
|
val = fold_build2 (MINUS_EXPR, TREE_TYPE (val), val,
|
|
size_int (offset + 1));
|
|
}
|
|
}
|
|
else
|
|
return false;
|
|
}
|
|
|
|
if (pdata->maxlen)
|
|
{
|
|
/* Adjust the more conservative bound if possible/necessary
|
|
and fail otherwise. */
|
|
if (rkind != SRK_STRLEN)
|
|
{
|
|
if (TREE_CODE (pdata->maxlen) != INTEGER_CST
|
|
|| TREE_CODE (val) != INTEGER_CST)
|
|
return false;
|
|
|
|
if (tree_int_cst_lt (pdata->maxlen, val))
|
|
pdata->maxlen = val;
|
|
return true;
|
|
}
|
|
else if (simple_cst_equal (val, pdata->maxlen) != 1)
|
|
{
|
|
/* Fail if the length of this ARG is different from that
|
|
previously determined from another ARG. */
|
|
return false;
|
|
}
|
|
}
|
|
|
|
pdata->maxlen = val;
|
|
return rkind == SRK_LENRANGE || !integer_all_onesp (val);
|
|
}
|
|
|
|
/* For an ARG referencing one or more strings, try to obtain the range
|
|
of their lengths, or the size of the largest array ARG referes to if
|
|
the range of lengths cannot be determined, and store all in *PDATA.
|
|
For an integer ARG (when RKIND == SRK_INT_VALUE), try to determine
|
|
the maximum constant value.
|
|
If ARG is an SSA_NAME, follow its use-def chains. When RKIND ==
|
|
SRK_STRLEN, then if PDATA->MAXLEN is not equal to the determined
|
|
length or if we are unable to determine the length, return false.
|
|
VISITED is a bitmap of visited variables.
|
|
RKIND determines the kind of value or range to obtain (see
|
|
strlen_range_kind).
|
|
Set PDATA->DECL if ARG refers to an unterminated constant array.
|
|
On input, set ELTSIZE to 1 for normal single byte character strings,
|
|
and either 2 or 4 for wide characer strings (the size of wchar_t).
|
|
Return true if *PDATA was successfully populated and false otherwise. */
|
|
|
|
static bool
|
|
get_range_strlen (tree arg, bitmap *visited,
|
|
strlen_range_kind rkind,
|
|
c_strlen_data *pdata, unsigned eltsize)
|
|
{
|
|
|
|
if (TREE_CODE (arg) != SSA_NAME)
|
|
return get_range_strlen_tree (arg, visited, rkind, pdata, eltsize);
|
|
|
|
/* If ARG is registered for SSA update we cannot look at its defining
|
|
statement. */
|
|
if (name_registered_for_update_p (arg))
|
|
return false;
|
|
|
|
/* If we were already here, break the infinite cycle. */
|
|
if (!*visited)
|
|
*visited = BITMAP_ALLOC (NULL);
|
|
if (!bitmap_set_bit (*visited, SSA_NAME_VERSION (arg)))
|
|
return true;
|
|
|
|
tree var = arg;
|
|
gimple *def_stmt = SSA_NAME_DEF_STMT (var);
|
|
|
|
switch (gimple_code (def_stmt))
|
|
{
|
|
case GIMPLE_ASSIGN:
|
|
/* The RHS of the statement defining VAR must either have a
|
|
constant length or come from another SSA_NAME with a constant
|
|
length. */
|
|
if (gimple_assign_single_p (def_stmt)
|
|
|| gimple_assign_unary_nop_p (def_stmt))
|
|
{
|
|
tree rhs = gimple_assign_rhs1 (def_stmt);
|
|
return get_range_strlen (rhs, visited, rkind, pdata, eltsize);
|
|
}
|
|
else if (gimple_assign_rhs_code (def_stmt) == COND_EXPR)
|
|
{
|
|
tree ops[2] = { gimple_assign_rhs2 (def_stmt),
|
|
gimple_assign_rhs3 (def_stmt) };
|
|
|
|
for (unsigned int i = 0; i < 2; i++)
|
|
if (!get_range_strlen (ops[i], visited, rkind, pdata, eltsize))
|
|
{
|
|
if (rkind != SRK_LENRANGE)
|
|
return false;
|
|
/* Set the upper bound to the maximum to prevent
|
|
it from being adjusted in the next iteration but
|
|
leave MINLEN and the more conservative MAXBOUND
|
|
determined so far alone (or leave them null if
|
|
they haven't been set yet). That the MINLEN is
|
|
in fact zero can be determined from MAXLEN being
|
|
unbounded but the discovered minimum is used for
|
|
diagnostics. */
|
|
pdata->maxlen = build_all_ones_cst (size_type_node);
|
|
}
|
|
return true;
|
|
}
|
|
return false;
|
|
|
|
case GIMPLE_PHI:
|
|
/* Unless RKIND == SRK_LENRANGE, all arguments of the PHI node
|
|
must have a constant length. */
|
|
for (unsigned i = 0; i < gimple_phi_num_args (def_stmt); i++)
|
|
{
|
|
tree arg = gimple_phi_arg (def_stmt, i)->def;
|
|
|
|
/* If this PHI has itself as an argument, we cannot
|
|
determine the string length of this argument. However,
|
|
if we can find a constant string length for the other
|
|
PHI args then we can still be sure that this is a
|
|
constant string length. So be optimistic and just
|
|
continue with the next argument. */
|
|
if (arg == gimple_phi_result (def_stmt))
|
|
continue;
|
|
|
|
if (!get_range_strlen (arg, visited, rkind, pdata, eltsize))
|
|
{
|
|
if (rkind != SRK_LENRANGE)
|
|
return false;
|
|
/* Set the upper bound to the maximum to prevent
|
|
it from being adjusted in the next iteration but
|
|
leave MINLEN and the more conservative MAXBOUND
|
|
determined so far alone (or leave them null if
|
|
they haven't been set yet). That the MINLEN is
|
|
in fact zero can be determined from MAXLEN being
|
|
unbounded but the discovered minimum is used for
|
|
diagnostics. */
|
|
pdata->maxlen = build_all_ones_cst (size_type_node);
|
|
}
|
|
}
|
|
return true;
|
|
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/* Try to obtain the range of the lengths of the string(s) referenced
|
|
by ARG, or the size of the largest array ARG refers to if the range
|
|
of lengths cannot be determined, and store all in *PDATA which must
|
|
be zero-initialized on input except PDATA->MAXBOUND may be set to
|
|
a non-null tree node other than INTEGER_CST to request to have it
|
|
set to the length of the longest string in a PHI. ELTSIZE is
|
|
the expected size of the string element in bytes: 1 for char and
|
|
some power of 2 for wide characters.
|
|
Return true if the range [PDATA->MINLEN, PDATA->MAXLEN] is suitable
|
|
for optimization. Returning false means that a nonzero PDATA->MINLEN
|
|
doesn't reflect the true lower bound of the range when PDATA->MAXLEN
|
|
is -1 (in that case, the actual range is indeterminate, i.e.,
|
|
[0, PTRDIFF_MAX - 2]. */
|
|
|
|
bool
|
|
get_range_strlen (tree arg, c_strlen_data *pdata, unsigned eltsize)
|
|
{
|
|
bitmap visited = NULL;
|
|
tree maxbound = pdata->maxbound;
|
|
|
|
if (!get_range_strlen (arg, &visited, SRK_LENRANGE, pdata, eltsize))
|
|
{
|
|
/* On failure extend the length range to an impossible maximum
|
|
(a valid MAXLEN must be less than PTRDIFF_MAX - 1). Other
|
|
members can stay unchanged regardless. */
|
|
pdata->minlen = ssize_int (0);
|
|
pdata->maxlen = build_all_ones_cst (size_type_node);
|
|
}
|
|
else if (!pdata->minlen)
|
|
pdata->minlen = ssize_int (0);
|
|
|
|
/* If it's unchanged from it initial non-null value, set the conservative
|
|
MAXBOUND to SIZE_MAX. Otherwise leave it null (if it is null). */
|
|
if (maxbound && pdata->maxbound == maxbound)
|
|
pdata->maxbound = build_all_ones_cst (size_type_node);
|
|
|
|
if (visited)
|
|
BITMAP_FREE (visited);
|
|
|
|
return !integer_all_onesp (pdata->maxlen);
|
|
}
|
|
|
|
/* Return the maximum value for ARG given RKIND (see strlen_range_kind).
|
|
For ARG of pointer types, NONSTR indicates if the caller is prepared
|
|
to handle unterminated strings. For integer ARG and when RKIND ==
|
|
SRK_INT_VALUE, NONSTR must be null.
|
|
|
|
If an unterminated array is discovered and our caller handles
|
|
unterminated arrays, then bubble up the offending DECL and
|
|
return the maximum size. Otherwise return NULL. */
|
|
|
|
static tree
|
|
get_maxval_strlen (tree arg, strlen_range_kind rkind, tree *nonstr = NULL)
|
|
{
|
|
/* A non-null NONSTR is meaningless when determining the maximum
|
|
value of an integer ARG. */
|
|
gcc_assert (rkind != SRK_INT_VALUE || nonstr == NULL);
|
|
/* ARG must have an integral type when RKIND says so. */
|
|
gcc_assert (rkind != SRK_INT_VALUE || INTEGRAL_TYPE_P (TREE_TYPE (arg)));
|
|
|
|
bitmap visited = NULL;
|
|
|
|
/* Reset DATA.MAXLEN if the call fails or when DATA.MAXLEN
|
|
is unbounded. */
|
|
c_strlen_data lendata = { };
|
|
if (!get_range_strlen (arg, &visited, rkind, &lendata, /* eltsize = */1))
|
|
lendata.maxlen = NULL_TREE;
|
|
else if (lendata.maxlen && integer_all_onesp (lendata.maxlen))
|
|
lendata.maxlen = NULL_TREE;
|
|
|
|
if (visited)
|
|
BITMAP_FREE (visited);
|
|
|
|
if (nonstr)
|
|
{
|
|
/* For callers prepared to handle unterminated arrays set
|
|
*NONSTR to point to the declaration of the array and return
|
|
the maximum length/size. */
|
|
*nonstr = lendata.decl;
|
|
return lendata.maxlen;
|
|
}
|
|
|
|
/* Fail if the constant array isn't nul-terminated. */
|
|
return lendata.decl ? NULL_TREE : lendata.maxlen;
|
|
}
|
|
|
|
|
|
/* Fold function call to builtin strcpy with arguments DEST and SRC.
|
|
If LEN is not NULL, it represents the length of the string to be
|
|
copied. Return NULL_TREE if no simplification can be made. */
|
|
|
|
static bool
|
|
gimple_fold_builtin_strcpy (gimple_stmt_iterator *gsi,
|
|
tree dest, tree src)
|
|
{
|
|
gimple *stmt = gsi_stmt (*gsi);
|
|
location_t loc = gimple_location (stmt);
|
|
tree fn;
|
|
|
|
/* If SRC and DEST are the same (and not volatile), return DEST. */
|
|
if (operand_equal_p (src, dest, 0))
|
|
{
|
|
/* Issue -Wrestrict unless the pointers are null (those do
|
|
not point to objects and so do not indicate an overlap;
|
|
such calls could be the result of sanitization and jump
|
|
threading). */
|
|
if (!integer_zerop (dest) && !gimple_no_warning_p (stmt))
|
|
{
|
|
tree func = gimple_call_fndecl (stmt);
|
|
|
|
warning_at (loc, OPT_Wrestrict,
|
|
"%qD source argument is the same as destination",
|
|
func);
|
|
}
|
|
|
|
replace_call_with_value (gsi, dest);
|
|
return true;
|
|
}
|
|
|
|
if (optimize_function_for_size_p (cfun))
|
|
return false;
|
|
|
|
fn = builtin_decl_implicit (BUILT_IN_MEMCPY);
|
|
if (!fn)
|
|
return false;
|
|
|
|
/* Set to non-null if ARG refers to an unterminated array. */
|
|
tree nonstr = NULL;
|
|
tree len = get_maxval_strlen (src, SRK_STRLEN, &nonstr);
|
|
|
|
if (nonstr)
|
|
{
|
|
/* Avoid folding calls with unterminated arrays. */
|
|
if (!gimple_no_warning_p (stmt))
|
|
warn_string_no_nul (loc, "strcpy", src, nonstr);
|
|
gimple_set_no_warning (stmt, true);
|
|
return false;
|
|
}
|
|
|
|
if (!len)
|
|
return false;
|
|
|
|
len = fold_convert_loc (loc, size_type_node, len);
|
|
len = size_binop_loc (loc, PLUS_EXPR, len, build_int_cst (size_type_node, 1));
|
|
len = force_gimple_operand_gsi (gsi, len, true,
|
|
NULL_TREE, true, GSI_SAME_STMT);
|
|
gimple *repl = gimple_build_call (fn, 3, dest, src, len);
|
|
replace_call_with_call_and_fold (gsi, repl);
|
|
return true;
|
|
}
|
|
|
|
/* Fold function call to builtin strncpy with arguments DEST, SRC, and LEN.
|
|
If SLEN is not NULL, it represents the length of the source string.
|
|
Return NULL_TREE if no simplification can be made. */
|
|
|
|
static bool
|
|
gimple_fold_builtin_strncpy (gimple_stmt_iterator *gsi,
|
|
tree dest, tree src, tree len)
|
|
{
|
|
gimple *stmt = gsi_stmt (*gsi);
|
|
location_t loc = gimple_location (stmt);
|
|
bool nonstring = get_attr_nonstring_decl (dest) != NULL_TREE;
|
|
|
|
/* If the LEN parameter is zero, return DEST. */
|
|
if (integer_zerop (len))
|
|
{
|
|
/* Avoid warning if the destination refers to a an array/pointer
|
|
decorate with attribute nonstring. */
|
|
if (!nonstring)
|
|
{
|
|
tree fndecl = gimple_call_fndecl (stmt);
|
|
|
|
/* Warn about the lack of nul termination: the result is not
|
|
a (nul-terminated) string. */
|
|
tree slen = get_maxval_strlen (src, SRK_STRLEN);
|
|
if (slen && !integer_zerop (slen))
|
|
warning_at (loc, OPT_Wstringop_truncation,
|
|
"%G%qD destination unchanged after copying no bytes "
|
|
"from a string of length %E",
|
|
stmt, fndecl, slen);
|
|
else
|
|
warning_at (loc, OPT_Wstringop_truncation,
|
|
"%G%qD destination unchanged after copying no bytes",
|
|
stmt, fndecl);
|
|
}
|
|
|
|
replace_call_with_value (gsi, dest);
|
|
return true;
|
|
}
|
|
|
|
/* We can't compare slen with len as constants below if len is not a
|
|
constant. */
|
|
if (TREE_CODE (len) != INTEGER_CST)
|
|
return false;
|
|
|
|
/* Now, we must be passed a constant src ptr parameter. */
|
|
tree slen = get_maxval_strlen (src, SRK_STRLEN);
|
|
if (!slen || TREE_CODE (slen) != INTEGER_CST)
|
|
return false;
|
|
|
|
/* The size of the source string including the terminating nul. */
|
|
tree ssize = size_binop_loc (loc, PLUS_EXPR, slen, ssize_int (1));
|
|
|
|
/* We do not support simplification of this case, though we do
|
|
support it when expanding trees into RTL. */
|
|
/* FIXME: generate a call to __builtin_memset. */
|
|
if (tree_int_cst_lt (ssize, len))
|
|
return false;
|
|
|
|
/* Diagnose truncation that leaves the copy unterminated. */
|
|
maybe_diag_stxncpy_trunc (*gsi, src, len);
|
|
|
|
/* OK transform into builtin memcpy. */
|
|
tree fn = builtin_decl_implicit (BUILT_IN_MEMCPY);
|
|
if (!fn)
|
|
return false;
|
|
|
|
len = fold_convert_loc (loc, size_type_node, len);
|
|
len = force_gimple_operand_gsi (gsi, len, true,
|
|
NULL_TREE, true, GSI_SAME_STMT);
|
|
gimple *repl = gimple_build_call (fn, 3, dest, src, len);
|
|
replace_call_with_call_and_fold (gsi, repl);
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Fold function call to builtin strchr or strrchr.
|
|
If both arguments are constant, evaluate and fold the result,
|
|
otherwise simplify str(r)chr (str, 0) into str + strlen (str).
|
|
In general strlen is significantly faster than strchr
|
|
due to being a simpler operation. */
|
|
static bool
|
|
gimple_fold_builtin_strchr (gimple_stmt_iterator *gsi, bool is_strrchr)
|
|
{
|
|
gimple *stmt = gsi_stmt (*gsi);
|
|
tree str = gimple_call_arg (stmt, 0);
|
|
tree c = gimple_call_arg (stmt, 1);
|
|
location_t loc = gimple_location (stmt);
|
|
const char *p;
|
|
char ch;
|
|
|
|
if (!gimple_call_lhs (stmt))
|
|
return false;
|
|
|
|
/* Avoid folding if the first argument is not a nul-terminated array.
|
|
Defer warning until later. */
|
|
if (!check_nul_terminated_array (NULL_TREE, str))
|
|
return false;
|
|
|
|
if ((p = c_getstr (str)) && target_char_cst_p (c, &ch))
|
|
{
|
|
const char *p1 = is_strrchr ? strrchr (p, ch) : strchr (p, ch);
|
|
|
|
if (p1 == NULL)
|
|
{
|
|
replace_call_with_value (gsi, integer_zero_node);
|
|
return true;
|
|
}
|
|
|
|
tree len = build_int_cst (size_type_node, p1 - p);
|
|
gimple_seq stmts = NULL;
|
|
gimple *new_stmt = gimple_build_assign (gimple_call_lhs (stmt),
|
|
POINTER_PLUS_EXPR, str, len);
|
|
gimple_seq_add_stmt_without_update (&stmts, new_stmt);
|
|
gsi_replace_with_seq_vops (gsi, stmts);
|
|
return true;
|
|
}
|
|
|
|
if (!integer_zerop (c))
|
|
return false;
|
|
|
|
/* Transform strrchr (s, 0) to strchr (s, 0) when optimizing for size. */
|
|
if (is_strrchr && optimize_function_for_size_p (cfun))
|
|
{
|
|
tree strchr_fn = builtin_decl_implicit (BUILT_IN_STRCHR);
|
|
|
|
if (strchr_fn)
|
|
{
|
|
gimple *repl = gimple_build_call (strchr_fn, 2, str, c);
|
|
replace_call_with_call_and_fold (gsi, repl);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
tree len;
|
|
tree strlen_fn = builtin_decl_implicit (BUILT_IN_STRLEN);
|
|
|
|
if (!strlen_fn)
|
|
return false;
|
|
|
|
/* Create newstr = strlen (str). */
|
|
gimple_seq stmts = NULL;
|
|
gimple *new_stmt = gimple_build_call (strlen_fn, 1, str);
|
|
gimple_set_location (new_stmt, loc);
|
|
len = create_tmp_reg_or_ssa_name (size_type_node);
|
|
gimple_call_set_lhs (new_stmt, len);
|
|
gimple_seq_add_stmt_without_update (&stmts, new_stmt);
|
|
|
|
/* Create (str p+ strlen (str)). */
|
|
new_stmt = gimple_build_assign (gimple_call_lhs (stmt),
|
|
POINTER_PLUS_EXPR, str, len);
|
|
gimple_seq_add_stmt_without_update (&stmts, new_stmt);
|
|
gsi_replace_with_seq_vops (gsi, stmts);
|
|
/* gsi now points at the assignment to the lhs, get a
|
|
stmt iterator to the strlen.
|
|
??? We can't use gsi_for_stmt as that doesn't work when the
|
|
CFG isn't built yet. */
|
|
gimple_stmt_iterator gsi2 = *gsi;
|
|
gsi_prev (&gsi2);
|
|
fold_stmt (&gsi2);
|
|
return true;
|
|
}
|
|
|
|
/* Fold function call to builtin strstr.
|
|
If both arguments are constant, evaluate and fold the result,
|
|
additionally fold strstr (x, "") into x and strstr (x, "c")
|
|
into strchr (x, 'c'). */
|
|
static bool
|
|
gimple_fold_builtin_strstr (gimple_stmt_iterator *gsi)
|
|
{
|
|
gimple *stmt = gsi_stmt (*gsi);
|
|
if (!gimple_call_lhs (stmt))
|
|
return false;
|
|
|
|
tree haystack = gimple_call_arg (stmt, 0);
|
|
tree needle = gimple_call_arg (stmt, 1);
|
|
|
|
/* Avoid folding if either argument is not a nul-terminated array.
|
|
Defer warning until later. */
|
|
if (!check_nul_terminated_array (NULL_TREE, haystack)
|
|
|| !check_nul_terminated_array (NULL_TREE, needle))
|
|
return false;
|
|
|
|
const char *q = c_getstr (needle);
|
|
if (q == NULL)
|
|
return false;
|
|
|
|
if (const char *p = c_getstr (haystack))
|
|
{
|
|
const char *r = strstr (p, q);
|
|
|
|
if (r == NULL)
|
|
{
|
|
replace_call_with_value (gsi, integer_zero_node);
|
|
return true;
|
|
}
|
|
|
|
tree len = build_int_cst (size_type_node, r - p);
|
|
gimple_seq stmts = NULL;
|
|
gimple *new_stmt
|
|
= gimple_build_assign (gimple_call_lhs (stmt), POINTER_PLUS_EXPR,
|
|
haystack, len);
|
|
gimple_seq_add_stmt_without_update (&stmts, new_stmt);
|
|
gsi_replace_with_seq_vops (gsi, stmts);
|
|
return true;
|
|
}
|
|
|
|
/* For strstr (x, "") return x. */
|
|
if (q[0] == '\0')
|
|
{
|
|
replace_call_with_value (gsi, haystack);
|
|
return true;
|
|
}
|
|
|
|
/* Transform strstr (x, "c") into strchr (x, 'c'). */
|
|
if (q[1] == '\0')
|
|
{
|
|
tree strchr_fn = builtin_decl_implicit (BUILT_IN_STRCHR);
|
|
if (strchr_fn)
|
|
{
|
|
tree c = build_int_cst (integer_type_node, q[0]);
|
|
gimple *repl = gimple_build_call (strchr_fn, 2, haystack, c);
|
|
replace_call_with_call_and_fold (gsi, repl);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/* Simplify a call to the strcat builtin. DST and SRC are the arguments
|
|
to the call.
|
|
|
|
Return NULL_TREE if no simplification was possible, otherwise return the
|
|
simplified form of the call as a tree.
|
|
|
|
The simplified form may be a constant or other expression which
|
|
computes the same value, but in a more efficient manner (including
|
|
calls to other builtin functions).
|
|
|
|
The call may contain arguments which need to be evaluated, but
|
|
which are not useful to determine the result of the call. In
|
|
this case we return a chain of COMPOUND_EXPRs. The LHS of each
|
|
COMPOUND_EXPR will be an argument which must be evaluated.
|
|
COMPOUND_EXPRs are chained through their RHS. The RHS of the last
|
|
COMPOUND_EXPR in the chain will contain the tree for the simplified
|
|
form of the builtin function call. */
|
|
|
|
static bool
|
|
gimple_fold_builtin_strcat (gimple_stmt_iterator *gsi, tree dst, tree src)
|
|
{
|
|
gimple *stmt = gsi_stmt (*gsi);
|
|
location_t loc = gimple_location (stmt);
|
|
|
|
const char *p = c_getstr (src);
|
|
|
|
/* If the string length is zero, return the dst parameter. */
|
|
if (p && *p == '\0')
|
|
{
|
|
replace_call_with_value (gsi, dst);
|
|
return true;
|
|
}
|
|
|
|
if (!optimize_bb_for_speed_p (gimple_bb (stmt)))
|
|
return false;
|
|
|
|
/* See if we can store by pieces into (dst + strlen(dst)). */
|
|
tree newdst;
|
|
tree strlen_fn = builtin_decl_implicit (BUILT_IN_STRLEN);
|
|
tree memcpy_fn = builtin_decl_implicit (BUILT_IN_MEMCPY);
|
|
|
|
if (!strlen_fn || !memcpy_fn)
|
|
return false;
|
|
|
|
/* If the length of the source string isn't computable don't
|
|
split strcat into strlen and memcpy. */
|
|
tree len = get_maxval_strlen (src, SRK_STRLEN);
|
|
if (! len)
|
|
return false;
|
|
|
|
/* Create strlen (dst). */
|
|
gimple_seq stmts = NULL, stmts2;
|
|
gimple *repl = gimple_build_call (strlen_fn, 1, dst);
|
|
gimple_set_location (repl, loc);
|
|
newdst = create_tmp_reg_or_ssa_name (size_type_node);
|
|
gimple_call_set_lhs (repl, newdst);
|
|
gimple_seq_add_stmt_without_update (&stmts, repl);
|
|
|
|
/* Create (dst p+ strlen (dst)). */
|
|
newdst = fold_build_pointer_plus_loc (loc, dst, newdst);
|
|
newdst = force_gimple_operand (newdst, &stmts2, true, NULL_TREE);
|
|
gimple_seq_add_seq_without_update (&stmts, stmts2);
|
|
|
|
len = fold_convert_loc (loc, size_type_node, len);
|
|
len = size_binop_loc (loc, PLUS_EXPR, len,
|
|
build_int_cst (size_type_node, 1));
|
|
len = force_gimple_operand (len, &stmts2, true, NULL_TREE);
|
|
gimple_seq_add_seq_without_update (&stmts, stmts2);
|
|
|
|
repl = gimple_build_call (memcpy_fn, 3, newdst, src, len);
|
|
gimple_seq_add_stmt_without_update (&stmts, repl);
|
|
if (gimple_call_lhs (stmt))
|
|
{
|
|
repl = gimple_build_assign (gimple_call_lhs (stmt), dst);
|
|
gimple_seq_add_stmt_without_update (&stmts, repl);
|
|
gsi_replace_with_seq_vops (gsi, stmts);
|
|
/* gsi now points at the assignment to the lhs, get a
|
|
stmt iterator to the memcpy call.
|
|
??? We can't use gsi_for_stmt as that doesn't work when the
|
|
CFG isn't built yet. */
|
|
gimple_stmt_iterator gsi2 = *gsi;
|
|
gsi_prev (&gsi2);
|
|
fold_stmt (&gsi2);
|
|
}
|
|
else
|
|
{
|
|
gsi_replace_with_seq_vops (gsi, stmts);
|
|
fold_stmt (gsi);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/* Fold a call to the __strcat_chk builtin FNDECL. DEST, SRC, and SIZE
|
|
are the arguments to the call. */
|
|
|
|
static bool
|
|
gimple_fold_builtin_strcat_chk (gimple_stmt_iterator *gsi)
|
|
{
|
|
gimple *stmt = gsi_stmt (*gsi);
|
|
tree dest = gimple_call_arg (stmt, 0);
|
|
tree src = gimple_call_arg (stmt, 1);
|
|
tree size = gimple_call_arg (stmt, 2);
|
|
tree fn;
|
|
const char *p;
|
|
|
|
|
|
p = c_getstr (src);
|
|
/* If the SRC parameter is "", return DEST. */
|
|
if (p && *p == '\0')
|
|
{
|
|
replace_call_with_value (gsi, dest);
|
|
return true;
|
|
}
|
|
|
|
if (! tree_fits_uhwi_p (size) || ! integer_all_onesp (size))
|
|
return false;
|
|
|
|
/* If __builtin_strcat_chk is used, assume strcat is available. */
|
|
fn = builtin_decl_explicit (BUILT_IN_STRCAT);
|
|
if (!fn)
|
|
return false;
|
|
|
|
gimple *repl = gimple_build_call (fn, 2, dest, src);
|
|
replace_call_with_call_and_fold (gsi, repl);
|
|
return true;
|
|
}
|
|
|
|
/* Simplify a call to the strncat builtin. */
|
|
|
|
static bool
|
|
gimple_fold_builtin_strncat (gimple_stmt_iterator *gsi)
|
|
{
|
|
gimple *stmt = gsi_stmt (*gsi);
|
|
tree dst = gimple_call_arg (stmt, 0);
|
|
tree src = gimple_call_arg (stmt, 1);
|
|
tree len = gimple_call_arg (stmt, 2);
|
|
|
|
const char *p = c_getstr (src);
|
|
|
|
/* If the requested length is zero, or the src parameter string
|
|
length is zero, return the dst parameter. */
|
|
if (integer_zerop (len) || (p && *p == '\0'))
|
|
{
|
|
replace_call_with_value (gsi, dst);
|
|
return true;
|
|
}
|
|
|
|
if (TREE_CODE (len) != INTEGER_CST || !p)
|
|
return false;
|
|
|
|
unsigned srclen = strlen (p);
|
|
|
|
int cmpsrc = compare_tree_int (len, srclen);
|
|
|
|
/* Return early if the requested len is less than the string length.
|
|
Warnings will be issued elsewhere later. */
|
|
if (cmpsrc < 0)
|
|
return false;
|
|
|
|
unsigned HOST_WIDE_INT dstsize;
|
|
|
|
bool nowarn = gimple_no_warning_p (stmt);
|
|
|
|
if (!nowarn && compute_builtin_object_size (dst, 1, &dstsize))
|
|
{
|
|
int cmpdst = compare_tree_int (len, dstsize);
|
|
|
|
if (cmpdst >= 0)
|
|
{
|
|
tree fndecl = gimple_call_fndecl (stmt);
|
|
|
|
/* Strncat copies (at most) LEN bytes and always appends
|
|
the terminating NUL so the specified bound should never
|
|
be equal to (or greater than) the size of the destination.
|
|
If it is, the copy could overflow. */
|
|
location_t loc = gimple_location (stmt);
|
|
nowarn = warning_at (loc, OPT_Wstringop_overflow_,
|
|
cmpdst == 0
|
|
? G_("%G%qD specified bound %E equals "
|
|
"destination size")
|
|
: G_("%G%qD specified bound %E exceeds "
|
|
"destination size %wu"),
|
|
stmt, fndecl, len, dstsize);
|
|
if (nowarn)
|
|
gimple_set_no_warning (stmt, true);
|
|
}
|
|
}
|
|
|
|
if (!nowarn && cmpsrc == 0)
|
|
{
|
|
tree fndecl = gimple_call_fndecl (stmt);
|
|
location_t loc = gimple_location (stmt);
|
|
|
|
/* To avoid possible overflow the specified bound should also
|
|
not be equal to the length of the source, even when the size
|
|
of the destination is unknown (it's not an uncommon mistake
|
|
to specify as the bound to strncpy the length of the source). */
|
|
if (warning_at (loc, OPT_Wstringop_overflow_,
|
|
"%G%qD specified bound %E equals source length",
|
|
stmt, fndecl, len))
|
|
gimple_set_no_warning (stmt, true);
|
|
}
|
|
|
|
tree fn = builtin_decl_implicit (BUILT_IN_STRCAT);
|
|
|
|
/* If the replacement _DECL isn't initialized, don't do the
|
|
transformation. */
|
|
if (!fn)
|
|
return false;
|
|
|
|
/* Otherwise, emit a call to strcat. */
|
|
gcall *repl = gimple_build_call (fn, 2, dst, src);
|
|
replace_call_with_call_and_fold (gsi, repl);
|
|
return true;
|
|
}
|
|
|
|
/* Fold a call to the __strncat_chk builtin with arguments DEST, SRC,
|
|
LEN, and SIZE. */
|
|
|
|
static bool
|
|
gimple_fold_builtin_strncat_chk (gimple_stmt_iterator *gsi)
|
|
{
|
|
gimple *stmt = gsi_stmt (*gsi);
|
|
tree dest = gimple_call_arg (stmt, 0);
|
|
tree src = gimple_call_arg (stmt, 1);
|
|
tree len = gimple_call_arg (stmt, 2);
|
|
tree size = gimple_call_arg (stmt, 3);
|
|
tree fn;
|
|
const char *p;
|
|
|
|
p = c_getstr (src);
|
|
/* If the SRC parameter is "" or if LEN is 0, return DEST. */
|
|
if ((p && *p == '\0')
|
|
|| integer_zerop (len))
|
|
{
|
|
replace_call_with_value (gsi, dest);
|
|
return true;
|
|
}
|
|
|
|
if (! tree_fits_uhwi_p (size))
|
|
return false;
|
|
|
|
if (! integer_all_onesp (size))
|
|
{
|
|
tree src_len = c_strlen (src, 1);
|
|
if (src_len
|
|
&& tree_fits_uhwi_p (src_len)
|
|
&& tree_fits_uhwi_p (len)
|
|
&& ! tree_int_cst_lt (len, src_len))
|
|
{
|
|
/* If LEN >= strlen (SRC), optimize into __strcat_chk. */
|
|
fn = builtin_decl_explicit (BUILT_IN_STRCAT_CHK);
|
|
if (!fn)
|
|
return false;
|
|
|
|
gimple *repl = gimple_build_call (fn, 3, dest, src, size);
|
|
replace_call_with_call_and_fold (gsi, repl);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/* If __builtin_strncat_chk is used, assume strncat is available. */
|
|
fn = builtin_decl_explicit (BUILT_IN_STRNCAT);
|
|
if (!fn)
|
|
return false;
|
|
|
|
gimple *repl = gimple_build_call (fn, 3, dest, src, len);
|
|
replace_call_with_call_and_fold (gsi, repl);
|
|
return true;
|
|
}
|
|
|
|
/* Build and append gimple statements to STMTS that would load a first
|
|
character of a memory location identified by STR. LOC is location
|
|
of the statement. */
|
|
|
|
static tree
|
|
gimple_load_first_char (location_t loc, tree str, gimple_seq *stmts)
|
|
{
|
|
tree var;
|
|
|
|
tree cst_uchar_node = build_type_variant (unsigned_char_type_node, 1, 0);
|
|
tree cst_uchar_ptr_node
|
|
= build_pointer_type_for_mode (cst_uchar_node, ptr_mode, true);
|
|
tree off0 = build_int_cst (cst_uchar_ptr_node, 0);
|
|
|
|
tree temp = fold_build2_loc (loc, MEM_REF, cst_uchar_node, str, off0);
|
|
gassign *stmt = gimple_build_assign (NULL_TREE, temp);
|
|
var = create_tmp_reg_or_ssa_name (cst_uchar_node, stmt);
|
|
|
|
gimple_assign_set_lhs (stmt, var);
|
|
gimple_seq_add_stmt_without_update (stmts, stmt);
|
|
|
|
return var;
|
|
}
|
|
|
|
/* Fold a call to the str{n}{case}cmp builtin pointed by GSI iterator. */
|
|
|
|
static bool
|
|
gimple_fold_builtin_string_compare (gimple_stmt_iterator *gsi)
|
|
{
|
|
gimple *stmt = gsi_stmt (*gsi);
|
|
tree callee = gimple_call_fndecl (stmt);
|
|
enum built_in_function fcode = DECL_FUNCTION_CODE (callee);
|
|
|
|
tree type = integer_type_node;
|
|
tree str1 = gimple_call_arg (stmt, 0);
|
|
tree str2 = gimple_call_arg (stmt, 1);
|
|
tree lhs = gimple_call_lhs (stmt);
|
|
|
|
tree bound_node = NULL_TREE;
|
|
unsigned HOST_WIDE_INT bound = HOST_WIDE_INT_M1U;
|
|
|
|
/* Handle strncmp and strncasecmp functions. */
|
|
if (gimple_call_num_args (stmt) == 3)
|
|
{
|
|
bound_node = gimple_call_arg (stmt, 2);
|
|
if (tree_fits_uhwi_p (bound_node))
|
|
bound = tree_to_uhwi (bound_node);
|
|
}
|
|
|
|
/* If the BOUND parameter is zero, return zero. */
|
|
if (bound == 0)
|
|
{
|
|
replace_call_with_value (gsi, integer_zero_node);
|
|
return true;
|
|
}
|
|
|
|
/* If ARG1 and ARG2 are the same (and not volatile), return zero. */
|
|
if (operand_equal_p (str1, str2, 0))
|
|
{
|
|
replace_call_with_value (gsi, integer_zero_node);
|
|
return true;
|
|
}
|
|
|
|
/* Initially set to the number of characters, including the terminating
|
|
nul if each array has one. LENx == strnlen (Sx, LENx) implies that
|
|
the array Sx is not terminated by a nul.
|
|
For nul-terminated strings then adjusted to their length so that
|
|
LENx == NULPOSx holds. */
|
|
unsigned HOST_WIDE_INT len1 = HOST_WIDE_INT_MAX, len2 = len1;
|
|
const char *p1 = c_getstr (str1, &len1);
|
|
const char *p2 = c_getstr (str2, &len2);
|
|
|
|
/* The position of the terminating nul character if one exists, otherwise
|
|
a value greater than LENx. */
|
|
unsigned HOST_WIDE_INT nulpos1 = HOST_WIDE_INT_MAX, nulpos2 = nulpos1;
|
|
|
|
if (p1)
|
|
{
|
|
size_t n = strnlen (p1, len1);
|
|
if (n < len1)
|
|
len1 = nulpos1 = n;
|
|
}
|
|
|
|
if (p2)
|
|
{
|
|
size_t n = strnlen (p2, len2);
|
|
if (n < len2)
|
|
len2 = nulpos2 = n;
|
|
}
|
|
|
|
/* For known strings, return an immediate value. */
|
|
if (p1 && p2)
|
|
{
|
|
int r = 0;
|
|
bool known_result = false;
|
|
|
|
switch (fcode)
|
|
{
|
|
case BUILT_IN_STRCMP:
|
|
case BUILT_IN_STRCMP_EQ:
|
|
if (len1 != nulpos1 || len2 != nulpos2)
|
|
break;
|
|
|
|
r = strcmp (p1, p2);
|
|
known_result = true;
|
|
break;
|
|
|
|
case BUILT_IN_STRNCMP:
|
|
case BUILT_IN_STRNCMP_EQ:
|
|
{
|
|
if (bound == HOST_WIDE_INT_M1U)
|
|
break;
|
|
|
|
/* Reduce the bound to be no more than the length
|
|
of the shorter of the two strings, or the sizes
|
|
of the unterminated arrays. */
|
|
unsigned HOST_WIDE_INT n = bound;
|
|
|
|
if (len1 == nulpos1 && len1 < n)
|
|
n = len1 + 1;
|
|
if (len2 == nulpos2 && len2 < n)
|
|
n = len2 + 1;
|
|
|
|
if (MIN (nulpos1, nulpos2) + 1 < n)
|
|
break;
|
|
|
|
r = strncmp (p1, p2, n);
|
|
known_result = true;
|
|
break;
|
|
}
|
|
/* Only handleable situation is where the string are equal (result 0),
|
|
which is already handled by operand_equal_p case. */
|
|
case BUILT_IN_STRCASECMP:
|
|
break;
|
|
case BUILT_IN_STRNCASECMP:
|
|
{
|
|
if (bound == HOST_WIDE_INT_M1U)
|
|
break;
|
|
r = strncmp (p1, p2, bound);
|
|
if (r == 0)
|
|
known_result = true;
|
|
break;
|
|
}
|
|
default:
|
|
gcc_unreachable ();
|
|
}
|
|
|
|
if (known_result)
|
|
{
|
|
replace_call_with_value (gsi, build_cmp_result (type, r));
|
|
return true;
|
|
}
|
|
}
|
|
|
|
bool nonzero_bound = (bound >= 1 && bound < HOST_WIDE_INT_M1U)
|
|
|| fcode == BUILT_IN_STRCMP
|
|
|| fcode == BUILT_IN_STRCMP_EQ
|
|
|| fcode == BUILT_IN_STRCASECMP;
|
|
|
|
location_t loc = gimple_location (stmt);
|
|
|
|
/* If the second arg is "", return *(const unsigned char*)arg1. */
|
|
if (p2 && *p2 == '\0' && nonzero_bound)
|
|
{
|
|
gimple_seq stmts = NULL;
|
|
tree var = gimple_load_first_char (loc, str1, &stmts);
|
|
if (lhs)
|
|
{
|
|
stmt = gimple_build_assign (lhs, NOP_EXPR, var);
|
|
gimple_seq_add_stmt_without_update (&stmts, stmt);
|
|
}
|
|
|
|
gsi_replace_with_seq_vops (gsi, stmts);
|
|
return true;
|
|
}
|
|
|
|
/* If the first arg is "", return -*(const unsigned char*)arg2. */
|
|
if (p1 && *p1 == '\0' && nonzero_bound)
|
|
{
|
|
gimple_seq stmts = NULL;
|
|
tree var = gimple_load_first_char (loc, str2, &stmts);
|
|
|
|
if (lhs)
|
|
{
|
|
tree c = create_tmp_reg_or_ssa_name (integer_type_node);
|
|
stmt = gimple_build_assign (c, NOP_EXPR, var);
|
|
gimple_seq_add_stmt_without_update (&stmts, stmt);
|
|
|
|
stmt = gimple_build_assign (lhs, NEGATE_EXPR, c);
|
|
gimple_seq_add_stmt_without_update (&stmts, stmt);
|
|
}
|
|
|
|
gsi_replace_with_seq_vops (gsi, stmts);
|
|
return true;
|
|
}
|
|
|
|
/* If BOUND is one, return an expression corresponding to
|
|
(*(const unsigned char*)arg2 - *(const unsigned char*)arg1). */
|
|
if (fcode == BUILT_IN_STRNCMP && bound == 1)
|
|
{
|
|
gimple_seq stmts = NULL;
|
|
tree temp1 = gimple_load_first_char (loc, str1, &stmts);
|
|
tree temp2 = gimple_load_first_char (loc, str2, &stmts);
|
|
|
|
if (lhs)
|
|
{
|
|
tree c1 = create_tmp_reg_or_ssa_name (integer_type_node);
|
|
gassign *convert1 = gimple_build_assign (c1, NOP_EXPR, temp1);
|
|
gimple_seq_add_stmt_without_update (&stmts, convert1);
|
|
|
|
tree c2 = create_tmp_reg_or_ssa_name (integer_type_node);
|
|
gassign *convert2 = gimple_build_assign (c2, NOP_EXPR, temp2);
|
|
gimple_seq_add_stmt_without_update (&stmts, convert2);
|
|
|
|
stmt = gimple_build_assign (lhs, MINUS_EXPR, c1, c2);
|
|
gimple_seq_add_stmt_without_update (&stmts, stmt);
|
|
}
|
|
|
|
gsi_replace_with_seq_vops (gsi, stmts);
|
|
return true;
|
|
}
|
|
|
|
/* If BOUND is greater than the length of one constant string,
|
|
and the other argument is also a nul-terminated string, replace
|
|
strncmp with strcmp. */
|
|
if (fcode == BUILT_IN_STRNCMP
|
|
&& bound > 0 && bound < HOST_WIDE_INT_M1U
|
|
&& ((p2 && len2 < bound && len2 == nulpos2)
|
|
|| (p1 && len1 < bound && len1 == nulpos1)))
|
|
{
|
|
tree fn = builtin_decl_implicit (BUILT_IN_STRCMP);
|
|
if (!fn)
|
|
return false;
|
|
gimple *repl = gimple_build_call (fn, 2, str1, str2);
|
|
replace_call_with_call_and_fold (gsi, repl);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/* Fold a call to the memchr pointed by GSI iterator. */
|
|
|
|
static bool
|
|
gimple_fold_builtin_memchr (gimple_stmt_iterator *gsi)
|
|
{
|
|
gimple *stmt = gsi_stmt (*gsi);
|
|
tree lhs = gimple_call_lhs (stmt);
|
|
tree arg1 = gimple_call_arg (stmt, 0);
|
|
tree arg2 = gimple_call_arg (stmt, 1);
|
|
tree len = gimple_call_arg (stmt, 2);
|
|
|
|
/* If the LEN parameter is zero, return zero. */
|
|
if (integer_zerop (len))
|
|
{
|
|
replace_call_with_value (gsi, build_int_cst (ptr_type_node, 0));
|
|
return true;
|
|
}
|
|
|
|
char c;
|
|
if (TREE_CODE (arg2) != INTEGER_CST
|
|
|| !tree_fits_uhwi_p (len)
|
|
|| !target_char_cst_p (arg2, &c))
|
|
return false;
|
|
|
|
unsigned HOST_WIDE_INT length = tree_to_uhwi (len);
|
|
unsigned HOST_WIDE_INT string_length;
|
|
const char *p1 = c_getstr (arg1, &string_length);
|
|
|
|
if (p1)
|
|
{
|
|
const char *r = (const char *)memchr (p1, c, MIN (length, string_length));
|
|
if (r == NULL)
|
|
{
|
|
tree mem_size, offset_node;
|
|
string_constant (arg1, &offset_node, &mem_size, NULL);
|
|
unsigned HOST_WIDE_INT offset = (offset_node == NULL_TREE)
|
|
? 0 : tree_to_uhwi (offset_node);
|
|
/* MEM_SIZE is the size of the array the string literal
|
|
is stored in. */
|
|
unsigned HOST_WIDE_INT string_size = tree_to_uhwi (mem_size) - offset;
|
|
gcc_checking_assert (string_length <= string_size);
|
|
if (length <= string_size)
|
|
{
|
|
replace_call_with_value (gsi, build_int_cst (ptr_type_node, 0));
|
|
return true;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
unsigned HOST_WIDE_INT offset = r - p1;
|
|
gimple_seq stmts = NULL;
|
|
if (lhs != NULL_TREE)
|
|
{
|
|
tree offset_cst = build_int_cst (TREE_TYPE (len), offset);
|
|
gassign *stmt = gimple_build_assign (lhs, POINTER_PLUS_EXPR,
|
|
arg1, offset_cst);
|
|
gimple_seq_add_stmt_without_update (&stmts, stmt);
|
|
}
|
|
else
|
|
gimple_seq_add_stmt_without_update (&stmts,
|
|
gimple_build_nop ());
|
|
|
|
gsi_replace_with_seq_vops (gsi, stmts);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/* Fold a call to the fputs builtin. ARG0 and ARG1 are the arguments
|
|
to the call. IGNORE is true if the value returned
|
|
by the builtin will be ignored. UNLOCKED is true is true if this
|
|
actually a call to fputs_unlocked. If LEN in non-NULL, it represents
|
|
the known length of the string. Return NULL_TREE if no simplification
|
|
was possible. */
|
|
|
|
static bool
|
|
gimple_fold_builtin_fputs (gimple_stmt_iterator *gsi,
|
|
tree arg0, tree arg1,
|
|
bool unlocked)
|
|
{
|
|
gimple *stmt = gsi_stmt (*gsi);
|
|
|
|
/* If we're using an unlocked function, assume the other unlocked
|
|
functions exist explicitly. */
|
|
tree const fn_fputc = (unlocked
|
|
? builtin_decl_explicit (BUILT_IN_FPUTC_UNLOCKED)
|
|
: builtin_decl_implicit (BUILT_IN_FPUTC));
|
|
tree const fn_fwrite = (unlocked
|
|
? builtin_decl_explicit (BUILT_IN_FWRITE_UNLOCKED)
|
|
: builtin_decl_implicit (BUILT_IN_FWRITE));
|
|
|
|
/* If the return value is used, don't do the transformation. */
|
|
if (gimple_call_lhs (stmt))
|
|
return false;
|
|
|
|
/* Get the length of the string passed to fputs. If the length
|
|
can't be determined, punt. */
|
|
tree len = get_maxval_strlen (arg0, SRK_STRLEN);
|
|
if (!len
|
|
|| TREE_CODE (len) != INTEGER_CST)
|
|
return false;
|
|
|
|
switch (compare_tree_int (len, 1))
|
|
{
|
|
case -1: /* length is 0, delete the call entirely . */
|
|
replace_call_with_value (gsi, integer_zero_node);
|
|
return true;
|
|
|
|
case 0: /* length is 1, call fputc. */
|
|
{
|
|
const char *p = c_getstr (arg0);
|
|
if (p != NULL)
|
|
{
|
|
if (!fn_fputc)
|
|
return false;
|
|
|
|
gimple *repl = gimple_build_call (fn_fputc, 2,
|
|
build_int_cst
|
|
(integer_type_node, p[0]), arg1);
|
|
replace_call_with_call_and_fold (gsi, repl);
|
|
return true;
|
|
}
|
|
}
|
|
/* FALLTHROUGH */
|
|
case 1: /* length is greater than 1, call fwrite. */
|
|
{
|
|
/* If optimizing for size keep fputs. */
|
|
if (optimize_function_for_size_p (cfun))
|
|
return false;
|
|
/* New argument list transforming fputs(string, stream) to
|
|
fwrite(string, 1, len, stream). */
|
|
if (!fn_fwrite)
|
|
return false;
|
|
|
|
gimple *repl = gimple_build_call (fn_fwrite, 4, arg0,
|
|
size_one_node, len, arg1);
|
|
replace_call_with_call_and_fold (gsi, repl);
|
|
return true;
|
|
}
|
|
default:
|
|
gcc_unreachable ();
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/* Fold a call to the __mem{cpy,pcpy,move,set}_chk builtin.
|
|
DEST, SRC, LEN, and SIZE are the arguments to the call.
|
|
IGNORE is true, if return value can be ignored. FCODE is the BUILT_IN_*
|
|
code of the builtin. If MAXLEN is not NULL, it is maximum length
|
|
passed as third argument. */
|
|
|
|
static bool
|
|
gimple_fold_builtin_memory_chk (gimple_stmt_iterator *gsi,
|
|
tree dest, tree src, tree len, tree size,
|
|
enum built_in_function fcode)
|
|
{
|
|
gimple *stmt = gsi_stmt (*gsi);
|
|
location_t loc = gimple_location (stmt);
|
|
bool ignore = gimple_call_lhs (stmt) == NULL_TREE;
|
|
tree fn;
|
|
|
|
/* If SRC and DEST are the same (and not volatile), return DEST
|
|
(resp. DEST+LEN for __mempcpy_chk). */
|
|
if (fcode != BUILT_IN_MEMSET_CHK && operand_equal_p (src, dest, 0))
|
|
{
|
|
if (fcode != BUILT_IN_MEMPCPY_CHK)
|
|
{
|
|
replace_call_with_value (gsi, dest);
|
|
return true;
|
|
}
|
|
else
|
|
{
|
|
gimple_seq stmts = NULL;
|
|
len = gimple_convert_to_ptrofftype (&stmts, loc, len);
|
|
tree temp = gimple_build (&stmts, loc, POINTER_PLUS_EXPR,
|
|
TREE_TYPE (dest), dest, len);
|
|
gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
|
|
replace_call_with_value (gsi, temp);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (! tree_fits_uhwi_p (size))
|
|
return false;
|
|
|
|
tree maxlen = get_maxval_strlen (len, SRK_INT_VALUE);
|
|
if (! integer_all_onesp (size))
|
|
{
|
|
if (! tree_fits_uhwi_p (len))
|
|
{
|
|
/* If LEN is not constant, try MAXLEN too.
|
|
For MAXLEN only allow optimizing into non-_ocs function
|
|
if SIZE is >= MAXLEN, never convert to __ocs_fail (). */
|
|
if (maxlen == NULL_TREE || ! tree_fits_uhwi_p (maxlen))
|
|
{
|
|
if (fcode == BUILT_IN_MEMPCPY_CHK && ignore)
|
|
{
|
|
/* (void) __mempcpy_chk () can be optimized into
|
|
(void) __memcpy_chk (). */
|
|
fn = builtin_decl_explicit (BUILT_IN_MEMCPY_CHK);
|
|
if (!fn)
|
|
return false;
|
|
|
|
gimple *repl = gimple_build_call (fn, 4, dest, src, len, size);
|
|
replace_call_with_call_and_fold (gsi, repl);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
}
|
|
else
|
|
maxlen = len;
|
|
|
|
if (tree_int_cst_lt (size, maxlen))
|
|
return false;
|
|
}
|
|
|
|
fn = NULL_TREE;
|
|
/* If __builtin_mem{cpy,pcpy,move,set}_chk is used, assume
|
|
mem{cpy,pcpy,move,set} is available. */
|
|
switch (fcode)
|
|
{
|
|
case BUILT_IN_MEMCPY_CHK:
|
|
fn = builtin_decl_explicit (BUILT_IN_MEMCPY);
|
|
break;
|
|
case BUILT_IN_MEMPCPY_CHK:
|
|
fn = builtin_decl_explicit (BUILT_IN_MEMPCPY);
|
|
break;
|
|
case BUILT_IN_MEMMOVE_CHK:
|
|
fn = builtin_decl_explicit (BUILT_IN_MEMMOVE);
|
|
break;
|
|
case BUILT_IN_MEMSET_CHK:
|
|
fn = builtin_decl_explicit (BUILT_IN_MEMSET);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (!fn)
|
|
return false;
|
|
|
|
gimple *repl = gimple_build_call (fn, 3, dest, src, len);
|
|
replace_call_with_call_and_fold (gsi, repl);
|
|
return true;
|
|
}
|
|
|
|
/* Fold a call to the __st[rp]cpy_chk builtin.
|
|
DEST, SRC, and SIZE are the arguments to the call.
|
|
IGNORE is true if return value can be ignored. FCODE is the BUILT_IN_*
|
|
code of the builtin. If MAXLEN is not NULL, it is maximum length of
|
|
strings passed as second argument. */
|
|
|
|
static bool
|
|
gimple_fold_builtin_stxcpy_chk (gimple_stmt_iterator *gsi,
|
|
tree dest,
|
|
tree src, tree size,
|
|
enum built_in_function fcode)
|
|
{
|
|
gimple *stmt = gsi_stmt (*gsi);
|
|
location_t loc = gimple_location (stmt);
|
|
bool ignore = gimple_call_lhs (stmt) == NULL_TREE;
|
|
tree len, fn;
|
|
|
|
/* If SRC and DEST are the same (and not volatile), return DEST. */
|
|
if (fcode == BUILT_IN_STRCPY_CHK && operand_equal_p (src, dest, 0))
|
|
{
|
|
/* Issue -Wrestrict unless the pointers are null (those do
|
|
not point to objects and so do not indicate an overlap;
|
|
such calls could be the result of sanitization and jump
|
|
threading). */
|
|
if (!integer_zerop (dest) && !gimple_no_warning_p (stmt))
|
|
{
|
|
tree func = gimple_call_fndecl (stmt);
|
|
|
|
warning_at (loc, OPT_Wrestrict,
|
|
"%qD source argument is the same as destination",
|
|
func);
|
|
}
|
|
|
|
replace_call_with_value (gsi, dest);
|
|
return true;
|
|
}
|
|
|
|
if (! tree_fits_uhwi_p (size))
|
|
return false;
|
|
|
|
tree maxlen = get_maxval_strlen (src, SRK_STRLENMAX);
|
|
if (! integer_all_onesp (size))
|
|
{
|
|
len = c_strlen (src, 1);
|
|
if (! len || ! tree_fits_uhwi_p (len))
|
|
{
|
|
/* If LEN is not constant, try MAXLEN too.
|
|
For MAXLEN only allow optimizing into non-_ocs function
|
|
if SIZE is >= MAXLEN, never convert to __ocs_fail (). */
|
|
if (maxlen == NULL_TREE || ! tree_fits_uhwi_p (maxlen))
|
|
{
|
|
if (fcode == BUILT_IN_STPCPY_CHK)
|
|
{
|
|
if (! ignore)
|
|
return false;
|
|
|
|
/* If return value of __stpcpy_chk is ignored,
|
|
optimize into __strcpy_chk. */
|
|
fn = builtin_decl_explicit (BUILT_IN_STRCPY_CHK);
|
|
if (!fn)
|
|
return false;
|
|
|
|
gimple *repl = gimple_build_call (fn, 3, dest, src, size);
|
|
replace_call_with_call_and_fold (gsi, repl);
|
|
return true;
|
|
}
|
|
|
|
if (! len || TREE_SIDE_EFFECTS (len))
|
|
return false;
|
|
|
|
/* If c_strlen returned something, but not a constant,
|
|
transform __strcpy_chk into __memcpy_chk. */
|
|
fn = builtin_decl_explicit (BUILT_IN_MEMCPY_CHK);
|
|
if (!fn)
|
|
return false;
|
|
|
|
gimple_seq stmts = NULL;
|
|
len = force_gimple_operand (len, &stmts, true, NULL_TREE);
|
|
len = gimple_convert (&stmts, loc, size_type_node, len);
|
|
len = gimple_build (&stmts, loc, PLUS_EXPR, size_type_node, len,
|
|
build_int_cst (size_type_node, 1));
|
|
gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
|
|
gimple *repl = gimple_build_call (fn, 4, dest, src, len, size);
|
|
replace_call_with_call_and_fold (gsi, repl);
|
|
return true;
|
|
}
|
|
}
|
|
else
|
|
maxlen = len;
|
|
|
|
if (! tree_int_cst_lt (maxlen, size))
|
|
return false;
|
|
}
|
|
|
|
/* If __builtin_st{r,p}cpy_chk is used, assume st{r,p}cpy is available. */
|
|
fn = builtin_decl_explicit (fcode == BUILT_IN_STPCPY_CHK
|
|
? BUILT_IN_STPCPY : BUILT_IN_STRCPY);
|
|
if (!fn)
|
|
return false;
|
|
|
|
gimple *repl = gimple_build_call (fn, 2, dest, src);
|
|
replace_call_with_call_and_fold (gsi, repl);
|
|
return true;
|
|
}
|
|
|
|
/* Fold a call to the __st{r,p}ncpy_chk builtin. DEST, SRC, LEN, and SIZE
|
|
are the arguments to the call. If MAXLEN is not NULL, it is maximum
|
|
length passed as third argument. IGNORE is true if return value can be
|
|
ignored. FCODE is the BUILT_IN_* code of the builtin. */
|
|
|
|
static bool
|
|
gimple_fold_builtin_stxncpy_chk (gimple_stmt_iterator *gsi,
|
|
tree dest, tree src,
|
|
tree len, tree size,
|
|
enum built_in_function fcode)
|
|
{
|
|
gimple *stmt = gsi_stmt (*gsi);
|
|
bool ignore = gimple_call_lhs (stmt) == NULL_TREE;
|
|
tree fn;
|
|
|
|
if (fcode == BUILT_IN_STPNCPY_CHK && ignore)
|
|
{
|
|
/* If return value of __stpncpy_chk is ignored,
|
|
optimize into __strncpy_chk. */
|
|
fn = builtin_decl_explicit (BUILT_IN_STRNCPY_CHK);
|
|
if (fn)
|
|
{
|
|
gimple *repl = gimple_build_call (fn, 4, dest, src, len, size);
|
|
replace_call_with_call_and_fold (gsi, repl);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (! tree_fits_uhwi_p (size))
|
|
return false;
|
|
|
|
tree maxlen = get_maxval_strlen (len, SRK_INT_VALUE);
|
|
if (! integer_all_onesp (size))
|
|
{
|
|
if (! tree_fits_uhwi_p (len))
|
|
{
|
|
/* If LEN is not constant, try MAXLEN too.
|
|
For MAXLEN only allow optimizing into non-_ocs function
|
|
if SIZE is >= MAXLEN, never convert to __ocs_fail (). */
|
|
if (maxlen == NULL_TREE || ! tree_fits_uhwi_p (maxlen))
|
|
return false;
|
|
}
|
|
else
|
|
maxlen = len;
|
|
|
|
if (tree_int_cst_lt (size, maxlen))
|
|
return false;
|
|
}
|
|
|
|
/* If __builtin_st{r,p}ncpy_chk is used, assume st{r,p}ncpy is available. */
|
|
fn = builtin_decl_explicit (fcode == BUILT_IN_STPNCPY_CHK
|
|
? BUILT_IN_STPNCPY : BUILT_IN_STRNCPY);
|
|
if (!fn)
|
|
return false;
|
|
|
|
gimple *repl = gimple_build_call (fn, 3, dest, src, len);
|
|
replace_call_with_call_and_fold (gsi, repl);
|
|
return true;
|
|
}
|
|
|
|
/* Fold function call to builtin stpcpy with arguments DEST and SRC.
|
|
Return NULL_TREE if no simplification can be made. */
|
|
|
|
static bool
|
|
gimple_fold_builtin_stpcpy (gimple_stmt_iterator *gsi)
|
|
{
|
|
gcall *stmt = as_a <gcall *> (gsi_stmt (*gsi));
|
|
location_t loc = gimple_location (stmt);
|
|
tree dest = gimple_call_arg (stmt, 0);
|
|
tree src = gimple_call_arg (stmt, 1);
|
|
tree fn, lenp1;
|
|
|
|
/* If the result is unused, replace stpcpy with strcpy. */
|
|
if (gimple_call_lhs (stmt) == NULL_TREE)
|
|
{
|
|
tree fn = builtin_decl_implicit (BUILT_IN_STRCPY);
|
|
if (!fn)
|
|
return false;
|
|
gimple_call_set_fndecl (stmt, fn);
|
|
fold_stmt (gsi);
|
|
return true;
|
|
}
|
|
|
|
/* Set to non-null if ARG refers to an unterminated array. */
|
|
c_strlen_data data = { };
|
|
tree len = c_strlen (src, 1, &data, 1);
|
|
if (!len
|
|
|| TREE_CODE (len) != INTEGER_CST)
|
|
{
|
|
data.decl = unterminated_array (src);
|
|
if (!data.decl)
|
|
return false;
|
|
}
|
|
|
|
if (data.decl)
|
|
{
|
|
/* Avoid folding calls with unterminated arrays. */
|
|
if (!gimple_no_warning_p (stmt))
|
|
warn_string_no_nul (loc, "stpcpy", src, data.decl);
|
|
gimple_set_no_warning (stmt, true);
|
|
return false;
|
|
}
|
|
|
|
if (optimize_function_for_size_p (cfun)
|
|
/* If length is zero it's small enough. */
|
|
&& !integer_zerop (len))
|
|
return false;
|
|
|
|
/* If the source has a known length replace stpcpy with memcpy. */
|
|
fn = builtin_decl_implicit (BUILT_IN_MEMCPY);
|
|
if (!fn)
|
|
return false;
|
|
|
|
gimple_seq stmts = NULL;
|
|
tree tem = gimple_convert (&stmts, loc, size_type_node, len);
|
|
lenp1 = gimple_build (&stmts, loc, PLUS_EXPR, size_type_node,
|
|
tem, build_int_cst (size_type_node, 1));
|
|
gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
|
|
gcall *repl = gimple_build_call (fn, 3, dest, src, lenp1);
|
|
gimple_move_vops (repl, stmt);
|
|
gsi_insert_before (gsi, repl, GSI_SAME_STMT);
|
|
/* Replace the result with dest + len. */
|
|
stmts = NULL;
|
|
tem = gimple_convert (&stmts, loc, sizetype, len);
|
|
gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
|
|
gassign *ret = gimple_build_assign (gimple_call_lhs (stmt),
|
|
POINTER_PLUS_EXPR, dest, tem);
|
|
gsi_replace (gsi, ret, false);
|
|
/* Finally fold the memcpy call. */
|
|
gimple_stmt_iterator gsi2 = *gsi;
|
|
gsi_prev (&gsi2);
|
|
fold_stmt (&gsi2);
|
|
return true;
|
|
}
|
|
|
|
/* Fold a call EXP to {,v}snprintf having NARGS passed as ARGS. Return
|
|
NULL_TREE if a normal call should be emitted rather than expanding
|
|
the function inline. FCODE is either BUILT_IN_SNPRINTF_CHK or
|
|
BUILT_IN_VSNPRINTF_CHK. If MAXLEN is not NULL, it is maximum length
|
|
passed as second argument. */
|
|
|
|
static bool
|
|
gimple_fold_builtin_snprintf_chk (gimple_stmt_iterator *gsi,
|
|
enum built_in_function fcode)
|
|
{
|
|
gcall *stmt = as_a <gcall *> (gsi_stmt (*gsi));
|
|
tree dest, size, len, fn, fmt, flag;
|
|
const char *fmt_str;
|
|
|
|
/* Verify the required arguments in the original call. */
|
|
if (gimple_call_num_args (stmt) < 5)
|
|
return false;
|
|
|
|
dest = gimple_call_arg (stmt, 0);
|
|
len = gimple_call_arg (stmt, 1);
|
|
flag = gimple_call_arg (stmt, 2);
|
|
size = gimple_call_arg (stmt, 3);
|
|
fmt = gimple_call_arg (stmt, 4);
|
|
|
|
if (! tree_fits_uhwi_p (size))
|
|
return false;
|
|
|
|
if (! integer_all_onesp (size))
|
|
{
|
|
tree maxlen = get_maxval_strlen (len, SRK_INT_VALUE);
|
|
if (! tree_fits_uhwi_p (len))
|
|
{
|
|
/* If LEN is not constant, try MAXLEN too.
|
|
For MAXLEN only allow optimizing into non-_ocs function
|
|
if SIZE is >= MAXLEN, never convert to __ocs_fail (). */
|
|
if (maxlen == NULL_TREE || ! tree_fits_uhwi_p (maxlen))
|
|
return false;
|
|
}
|
|
else
|
|
maxlen = len;
|
|
|
|
if (tree_int_cst_lt (size, maxlen))
|
|
return false;
|
|
}
|
|
|
|
if (!init_target_chars ())
|
|
return false;
|
|
|
|
/* Only convert __{,v}snprintf_chk to {,v}snprintf if flag is 0
|
|
or if format doesn't contain % chars or is "%s". */
|
|
if (! integer_zerop (flag))
|
|
{
|
|
fmt_str = c_getstr (fmt);
|
|
if (fmt_str == NULL)
|
|
return false;
|
|
if (strchr (fmt_str, target_percent) != NULL
|
|
&& strcmp (fmt_str, target_percent_s))
|
|
return false;
|
|
}
|
|
|
|
/* If __builtin_{,v}snprintf_chk is used, assume {,v}snprintf is
|
|
available. */
|
|
fn = builtin_decl_explicit (fcode == BUILT_IN_VSNPRINTF_CHK
|
|
? BUILT_IN_VSNPRINTF : BUILT_IN_SNPRINTF);
|
|
if (!fn)
|
|
return false;
|
|
|
|
/* Replace the called function and the first 5 argument by 3 retaining
|
|
trailing varargs. */
|
|
gimple_call_set_fndecl (stmt, fn);
|
|
gimple_call_set_fntype (stmt, TREE_TYPE (fn));
|
|
gimple_call_set_arg (stmt, 0, dest);
|
|
gimple_call_set_arg (stmt, 1, len);
|
|
gimple_call_set_arg (stmt, 2, fmt);
|
|
for (unsigned i = 3; i < gimple_call_num_args (stmt) - 2; ++i)
|
|
gimple_call_set_arg (stmt, i, gimple_call_arg (stmt, i + 2));
|
|
gimple_set_num_ops (stmt, gimple_num_ops (stmt) - 2);
|
|
fold_stmt (gsi);
|
|
return true;
|
|
}
|
|
|
|
/* Fold a call EXP to __{,v}sprintf_chk having NARGS passed as ARGS.
|
|
Return NULL_TREE if a normal call should be emitted rather than
|
|
expanding the function inline. FCODE is either BUILT_IN_SPRINTF_CHK
|
|
or BUILT_IN_VSPRINTF_CHK. */
|
|
|
|
static bool
|
|
gimple_fold_builtin_sprintf_chk (gimple_stmt_iterator *gsi,
|
|
enum built_in_function fcode)
|
|
{
|
|
gcall *stmt = as_a <gcall *> (gsi_stmt (*gsi));
|
|
tree dest, size, len, fn, fmt, flag;
|
|
const char *fmt_str;
|
|
unsigned nargs = gimple_call_num_args (stmt);
|
|
|
|
/* Verify the required arguments in the original call. */
|
|
if (nargs < 4)
|
|
return false;
|
|
dest = gimple_call_arg (stmt, 0);
|
|
flag = gimple_call_arg (stmt, 1);
|
|
size = gimple_call_arg (stmt, 2);
|
|
fmt = gimple_call_arg (stmt, 3);
|
|
|
|
if (! tree_fits_uhwi_p (size))
|
|
return false;
|
|
|
|
len = NULL_TREE;
|
|
|
|
if (!init_target_chars ())
|
|
return false;
|
|
|
|
/* Check whether the format is a literal string constant. */
|
|
fmt_str = c_getstr (fmt);
|
|
if (fmt_str != NULL)
|
|
{
|
|
/* If the format doesn't contain % args or %%, we know the size. */
|
|
if (strchr (fmt_str, target_percent) == 0)
|
|
{
|
|
if (fcode != BUILT_IN_SPRINTF_CHK || nargs == 4)
|
|
len = build_int_cstu (size_type_node, strlen (fmt_str));
|
|
}
|
|
/* If the format is "%s" and first ... argument is a string literal,
|
|
we know the size too. */
|
|
else if (fcode == BUILT_IN_SPRINTF_CHK
|
|
&& strcmp (fmt_str, target_percent_s) == 0)
|
|
{
|
|
tree arg;
|
|
|
|
if (nargs == 5)
|
|
{
|
|
arg = gimple_call_arg (stmt, 4);
|
|
if (POINTER_TYPE_P (TREE_TYPE (arg)))
|
|
{
|
|
len = c_strlen (arg, 1);
|
|
if (! len || ! tree_fits_uhwi_p (len))
|
|
len = NULL_TREE;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (! integer_all_onesp (size))
|
|
{
|
|
if (! len || ! tree_int_cst_lt (len, size))
|
|
return false;
|
|
}
|
|
|
|
/* Only convert __{,v}sprintf_chk to {,v}sprintf if flag is 0
|
|
or if format doesn't contain % chars or is "%s". */
|
|
if (! integer_zerop (flag))
|
|
{
|
|
if (fmt_str == NULL)
|
|
return false;
|
|
if (strchr (fmt_str, target_percent) != NULL
|
|
&& strcmp (fmt_str, target_percent_s))
|
|
return false;
|
|
}
|
|
|
|
/* If __builtin_{,v}sprintf_chk is used, assume {,v}sprintf is available. */
|
|
fn = builtin_decl_explicit (fcode == BUILT_IN_VSPRINTF_CHK
|
|
? BUILT_IN_VSPRINTF : BUILT_IN_SPRINTF);
|
|
if (!fn)
|
|
return false;
|
|
|
|
/* Replace the called function and the first 4 argument by 2 retaining
|
|
trailing varargs. */
|
|
gimple_call_set_fndecl (stmt, fn);
|
|
gimple_call_set_fntype (stmt, TREE_TYPE (fn));
|
|
gimple_call_set_arg (stmt, 0, dest);
|
|
gimple_call_set_arg (stmt, 1, fmt);
|
|
for (unsigned i = 2; i < gimple_call_num_args (stmt) - 2; ++i)
|
|
gimple_call_set_arg (stmt, i, gimple_call_arg (stmt, i + 2));
|
|
gimple_set_num_ops (stmt, gimple_num_ops (stmt) - 2);
|
|
fold_stmt (gsi);
|
|
return true;
|
|
}
|
|
|
|
/* Simplify a call to the sprintf builtin with arguments DEST, FMT, and ORIG.
|
|
ORIG may be null if this is a 2-argument call. We don't attempt to
|
|
simplify calls with more than 3 arguments.
|
|
|
|
Return true if simplification was possible, otherwise false. */
|
|
|
|
bool
|
|
gimple_fold_builtin_sprintf (gimple_stmt_iterator *gsi)
|
|
{
|
|
gimple *stmt = gsi_stmt (*gsi);
|
|
tree dest = gimple_call_arg (stmt, 0);
|
|
tree fmt = gimple_call_arg (stmt, 1);
|
|
tree orig = NULL_TREE;
|
|
const char *fmt_str = NULL;
|
|
|
|
/* Verify the required arguments in the original call. We deal with two
|
|
types of sprintf() calls: 'sprintf (str, fmt)' and
|
|
'sprintf (dest, "%s", orig)'. */
|
|
if (gimple_call_num_args (stmt) > 3)
|
|
return false;
|
|
|
|
if (gimple_call_num_args (stmt) == 3)
|
|
orig = gimple_call_arg (stmt, 2);
|
|
|
|
/* Check whether the format is a literal string constant. */
|
|
fmt_str = c_getstr (fmt);
|
|
if (fmt_str == NULL)
|
|
return false;
|
|
|
|
if (!init_target_chars ())
|
|
return false;
|
|
|
|
/* If the format doesn't contain % args or %%, use strcpy. */
|
|
if (strchr (fmt_str, target_percent) == NULL)
|
|
{
|
|
tree fn = builtin_decl_implicit (BUILT_IN_STRCPY);
|
|
|
|
if (!fn)
|
|
return false;
|
|
|
|
/* Don't optimize sprintf (buf, "abc", ptr++). */
|
|
if (orig)
|
|
return false;
|
|
|
|
/* Convert sprintf (str, fmt) into strcpy (str, fmt) when
|
|
'format' is known to contain no % formats. */
|
|
gimple_seq stmts = NULL;
|
|
gimple *repl = gimple_build_call (fn, 2, dest, fmt);
|
|
|
|
/* Propagate the NO_WARNING bit to avoid issuing the same
|
|
warning more than once. */
|
|
if (gimple_no_warning_p (stmt))
|
|
gimple_set_no_warning (repl, true);
|
|
|
|
gimple_seq_add_stmt_without_update (&stmts, repl);
|
|
if (tree lhs = gimple_call_lhs (stmt))
|
|
{
|
|
repl = gimple_build_assign (lhs, build_int_cst (TREE_TYPE (lhs),
|
|
strlen (fmt_str)));
|
|
gimple_seq_add_stmt_without_update (&stmts, repl);
|
|
gsi_replace_with_seq_vops (gsi, stmts);
|
|
/* gsi now points at the assignment to the lhs, get a
|
|
stmt iterator to the memcpy call.
|
|
??? We can't use gsi_for_stmt as that doesn't work when the
|
|
CFG isn't built yet. */
|
|
gimple_stmt_iterator gsi2 = *gsi;
|
|
gsi_prev (&gsi2);
|
|
fold_stmt (&gsi2);
|
|
}
|
|
else
|
|
{
|
|
gsi_replace_with_seq_vops (gsi, stmts);
|
|
fold_stmt (gsi);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/* If the format is "%s", use strcpy if the result isn't used. */
|
|
else if (fmt_str && strcmp (fmt_str, target_percent_s) == 0)
|
|
{
|
|
tree fn;
|
|
fn = builtin_decl_implicit (BUILT_IN_STRCPY);
|
|
|
|
if (!fn)
|
|
return false;
|
|
|
|
/* Don't crash on sprintf (str1, "%s"). */
|
|
if (!orig)
|
|
return false;
|
|
|
|
tree orig_len = NULL_TREE;
|
|
if (gimple_call_lhs (stmt))
|
|
{
|
|
orig_len = get_maxval_strlen (orig, SRK_STRLEN);
|
|
if (!orig_len)
|
|
return false;
|
|
}
|
|
|
|
/* Convert sprintf (str1, "%s", str2) into strcpy (str1, str2). */
|
|
gimple_seq stmts = NULL;
|
|
gimple *repl = gimple_build_call (fn, 2, dest, orig);
|
|
|
|
/* Propagate the NO_WARNING bit to avoid issuing the same
|
|
warning more than once. */
|
|
if (gimple_no_warning_p (stmt))
|
|
gimple_set_no_warning (repl, true);
|
|
|
|
gimple_seq_add_stmt_without_update (&stmts, repl);
|
|
if (tree lhs = gimple_call_lhs (stmt))
|
|
{
|
|
if (!useless_type_conversion_p (TREE_TYPE (lhs),
|
|
TREE_TYPE (orig_len)))
|
|
orig_len = fold_convert (TREE_TYPE (lhs), orig_len);
|
|
repl = gimple_build_assign (lhs, orig_len);
|
|
gimple_seq_add_stmt_without_update (&stmts, repl);
|
|
gsi_replace_with_seq_vops (gsi, stmts);
|
|
/* gsi now points at the assignment to the lhs, get a
|
|
stmt iterator to the memcpy call.
|
|
??? We can't use gsi_for_stmt as that doesn't work when the
|
|
CFG isn't built yet. */
|
|
gimple_stmt_iterator gsi2 = *gsi;
|
|
gsi_prev (&gsi2);
|
|
fold_stmt (&gsi2);
|
|
}
|
|
else
|
|
{
|
|
gsi_replace_with_seq_vops (gsi, stmts);
|
|
fold_stmt (gsi);
|
|
}
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/* Simplify a call to the snprintf builtin with arguments DEST, DESTSIZE,
|
|
FMT, and ORIG. ORIG may be null if this is a 3-argument call. We don't
|
|
attempt to simplify calls with more than 4 arguments.
|
|
|
|
Return true if simplification was possible, otherwise false. */
|
|
|
|
bool
|
|
gimple_fold_builtin_snprintf (gimple_stmt_iterator *gsi)
|
|
{
|
|
gcall *stmt = as_a <gcall *> (gsi_stmt (*gsi));
|
|
tree dest = gimple_call_arg (stmt, 0);
|
|
tree destsize = gimple_call_arg (stmt, 1);
|
|
tree fmt = gimple_call_arg (stmt, 2);
|
|
tree orig = NULL_TREE;
|
|
const char *fmt_str = NULL;
|
|
|
|
if (gimple_call_num_args (stmt) > 4)
|
|
return false;
|
|
|
|
if (gimple_call_num_args (stmt) == 4)
|
|
orig = gimple_call_arg (stmt, 3);
|
|
|
|
if (!tree_fits_uhwi_p (destsize))
|
|
return false;
|
|
unsigned HOST_WIDE_INT destlen = tree_to_uhwi (destsize);
|
|
|
|
/* Check whether the format is a literal string constant. */
|
|
fmt_str = c_getstr (fmt);
|
|
if (fmt_str == NULL)
|
|
return false;
|
|
|
|
if (!init_target_chars ())
|
|
return false;
|
|
|
|
/* If the format doesn't contain % args or %%, use strcpy. */
|
|
if (strchr (fmt_str, target_percent) == NULL)
|
|
{
|
|
tree fn = builtin_decl_implicit (BUILT_IN_STRCPY);
|
|
if (!fn)
|
|
return false;
|
|
|
|
/* Don't optimize snprintf (buf, 4, "abc", ptr++). */
|
|
if (orig)
|
|
return false;
|
|
|
|
/* We could expand this as
|
|
memcpy (str, fmt, cst - 1); str[cst - 1] = '\0';
|
|
or to
|
|
memcpy (str, fmt_with_nul_at_cstm1, cst);
|
|
but in the former case that might increase code size
|
|
and in the latter case grow .rodata section too much.
|
|
So punt for now. */
|
|
size_t len = strlen (fmt_str);
|
|
if (len >= destlen)
|
|
return false;
|
|
|
|
gimple_seq stmts = NULL;
|
|
gimple *repl = gimple_build_call (fn, 2, dest, fmt);
|
|
gimple_seq_add_stmt_without_update (&stmts, repl);
|
|
if (tree lhs = gimple_call_lhs (stmt))
|
|
{
|
|
repl = gimple_build_assign (lhs,
|
|
build_int_cst (TREE_TYPE (lhs), len));
|
|
gimple_seq_add_stmt_without_update (&stmts, repl);
|
|
gsi_replace_with_seq_vops (gsi, stmts);
|
|
/* gsi now points at the assignment to the lhs, get a
|
|
stmt iterator to the memcpy call.
|
|
??? We can't use gsi_for_stmt as that doesn't work when the
|
|
CFG isn't built yet. */
|
|
gimple_stmt_iterator gsi2 = *gsi;
|
|
gsi_prev (&gsi2);
|
|
fold_stmt (&gsi2);
|
|
}
|
|
else
|
|
{
|
|
gsi_replace_with_seq_vops (gsi, stmts);
|
|
fold_stmt (gsi);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/* If the format is "%s", use strcpy if the result isn't used. */
|
|
else if (fmt_str && strcmp (fmt_str, target_percent_s) == 0)
|
|
{
|
|
tree fn = builtin_decl_implicit (BUILT_IN_STRCPY);
|
|
if (!fn)
|
|
return false;
|
|
|
|
/* Don't crash on snprintf (str1, cst, "%s"). */
|
|
if (!orig)
|
|
return false;
|
|
|
|
tree orig_len = get_maxval_strlen (orig, SRK_STRLEN);
|
|
if (!orig_len || TREE_CODE (orig_len) != INTEGER_CST)
|
|
return false;
|
|
|
|
/* We could expand this as
|
|
memcpy (str1, str2, cst - 1); str1[cst - 1] = '\0';
|
|
or to
|
|
memcpy (str1, str2_with_nul_at_cstm1, cst);
|
|
but in the former case that might increase code size
|
|
and in the latter case grow .rodata section too much.
|
|
So punt for now. */
|
|
if (compare_tree_int (orig_len, destlen) >= 0)
|
|
return false;
|
|
|
|
/* Convert snprintf (str1, cst, "%s", str2) into
|
|
strcpy (str1, str2) if strlen (str2) < cst. */
|
|
gimple_seq stmts = NULL;
|
|
gimple *repl = gimple_build_call (fn, 2, dest, orig);
|
|
gimple_seq_add_stmt_without_update (&stmts, repl);
|
|
if (tree lhs = gimple_call_lhs (stmt))
|
|
{
|
|
if (!useless_type_conversion_p (TREE_TYPE (lhs),
|
|
TREE_TYPE (orig_len)))
|
|
orig_len = fold_convert (TREE_TYPE (lhs), orig_len);
|
|
repl = gimple_build_assign (lhs, orig_len);
|
|
gimple_seq_add_stmt_without_update (&stmts, repl);
|
|
gsi_replace_with_seq_vops (gsi, stmts);
|
|
/* gsi now points at the assignment to the lhs, get a
|
|
stmt iterator to the memcpy call.
|
|
??? We can't use gsi_for_stmt as that doesn't work when the
|
|
CFG isn't built yet. */
|
|
gimple_stmt_iterator gsi2 = *gsi;
|
|
gsi_prev (&gsi2);
|
|
fold_stmt (&gsi2);
|
|
}
|
|
else
|
|
{
|
|
gsi_replace_with_seq_vops (gsi, stmts);
|
|
fold_stmt (gsi);
|
|
}
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/* Fold a call to the {,v}fprintf{,_unlocked} and __{,v}printf_chk builtins.
|
|
FP, FMT, and ARG are the arguments to the call. We don't fold calls with
|
|
more than 3 arguments, and ARG may be null in the 2-argument case.
|
|
|
|
Return NULL_TREE if no simplification was possible, otherwise return the
|
|
simplified form of the call as a tree. FCODE is the BUILT_IN_*
|
|
code of the function to be simplified. */
|
|
|
|
static bool
|
|
gimple_fold_builtin_fprintf (gimple_stmt_iterator *gsi,
|
|
tree fp, tree fmt, tree arg,
|
|
enum built_in_function fcode)
|
|
{
|
|
gcall *stmt = as_a <gcall *> (gsi_stmt (*gsi));
|
|
tree fn_fputc, fn_fputs;
|
|
const char *fmt_str = NULL;
|
|
|
|
/* If the return value is used, don't do the transformation. */
|
|
if (gimple_call_lhs (stmt) != NULL_TREE)
|
|
return false;
|
|
|
|
/* Check whether the format is a literal string constant. */
|
|
fmt_str = c_getstr (fmt);
|
|
if (fmt_str == NULL)
|
|
return false;
|
|
|
|
if (fcode == BUILT_IN_FPRINTF_UNLOCKED)
|
|
{
|
|
/* If we're using an unlocked function, assume the other
|
|
unlocked functions exist explicitly. */
|
|
fn_fputc = builtin_decl_explicit (BUILT_IN_FPUTC_UNLOCKED);
|
|
fn_fputs = builtin_decl_explicit (BUILT_IN_FPUTS_UNLOCKED);
|
|
}
|
|
else
|
|
{
|
|
fn_fputc = builtin_decl_implicit (BUILT_IN_FPUTC);
|
|
fn_fputs = builtin_decl_implicit (BUILT_IN_FPUTS);
|
|
}
|
|
|
|
if (!init_target_chars ())
|
|
return false;
|
|
|
|
/* If the format doesn't contain % args or %%, use strcpy. */
|
|
if (strchr (fmt_str, target_percent) == NULL)
|
|
{
|
|
if (fcode != BUILT_IN_VFPRINTF && fcode != BUILT_IN_VFPRINTF_CHK
|
|
&& arg)
|
|
return false;
|
|
|
|
/* If the format specifier was "", fprintf does nothing. */
|
|
if (fmt_str[0] == '\0')
|
|
{
|
|
replace_call_with_value (gsi, NULL_TREE);
|
|
return true;
|
|
}
|
|
|
|
/* When "string" doesn't contain %, replace all cases of
|
|
fprintf (fp, string) with fputs (string, fp). The fputs
|
|
builtin will take care of special cases like length == 1. */
|
|
if (fn_fputs)
|
|
{
|
|
gcall *repl = gimple_build_call (fn_fputs, 2, fmt, fp);
|
|
replace_call_with_call_and_fold (gsi, repl);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
/* The other optimizations can be done only on the non-va_list variants. */
|
|
else if (fcode == BUILT_IN_VFPRINTF || fcode == BUILT_IN_VFPRINTF_CHK)
|
|
return false;
|
|
|
|
/* If the format specifier was "%s", call __builtin_fputs (arg, fp). */
|
|
else if (strcmp (fmt_str, target_percent_s) == 0)
|
|
{
|
|
if (!arg || ! POINTER_TYPE_P (TREE_TYPE (arg)))
|
|
return false;
|
|
if (fn_fputs)
|
|
{
|
|
gcall *repl = gimple_build_call (fn_fputs, 2, arg, fp);
|
|
replace_call_with_call_and_fold (gsi, repl);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
/* If the format specifier was "%c", call __builtin_fputc (arg, fp). */
|
|
else if (strcmp (fmt_str, target_percent_c) == 0)
|
|
{
|
|
if (!arg
|
|
|| ! useless_type_conversion_p (integer_type_node, TREE_TYPE (arg)))
|
|
return false;
|
|
if (fn_fputc)
|
|
{
|
|
gcall *repl = gimple_build_call (fn_fputc, 2, arg, fp);
|
|
replace_call_with_call_and_fold (gsi, repl);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/* Fold a call to the {,v}printf{,_unlocked} and __{,v}printf_chk builtins.
|
|
FMT and ARG are the arguments to the call; we don't fold cases with
|
|
more than 2 arguments, and ARG may be null if this is a 1-argument case.
|
|
|
|
Return NULL_TREE if no simplification was possible, otherwise return the
|
|
simplified form of the call as a tree. FCODE is the BUILT_IN_*
|
|
code of the function to be simplified. */
|
|
|
|
static bool
|
|
gimple_fold_builtin_printf (gimple_stmt_iterator *gsi, tree fmt,
|
|
tree arg, enum built_in_function fcode)
|
|
{
|
|
gcall *stmt = as_a <gcall *> (gsi_stmt (*gsi));
|
|
tree fn_putchar, fn_puts, newarg;
|
|
const char *fmt_str = NULL;
|
|
|
|
/* If the return value is used, don't do the transformation. */
|
|
if (gimple_call_lhs (stmt) != NULL_TREE)
|
|
return false;
|
|
|
|
/* Check whether the format is a literal string constant. */
|
|
fmt_str = c_getstr (fmt);
|
|
if (fmt_str == NULL)
|
|
return false;
|
|
|
|
if (fcode == BUILT_IN_PRINTF_UNLOCKED)
|
|
{
|
|
/* If we're using an unlocked function, assume the other
|
|
unlocked functions exist explicitly. */
|
|
fn_putchar = builtin_decl_explicit (BUILT_IN_PUTCHAR_UNLOCKED);
|
|
fn_puts = builtin_decl_explicit (BUILT_IN_PUTS_UNLOCKED);
|
|
}
|
|
else
|
|
{
|
|
fn_putchar = builtin_decl_implicit (BUILT_IN_PUTCHAR);
|
|
fn_puts = builtin_decl_implicit (BUILT_IN_PUTS);
|
|
}
|
|
|
|
if (!init_target_chars ())
|
|
return false;
|
|
|
|
if (strcmp (fmt_str, target_percent_s) == 0
|
|
|| strchr (fmt_str, target_percent) == NULL)
|
|
{
|
|
const char *str;
|
|
|
|
if (strcmp (fmt_str, target_percent_s) == 0)
|
|
{
|
|
if (fcode == BUILT_IN_VPRINTF || fcode == BUILT_IN_VPRINTF_CHK)
|
|
return false;
|
|
|
|
if (!arg || ! POINTER_TYPE_P (TREE_TYPE (arg)))
|
|
return false;
|
|
|
|
str = c_getstr (arg);
|
|
if (str == NULL)
|
|
return false;
|
|
}
|
|
else
|
|
{
|
|
/* The format specifier doesn't contain any '%' characters. */
|
|
if (fcode != BUILT_IN_VPRINTF && fcode != BUILT_IN_VPRINTF_CHK
|
|
&& arg)
|
|
return false;
|
|
str = fmt_str;
|
|
}
|
|
|
|
/* If the string was "", printf does nothing. */
|
|
if (str[0] == '\0')
|
|
{
|
|
replace_call_with_value (gsi, NULL_TREE);
|
|
return true;
|
|
}
|
|
|
|
/* If the string has length of 1, call putchar. */
|
|
if (str[1] == '\0')
|
|
{
|
|
/* Given printf("c"), (where c is any one character,)
|
|
convert "c"[0] to an int and pass that to the replacement
|
|
function. */
|
|
newarg = build_int_cst (integer_type_node, str[0]);
|
|
if (fn_putchar)
|
|
{
|
|
gcall *repl = gimple_build_call (fn_putchar, 1, newarg);
|
|
replace_call_with_call_and_fold (gsi, repl);
|
|
return true;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* If the string was "string\n", call puts("string"). */
|
|
size_t len = strlen (str);
|
|
if ((unsigned char)str[len - 1] == target_newline
|
|
&& (size_t) (int) len == len
|
|
&& (int) len > 0)
|
|
{
|
|
char *newstr;
|
|
|
|
/* Create a NUL-terminated string that's one char shorter
|
|
than the original, stripping off the trailing '\n'. */
|
|
newstr = xstrdup (str);
|
|
newstr[len - 1] = '\0';
|
|
newarg = build_string_literal (len, newstr);
|
|
free (newstr);
|
|
if (fn_puts)
|
|
{
|
|
gcall *repl = gimple_build_call (fn_puts, 1, newarg);
|
|
replace_call_with_call_and_fold (gsi, repl);
|
|
return true;
|
|
}
|
|
}
|
|
else
|
|
/* We'd like to arrange to call fputs(string,stdout) here,
|
|
but we need stdout and don't have a way to get it yet. */
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/* The other optimizations can be done only on the non-va_list variants. */
|
|
else if (fcode == BUILT_IN_VPRINTF || fcode == BUILT_IN_VPRINTF_CHK)
|
|
return false;
|
|
|
|
/* If the format specifier was "%s\n", call __builtin_puts(arg). */
|
|
else if (strcmp (fmt_str, target_percent_s_newline) == 0)
|
|
{
|
|
if (!arg || ! POINTER_TYPE_P (TREE_TYPE (arg)))
|
|
return false;
|
|
if (fn_puts)
|
|
{
|
|
gcall *repl = gimple_build_call (fn_puts, 1, arg);
|
|
replace_call_with_call_and_fold (gsi, repl);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
/* If the format specifier was "%c", call __builtin_putchar(arg). */
|
|
else if (strcmp (fmt_str, target_percent_c) == 0)
|
|
{
|
|
if (!arg || ! useless_type_conversion_p (integer_type_node,
|
|
TREE_TYPE (arg)))
|
|
return false;
|
|
if (fn_putchar)
|
|
{
|
|
gcall *repl = gimple_build_call (fn_putchar, 1, arg);
|
|
replace_call_with_call_and_fold (gsi, repl);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
|
|
/* Fold a call to __builtin_strlen with known length LEN. */
|
|
|
|
static bool
|
|
gimple_fold_builtin_strlen (gimple_stmt_iterator *gsi)
|
|
{
|
|
gimple *stmt = gsi_stmt (*gsi);
|
|
tree arg = gimple_call_arg (stmt, 0);
|
|
|
|
wide_int minlen;
|
|
wide_int maxlen;
|
|
|
|
c_strlen_data lendata = { };
|
|
if (get_range_strlen (arg, &lendata, /* eltsize = */ 1)
|
|
&& !lendata.decl
|
|
&& lendata.minlen && TREE_CODE (lendata.minlen) == INTEGER_CST
|
|
&& lendata.maxlen && TREE_CODE (lendata.maxlen) == INTEGER_CST)
|
|
{
|
|
/* The range of lengths refers to either a single constant
|
|
string or to the longest and shortest constant string
|
|
referenced by the argument of the strlen() call, or to
|
|
the strings that can possibly be stored in the arrays
|
|
the argument refers to. */
|
|
minlen = wi::to_wide (lendata.minlen);
|
|
maxlen = wi::to_wide (lendata.maxlen);
|
|
}
|
|
else
|
|
{
|
|
unsigned prec = TYPE_PRECISION (sizetype);
|
|
|
|
minlen = wi::shwi (0, prec);
|
|
maxlen = wi::to_wide (max_object_size (), prec) - 2;
|
|
}
|
|
|
|
if (minlen == maxlen)
|
|
{
|
|
/* Fold the strlen call to a constant. */
|
|
tree type = TREE_TYPE (lendata.minlen);
|
|
tree len = force_gimple_operand_gsi (gsi,
|
|
wide_int_to_tree (type, minlen),
|
|
true, NULL, true, GSI_SAME_STMT);
|
|
replace_call_with_value (gsi, len);
|
|
return true;
|
|
}
|
|
|
|
/* Set the strlen() range to [0, MAXLEN]. */
|
|
if (tree lhs = gimple_call_lhs (stmt))
|
|
set_strlen_range (lhs, minlen, maxlen);
|
|
|
|
return false;
|
|
}
|
|
|
|
/* Fold a call to __builtin_acc_on_device. */
|
|
|
|
static bool
|
|
gimple_fold_builtin_acc_on_device (gimple_stmt_iterator *gsi, tree arg0)
|
|
{
|
|
/* Defer folding until we know which compiler we're in. */
|
|
if (symtab->state != EXPANSION)
|
|
return false;
|
|
|
|
unsigned val_host = GOMP_DEVICE_HOST;
|
|
unsigned val_dev = GOMP_DEVICE_NONE;
|
|
|
|
#ifdef ACCEL_COMPILER
|
|
val_host = GOMP_DEVICE_NOT_HOST;
|
|
val_dev = ACCEL_COMPILER_acc_device;
|
|
#endif
|
|
|
|
location_t loc = gimple_location (gsi_stmt (*gsi));
|
|
|
|
tree host_eq = make_ssa_name (boolean_type_node);
|
|
gimple *host_ass = gimple_build_assign
|
|
(host_eq, EQ_EXPR, arg0, build_int_cst (TREE_TYPE (arg0), val_host));
|
|
gimple_set_location (host_ass, loc);
|
|
gsi_insert_before (gsi, host_ass, GSI_SAME_STMT);
|
|
|
|
tree dev_eq = make_ssa_name (boolean_type_node);
|
|
gimple *dev_ass = gimple_build_assign
|
|
(dev_eq, EQ_EXPR, arg0, build_int_cst (TREE_TYPE (arg0), val_dev));
|
|
gimple_set_location (dev_ass, loc);
|
|
gsi_insert_before (gsi, dev_ass, GSI_SAME_STMT);
|
|
|
|
tree result = make_ssa_name (boolean_type_node);
|
|
gimple *result_ass = gimple_build_assign
|
|
(result, BIT_IOR_EXPR, host_eq, dev_eq);
|
|
gimple_set_location (result_ass, loc);
|
|
gsi_insert_before (gsi, result_ass, GSI_SAME_STMT);
|
|
|
|
replace_call_with_value (gsi, result);
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Fold realloc (0, n) -> malloc (n). */
|
|
|
|
static bool
|
|
gimple_fold_builtin_realloc (gimple_stmt_iterator *gsi)
|
|
{
|
|
gimple *stmt = gsi_stmt (*gsi);
|
|
tree arg = gimple_call_arg (stmt, 0);
|
|
tree size = gimple_call_arg (stmt, 1);
|
|
|
|
if (operand_equal_p (arg, null_pointer_node, 0))
|
|
{
|
|
tree fn_malloc = builtin_decl_implicit (BUILT_IN_MALLOC);
|
|
if (fn_malloc)
|
|
{
|
|
gcall *repl = gimple_build_call (fn_malloc, 1, size);
|
|
replace_call_with_call_and_fold (gsi, repl);
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/* Fold the non-target builtin at *GSI and return whether any simplification
|
|
was made. */
|
|
|
|
static bool
|
|
gimple_fold_builtin (gimple_stmt_iterator *gsi)
|
|
{
|
|
gcall *stmt = as_a <gcall *>(gsi_stmt (*gsi));
|
|
tree callee = gimple_call_fndecl (stmt);
|
|
|
|
/* Give up for always_inline inline builtins until they are
|
|
inlined. */
|
|
if (avoid_folding_inline_builtin (callee))
|
|
return false;
|
|
|
|
unsigned n = gimple_call_num_args (stmt);
|
|
enum built_in_function fcode = DECL_FUNCTION_CODE (callee);
|
|
switch (fcode)
|
|
{
|
|
case BUILT_IN_BCMP:
|
|
return gimple_fold_builtin_bcmp (gsi);
|
|
case BUILT_IN_BCOPY:
|
|
return gimple_fold_builtin_bcopy (gsi);
|
|
case BUILT_IN_BZERO:
|
|
return gimple_fold_builtin_bzero (gsi);
|
|
|
|
case BUILT_IN_MEMSET:
|
|
return gimple_fold_builtin_memset (gsi,
|
|
gimple_call_arg (stmt, 1),
|
|
gimple_call_arg (stmt, 2));
|
|
case BUILT_IN_MEMCPY:
|
|
case BUILT_IN_MEMPCPY:
|
|
case BUILT_IN_MEMMOVE:
|
|
return gimple_fold_builtin_memory_op (gsi, gimple_call_arg (stmt, 0),
|
|
gimple_call_arg (stmt, 1), fcode);
|
|
case BUILT_IN_SPRINTF_CHK:
|
|
case BUILT_IN_VSPRINTF_CHK:
|
|
return gimple_fold_builtin_sprintf_chk (gsi, fcode);
|
|
case BUILT_IN_STRCAT_CHK:
|
|
return gimple_fold_builtin_strcat_chk (gsi);
|
|
case BUILT_IN_STRNCAT_CHK:
|
|
return gimple_fold_builtin_strncat_chk (gsi);
|
|
case BUILT_IN_STRLEN:
|
|
return gimple_fold_builtin_strlen (gsi);
|
|
case BUILT_IN_STRCPY:
|
|
return gimple_fold_builtin_strcpy (gsi,
|
|
gimple_call_arg (stmt, 0),
|
|
gimple_call_arg (stmt, 1));
|
|
case BUILT_IN_STRNCPY:
|
|
return gimple_fold_builtin_strncpy (gsi,
|
|
gimple_call_arg (stmt, 0),
|
|
gimple_call_arg (stmt, 1),
|
|
gimple_call_arg (stmt, 2));
|
|
case BUILT_IN_STRCAT:
|
|
return gimple_fold_builtin_strcat (gsi, gimple_call_arg (stmt, 0),
|
|
gimple_call_arg (stmt, 1));
|
|
case BUILT_IN_STRNCAT:
|
|
return gimple_fold_builtin_strncat (gsi);
|
|
case BUILT_IN_INDEX:
|
|
case BUILT_IN_STRCHR:
|
|
return gimple_fold_builtin_strchr (gsi, false);
|
|
case BUILT_IN_RINDEX:
|
|
case BUILT_IN_STRRCHR:
|
|
return gimple_fold_builtin_strchr (gsi, true);
|
|
case BUILT_IN_STRSTR:
|
|
return gimple_fold_builtin_strstr (gsi);
|
|
case BUILT_IN_STRCMP:
|
|
case BUILT_IN_STRCMP_EQ:
|
|
case BUILT_IN_STRCASECMP:
|
|
case BUILT_IN_STRNCMP:
|
|
case BUILT_IN_STRNCMP_EQ:
|
|
case BUILT_IN_STRNCASECMP:
|
|
return gimple_fold_builtin_string_compare (gsi);
|
|
case BUILT_IN_MEMCHR:
|
|
return gimple_fold_builtin_memchr (gsi);
|
|
case BUILT_IN_FPUTS:
|
|
return gimple_fold_builtin_fputs (gsi, gimple_call_arg (stmt, 0),
|
|
gimple_call_arg (stmt, 1), false);
|
|
case BUILT_IN_FPUTS_UNLOCKED:
|
|
return gimple_fold_builtin_fputs (gsi, gimple_call_arg (stmt, 0),
|
|
gimple_call_arg (stmt, 1), true);
|
|
case BUILT_IN_MEMCPY_CHK:
|
|
case BUILT_IN_MEMPCPY_CHK:
|
|
case BUILT_IN_MEMMOVE_CHK:
|
|
case BUILT_IN_MEMSET_CHK:
|
|
return gimple_fold_builtin_memory_chk (gsi,
|
|
gimple_call_arg (stmt, 0),
|
|
gimple_call_arg (stmt, 1),
|
|
gimple_call_arg (stmt, 2),
|
|
gimple_call_arg (stmt, 3),
|
|
fcode);
|
|
case BUILT_IN_STPCPY:
|
|
return gimple_fold_builtin_stpcpy (gsi);
|
|
case BUILT_IN_STRCPY_CHK:
|
|
case BUILT_IN_STPCPY_CHK:
|
|
return gimple_fold_builtin_stxcpy_chk (gsi,
|
|
gimple_call_arg (stmt, 0),
|
|
gimple_call_arg (stmt, 1),
|
|
gimple_call_arg (stmt, 2),
|
|
fcode);
|
|
case BUILT_IN_STRNCPY_CHK:
|
|
case BUILT_IN_STPNCPY_CHK:
|
|
return gimple_fold_builtin_stxncpy_chk (gsi,
|
|
gimple_call_arg (stmt, 0),
|
|
gimple_call_arg (stmt, 1),
|
|
gimple_call_arg (stmt, 2),
|
|
gimple_call_arg (stmt, 3),
|
|
fcode);
|
|
case BUILT_IN_SNPRINTF_CHK:
|
|
case BUILT_IN_VSNPRINTF_CHK:
|
|
return gimple_fold_builtin_snprintf_chk (gsi, fcode);
|
|
|
|
case BUILT_IN_FPRINTF:
|
|
case BUILT_IN_FPRINTF_UNLOCKED:
|
|
case BUILT_IN_VFPRINTF:
|
|
if (n == 2 || n == 3)
|
|
return gimple_fold_builtin_fprintf (gsi,
|
|
gimple_call_arg (stmt, 0),
|
|
gimple_call_arg (stmt, 1),
|
|
n == 3
|
|
? gimple_call_arg (stmt, 2)
|
|
: NULL_TREE,
|
|
fcode);
|
|
break;
|
|
case BUILT_IN_FPRINTF_CHK:
|
|
case BUILT_IN_VFPRINTF_CHK:
|
|
if (n == 3 || n == 4)
|
|
return gimple_fold_builtin_fprintf (gsi,
|
|
gimple_call_arg (stmt, 0),
|
|
gimple_call_arg (stmt, 2),
|
|
n == 4
|
|
? gimple_call_arg (stmt, 3)
|
|
: NULL_TREE,
|
|
fcode);
|
|
break;
|
|
case BUILT_IN_PRINTF:
|
|
case BUILT_IN_PRINTF_UNLOCKED:
|
|
case BUILT_IN_VPRINTF:
|
|
if (n == 1 || n == 2)
|
|
return gimple_fold_builtin_printf (gsi, gimple_call_arg (stmt, 0),
|
|
n == 2
|
|
? gimple_call_arg (stmt, 1)
|
|
: NULL_TREE, fcode);
|
|
break;
|
|
case BUILT_IN_PRINTF_CHK:
|
|
case BUILT_IN_VPRINTF_CHK:
|
|
if (n == 2 || n == 3)
|
|
return gimple_fold_builtin_printf (gsi, gimple_call_arg (stmt, 1),
|
|
n == 3
|
|
? gimple_call_arg (stmt, 2)
|
|
: NULL_TREE, fcode);
|
|
break;
|
|
case BUILT_IN_ACC_ON_DEVICE:
|
|
return gimple_fold_builtin_acc_on_device (gsi,
|
|
gimple_call_arg (stmt, 0));
|
|
case BUILT_IN_REALLOC:
|
|
return gimple_fold_builtin_realloc (gsi);
|
|
|
|
default:;
|
|
}
|
|
|
|
/* Try the generic builtin folder. */
|
|
bool ignore = (gimple_call_lhs (stmt) == NULL);
|
|
tree result = fold_call_stmt (stmt, ignore);
|
|
if (result)
|
|
{
|
|
if (ignore)
|
|
STRIP_NOPS (result);
|
|
else
|
|
result = fold_convert (gimple_call_return_type (stmt), result);
|
|
if (!update_call_from_tree (gsi, result))
|
|
gimplify_and_update_call_from_tree (gsi, result);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/* Transform IFN_GOACC_DIM_SIZE and IFN_GOACC_DIM_POS internal
|
|
function calls to constants, where possible. */
|
|
|
|
static tree
|
|
fold_internal_goacc_dim (const gimple *call)
|
|
{
|
|
int axis = oacc_get_ifn_dim_arg (call);
|
|
int size = oacc_get_fn_dim_size (current_function_decl, axis);
|
|
tree result = NULL_TREE;
|
|
tree type = TREE_TYPE (gimple_call_lhs (call));
|
|
|
|
switch (gimple_call_internal_fn (call))
|
|
{
|
|
case IFN_GOACC_DIM_POS:
|
|
/* If the size is 1, we know the answer. */
|
|
if (size == 1)
|
|
result = build_int_cst (type, 0);
|
|
break;
|
|
case IFN_GOACC_DIM_SIZE:
|
|
/* If the size is not dynamic, we know the answer. */
|
|
if (size)
|
|
result = build_int_cst (type, size);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/* Return true if stmt is __atomic_compare_exchange_N call which is suitable
|
|
for conversion into ATOMIC_COMPARE_EXCHANGE if the second argument is
|
|
&var where var is only addressable because of such calls. */
|
|
|
|
bool
|
|
optimize_atomic_compare_exchange_p (gimple *stmt)
|
|
{
|
|
if (gimple_call_num_args (stmt) != 6
|
|
|| !flag_inline_atomics
|
|
|| !optimize
|
|
|| sanitize_flags_p (SANITIZE_THREAD | SANITIZE_ADDRESS)
|
|
|| !gimple_call_builtin_p (stmt, BUILT_IN_NORMAL)
|
|
|| !gimple_vdef (stmt)
|
|
|| !gimple_vuse (stmt))
|
|
return false;
|
|
|
|
tree fndecl = gimple_call_fndecl (stmt);
|
|
switch (DECL_FUNCTION_CODE (fndecl))
|
|
{
|
|
case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_1:
|
|
case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_2:
|
|
case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_4:
|
|
case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_8:
|
|
case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_16:
|
|
break;
|
|
default:
|
|
return false;
|
|
}
|
|
|
|
tree expected = gimple_call_arg (stmt, 1);
|
|
if (TREE_CODE (expected) != ADDR_EXPR
|
|
|| !SSA_VAR_P (TREE_OPERAND (expected, 0)))
|
|
return false;
|
|
|
|
tree etype = TREE_TYPE (TREE_OPERAND (expected, 0));
|
|
if (!is_gimple_reg_type (etype)
|
|
|| !auto_var_in_fn_p (TREE_OPERAND (expected, 0), current_function_decl)
|
|
|| TREE_THIS_VOLATILE (etype)
|
|
|| VECTOR_TYPE_P (etype)
|
|
|| TREE_CODE (etype) == COMPLEX_TYPE
|
|
/* Don't optimize floating point expected vars, VIEW_CONVERT_EXPRs
|
|
might not preserve all the bits. See PR71716. */
|
|
|| SCALAR_FLOAT_TYPE_P (etype)
|
|
|| maybe_ne (TYPE_PRECISION (etype),
|
|
GET_MODE_BITSIZE (TYPE_MODE (etype))))
|
|
return false;
|
|
|
|
tree weak = gimple_call_arg (stmt, 3);
|
|
if (!integer_zerop (weak) && !integer_onep (weak))
|
|
return false;
|
|
|
|
tree parmt = TYPE_ARG_TYPES (TREE_TYPE (fndecl));
|
|
tree itype = TREE_VALUE (TREE_CHAIN (TREE_CHAIN (parmt)));
|
|
machine_mode mode = TYPE_MODE (itype);
|
|
|
|
if (direct_optab_handler (atomic_compare_and_swap_optab, mode)
|
|
== CODE_FOR_nothing
|
|
&& optab_handler (sync_compare_and_swap_optab, mode) == CODE_FOR_nothing)
|
|
return false;
|
|
|
|
if (maybe_ne (int_size_in_bytes (etype), GET_MODE_SIZE (mode)))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Fold
|
|
r = __atomic_compare_exchange_N (p, &e, d, w, s, f);
|
|
into
|
|
_Complex uintN_t t = ATOMIC_COMPARE_EXCHANGE (p, e, d, w * 256 + N, s, f);
|
|
i = IMAGPART_EXPR <t>;
|
|
r = (_Bool) i;
|
|
e = REALPART_EXPR <t>; */
|
|
|
|
void
|
|
fold_builtin_atomic_compare_exchange (gimple_stmt_iterator *gsi)
|
|
{
|
|
gimple *stmt = gsi_stmt (*gsi);
|
|
tree fndecl = gimple_call_fndecl (stmt);
|
|
tree parmt = TYPE_ARG_TYPES (TREE_TYPE (fndecl));
|
|
tree itype = TREE_VALUE (TREE_CHAIN (TREE_CHAIN (parmt)));
|
|
tree ctype = build_complex_type (itype);
|
|
tree expected = TREE_OPERAND (gimple_call_arg (stmt, 1), 0);
|
|
bool throws = false;
|
|
edge e = NULL;
|
|
gimple *g = gimple_build_assign (make_ssa_name (TREE_TYPE (expected)),
|
|
expected);
|
|
gsi_insert_before (gsi, g, GSI_SAME_STMT);
|
|
gimple_stmt_iterator gsiret = gsi_for_stmt (g);
|
|
if (!useless_type_conversion_p (itype, TREE_TYPE (expected)))
|
|
{
|
|
g = gimple_build_assign (make_ssa_name (itype), VIEW_CONVERT_EXPR,
|
|
build1 (VIEW_CONVERT_EXPR, itype,
|
|
gimple_assign_lhs (g)));
|
|
gsi_insert_before (gsi, g, GSI_SAME_STMT);
|
|
}
|
|
int flag = (integer_onep (gimple_call_arg (stmt, 3)) ? 256 : 0)
|
|
+ int_size_in_bytes (itype);
|
|
g = gimple_build_call_internal (IFN_ATOMIC_COMPARE_EXCHANGE, 6,
|
|
gimple_call_arg (stmt, 0),
|
|
gimple_assign_lhs (g),
|
|
gimple_call_arg (stmt, 2),
|
|
build_int_cst (integer_type_node, flag),
|
|
gimple_call_arg (stmt, 4),
|
|
gimple_call_arg (stmt, 5));
|
|
tree lhs = make_ssa_name (ctype);
|
|
gimple_call_set_lhs (g, lhs);
|
|
gimple_move_vops (g, stmt);
|
|
tree oldlhs = gimple_call_lhs (stmt);
|
|
if (stmt_can_throw_internal (cfun, stmt))
|
|
{
|
|
throws = true;
|
|
e = find_fallthru_edge (gsi_bb (*gsi)->succs);
|
|
}
|
|
gimple_call_set_nothrow (as_a <gcall *> (g),
|
|
gimple_call_nothrow_p (as_a <gcall *> (stmt)));
|
|
gimple_call_set_lhs (stmt, NULL_TREE);
|
|
gsi_replace (gsi, g, true);
|
|
if (oldlhs)
|
|
{
|
|
g = gimple_build_assign (make_ssa_name (itype), IMAGPART_EXPR,
|
|
build1 (IMAGPART_EXPR, itype, lhs));
|
|
if (throws)
|
|
{
|
|
gsi_insert_on_edge_immediate (e, g);
|
|
*gsi = gsi_for_stmt (g);
|
|
}
|
|
else
|
|
gsi_insert_after (gsi, g, GSI_NEW_STMT);
|
|
g = gimple_build_assign (oldlhs, NOP_EXPR, gimple_assign_lhs (g));
|
|
gsi_insert_after (gsi, g, GSI_NEW_STMT);
|
|
}
|
|
g = gimple_build_assign (make_ssa_name (itype), REALPART_EXPR,
|
|
build1 (REALPART_EXPR, itype, lhs));
|
|
if (throws && oldlhs == NULL_TREE)
|
|
{
|
|
gsi_insert_on_edge_immediate (e, g);
|
|
*gsi = gsi_for_stmt (g);
|
|
}
|
|
else
|
|
gsi_insert_after (gsi, g, GSI_NEW_STMT);
|
|
if (!useless_type_conversion_p (TREE_TYPE (expected), itype))
|
|
{
|
|
g = gimple_build_assign (make_ssa_name (TREE_TYPE (expected)),
|
|
VIEW_CONVERT_EXPR,
|
|
build1 (VIEW_CONVERT_EXPR, TREE_TYPE (expected),
|
|
gimple_assign_lhs (g)));
|
|
gsi_insert_after (gsi, g, GSI_NEW_STMT);
|
|
}
|
|
g = gimple_build_assign (expected, SSA_NAME, gimple_assign_lhs (g));
|
|
gsi_insert_after (gsi, g, GSI_NEW_STMT);
|
|
*gsi = gsiret;
|
|
}
|
|
|
|
/* Return true if ARG0 CODE ARG1 in infinite signed precision operation
|
|
doesn't fit into TYPE. The test for overflow should be regardless of
|
|
-fwrapv, and even for unsigned types. */
|
|
|
|
bool
|
|
arith_overflowed_p (enum tree_code code, const_tree type,
|
|
const_tree arg0, const_tree arg1)
|
|
{
|
|
widest2_int warg0 = widest2_int_cst (arg0);
|
|
widest2_int warg1 = widest2_int_cst (arg1);
|
|
widest2_int wres;
|
|
switch (code)
|
|
{
|
|
case PLUS_EXPR: wres = wi::add (warg0, warg1); break;
|
|
case MINUS_EXPR: wres = wi::sub (warg0, warg1); break;
|
|
case MULT_EXPR: wres = wi::mul (warg0, warg1); break;
|
|
default: gcc_unreachable ();
|
|
}
|
|
signop sign = TYPE_SIGN (type);
|
|
if (sign == UNSIGNED && wi::neg_p (wres))
|
|
return true;
|
|
return wi::min_precision (wres, sign) > TYPE_PRECISION (type);
|
|
}
|
|
|
|
/* If IFN_MASK_LOAD/STORE call CALL is unconditional, return a MEM_REF
|
|
for the memory it references, otherwise return null. VECTYPE is the
|
|
type of the memory vector. */
|
|
|
|
static tree
|
|
gimple_fold_mask_load_store_mem_ref (gcall *call, tree vectype)
|
|
{
|
|
tree ptr = gimple_call_arg (call, 0);
|
|
tree alias_align = gimple_call_arg (call, 1);
|
|
tree mask = gimple_call_arg (call, 2);
|
|
if (!tree_fits_uhwi_p (alias_align) || !integer_all_onesp (mask))
|
|
return NULL_TREE;
|
|
|
|
unsigned HOST_WIDE_INT align = tree_to_uhwi (alias_align) * BITS_PER_UNIT;
|
|
if (TYPE_ALIGN (vectype) != align)
|
|
vectype = build_aligned_type (vectype, align);
|
|
tree offset = build_zero_cst (TREE_TYPE (alias_align));
|
|
return fold_build2 (MEM_REF, vectype, ptr, offset);
|
|
}
|
|
|
|
/* Try to fold IFN_MASK_LOAD call CALL. Return true on success. */
|
|
|
|
static bool
|
|
gimple_fold_mask_load (gimple_stmt_iterator *gsi, gcall *call)
|
|
{
|
|
tree lhs = gimple_call_lhs (call);
|
|
if (!lhs)
|
|
return false;
|
|
|
|
if (tree rhs = gimple_fold_mask_load_store_mem_ref (call, TREE_TYPE (lhs)))
|
|
{
|
|
gassign *new_stmt = gimple_build_assign (lhs, rhs);
|
|
gimple_set_location (new_stmt, gimple_location (call));
|
|
gimple_move_vops (new_stmt, call);
|
|
gsi_replace (gsi, new_stmt, false);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/* Try to fold IFN_MASK_STORE call CALL. Return true on success. */
|
|
|
|
static bool
|
|
gimple_fold_mask_store (gimple_stmt_iterator *gsi, gcall *call)
|
|
{
|
|
tree rhs = gimple_call_arg (call, 3);
|
|
if (tree lhs = gimple_fold_mask_load_store_mem_ref (call, TREE_TYPE (rhs)))
|
|
{
|
|
gassign *new_stmt = gimple_build_assign (lhs, rhs);
|
|
gimple_set_location (new_stmt, gimple_location (call));
|
|
gimple_move_vops (new_stmt, call);
|
|
gsi_replace (gsi, new_stmt, false);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/* Attempt to fold a call statement referenced by the statement iterator GSI.
|
|
The statement may be replaced by another statement, e.g., if the call
|
|
simplifies to a constant value. Return true if any changes were made.
|
|
It is assumed that the operands have been previously folded. */
|
|
|
|
static bool
|
|
gimple_fold_call (gimple_stmt_iterator *gsi, bool inplace)
|
|
{
|
|
gcall *stmt = as_a <gcall *> (gsi_stmt (*gsi));
|
|
tree callee;
|
|
bool changed = false;
|
|
unsigned i;
|
|
|
|
/* Fold *& in call arguments. */
|
|
for (i = 0; i < gimple_call_num_args (stmt); ++i)
|
|
if (REFERENCE_CLASS_P (gimple_call_arg (stmt, i)))
|
|
{
|
|
tree tmp = maybe_fold_reference (gimple_call_arg (stmt, i), false);
|
|
if (tmp)
|
|
{
|
|
gimple_call_set_arg (stmt, i, tmp);
|
|
changed = true;
|
|
}
|
|
}
|
|
|
|
/* Check for virtual calls that became direct calls. */
|
|
callee = gimple_call_fn (stmt);
|
|
if (callee && TREE_CODE (callee) == OBJ_TYPE_REF)
|
|
{
|
|
if (gimple_call_addr_fndecl (OBJ_TYPE_REF_EXPR (callee)) != NULL_TREE)
|
|
{
|
|
if (dump_file && virtual_method_call_p (callee)
|
|
&& !possible_polymorphic_call_target_p
|
|
(callee, stmt, cgraph_node::get (gimple_call_addr_fndecl
|
|
(OBJ_TYPE_REF_EXPR (callee)))))
|
|
{
|
|
fprintf (dump_file,
|
|
"Type inheritance inconsistent devirtualization of ");
|
|
print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
|
|
fprintf (dump_file, " to ");
|
|
print_generic_expr (dump_file, callee, TDF_SLIM);
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
|
|
gimple_call_set_fn (stmt, OBJ_TYPE_REF_EXPR (callee));
|
|
changed = true;
|
|
}
|
|
else if (flag_devirtualize && !inplace && virtual_method_call_p (callee))
|
|
{
|
|
bool final;
|
|
vec <cgraph_node *>targets
|
|
= possible_polymorphic_call_targets (callee, stmt, &final);
|
|
if (final && targets.length () <= 1 && dbg_cnt (devirt))
|
|
{
|
|
tree lhs = gimple_call_lhs (stmt);
|
|
if (dump_enabled_p ())
|
|
{
|
|
dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, stmt,
|
|
"folding virtual function call to %s\n",
|
|
targets.length () == 1
|
|
? targets[0]->name ()
|
|
: "__builtin_unreachable");
|
|
}
|
|
if (targets.length () == 1)
|
|
{
|
|
tree fndecl = targets[0]->decl;
|
|
gimple_call_set_fndecl (stmt, fndecl);
|
|
changed = true;
|
|
/* If changing the call to __cxa_pure_virtual
|
|
or similar noreturn function, adjust gimple_call_fntype
|
|
too. */
|
|
if (gimple_call_noreturn_p (stmt)
|
|
&& VOID_TYPE_P (TREE_TYPE (TREE_TYPE (fndecl)))
|
|
&& TYPE_ARG_TYPES (TREE_TYPE (fndecl))
|
|
&& (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)))
|
|
== void_type_node))
|
|
gimple_call_set_fntype (stmt, TREE_TYPE (fndecl));
|
|
/* If the call becomes noreturn, remove the lhs. */
|
|
if (lhs
|
|
&& gimple_call_noreturn_p (stmt)
|
|
&& (VOID_TYPE_P (TREE_TYPE (gimple_call_fntype (stmt)))
|
|
|| should_remove_lhs_p (lhs)))
|
|
{
|
|
if (TREE_CODE (lhs) == SSA_NAME)
|
|
{
|
|
tree var = create_tmp_var (TREE_TYPE (lhs));
|
|
tree def = get_or_create_ssa_default_def (cfun, var);
|
|
gimple *new_stmt = gimple_build_assign (lhs, def);
|
|
gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT);
|
|
}
|
|
gimple_call_set_lhs (stmt, NULL_TREE);
|
|
}
|
|
maybe_remove_unused_call_args (cfun, stmt);
|
|
}
|
|
else
|
|
{
|
|
tree fndecl = builtin_decl_implicit (BUILT_IN_UNREACHABLE);
|
|
gimple *new_stmt = gimple_build_call (fndecl, 0);
|
|
gimple_set_location (new_stmt, gimple_location (stmt));
|
|
/* If the call had a SSA name as lhs morph that into
|
|
an uninitialized value. */
|
|
if (lhs && TREE_CODE (lhs) == SSA_NAME)
|
|
{
|
|
tree var = create_tmp_var (TREE_TYPE (lhs));
|
|
SET_SSA_NAME_VAR_OR_IDENTIFIER (lhs, var);
|
|
SSA_NAME_DEF_STMT (lhs) = gimple_build_nop ();
|
|
set_ssa_default_def (cfun, var, lhs);
|
|
}
|
|
gimple_move_vops (new_stmt, stmt);
|
|
gsi_replace (gsi, new_stmt, false);
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Check for indirect calls that became direct calls, and then
|
|
no longer require a static chain. */
|
|
if (gimple_call_chain (stmt))
|
|
{
|
|
tree fn = gimple_call_fndecl (stmt);
|
|
if (fn && !DECL_STATIC_CHAIN (fn))
|
|
{
|
|
gimple_call_set_chain (stmt, NULL);
|
|
changed = true;
|
|
}
|
|
else
|
|
{
|
|
tree tmp = maybe_fold_reference (gimple_call_chain (stmt), false);
|
|
if (tmp)
|
|
{
|
|
gimple_call_set_chain (stmt, tmp);
|
|
changed = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (inplace)
|
|
return changed;
|
|
|
|
/* Check for builtins that CCP can handle using information not
|
|
available in the generic fold routines. */
|
|
if (gimple_call_builtin_p (stmt, BUILT_IN_NORMAL))
|
|
{
|
|
if (gimple_fold_builtin (gsi))
|
|
changed = true;
|
|
}
|
|
else if (gimple_call_builtin_p (stmt, BUILT_IN_MD))
|
|
{
|
|
changed |= targetm.gimple_fold_builtin (gsi);
|
|
}
|
|
else if (gimple_call_internal_p (stmt))
|
|
{
|
|
enum tree_code subcode = ERROR_MARK;
|
|
tree result = NULL_TREE;
|
|
bool cplx_result = false;
|
|
tree overflow = NULL_TREE;
|
|
switch (gimple_call_internal_fn (stmt))
|
|
{
|
|
case IFN_BUILTIN_EXPECT:
|
|
result = fold_builtin_expect (gimple_location (stmt),
|
|
gimple_call_arg (stmt, 0),
|
|
gimple_call_arg (stmt, 1),
|
|
gimple_call_arg (stmt, 2),
|
|
NULL_TREE);
|
|
break;
|
|
case IFN_UBSAN_OBJECT_SIZE:
|
|
{
|
|
tree offset = gimple_call_arg (stmt, 1);
|
|
tree objsize = gimple_call_arg (stmt, 2);
|
|
if (integer_all_onesp (objsize)
|
|
|| (TREE_CODE (offset) == INTEGER_CST
|
|
&& TREE_CODE (objsize) == INTEGER_CST
|
|
&& tree_int_cst_le (offset, objsize)))
|
|
{
|
|
replace_call_with_value (gsi, NULL_TREE);
|
|
return true;
|
|
}
|
|
}
|
|
break;
|
|
case IFN_UBSAN_PTR:
|
|
if (integer_zerop (gimple_call_arg (stmt, 1)))
|
|
{
|
|
replace_call_with_value (gsi, NULL_TREE);
|
|
return true;
|
|
}
|
|
break;
|
|
case IFN_UBSAN_BOUNDS:
|
|
{
|
|
tree index = gimple_call_arg (stmt, 1);
|
|
tree bound = gimple_call_arg (stmt, 2);
|
|
if (TREE_CODE (index) == INTEGER_CST
|
|
&& TREE_CODE (bound) == INTEGER_CST)
|
|
{
|
|
index = fold_convert (TREE_TYPE (bound), index);
|
|
if (TREE_CODE (index) == INTEGER_CST
|
|
&& tree_int_cst_le (index, bound))
|
|
{
|
|
replace_call_with_value (gsi, NULL_TREE);
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
case IFN_GOACC_DIM_SIZE:
|
|
case IFN_GOACC_DIM_POS:
|
|
result = fold_internal_goacc_dim (stmt);
|
|
break;
|
|
case IFN_UBSAN_CHECK_ADD:
|
|
subcode = PLUS_EXPR;
|
|
break;
|
|
case IFN_UBSAN_CHECK_SUB:
|
|
subcode = MINUS_EXPR;
|
|
break;
|
|
case IFN_UBSAN_CHECK_MUL:
|
|
subcode = MULT_EXPR;
|
|
break;
|
|
case IFN_ADD_OVERFLOW:
|
|
subcode = PLUS_EXPR;
|
|
cplx_result = true;
|
|
break;
|
|
case IFN_SUB_OVERFLOW:
|
|
subcode = MINUS_EXPR;
|
|
cplx_result = true;
|
|
break;
|
|
case IFN_MUL_OVERFLOW:
|
|
subcode = MULT_EXPR;
|
|
cplx_result = true;
|
|
break;
|
|
case IFN_MASK_LOAD:
|
|
changed |= gimple_fold_mask_load (gsi, stmt);
|
|
break;
|
|
case IFN_MASK_STORE:
|
|
changed |= gimple_fold_mask_store (gsi, stmt);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
if (subcode != ERROR_MARK)
|
|
{
|
|
tree arg0 = gimple_call_arg (stmt, 0);
|
|
tree arg1 = gimple_call_arg (stmt, 1);
|
|
tree type = TREE_TYPE (arg0);
|
|
if (cplx_result)
|
|
{
|
|
tree lhs = gimple_call_lhs (stmt);
|
|
if (lhs == NULL_TREE)
|
|
type = NULL_TREE;
|
|
else
|
|
type = TREE_TYPE (TREE_TYPE (lhs));
|
|
}
|
|
if (type == NULL_TREE)
|
|
;
|
|
/* x = y + 0; x = y - 0; x = y * 0; */
|
|
else if (integer_zerop (arg1))
|
|
result = subcode == MULT_EXPR ? integer_zero_node : arg0;
|
|
/* x = 0 + y; x = 0 * y; */
|
|
else if (subcode != MINUS_EXPR && integer_zerop (arg0))
|
|
result = subcode == MULT_EXPR ? integer_zero_node : arg1;
|
|
/* x = y - y; */
|
|
else if (subcode == MINUS_EXPR && operand_equal_p (arg0, arg1, 0))
|
|
result = integer_zero_node;
|
|
/* x = y * 1; x = 1 * y; */
|
|
else if (subcode == MULT_EXPR && integer_onep (arg1))
|
|
result = arg0;
|
|
else if (subcode == MULT_EXPR && integer_onep (arg0))
|
|
result = arg1;
|
|
else if (TREE_CODE (arg0) == INTEGER_CST
|
|
&& TREE_CODE (arg1) == INTEGER_CST)
|
|
{
|
|
if (cplx_result)
|
|
result = int_const_binop (subcode, fold_convert (type, arg0),
|
|
fold_convert (type, arg1));
|
|
else
|
|
result = int_const_binop (subcode, arg0, arg1);
|
|
if (result && arith_overflowed_p (subcode, type, arg0, arg1))
|
|
{
|
|
if (cplx_result)
|
|
overflow = build_one_cst (type);
|
|
else
|
|
result = NULL_TREE;
|
|
}
|
|
}
|
|
if (result)
|
|
{
|
|
if (result == integer_zero_node)
|
|
result = build_zero_cst (type);
|
|
else if (cplx_result && TREE_TYPE (result) != type)
|
|
{
|
|
if (TREE_CODE (result) == INTEGER_CST)
|
|
{
|
|
if (arith_overflowed_p (PLUS_EXPR, type, result,
|
|
integer_zero_node))
|
|
overflow = build_one_cst (type);
|
|
}
|
|
else if ((!TYPE_UNSIGNED (TREE_TYPE (result))
|
|
&& TYPE_UNSIGNED (type))
|
|
|| (TYPE_PRECISION (type)
|
|
< (TYPE_PRECISION (TREE_TYPE (result))
|
|
+ (TYPE_UNSIGNED (TREE_TYPE (result))
|
|
&& !TYPE_UNSIGNED (type)))))
|
|
result = NULL_TREE;
|
|
if (result)
|
|
result = fold_convert (type, result);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (result)
|
|
{
|
|
if (TREE_CODE (result) == INTEGER_CST && TREE_OVERFLOW (result))
|
|
result = drop_tree_overflow (result);
|
|
if (cplx_result)
|
|
{
|
|
if (overflow == NULL_TREE)
|
|
overflow = build_zero_cst (TREE_TYPE (result));
|
|
tree ctype = build_complex_type (TREE_TYPE (result));
|
|
if (TREE_CODE (result) == INTEGER_CST
|
|
&& TREE_CODE (overflow) == INTEGER_CST)
|
|
result = build_complex (ctype, result, overflow);
|
|
else
|
|
result = build2_loc (gimple_location (stmt), COMPLEX_EXPR,
|
|
ctype, result, overflow);
|
|
}
|
|
if (!update_call_from_tree (gsi, result))
|
|
gimplify_and_update_call_from_tree (gsi, result);
|
|
changed = true;
|
|
}
|
|
}
|
|
|
|
return changed;
|
|
}
|
|
|
|
|
|
/* Return true whether NAME has a use on STMT. */
|
|
|
|
static bool
|
|
has_use_on_stmt (tree name, gimple *stmt)
|
|
{
|
|
imm_use_iterator iter;
|
|
use_operand_p use_p;
|
|
FOR_EACH_IMM_USE_FAST (use_p, iter, name)
|
|
if (USE_STMT (use_p) == stmt)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/* Worker for fold_stmt_1 dispatch to pattern based folding with
|
|
gimple_simplify.
|
|
|
|
Replaces *GSI with the simplification result in RCODE and OPS
|
|
and the associated statements in *SEQ. Does the replacement
|
|
according to INPLACE and returns true if the operation succeeded. */
|
|
|
|
static bool
|
|
replace_stmt_with_simplification (gimple_stmt_iterator *gsi,
|
|
gimple_match_op *res_op,
|
|
gimple_seq *seq, bool inplace)
|
|
{
|
|
gimple *stmt = gsi_stmt (*gsi);
|
|
tree *ops = res_op->ops;
|
|
unsigned int num_ops = res_op->num_ops;
|
|
|
|
/* Play safe and do not allow abnormals to be mentioned in
|
|
newly created statements. See also maybe_push_res_to_seq.
|
|
As an exception allow such uses if there was a use of the
|
|
same SSA name on the old stmt. */
|
|
for (unsigned int i = 0; i < num_ops; ++i)
|
|
if (TREE_CODE (ops[i]) == SSA_NAME
|
|
&& SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ops[i])
|
|
&& !has_use_on_stmt (ops[i], stmt))
|
|
return false;
|
|
|
|
if (num_ops > 0 && COMPARISON_CLASS_P (ops[0]))
|
|
for (unsigned int i = 0; i < 2; ++i)
|
|
if (TREE_CODE (TREE_OPERAND (ops[0], i)) == SSA_NAME
|
|
&& SSA_NAME_OCCURS_IN_ABNORMAL_PHI (TREE_OPERAND (ops[0], i))
|
|
&& !has_use_on_stmt (TREE_OPERAND (ops[0], i), stmt))
|
|
return false;
|
|
|
|
/* Don't insert new statements when INPLACE is true, even if we could
|
|
reuse STMT for the final statement. */
|
|
if (inplace && !gimple_seq_empty_p (*seq))
|
|
return false;
|
|
|
|
if (gcond *cond_stmt = dyn_cast <gcond *> (stmt))
|
|
{
|
|
gcc_assert (res_op->code.is_tree_code ());
|
|
if (TREE_CODE_CLASS ((enum tree_code) res_op->code) == tcc_comparison
|
|
/* GIMPLE_CONDs condition may not throw. */
|
|
&& (!flag_exceptions
|
|
|| !cfun->can_throw_non_call_exceptions
|
|
|| !operation_could_trap_p (res_op->code,
|
|
FLOAT_TYPE_P (TREE_TYPE (ops[0])),
|
|
false, NULL_TREE)))
|
|
gimple_cond_set_condition (cond_stmt, res_op->code, ops[0], ops[1]);
|
|
else if (res_op->code == SSA_NAME)
|
|
gimple_cond_set_condition (cond_stmt, NE_EXPR, ops[0],
|
|
build_zero_cst (TREE_TYPE (ops[0])));
|
|
else if (res_op->code == INTEGER_CST)
|
|
{
|
|
if (integer_zerop (ops[0]))
|
|
gimple_cond_make_false (cond_stmt);
|
|
else
|
|
gimple_cond_make_true (cond_stmt);
|
|
}
|
|
else if (!inplace)
|
|
{
|
|
tree res = maybe_push_res_to_seq (res_op, seq);
|
|
if (!res)
|
|
return false;
|
|
gimple_cond_set_condition (cond_stmt, NE_EXPR, res,
|
|
build_zero_cst (TREE_TYPE (res)));
|
|
}
|
|
else
|
|
return false;
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "gimple_simplified to ");
|
|
if (!gimple_seq_empty_p (*seq))
|
|
print_gimple_seq (dump_file, *seq, 0, TDF_SLIM);
|
|
print_gimple_stmt (dump_file, gsi_stmt (*gsi),
|
|
0, TDF_SLIM);
|
|
}
|
|
gsi_insert_seq_before (gsi, *seq, GSI_SAME_STMT);
|
|
return true;
|
|
}
|
|
else if (is_gimple_assign (stmt)
|
|
&& res_op->code.is_tree_code ())
|
|
{
|
|
if (!inplace
|
|
|| gimple_num_ops (stmt) > get_gimple_rhs_num_ops (res_op->code))
|
|
{
|
|
maybe_build_generic_op (res_op);
|
|
gimple_assign_set_rhs_with_ops (gsi, res_op->code,
|
|
res_op->op_or_null (0),
|
|
res_op->op_or_null (1),
|
|
res_op->op_or_null (2));
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "gimple_simplified to ");
|
|
if (!gimple_seq_empty_p (*seq))
|
|
print_gimple_seq (dump_file, *seq, 0, TDF_SLIM);
|
|
print_gimple_stmt (dump_file, gsi_stmt (*gsi),
|
|
0, TDF_SLIM);
|
|
}
|
|
gsi_insert_seq_before (gsi, *seq, GSI_SAME_STMT);
|
|
return true;
|
|
}
|
|
}
|
|
else if (res_op->code.is_fn_code ()
|
|
&& gimple_call_combined_fn (stmt) == res_op->code)
|
|
{
|
|
gcc_assert (num_ops == gimple_call_num_args (stmt));
|
|
for (unsigned int i = 0; i < num_ops; ++i)
|
|
gimple_call_set_arg (stmt, i, ops[i]);
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "gimple_simplified to ");
|
|
if (!gimple_seq_empty_p (*seq))
|
|
print_gimple_seq (dump_file, *seq, 0, TDF_SLIM);
|
|
print_gimple_stmt (dump_file, gsi_stmt (*gsi), 0, TDF_SLIM);
|
|
}
|
|
gsi_insert_seq_before (gsi, *seq, GSI_SAME_STMT);
|
|
return true;
|
|
}
|
|
else if (!inplace)
|
|
{
|
|
if (gimple_has_lhs (stmt))
|
|
{
|
|
tree lhs = gimple_get_lhs (stmt);
|
|
if (!maybe_push_res_to_seq (res_op, seq, lhs))
|
|
return false;
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "gimple_simplified to ");
|
|
print_gimple_seq (dump_file, *seq, 0, TDF_SLIM);
|
|
}
|
|
gsi_replace_with_seq_vops (gsi, *seq);
|
|
return true;
|
|
}
|
|
else
|
|
gcc_unreachable ();
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/* Canonicalize MEM_REFs invariant address operand after propagation. */
|
|
|
|
static bool
|
|
maybe_canonicalize_mem_ref_addr (tree *t)
|
|
{
|
|
bool res = false;
|
|
|
|
if (TREE_CODE (*t) == ADDR_EXPR)
|
|
t = &TREE_OPERAND (*t, 0);
|
|
|
|
/* The C and C++ frontends use an ARRAY_REF for indexing with their
|
|
generic vector extension. The actual vector referenced is
|
|
view-converted to an array type for this purpose. If the index
|
|
is constant the canonical representation in the middle-end is a
|
|
BIT_FIELD_REF so re-write the former to the latter here. */
|
|
if (TREE_CODE (*t) == ARRAY_REF
|
|
&& TREE_CODE (TREE_OPERAND (*t, 0)) == VIEW_CONVERT_EXPR
|
|
&& TREE_CODE (TREE_OPERAND (*t, 1)) == INTEGER_CST
|
|
&& VECTOR_TYPE_P (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (*t, 0), 0))))
|
|
{
|
|
tree vtype = TREE_TYPE (TREE_OPERAND (TREE_OPERAND (*t, 0), 0));
|
|
if (VECTOR_TYPE_P (vtype))
|
|
{
|
|
tree low = array_ref_low_bound (*t);
|
|
if (TREE_CODE (low) == INTEGER_CST)
|
|
{
|
|
if (tree_int_cst_le (low, TREE_OPERAND (*t, 1)))
|
|
{
|
|
widest_int idx = wi::sub (wi::to_widest (TREE_OPERAND (*t, 1)),
|
|
wi::to_widest (low));
|
|
idx = wi::mul (idx, wi::to_widest
|
|
(TYPE_SIZE (TREE_TYPE (*t))));
|
|
widest_int ext
|
|
= wi::add (idx, wi::to_widest (TYPE_SIZE (TREE_TYPE (*t))));
|
|
if (wi::les_p (ext, wi::to_widest (TYPE_SIZE (vtype))))
|
|
{
|
|
*t = build3_loc (EXPR_LOCATION (*t), BIT_FIELD_REF,
|
|
TREE_TYPE (*t),
|
|
TREE_OPERAND (TREE_OPERAND (*t, 0), 0),
|
|
TYPE_SIZE (TREE_TYPE (*t)),
|
|
wide_int_to_tree (bitsizetype, idx));
|
|
res = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
while (handled_component_p (*t))
|
|
t = &TREE_OPERAND (*t, 0);
|
|
|
|
/* Canonicalize MEM [&foo.bar, 0] which appears after propagating
|
|
of invariant addresses into a SSA name MEM_REF address. */
|
|
if (TREE_CODE (*t) == MEM_REF
|
|
|| TREE_CODE (*t) == TARGET_MEM_REF)
|
|
{
|
|
tree addr = TREE_OPERAND (*t, 0);
|
|
if (TREE_CODE (addr) == ADDR_EXPR
|
|
&& (TREE_CODE (TREE_OPERAND (addr, 0)) == MEM_REF
|
|
|| handled_component_p (TREE_OPERAND (addr, 0))))
|
|
{
|
|
tree base;
|
|
poly_int64 coffset;
|
|
base = get_addr_base_and_unit_offset (TREE_OPERAND (addr, 0),
|
|
&coffset);
|
|
if (!base)
|
|
gcc_unreachable ();
|
|
|
|
TREE_OPERAND (*t, 0) = build_fold_addr_expr (base);
|
|
TREE_OPERAND (*t, 1) = int_const_binop (PLUS_EXPR,
|
|
TREE_OPERAND (*t, 1),
|
|
size_int (coffset));
|
|
res = true;
|
|
}
|
|
gcc_checking_assert (TREE_CODE (TREE_OPERAND (*t, 0)) == DEBUG_EXPR_DECL
|
|
|| is_gimple_mem_ref_addr (TREE_OPERAND (*t, 0)));
|
|
}
|
|
|
|
/* Canonicalize back MEM_REFs to plain reference trees if the object
|
|
accessed is a decl that has the same access semantics as the MEM_REF. */
|
|
if (TREE_CODE (*t) == MEM_REF
|
|
&& TREE_CODE (TREE_OPERAND (*t, 0)) == ADDR_EXPR
|
|
&& integer_zerop (TREE_OPERAND (*t, 1))
|
|
&& MR_DEPENDENCE_CLIQUE (*t) == 0)
|
|
{
|
|
tree decl = TREE_OPERAND (TREE_OPERAND (*t, 0), 0);
|
|
tree alias_type = TREE_TYPE (TREE_OPERAND (*t, 1));
|
|
if (/* Same volatile qualification. */
|
|
TREE_THIS_VOLATILE (*t) == TREE_THIS_VOLATILE (decl)
|
|
/* Same TBAA behavior with -fstrict-aliasing. */
|
|
&& !TYPE_REF_CAN_ALIAS_ALL (alias_type)
|
|
&& (TYPE_MAIN_VARIANT (TREE_TYPE (decl))
|
|
== TYPE_MAIN_VARIANT (TREE_TYPE (alias_type)))
|
|
/* Same alignment. */
|
|
&& TYPE_ALIGN (TREE_TYPE (decl)) == TYPE_ALIGN (TREE_TYPE (*t))
|
|
/* We have to look out here to not drop a required conversion
|
|
from the rhs to the lhs if *t appears on the lhs or vice-versa
|
|
if it appears on the rhs. Thus require strict type
|
|
compatibility. */
|
|
&& types_compatible_p (TREE_TYPE (*t), TREE_TYPE (decl)))
|
|
{
|
|
*t = TREE_OPERAND (TREE_OPERAND (*t, 0), 0);
|
|
res = true;
|
|
}
|
|
}
|
|
|
|
/* Canonicalize TARGET_MEM_REF in particular with respect to
|
|
the indexes becoming constant. */
|
|
else if (TREE_CODE (*t) == TARGET_MEM_REF)
|
|
{
|
|
tree tem = maybe_fold_tmr (*t);
|
|
if (tem)
|
|
{
|
|
*t = tem;
|
|
res = true;
|
|
}
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
/* Worker for both fold_stmt and fold_stmt_inplace. The INPLACE argument
|
|
distinguishes both cases. */
|
|
|
|
static bool
|
|
fold_stmt_1 (gimple_stmt_iterator *gsi, bool inplace, tree (*valueize) (tree))
|
|
{
|
|
bool changed = false;
|
|
gimple *stmt = gsi_stmt (*gsi);
|
|
bool nowarning = gimple_no_warning_p (stmt);
|
|
unsigned i;
|
|
fold_defer_overflow_warnings ();
|
|
|
|
/* First do required canonicalization of [TARGET_]MEM_REF addresses
|
|
after propagation.
|
|
??? This shouldn't be done in generic folding but in the
|
|
propagation helpers which also know whether an address was
|
|
propagated.
|
|
Also canonicalize operand order. */
|
|
switch (gimple_code (stmt))
|
|
{
|
|
case GIMPLE_ASSIGN:
|
|
if (gimple_assign_rhs_class (stmt) == GIMPLE_SINGLE_RHS)
|
|
{
|
|
tree *rhs = gimple_assign_rhs1_ptr (stmt);
|
|
if ((REFERENCE_CLASS_P (*rhs)
|
|
|| TREE_CODE (*rhs) == ADDR_EXPR)
|
|
&& maybe_canonicalize_mem_ref_addr (rhs))
|
|
changed = true;
|
|
tree *lhs = gimple_assign_lhs_ptr (stmt);
|
|
if (REFERENCE_CLASS_P (*lhs)
|
|
&& maybe_canonicalize_mem_ref_addr (lhs))
|
|
changed = true;
|
|
}
|
|
else
|
|
{
|
|
/* Canonicalize operand order. */
|
|
enum tree_code code = gimple_assign_rhs_code (stmt);
|
|
if (TREE_CODE_CLASS (code) == tcc_comparison
|
|
|| commutative_tree_code (code)
|
|
|| commutative_ternary_tree_code (code))
|
|
{
|
|
tree rhs1 = gimple_assign_rhs1 (stmt);
|
|
tree rhs2 = gimple_assign_rhs2 (stmt);
|
|
if (tree_swap_operands_p (rhs1, rhs2))
|
|
{
|
|
gimple_assign_set_rhs1 (stmt, rhs2);
|
|
gimple_assign_set_rhs2 (stmt, rhs1);
|
|
if (TREE_CODE_CLASS (code) == tcc_comparison)
|
|
gimple_assign_set_rhs_code (stmt,
|
|
swap_tree_comparison (code));
|
|
changed = true;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
case GIMPLE_CALL:
|
|
{
|
|
for (i = 0; i < gimple_call_num_args (stmt); ++i)
|
|
{
|
|
tree *arg = gimple_call_arg_ptr (stmt, i);
|
|
if (REFERENCE_CLASS_P (*arg)
|
|
&& maybe_canonicalize_mem_ref_addr (arg))
|
|
changed = true;
|
|
}
|
|
tree *lhs = gimple_call_lhs_ptr (stmt);
|
|
if (*lhs
|
|
&& REFERENCE_CLASS_P (*lhs)
|
|
&& maybe_canonicalize_mem_ref_addr (lhs))
|
|
changed = true;
|
|
break;
|
|
}
|
|
case GIMPLE_ASM:
|
|
{
|
|
gasm *asm_stmt = as_a <gasm *> (stmt);
|
|
for (i = 0; i < gimple_asm_noutputs (asm_stmt); ++i)
|
|
{
|
|
tree link = gimple_asm_output_op (asm_stmt, i);
|
|
tree op = TREE_VALUE (link);
|
|
if (REFERENCE_CLASS_P (op)
|
|
&& maybe_canonicalize_mem_ref_addr (&TREE_VALUE (link)))
|
|
changed = true;
|
|
}
|
|
for (i = 0; i < gimple_asm_ninputs (asm_stmt); ++i)
|
|
{
|
|
tree link = gimple_asm_input_op (asm_stmt, i);
|
|
tree op = TREE_VALUE (link);
|
|
if ((REFERENCE_CLASS_P (op)
|
|
|| TREE_CODE (op) == ADDR_EXPR)
|
|
&& maybe_canonicalize_mem_ref_addr (&TREE_VALUE (link)))
|
|
changed = true;
|
|
}
|
|
}
|
|
break;
|
|
case GIMPLE_DEBUG:
|
|
if (gimple_debug_bind_p (stmt))
|
|
{
|
|
tree *val = gimple_debug_bind_get_value_ptr (stmt);
|
|
if (*val
|
|
&& (REFERENCE_CLASS_P (*val)
|
|
|| TREE_CODE (*val) == ADDR_EXPR)
|
|
&& maybe_canonicalize_mem_ref_addr (val))
|
|
changed = true;
|
|
}
|
|
break;
|
|
case GIMPLE_COND:
|
|
{
|
|
/* Canonicalize operand order. */
|
|
tree lhs = gimple_cond_lhs (stmt);
|
|
tree rhs = gimple_cond_rhs (stmt);
|
|
if (tree_swap_operands_p (lhs, rhs))
|
|
{
|
|
gcond *gc = as_a <gcond *> (stmt);
|
|
gimple_cond_set_lhs (gc, rhs);
|
|
gimple_cond_set_rhs (gc, lhs);
|
|
gimple_cond_set_code (gc,
|
|
swap_tree_comparison (gimple_cond_code (gc)));
|
|
changed = true;
|
|
}
|
|
}
|
|
default:;
|
|
}
|
|
|
|
/* Dispatch to pattern-based folding. */
|
|
if (!inplace
|
|
|| is_gimple_assign (stmt)
|
|
|| gimple_code (stmt) == GIMPLE_COND)
|
|
{
|
|
gimple_seq seq = NULL;
|
|
gimple_match_op res_op;
|
|
if (gimple_simplify (stmt, &res_op, inplace ? NULL : &seq,
|
|
valueize, valueize))
|
|
{
|
|
if (replace_stmt_with_simplification (gsi, &res_op, &seq, inplace))
|
|
changed = true;
|
|
else
|
|
gimple_seq_discard (seq);
|
|
}
|
|
}
|
|
|
|
stmt = gsi_stmt (*gsi);
|
|
|
|
/* Fold the main computation performed by the statement. */
|
|
switch (gimple_code (stmt))
|
|
{
|
|
case GIMPLE_ASSIGN:
|
|
{
|
|
/* Try to canonicalize for boolean-typed X the comparisons
|
|
X == 0, X == 1, X != 0, and X != 1. */
|
|
if (gimple_assign_rhs_code (stmt) == EQ_EXPR
|
|
|| gimple_assign_rhs_code (stmt) == NE_EXPR)
|
|
{
|
|
tree lhs = gimple_assign_lhs (stmt);
|
|
tree op1 = gimple_assign_rhs1 (stmt);
|
|
tree op2 = gimple_assign_rhs2 (stmt);
|
|
tree type = TREE_TYPE (op1);
|
|
|
|
/* Check whether the comparison operands are of the same boolean
|
|
type as the result type is.
|
|
Check that second operand is an integer-constant with value
|
|
one or zero. */
|
|
if (TREE_CODE (op2) == INTEGER_CST
|
|
&& (integer_zerop (op2) || integer_onep (op2))
|
|
&& useless_type_conversion_p (TREE_TYPE (lhs), type))
|
|
{
|
|
enum tree_code cmp_code = gimple_assign_rhs_code (stmt);
|
|
bool is_logical_not = false;
|
|
|
|
/* X == 0 and X != 1 is a logical-not.of X
|
|
X == 1 and X != 0 is X */
|
|
if ((cmp_code == EQ_EXPR && integer_zerop (op2))
|
|
|| (cmp_code == NE_EXPR && integer_onep (op2)))
|
|
is_logical_not = true;
|
|
|
|
if (is_logical_not == false)
|
|
gimple_assign_set_rhs_with_ops (gsi, TREE_CODE (op1), op1);
|
|
/* Only for one-bit precision typed X the transformation
|
|
!X -> ~X is valied. */
|
|
else if (TYPE_PRECISION (type) == 1)
|
|
gimple_assign_set_rhs_with_ops (gsi, BIT_NOT_EXPR, op1);
|
|
/* Otherwise we use !X -> X ^ 1. */
|
|
else
|
|
gimple_assign_set_rhs_with_ops (gsi, BIT_XOR_EXPR, op1,
|
|
build_int_cst (type, 1));
|
|
changed = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
unsigned old_num_ops = gimple_num_ops (stmt);
|
|
tree lhs = gimple_assign_lhs (stmt);
|
|
tree new_rhs = fold_gimple_assign (gsi);
|
|
if (new_rhs
|
|
&& !useless_type_conversion_p (TREE_TYPE (lhs),
|
|
TREE_TYPE (new_rhs)))
|
|
new_rhs = fold_convert (TREE_TYPE (lhs), new_rhs);
|
|
if (new_rhs
|
|
&& (!inplace
|
|
|| get_gimple_rhs_num_ops (TREE_CODE (new_rhs)) < old_num_ops))
|
|
{
|
|
gimple_assign_set_rhs_from_tree (gsi, new_rhs);
|
|
changed = true;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case GIMPLE_CALL:
|
|
changed |= gimple_fold_call (gsi, inplace);
|
|
break;
|
|
|
|
case GIMPLE_ASM:
|
|
/* Fold *& in asm operands. */
|
|
{
|
|
gasm *asm_stmt = as_a <gasm *> (stmt);
|
|
size_t noutputs;
|
|
const char **oconstraints;
|
|
const char *constraint;
|
|
bool allows_mem, allows_reg;
|
|
|
|
noutputs = gimple_asm_noutputs (asm_stmt);
|
|
oconstraints = XALLOCAVEC (const char *, noutputs);
|
|
|
|
for (i = 0; i < gimple_asm_noutputs (asm_stmt); ++i)
|
|
{
|
|
tree link = gimple_asm_output_op (asm_stmt, i);
|
|
tree op = TREE_VALUE (link);
|
|
oconstraints[i]
|
|
= TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link)));
|
|
if (REFERENCE_CLASS_P (op)
|
|
&& (op = maybe_fold_reference (op, true)) != NULL_TREE)
|
|
{
|
|
TREE_VALUE (link) = op;
|
|
changed = true;
|
|
}
|
|
}
|
|
for (i = 0; i < gimple_asm_ninputs (asm_stmt); ++i)
|
|
{
|
|
tree link = gimple_asm_input_op (asm_stmt, i);
|
|
tree op = TREE_VALUE (link);
|
|
constraint
|
|
= TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link)));
|
|
parse_input_constraint (&constraint, 0, 0, noutputs, 0,
|
|
oconstraints, &allows_mem, &allows_reg);
|
|
if (REFERENCE_CLASS_P (op)
|
|
&& (op = maybe_fold_reference (op, !allows_reg && allows_mem))
|
|
!= NULL_TREE)
|
|
{
|
|
TREE_VALUE (link) = op;
|
|
changed = true;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
|
|
case GIMPLE_DEBUG:
|
|
if (gimple_debug_bind_p (stmt))
|
|
{
|
|
tree val = gimple_debug_bind_get_value (stmt);
|
|
if (val
|
|
&& REFERENCE_CLASS_P (val))
|
|
{
|
|
tree tem = maybe_fold_reference (val, false);
|
|
if (tem)
|
|
{
|
|
gimple_debug_bind_set_value (stmt, tem);
|
|
changed = true;
|
|
}
|
|
}
|
|
else if (val
|
|
&& TREE_CODE (val) == ADDR_EXPR)
|
|
{
|
|
tree ref = TREE_OPERAND (val, 0);
|
|
tree tem = maybe_fold_reference (ref, false);
|
|
if (tem)
|
|
{
|
|
tem = build_fold_addr_expr_with_type (tem, TREE_TYPE (val));
|
|
gimple_debug_bind_set_value (stmt, tem);
|
|
changed = true;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
|
|
case GIMPLE_RETURN:
|
|
{
|
|
greturn *ret_stmt = as_a<greturn *> (stmt);
|
|
tree ret = gimple_return_retval(ret_stmt);
|
|
|
|
if (ret && TREE_CODE (ret) == SSA_NAME && valueize)
|
|
{
|
|
tree val = valueize (ret);
|
|
if (val && val != ret
|
|
&& may_propagate_copy (ret, val))
|
|
{
|
|
gimple_return_set_retval (ret_stmt, val);
|
|
changed = true;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
|
|
default:;
|
|
}
|
|
|
|
stmt = gsi_stmt (*gsi);
|
|
|
|
/* Fold *& on the lhs. */
|
|
if (gimple_has_lhs (stmt))
|
|
{
|
|
tree lhs = gimple_get_lhs (stmt);
|
|
if (lhs && REFERENCE_CLASS_P (lhs))
|
|
{
|
|
tree new_lhs = maybe_fold_reference (lhs, true);
|
|
if (new_lhs)
|
|
{
|
|
gimple_set_lhs (stmt, new_lhs);
|
|
changed = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
fold_undefer_overflow_warnings (changed && !nowarning, stmt, 0);
|
|
return changed;
|
|
}
|
|
|
|
/* Valueziation callback that ends up not following SSA edges. */
|
|
|
|
tree
|
|
no_follow_ssa_edges (tree)
|
|
{
|
|
return NULL_TREE;
|
|
}
|
|
|
|
/* Valueization callback that ends up following single-use SSA edges only. */
|
|
|
|
tree
|
|
follow_single_use_edges (tree val)
|
|
{
|
|
if (TREE_CODE (val) == SSA_NAME
|
|
&& !has_single_use (val))
|
|
return NULL_TREE;
|
|
return val;
|
|
}
|
|
|
|
/* Valueization callback that follows all SSA edges. */
|
|
|
|
tree
|
|
follow_all_ssa_edges (tree val)
|
|
{
|
|
return val;
|
|
}
|
|
|
|
/* Fold the statement pointed to by GSI. In some cases, this function may
|
|
replace the whole statement with a new one. Returns true iff folding
|
|
makes any changes.
|
|
The statement pointed to by GSI should be in valid gimple form but may
|
|
be in unfolded state as resulting from for example constant propagation
|
|
which can produce *&x = 0. */
|
|
|
|
bool
|
|
fold_stmt (gimple_stmt_iterator *gsi)
|
|
{
|
|
return fold_stmt_1 (gsi, false, no_follow_ssa_edges);
|
|
}
|
|
|
|
bool
|
|
fold_stmt (gimple_stmt_iterator *gsi, tree (*valueize) (tree))
|
|
{
|
|
return fold_stmt_1 (gsi, false, valueize);
|
|
}
|
|
|
|
/* Perform the minimal folding on statement *GSI. Only operations like
|
|
*&x created by constant propagation are handled. The statement cannot
|
|
be replaced with a new one. Return true if the statement was
|
|
changed, false otherwise.
|
|
The statement *GSI should be in valid gimple form but may
|
|
be in unfolded state as resulting from for example constant propagation
|
|
which can produce *&x = 0. */
|
|
|
|
bool
|
|
fold_stmt_inplace (gimple_stmt_iterator *gsi)
|
|
{
|
|
gimple *stmt = gsi_stmt (*gsi);
|
|
bool changed = fold_stmt_1 (gsi, true, no_follow_ssa_edges);
|
|
gcc_assert (gsi_stmt (*gsi) == stmt);
|
|
return changed;
|
|
}
|
|
|
|
/* Canonicalize and possibly invert the boolean EXPR; return NULL_TREE
|
|
if EXPR is null or we don't know how.
|
|
If non-null, the result always has boolean type. */
|
|
|
|
static tree
|
|
canonicalize_bool (tree expr, bool invert)
|
|
{
|
|
if (!expr)
|
|
return NULL_TREE;
|
|
else if (invert)
|
|
{
|
|
if (integer_nonzerop (expr))
|
|
return boolean_false_node;
|
|
else if (integer_zerop (expr))
|
|
return boolean_true_node;
|
|
else if (TREE_CODE (expr) == SSA_NAME)
|
|
return fold_build2 (EQ_EXPR, boolean_type_node, expr,
|
|
build_int_cst (TREE_TYPE (expr), 0));
|
|
else if (COMPARISON_CLASS_P (expr))
|
|
return fold_build2 (invert_tree_comparison (TREE_CODE (expr), false),
|
|
boolean_type_node,
|
|
TREE_OPERAND (expr, 0),
|
|
TREE_OPERAND (expr, 1));
|
|
else
|
|
return NULL_TREE;
|
|
}
|
|
else
|
|
{
|
|
if (TREE_CODE (TREE_TYPE (expr)) == BOOLEAN_TYPE)
|
|
return expr;
|
|
if (integer_nonzerop (expr))
|
|
return boolean_true_node;
|
|
else if (integer_zerop (expr))
|
|
return boolean_false_node;
|
|
else if (TREE_CODE (expr) == SSA_NAME)
|
|
return fold_build2 (NE_EXPR, boolean_type_node, expr,
|
|
build_int_cst (TREE_TYPE (expr), 0));
|
|
else if (COMPARISON_CLASS_P (expr))
|
|
return fold_build2 (TREE_CODE (expr),
|
|
boolean_type_node,
|
|
TREE_OPERAND (expr, 0),
|
|
TREE_OPERAND (expr, 1));
|
|
else
|
|
return NULL_TREE;
|
|
}
|
|
}
|
|
|
|
/* Check to see if a boolean expression EXPR is logically equivalent to the
|
|
comparison (OP1 CODE OP2). Check for various identities involving
|
|
SSA_NAMEs. */
|
|
|
|
static bool
|
|
same_bool_comparison_p (const_tree expr, enum tree_code code,
|
|
const_tree op1, const_tree op2)
|
|
{
|
|
gimple *s;
|
|
|
|
/* The obvious case. */
|
|
if (TREE_CODE (expr) == code
|
|
&& operand_equal_p (TREE_OPERAND (expr, 0), op1, 0)
|
|
&& operand_equal_p (TREE_OPERAND (expr, 1), op2, 0))
|
|
return true;
|
|
|
|
/* Check for comparing (name, name != 0) and the case where expr
|
|
is an SSA_NAME with a definition matching the comparison. */
|
|
if (TREE_CODE (expr) == SSA_NAME
|
|
&& TREE_CODE (TREE_TYPE (expr)) == BOOLEAN_TYPE)
|
|
{
|
|
if (operand_equal_p (expr, op1, 0))
|
|
return ((code == NE_EXPR && integer_zerop (op2))
|
|
|| (code == EQ_EXPR && integer_nonzerop (op2)));
|
|
s = SSA_NAME_DEF_STMT (expr);
|
|
if (is_gimple_assign (s)
|
|
&& gimple_assign_rhs_code (s) == code
|
|
&& operand_equal_p (gimple_assign_rhs1 (s), op1, 0)
|
|
&& operand_equal_p (gimple_assign_rhs2 (s), op2, 0))
|
|
return true;
|
|
}
|
|
|
|
/* If op1 is of the form (name != 0) or (name == 0), and the definition
|
|
of name is a comparison, recurse. */
|
|
if (TREE_CODE (op1) == SSA_NAME
|
|
&& TREE_CODE (TREE_TYPE (op1)) == BOOLEAN_TYPE)
|
|
{
|
|
s = SSA_NAME_DEF_STMT (op1);
|
|
if (is_gimple_assign (s)
|
|
&& TREE_CODE_CLASS (gimple_assign_rhs_code (s)) == tcc_comparison)
|
|
{
|
|
enum tree_code c = gimple_assign_rhs_code (s);
|
|
if ((c == NE_EXPR && integer_zerop (op2))
|
|
|| (c == EQ_EXPR && integer_nonzerop (op2)))
|
|
return same_bool_comparison_p (expr, c,
|
|
gimple_assign_rhs1 (s),
|
|
gimple_assign_rhs2 (s));
|
|
if ((c == EQ_EXPR && integer_zerop (op2))
|
|
|| (c == NE_EXPR && integer_nonzerop (op2)))
|
|
return same_bool_comparison_p (expr,
|
|
invert_tree_comparison (c, false),
|
|
gimple_assign_rhs1 (s),
|
|
gimple_assign_rhs2 (s));
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/* Check to see if two boolean expressions OP1 and OP2 are logically
|
|
equivalent. */
|
|
|
|
static bool
|
|
same_bool_result_p (const_tree op1, const_tree op2)
|
|
{
|
|
/* Simple cases first. */
|
|
if (operand_equal_p (op1, op2, 0))
|
|
return true;
|
|
|
|
/* Check the cases where at least one of the operands is a comparison.
|
|
These are a bit smarter than operand_equal_p in that they apply some
|
|
identifies on SSA_NAMEs. */
|
|
if (COMPARISON_CLASS_P (op2)
|
|
&& same_bool_comparison_p (op1, TREE_CODE (op2),
|
|
TREE_OPERAND (op2, 0),
|
|
TREE_OPERAND (op2, 1)))
|
|
return true;
|
|
if (COMPARISON_CLASS_P (op1)
|
|
&& same_bool_comparison_p (op2, TREE_CODE (op1),
|
|
TREE_OPERAND (op1, 0),
|
|
TREE_OPERAND (op1, 1)))
|
|
return true;
|
|
|
|
/* Default case. */
|
|
return false;
|
|
}
|
|
|
|
/* Forward declarations for some mutually recursive functions. */
|
|
|
|
static tree
|
|
and_comparisons_1 (tree type, enum tree_code code1, tree op1a, tree op1b,
|
|
enum tree_code code2, tree op2a, tree op2b);
|
|
static tree
|
|
and_var_with_comparison (tree type, tree var, bool invert,
|
|
enum tree_code code2, tree op2a, tree op2b);
|
|
static tree
|
|
and_var_with_comparison_1 (tree type, gimple *stmt,
|
|
enum tree_code code2, tree op2a, tree op2b);
|
|
static tree
|
|
or_comparisons_1 (tree, enum tree_code code1, tree op1a, tree op1b,
|
|
enum tree_code code2, tree op2a, tree op2b);
|
|
static tree
|
|
or_var_with_comparison (tree, tree var, bool invert,
|
|
enum tree_code code2, tree op2a, tree op2b);
|
|
static tree
|
|
or_var_with_comparison_1 (tree, gimple *stmt,
|
|
enum tree_code code2, tree op2a, tree op2b);
|
|
|
|
/* Helper function for and_comparisons_1: try to simplify the AND of the
|
|
ssa variable VAR with the comparison specified by (OP2A CODE2 OP2B).
|
|
If INVERT is true, invert the value of the VAR before doing the AND.
|
|
Return NULL_EXPR if we can't simplify this to a single expression. */
|
|
|
|
static tree
|
|
and_var_with_comparison (tree type, tree var, bool invert,
|
|
enum tree_code code2, tree op2a, tree op2b)
|
|
{
|
|
tree t;
|
|
gimple *stmt = SSA_NAME_DEF_STMT (var);
|
|
|
|
/* We can only deal with variables whose definitions are assignments. */
|
|
if (!is_gimple_assign (stmt))
|
|
return NULL_TREE;
|
|
|
|
/* If we have an inverted comparison, apply DeMorgan's law and rewrite
|
|
!var AND (op2a code2 op2b) => !(var OR !(op2a code2 op2b))
|
|
Then we only have to consider the simpler non-inverted cases. */
|
|
if (invert)
|
|
t = or_var_with_comparison_1 (type, stmt,
|
|
invert_tree_comparison (code2, false),
|
|
op2a, op2b);
|
|
else
|
|
t = and_var_with_comparison_1 (type, stmt, code2, op2a, op2b);
|
|
return canonicalize_bool (t, invert);
|
|
}
|
|
|
|
/* Try to simplify the AND of the ssa variable defined by the assignment
|
|
STMT with the comparison specified by (OP2A CODE2 OP2B).
|
|
Return NULL_EXPR if we can't simplify this to a single expression. */
|
|
|
|
static tree
|
|
and_var_with_comparison_1 (tree type, gimple *stmt,
|
|
enum tree_code code2, tree op2a, tree op2b)
|
|
{
|
|
tree var = gimple_assign_lhs (stmt);
|
|
tree true_test_var = NULL_TREE;
|
|
tree false_test_var = NULL_TREE;
|
|
enum tree_code innercode = gimple_assign_rhs_code (stmt);
|
|
|
|
/* Check for identities like (var AND (var == 0)) => false. */
|
|
if (TREE_CODE (op2a) == SSA_NAME
|
|
&& TREE_CODE (TREE_TYPE (var)) == BOOLEAN_TYPE)
|
|
{
|
|
if ((code2 == NE_EXPR && integer_zerop (op2b))
|
|
|| (code2 == EQ_EXPR && integer_nonzerop (op2b)))
|
|
{
|
|
true_test_var = op2a;
|
|
if (var == true_test_var)
|
|
return var;
|
|
}
|
|
else if ((code2 == EQ_EXPR && integer_zerop (op2b))
|
|
|| (code2 == NE_EXPR && integer_nonzerop (op2b)))
|
|
{
|
|
false_test_var = op2a;
|
|
if (var == false_test_var)
|
|
return boolean_false_node;
|
|
}
|
|
}
|
|
|
|
/* If the definition is a comparison, recurse on it. */
|
|
if (TREE_CODE_CLASS (innercode) == tcc_comparison)
|
|
{
|
|
tree t = and_comparisons_1 (type, innercode,
|
|
gimple_assign_rhs1 (stmt),
|
|
gimple_assign_rhs2 (stmt),
|
|
code2,
|
|
op2a,
|
|
op2b);
|
|
if (t)
|
|
return t;
|
|
}
|
|
|
|
/* If the definition is an AND or OR expression, we may be able to
|
|
simplify by reassociating. */
|
|
if (TREE_CODE (TREE_TYPE (var)) == BOOLEAN_TYPE
|
|
&& (innercode == BIT_AND_EXPR || innercode == BIT_IOR_EXPR))
|
|
{
|
|
tree inner1 = gimple_assign_rhs1 (stmt);
|
|
tree inner2 = gimple_assign_rhs2 (stmt);
|
|
gimple *s;
|
|
tree t;
|
|
tree partial = NULL_TREE;
|
|
bool is_and = (innercode == BIT_AND_EXPR);
|
|
|
|
/* Check for boolean identities that don't require recursive examination
|
|
of inner1/inner2:
|
|
inner1 AND (inner1 AND inner2) => inner1 AND inner2 => var
|
|
inner1 AND (inner1 OR inner2) => inner1
|
|
!inner1 AND (inner1 AND inner2) => false
|
|
!inner1 AND (inner1 OR inner2) => !inner1 AND inner2
|
|
Likewise for similar cases involving inner2. */
|
|
if (inner1 == true_test_var)
|
|
return (is_and ? var : inner1);
|
|
else if (inner2 == true_test_var)
|
|
return (is_and ? var : inner2);
|
|
else if (inner1 == false_test_var)
|
|
return (is_and
|
|
? boolean_false_node
|
|
: and_var_with_comparison (type, inner2, false, code2, op2a,
|
|
op2b));
|
|
else if (inner2 == false_test_var)
|
|
return (is_and
|
|
? boolean_false_node
|
|
: and_var_with_comparison (type, inner1, false, code2, op2a,
|
|
op2b));
|
|
|
|
/* Next, redistribute/reassociate the AND across the inner tests.
|
|
Compute the first partial result, (inner1 AND (op2a code op2b)) */
|
|
if (TREE_CODE (inner1) == SSA_NAME
|
|
&& is_gimple_assign (s = SSA_NAME_DEF_STMT (inner1))
|
|
&& TREE_CODE_CLASS (gimple_assign_rhs_code (s)) == tcc_comparison
|
|
&& (t = maybe_fold_and_comparisons (type, gimple_assign_rhs_code (s),
|
|
gimple_assign_rhs1 (s),
|
|
gimple_assign_rhs2 (s),
|
|
code2, op2a, op2b)))
|
|
{
|
|
/* Handle the AND case, where we are reassociating:
|
|
(inner1 AND inner2) AND (op2a code2 op2b)
|
|
=> (t AND inner2)
|
|
If the partial result t is a constant, we win. Otherwise
|
|
continue on to try reassociating with the other inner test. */
|
|
if (is_and)
|
|
{
|
|
if (integer_onep (t))
|
|
return inner2;
|
|
else if (integer_zerop (t))
|
|
return boolean_false_node;
|
|
}
|
|
|
|
/* Handle the OR case, where we are redistributing:
|
|
(inner1 OR inner2) AND (op2a code2 op2b)
|
|
=> (t OR (inner2 AND (op2a code2 op2b))) */
|
|
else if (integer_onep (t))
|
|
return boolean_true_node;
|
|
|
|
/* Save partial result for later. */
|
|
partial = t;
|
|
}
|
|
|
|
/* Compute the second partial result, (inner2 AND (op2a code op2b)) */
|
|
if (TREE_CODE (inner2) == SSA_NAME
|
|
&& is_gimple_assign (s = SSA_NAME_DEF_STMT (inner2))
|
|
&& TREE_CODE_CLASS (gimple_assign_rhs_code (s)) == tcc_comparison
|
|
&& (t = maybe_fold_and_comparisons (type, gimple_assign_rhs_code (s),
|
|
gimple_assign_rhs1 (s),
|
|
gimple_assign_rhs2 (s),
|
|
code2, op2a, op2b)))
|
|
{
|
|
/* Handle the AND case, where we are reassociating:
|
|
(inner1 AND inner2) AND (op2a code2 op2b)
|
|
=> (inner1 AND t) */
|
|
if (is_and)
|
|
{
|
|
if (integer_onep (t))
|
|
return inner1;
|
|
else if (integer_zerop (t))
|
|
return boolean_false_node;
|
|
/* If both are the same, we can apply the identity
|
|
(x AND x) == x. */
|
|
else if (partial && same_bool_result_p (t, partial))
|
|
return t;
|
|
}
|
|
|
|
/* Handle the OR case. where we are redistributing:
|
|
(inner1 OR inner2) AND (op2a code2 op2b)
|
|
=> (t OR (inner1 AND (op2a code2 op2b)))
|
|
=> (t OR partial) */
|
|
else
|
|
{
|
|
if (integer_onep (t))
|
|
return boolean_true_node;
|
|
else if (partial)
|
|
{
|
|
/* We already got a simplification for the other
|
|
operand to the redistributed OR expression. The
|
|
interesting case is when at least one is false.
|
|
Or, if both are the same, we can apply the identity
|
|
(x OR x) == x. */
|
|
if (integer_zerop (partial))
|
|
return t;
|
|
else if (integer_zerop (t))
|
|
return partial;
|
|
else if (same_bool_result_p (t, partial))
|
|
return t;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return NULL_TREE;
|
|
}
|
|
|
|
/* Try to simplify the AND of two comparisons defined by
|
|
(OP1A CODE1 OP1B) and (OP2A CODE2 OP2B), respectively.
|
|
If this can be done without constructing an intermediate value,
|
|
return the resulting tree; otherwise NULL_TREE is returned.
|
|
This function is deliberately asymmetric as it recurses on SSA_DEFs
|
|
in the first comparison but not the second. */
|
|
|
|
static tree
|
|
and_comparisons_1 (tree type, enum tree_code code1, tree op1a, tree op1b,
|
|
enum tree_code code2, tree op2a, tree op2b)
|
|
{
|
|
tree truth_type = truth_type_for (TREE_TYPE (op1a));
|
|
|
|
/* First check for ((x CODE1 y) AND (x CODE2 y)). */
|
|
if (operand_equal_p (op1a, op2a, 0)
|
|
&& operand_equal_p (op1b, op2b, 0))
|
|
{
|
|
/* Result will be either NULL_TREE, or a combined comparison. */
|
|
tree t = combine_comparisons (UNKNOWN_LOCATION,
|
|
TRUTH_ANDIF_EXPR, code1, code2,
|
|
truth_type, op1a, op1b);
|
|
if (t)
|
|
return t;
|
|
}
|
|
|
|
/* Likewise the swapped case of the above. */
|
|
if (operand_equal_p (op1a, op2b, 0)
|
|
&& operand_equal_p (op1b, op2a, 0))
|
|
{
|
|
/* Result will be either NULL_TREE, or a combined comparison. */
|
|
tree t = combine_comparisons (UNKNOWN_LOCATION,
|
|
TRUTH_ANDIF_EXPR, code1,
|
|
swap_tree_comparison (code2),
|
|
truth_type, op1a, op1b);
|
|
if (t)
|
|
return t;
|
|
}
|
|
|
|
/* Perhaps the first comparison is (NAME != 0) or (NAME == 1) where
|
|
NAME's definition is a truth value. See if there are any simplifications
|
|
that can be done against the NAME's definition. */
|
|
if (TREE_CODE (op1a) == SSA_NAME
|
|
&& (code1 == NE_EXPR || code1 == EQ_EXPR)
|
|
&& (integer_zerop (op1b) || integer_onep (op1b)))
|
|
{
|
|
bool invert = ((code1 == EQ_EXPR && integer_zerop (op1b))
|
|
|| (code1 == NE_EXPR && integer_onep (op1b)));
|
|
gimple *stmt = SSA_NAME_DEF_STMT (op1a);
|
|
switch (gimple_code (stmt))
|
|
{
|
|
case GIMPLE_ASSIGN:
|
|
/* Try to simplify by copy-propagating the definition. */
|
|
return and_var_with_comparison (type, op1a, invert, code2, op2a,
|
|
op2b);
|
|
|
|
case GIMPLE_PHI:
|
|
/* If every argument to the PHI produces the same result when
|
|
ANDed with the second comparison, we win.
|
|
Do not do this unless the type is bool since we need a bool
|
|
result here anyway. */
|
|
if (TREE_CODE (TREE_TYPE (op1a)) == BOOLEAN_TYPE)
|
|
{
|
|
tree result = NULL_TREE;
|
|
unsigned i;
|
|
for (i = 0; i < gimple_phi_num_args (stmt); i++)
|
|
{
|
|
tree arg = gimple_phi_arg_def (stmt, i);
|
|
|
|
/* If this PHI has itself as an argument, ignore it.
|
|
If all the other args produce the same result,
|
|
we're still OK. */
|
|
if (arg == gimple_phi_result (stmt))
|
|
continue;
|
|
else if (TREE_CODE (arg) == INTEGER_CST)
|
|
{
|
|
if (invert ? integer_nonzerop (arg) : integer_zerop (arg))
|
|
{
|
|
if (!result)
|
|
result = boolean_false_node;
|
|
else if (!integer_zerop (result))
|
|
return NULL_TREE;
|
|
}
|
|
else if (!result)
|
|
result = fold_build2 (code2, boolean_type_node,
|
|
op2a, op2b);
|
|
else if (!same_bool_comparison_p (result,
|
|
code2, op2a, op2b))
|
|
return NULL_TREE;
|
|
}
|
|
else if (TREE_CODE (arg) == SSA_NAME
|
|
&& !SSA_NAME_IS_DEFAULT_DEF (arg))
|
|
{
|
|
tree temp;
|
|
gimple *def_stmt = SSA_NAME_DEF_STMT (arg);
|
|
/* In simple cases we can look through PHI nodes,
|
|
but we have to be careful with loops.
|
|
See PR49073. */
|
|
if (! dom_info_available_p (CDI_DOMINATORS)
|
|
|| gimple_bb (def_stmt) == gimple_bb (stmt)
|
|
|| dominated_by_p (CDI_DOMINATORS,
|
|
gimple_bb (def_stmt),
|
|
gimple_bb (stmt)))
|
|
return NULL_TREE;
|
|
temp = and_var_with_comparison (type, arg, invert, code2,
|
|
op2a, op2b);
|
|
if (!temp)
|
|
return NULL_TREE;
|
|
else if (!result)
|
|
result = temp;
|
|
else if (!same_bool_result_p (result, temp))
|
|
return NULL_TREE;
|
|
}
|
|
else
|
|
return NULL_TREE;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
return NULL_TREE;
|
|
}
|
|
|
|
/* Helper function for maybe_fold_and_comparisons and maybe_fold_or_comparisons
|
|
: try to simplify the AND/OR of the ssa variable VAR with the comparison
|
|
specified by (OP2A CODE2 OP2B) from match.pd. Return NULL_EXPR if we can't
|
|
simplify this to a single expression. As we are going to lower the cost
|
|
of building SSA names / gimple stmts significantly, we need to allocate
|
|
them ont the stack. This will cause the code to be a bit ugly. */
|
|
|
|
static tree
|
|
maybe_fold_comparisons_from_match_pd (tree type, enum tree_code code,
|
|
enum tree_code code1,
|
|
tree op1a, tree op1b,
|
|
enum tree_code code2, tree op2a,
|
|
tree op2b)
|
|
{
|
|
/* Allocate gimple stmt1 on the stack. */
|
|
gassign *stmt1
|
|
= (gassign *) XALLOCAVEC (char, gimple_size (GIMPLE_ASSIGN, 3));
|
|
gimple_init (stmt1, GIMPLE_ASSIGN, 3);
|
|
gimple_assign_set_rhs_code (stmt1, code1);
|
|
gimple_assign_set_rhs1 (stmt1, op1a);
|
|
gimple_assign_set_rhs2 (stmt1, op1b);
|
|
|
|
/* Allocate gimple stmt2 on the stack. */
|
|
gassign *stmt2
|
|
= (gassign *) XALLOCAVEC (char, gimple_size (GIMPLE_ASSIGN, 3));
|
|
gimple_init (stmt2, GIMPLE_ASSIGN, 3);
|
|
gimple_assign_set_rhs_code (stmt2, code2);
|
|
gimple_assign_set_rhs1 (stmt2, op2a);
|
|
gimple_assign_set_rhs2 (stmt2, op2b);
|
|
|
|
/* Allocate SSA names(lhs1) on the stack. */
|
|
tree lhs1 = (tree)XALLOCA (tree_ssa_name);
|
|
memset (lhs1, 0, sizeof (tree_ssa_name));
|
|
TREE_SET_CODE (lhs1, SSA_NAME);
|
|
TREE_TYPE (lhs1) = type;
|
|
init_ssa_name_imm_use (lhs1);
|
|
|
|
/* Allocate SSA names(lhs2) on the stack. */
|
|
tree lhs2 = (tree)XALLOCA (tree_ssa_name);
|
|
memset (lhs2, 0, sizeof (tree_ssa_name));
|
|
TREE_SET_CODE (lhs2, SSA_NAME);
|
|
TREE_TYPE (lhs2) = type;
|
|
init_ssa_name_imm_use (lhs2);
|
|
|
|
gimple_assign_set_lhs (stmt1, lhs1);
|
|
gimple_assign_set_lhs (stmt2, lhs2);
|
|
|
|
gimple_match_op op (gimple_match_cond::UNCOND, code,
|
|
type, gimple_assign_lhs (stmt1),
|
|
gimple_assign_lhs (stmt2));
|
|
if (op.resimplify (NULL, follow_all_ssa_edges))
|
|
{
|
|
if (gimple_simplified_result_is_gimple_val (&op))
|
|
{
|
|
tree res = op.ops[0];
|
|
if (res == lhs1)
|
|
return build2 (code1, type, op1a, op1b);
|
|
else if (res == lhs2)
|
|
return build2 (code2, type, op2a, op2b);
|
|
else
|
|
return res;
|
|
}
|
|
else if (op.code.is_tree_code ()
|
|
&& TREE_CODE_CLASS ((tree_code)op.code) == tcc_comparison)
|
|
{
|
|
tree op0 = op.ops[0];
|
|
tree op1 = op.ops[1];
|
|
if (op0 == lhs1 || op0 == lhs2 || op1 == lhs1 || op1 == lhs2)
|
|
return NULL_TREE; /* not simple */
|
|
|
|
return build2 ((enum tree_code)op.code, op.type, op0, op1);
|
|
}
|
|
}
|
|
|
|
return NULL_TREE;
|
|
}
|
|
|
|
/* Try to simplify the AND of two comparisons, specified by
|
|
(OP1A CODE1 OP1B) and (OP2B CODE2 OP2B), respectively.
|
|
If this can be simplified to a single expression (without requiring
|
|
introducing more SSA variables to hold intermediate values),
|
|
return the resulting tree. Otherwise return NULL_TREE.
|
|
If the result expression is non-null, it has boolean type. */
|
|
|
|
tree
|
|
maybe_fold_and_comparisons (tree type,
|
|
enum tree_code code1, tree op1a, tree op1b,
|
|
enum tree_code code2, tree op2a, tree op2b)
|
|
{
|
|
if (tree t = and_comparisons_1 (type, code1, op1a, op1b, code2, op2a, op2b))
|
|
return t;
|
|
|
|
if (tree t = and_comparisons_1 (type, code2, op2a, op2b, code1, op1a, op1b))
|
|
return t;
|
|
|
|
if (tree t = maybe_fold_comparisons_from_match_pd (type, BIT_AND_EXPR, code1,
|
|
op1a, op1b, code2, op2a,
|
|
op2b))
|
|
return t;
|
|
|
|
return NULL_TREE;
|
|
}
|
|
|
|
/* Helper function for or_comparisons_1: try to simplify the OR of the
|
|
ssa variable VAR with the comparison specified by (OP2A CODE2 OP2B).
|
|
If INVERT is true, invert the value of VAR before doing the OR.
|
|
Return NULL_EXPR if we can't simplify this to a single expression. */
|
|
|
|
static tree
|
|
or_var_with_comparison (tree type, tree var, bool invert,
|
|
enum tree_code code2, tree op2a, tree op2b)
|
|
{
|
|
tree t;
|
|
gimple *stmt = SSA_NAME_DEF_STMT (var);
|
|
|
|
/* We can only deal with variables whose definitions are assignments. */
|
|
if (!is_gimple_assign (stmt))
|
|
return NULL_TREE;
|
|
|
|
/* If we have an inverted comparison, apply DeMorgan's law and rewrite
|
|
!var OR (op2a code2 op2b) => !(var AND !(op2a code2 op2b))
|
|
Then we only have to consider the simpler non-inverted cases. */
|
|
if (invert)
|
|
t = and_var_with_comparison_1 (type, stmt,
|
|
invert_tree_comparison (code2, false),
|
|
op2a, op2b);
|
|
else
|
|
t = or_var_with_comparison_1 (type, stmt, code2, op2a, op2b);
|
|
return canonicalize_bool (t, invert);
|
|
}
|
|
|
|
/* Try to simplify the OR of the ssa variable defined by the assignment
|
|
STMT with the comparison specified by (OP2A CODE2 OP2B).
|
|
Return NULL_EXPR if we can't simplify this to a single expression. */
|
|
|
|
static tree
|
|
or_var_with_comparison_1 (tree type, gimple *stmt,
|
|
enum tree_code code2, tree op2a, tree op2b)
|
|
{
|
|
tree var = gimple_assign_lhs (stmt);
|
|
tree true_test_var = NULL_TREE;
|
|
tree false_test_var = NULL_TREE;
|
|
enum tree_code innercode = gimple_assign_rhs_code (stmt);
|
|
|
|
/* Check for identities like (var OR (var != 0)) => true . */
|
|
if (TREE_CODE (op2a) == SSA_NAME
|
|
&& TREE_CODE (TREE_TYPE (var)) == BOOLEAN_TYPE)
|
|
{
|
|
if ((code2 == NE_EXPR && integer_zerop (op2b))
|
|
|| (code2 == EQ_EXPR && integer_nonzerop (op2b)))
|
|
{
|
|
true_test_var = op2a;
|
|
if (var == true_test_var)
|
|
return var;
|
|
}
|
|
else if ((code2 == EQ_EXPR && integer_zerop (op2b))
|
|
|| (code2 == NE_EXPR && integer_nonzerop (op2b)))
|
|
{
|
|
false_test_var = op2a;
|
|
if (var == false_test_var)
|
|
return boolean_true_node;
|
|
}
|
|
}
|
|
|
|
/* If the definition is a comparison, recurse on it. */
|
|
if (TREE_CODE_CLASS (innercode) == tcc_comparison)
|
|
{
|
|
tree t = or_comparisons_1 (type, innercode,
|
|
gimple_assign_rhs1 (stmt),
|
|
gimple_assign_rhs2 (stmt),
|
|
code2,
|
|
op2a,
|
|
op2b);
|
|
if (t)
|
|
return t;
|
|
}
|
|
|
|
/* If the definition is an AND or OR expression, we may be able to
|
|
simplify by reassociating. */
|
|
if (TREE_CODE (TREE_TYPE (var)) == BOOLEAN_TYPE
|
|
&& (innercode == BIT_AND_EXPR || innercode == BIT_IOR_EXPR))
|
|
{
|
|
tree inner1 = gimple_assign_rhs1 (stmt);
|
|
tree inner2 = gimple_assign_rhs2 (stmt);
|
|
gimple *s;
|
|
tree t;
|
|
tree partial = NULL_TREE;
|
|
bool is_or = (innercode == BIT_IOR_EXPR);
|
|
|
|
/* Check for boolean identities that don't require recursive examination
|
|
of inner1/inner2:
|
|
inner1 OR (inner1 OR inner2) => inner1 OR inner2 => var
|
|
inner1 OR (inner1 AND inner2) => inner1
|
|
!inner1 OR (inner1 OR inner2) => true
|
|
!inner1 OR (inner1 AND inner2) => !inner1 OR inner2
|
|
*/
|
|
if (inner1 == true_test_var)
|
|
return (is_or ? var : inner1);
|
|
else if (inner2 == true_test_var)
|
|
return (is_or ? var : inner2);
|
|
else if (inner1 == false_test_var)
|
|
return (is_or
|
|
? boolean_true_node
|
|
: or_var_with_comparison (type, inner2, false, code2, op2a,
|
|
op2b));
|
|
else if (inner2 == false_test_var)
|
|
return (is_or
|
|
? boolean_true_node
|
|
: or_var_with_comparison (type, inner1, false, code2, op2a,
|
|
op2b));
|
|
|
|
/* Next, redistribute/reassociate the OR across the inner tests.
|
|
Compute the first partial result, (inner1 OR (op2a code op2b)) */
|
|
if (TREE_CODE (inner1) == SSA_NAME
|
|
&& is_gimple_assign (s = SSA_NAME_DEF_STMT (inner1))
|
|
&& TREE_CODE_CLASS (gimple_assign_rhs_code (s)) == tcc_comparison
|
|
&& (t = maybe_fold_or_comparisons (type, gimple_assign_rhs_code (s),
|
|
gimple_assign_rhs1 (s),
|
|
gimple_assign_rhs2 (s),
|
|
code2, op2a, op2b)))
|
|
{
|
|
/* Handle the OR case, where we are reassociating:
|
|
(inner1 OR inner2) OR (op2a code2 op2b)
|
|
=> (t OR inner2)
|
|
If the partial result t is a constant, we win. Otherwise
|
|
continue on to try reassociating with the other inner test. */
|
|
if (is_or)
|
|
{
|
|
if (integer_onep (t))
|
|
return boolean_true_node;
|
|
else if (integer_zerop (t))
|
|
return inner2;
|
|
}
|
|
|
|
/* Handle the AND case, where we are redistributing:
|
|
(inner1 AND inner2) OR (op2a code2 op2b)
|
|
=> (t AND (inner2 OR (op2a code op2b))) */
|
|
else if (integer_zerop (t))
|
|
return boolean_false_node;
|
|
|
|
/* Save partial result for later. */
|
|
partial = t;
|
|
}
|
|
|
|
/* Compute the second partial result, (inner2 OR (op2a code op2b)) */
|
|
if (TREE_CODE (inner2) == SSA_NAME
|
|
&& is_gimple_assign (s = SSA_NAME_DEF_STMT (inner2))
|
|
&& TREE_CODE_CLASS (gimple_assign_rhs_code (s)) == tcc_comparison
|
|
&& (t = maybe_fold_or_comparisons (type, gimple_assign_rhs_code (s),
|
|
gimple_assign_rhs1 (s),
|
|
gimple_assign_rhs2 (s),
|
|
code2, op2a, op2b)))
|
|
{
|
|
/* Handle the OR case, where we are reassociating:
|
|
(inner1 OR inner2) OR (op2a code2 op2b)
|
|
=> (inner1 OR t)
|
|
=> (t OR partial) */
|
|
if (is_or)
|
|
{
|
|
if (integer_zerop (t))
|
|
return inner1;
|
|
else if (integer_onep (t))
|
|
return boolean_true_node;
|
|
/* If both are the same, we can apply the identity
|
|
(x OR x) == x. */
|
|
else if (partial && same_bool_result_p (t, partial))
|
|
return t;
|
|
}
|
|
|
|
/* Handle the AND case, where we are redistributing:
|
|
(inner1 AND inner2) OR (op2a code2 op2b)
|
|
=> (t AND (inner1 OR (op2a code2 op2b)))
|
|
=> (t AND partial) */
|
|
else
|
|
{
|
|
if (integer_zerop (t))
|
|
return boolean_false_node;
|
|
else if (partial)
|
|
{
|
|
/* We already got a simplification for the other
|
|
operand to the redistributed AND expression. The
|
|
interesting case is when at least one is true.
|
|
Or, if both are the same, we can apply the identity
|
|
(x AND x) == x. */
|
|
if (integer_onep (partial))
|
|
return t;
|
|
else if (integer_onep (t))
|
|
return partial;
|
|
else if (same_bool_result_p (t, partial))
|
|
return t;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return NULL_TREE;
|
|
}
|
|
|
|
/* Try to simplify the OR of two comparisons defined by
|
|
(OP1A CODE1 OP1B) and (OP2A CODE2 OP2B), respectively.
|
|
If this can be done without constructing an intermediate value,
|
|
return the resulting tree; otherwise NULL_TREE is returned.
|
|
This function is deliberately asymmetric as it recurses on SSA_DEFs
|
|
in the first comparison but not the second. */
|
|
|
|
static tree
|
|
or_comparisons_1 (tree type, enum tree_code code1, tree op1a, tree op1b,
|
|
enum tree_code code2, tree op2a, tree op2b)
|
|
{
|
|
tree truth_type = truth_type_for (TREE_TYPE (op1a));
|
|
|
|
/* First check for ((x CODE1 y) OR (x CODE2 y)). */
|
|
if (operand_equal_p (op1a, op2a, 0)
|
|
&& operand_equal_p (op1b, op2b, 0))
|
|
{
|
|
/* Result will be either NULL_TREE, or a combined comparison. */
|
|
tree t = combine_comparisons (UNKNOWN_LOCATION,
|
|
TRUTH_ORIF_EXPR, code1, code2,
|
|
truth_type, op1a, op1b);
|
|
if (t)
|
|
return t;
|
|
}
|
|
|
|
/* Likewise the swapped case of the above. */
|
|
if (operand_equal_p (op1a, op2b, 0)
|
|
&& operand_equal_p (op1b, op2a, 0))
|
|
{
|
|
/* Result will be either NULL_TREE, or a combined comparison. */
|
|
tree t = combine_comparisons (UNKNOWN_LOCATION,
|
|
TRUTH_ORIF_EXPR, code1,
|
|
swap_tree_comparison (code2),
|
|
truth_type, op1a, op1b);
|
|
if (t)
|
|
return t;
|
|
}
|
|
|
|
/* Perhaps the first comparison is (NAME != 0) or (NAME == 1) where
|
|
NAME's definition is a truth value. See if there are any simplifications
|
|
that can be done against the NAME's definition. */
|
|
if (TREE_CODE (op1a) == SSA_NAME
|
|
&& (code1 == NE_EXPR || code1 == EQ_EXPR)
|
|
&& (integer_zerop (op1b) || integer_onep (op1b)))
|
|
{
|
|
bool invert = ((code1 == EQ_EXPR && integer_zerop (op1b))
|
|
|| (code1 == NE_EXPR && integer_onep (op1b)));
|
|
gimple *stmt = SSA_NAME_DEF_STMT (op1a);
|
|
switch (gimple_code (stmt))
|
|
{
|
|
case GIMPLE_ASSIGN:
|
|
/* Try to simplify by copy-propagating the definition. */
|
|
return or_var_with_comparison (type, op1a, invert, code2, op2a,
|
|
op2b);
|
|
|
|
case GIMPLE_PHI:
|
|
/* If every argument to the PHI produces the same result when
|
|
ORed with the second comparison, we win.
|
|
Do not do this unless the type is bool since we need a bool
|
|
result here anyway. */
|
|
if (TREE_CODE (TREE_TYPE (op1a)) == BOOLEAN_TYPE)
|
|
{
|
|
tree result = NULL_TREE;
|
|
unsigned i;
|
|
for (i = 0; i < gimple_phi_num_args (stmt); i++)
|
|
{
|
|
tree arg = gimple_phi_arg_def (stmt, i);
|
|
|
|
/* If this PHI has itself as an argument, ignore it.
|
|
If all the other args produce the same result,
|
|
we're still OK. */
|
|
if (arg == gimple_phi_result (stmt))
|
|
continue;
|
|
else if (TREE_CODE (arg) == INTEGER_CST)
|
|
{
|
|
if (invert ? integer_zerop (arg) : integer_nonzerop (arg))
|
|
{
|
|
if (!result)
|
|
result = boolean_true_node;
|
|
else if (!integer_onep (result))
|
|
return NULL_TREE;
|
|
}
|
|
else if (!result)
|
|
result = fold_build2 (code2, boolean_type_node,
|
|
op2a, op2b);
|
|
else if (!same_bool_comparison_p (result,
|
|
code2, op2a, op2b))
|
|
return NULL_TREE;
|
|
}
|
|
else if (TREE_CODE (arg) == SSA_NAME
|
|
&& !SSA_NAME_IS_DEFAULT_DEF (arg))
|
|
{
|
|
tree temp;
|
|
gimple *def_stmt = SSA_NAME_DEF_STMT (arg);
|
|
/* In simple cases we can look through PHI nodes,
|
|
but we have to be careful with loops.
|
|
See PR49073. */
|
|
if (! dom_info_available_p (CDI_DOMINATORS)
|
|
|| gimple_bb (def_stmt) == gimple_bb (stmt)
|
|
|| dominated_by_p (CDI_DOMINATORS,
|
|
gimple_bb (def_stmt),
|
|
gimple_bb (stmt)))
|
|
return NULL_TREE;
|
|
temp = or_var_with_comparison (type, arg, invert, code2,
|
|
op2a, op2b);
|
|
if (!temp)
|
|
return NULL_TREE;
|
|
else if (!result)
|
|
result = temp;
|
|
else if (!same_bool_result_p (result, temp))
|
|
return NULL_TREE;
|
|
}
|
|
else
|
|
return NULL_TREE;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
return NULL_TREE;
|
|
}
|
|
|
|
/* Try to simplify the OR of two comparisons, specified by
|
|
(OP1A CODE1 OP1B) and (OP2B CODE2 OP2B), respectively.
|
|
If this can be simplified to a single expression (without requiring
|
|
introducing more SSA variables to hold intermediate values),
|
|
return the resulting tree. Otherwise return NULL_TREE.
|
|
If the result expression is non-null, it has boolean type. */
|
|
|
|
tree
|
|
maybe_fold_or_comparisons (tree type,
|
|
enum tree_code code1, tree op1a, tree op1b,
|
|
enum tree_code code2, tree op2a, tree op2b)
|
|
{
|
|
if (tree t = or_comparisons_1 (type, code1, op1a, op1b, code2, op2a, op2b))
|
|
return t;
|
|
|
|
if (tree t = or_comparisons_1 (type, code2, op2a, op2b, code1, op1a, op1b))
|
|
return t;
|
|
|
|
if (tree t = maybe_fold_comparisons_from_match_pd (type, BIT_IOR_EXPR, code1,
|
|
op1a, op1b, code2, op2a,
|
|
op2b))
|
|
return t;
|
|
|
|
return NULL_TREE;
|
|
}
|
|
|
|
/* Fold STMT to a constant using VALUEIZE to valueize SSA names.
|
|
|
|
Either NULL_TREE, a simplified but non-constant or a constant
|
|
is returned.
|
|
|
|
??? This should go into a gimple-fold-inline.h file to be eventually
|
|
privatized with the single valueize function used in the various TUs
|
|
to avoid the indirect function call overhead. */
|
|
|
|
tree
|
|
gimple_fold_stmt_to_constant_1 (gimple *stmt, tree (*valueize) (tree),
|
|
tree (*gvalueize) (tree))
|
|
{
|
|
gimple_match_op res_op;
|
|
/* ??? The SSA propagators do not correctly deal with following SSA use-def
|
|
edges if there are intermediate VARYING defs. For this reason
|
|
do not follow SSA edges here even though SCCVN can technically
|
|
just deal fine with that. */
|
|
if (gimple_simplify (stmt, &res_op, NULL, gvalueize, valueize))
|
|
{
|
|
tree res = NULL_TREE;
|
|
if (gimple_simplified_result_is_gimple_val (&res_op))
|
|
res = res_op.ops[0];
|
|
else if (mprts_hook)
|
|
res = mprts_hook (&res_op);
|
|
if (res)
|
|
{
|
|
if (dump_file && dump_flags & TDF_DETAILS)
|
|
{
|
|
fprintf (dump_file, "Match-and-simplified ");
|
|
print_gimple_expr (dump_file, stmt, 0, TDF_SLIM);
|
|
fprintf (dump_file, " to ");
|
|
print_generic_expr (dump_file, res);
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
return res;
|
|
}
|
|
}
|
|
|
|
location_t loc = gimple_location (stmt);
|
|
switch (gimple_code (stmt))
|
|
{
|
|
case GIMPLE_ASSIGN:
|
|
{
|
|
enum tree_code subcode = gimple_assign_rhs_code (stmt);
|
|
|
|
switch (get_gimple_rhs_class (subcode))
|
|
{
|
|
case GIMPLE_SINGLE_RHS:
|
|
{
|
|
tree rhs = gimple_assign_rhs1 (stmt);
|
|
enum tree_code_class kind = TREE_CODE_CLASS (subcode);
|
|
|
|
if (TREE_CODE (rhs) == SSA_NAME)
|
|
{
|
|
/* If the RHS is an SSA_NAME, return its known constant value,
|
|
if any. */
|
|
return (*valueize) (rhs);
|
|
}
|
|
/* Handle propagating invariant addresses into address
|
|
operations. */
|
|
else if (TREE_CODE (rhs) == ADDR_EXPR
|
|
&& !is_gimple_min_invariant (rhs))
|
|
{
|
|
poly_int64 offset = 0;
|
|
tree base;
|
|
base = get_addr_base_and_unit_offset_1 (TREE_OPERAND (rhs, 0),
|
|
&offset,
|
|
valueize);
|
|
if (base
|
|
&& (CONSTANT_CLASS_P (base)
|
|
|| decl_address_invariant_p (base)))
|
|
return build_invariant_address (TREE_TYPE (rhs),
|
|
base, offset);
|
|
}
|
|
else if (TREE_CODE (rhs) == CONSTRUCTOR
|
|
&& TREE_CODE (TREE_TYPE (rhs)) == VECTOR_TYPE
|
|
&& known_eq (CONSTRUCTOR_NELTS (rhs),
|
|
TYPE_VECTOR_SUBPARTS (TREE_TYPE (rhs))))
|
|
{
|
|
unsigned i, nelts;
|
|
tree val;
|
|
|
|
nelts = CONSTRUCTOR_NELTS (rhs);
|
|
tree_vector_builder vec (TREE_TYPE (rhs), nelts, 1);
|
|
FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (rhs), i, val)
|
|
{
|
|
val = (*valueize) (val);
|
|
if (TREE_CODE (val) == INTEGER_CST
|
|
|| TREE_CODE (val) == REAL_CST
|
|
|| TREE_CODE (val) == FIXED_CST)
|
|
vec.quick_push (val);
|
|
else
|
|
return NULL_TREE;
|
|
}
|
|
|
|
return vec.build ();
|
|
}
|
|
if (subcode == OBJ_TYPE_REF)
|
|
{
|
|
tree val = (*valueize) (OBJ_TYPE_REF_EXPR (rhs));
|
|
/* If callee is constant, we can fold away the wrapper. */
|
|
if (is_gimple_min_invariant (val))
|
|
return val;
|
|
}
|
|
|
|
if (kind == tcc_reference)
|
|
{
|
|
if ((TREE_CODE (rhs) == VIEW_CONVERT_EXPR
|
|
|| TREE_CODE (rhs) == REALPART_EXPR
|
|
|| TREE_CODE (rhs) == IMAGPART_EXPR)
|
|
&& TREE_CODE (TREE_OPERAND (rhs, 0)) == SSA_NAME)
|
|
{
|
|
tree val = (*valueize) (TREE_OPERAND (rhs, 0));
|
|
return fold_unary_loc (EXPR_LOCATION (rhs),
|
|
TREE_CODE (rhs),
|
|
TREE_TYPE (rhs), val);
|
|
}
|
|
else if (TREE_CODE (rhs) == BIT_FIELD_REF
|
|
&& TREE_CODE (TREE_OPERAND (rhs, 0)) == SSA_NAME)
|
|
{
|
|
tree val = (*valueize) (TREE_OPERAND (rhs, 0));
|
|
return fold_ternary_loc (EXPR_LOCATION (rhs),
|
|
TREE_CODE (rhs),
|
|
TREE_TYPE (rhs), val,
|
|
TREE_OPERAND (rhs, 1),
|
|
TREE_OPERAND (rhs, 2));
|
|
}
|
|
else if (TREE_CODE (rhs) == MEM_REF
|
|
&& TREE_CODE (TREE_OPERAND (rhs, 0)) == SSA_NAME)
|
|
{
|
|
tree val = (*valueize) (TREE_OPERAND (rhs, 0));
|
|
if (TREE_CODE (val) == ADDR_EXPR
|
|
&& is_gimple_min_invariant (val))
|
|
{
|
|
tree tem = fold_build2 (MEM_REF, TREE_TYPE (rhs),
|
|
unshare_expr (val),
|
|
TREE_OPERAND (rhs, 1));
|
|
if (tem)
|
|
rhs = tem;
|
|
}
|
|
}
|
|
return fold_const_aggregate_ref_1 (rhs, valueize);
|
|
}
|
|
else if (kind == tcc_declaration)
|
|
return get_symbol_constant_value (rhs);
|
|
return rhs;
|
|
}
|
|
|
|
case GIMPLE_UNARY_RHS:
|
|
return NULL_TREE;
|
|
|
|
case GIMPLE_BINARY_RHS:
|
|
/* Translate &x + CST into an invariant form suitable for
|
|
further propagation. */
|
|
if (subcode == POINTER_PLUS_EXPR)
|
|
{
|
|
tree op0 = (*valueize) (gimple_assign_rhs1 (stmt));
|
|
tree op1 = (*valueize) (gimple_assign_rhs2 (stmt));
|
|
if (TREE_CODE (op0) == ADDR_EXPR
|
|
&& TREE_CODE (op1) == INTEGER_CST)
|
|
{
|
|
tree off = fold_convert (ptr_type_node, op1);
|
|
return build_fold_addr_expr_loc
|
|
(loc,
|
|
fold_build2 (MEM_REF,
|
|
TREE_TYPE (TREE_TYPE (op0)),
|
|
unshare_expr (op0), off));
|
|
}
|
|
}
|
|
/* Canonicalize bool != 0 and bool == 0 appearing after
|
|
valueization. While gimple_simplify handles this
|
|
it can get confused by the ~X == 1 -> X == 0 transform
|
|
which we cant reduce to a SSA name or a constant
|
|
(and we have no way to tell gimple_simplify to not
|
|
consider those transforms in the first place). */
|
|
else if (subcode == EQ_EXPR
|
|
|| subcode == NE_EXPR)
|
|
{
|
|
tree lhs = gimple_assign_lhs (stmt);
|
|
tree op0 = gimple_assign_rhs1 (stmt);
|
|
if (useless_type_conversion_p (TREE_TYPE (lhs),
|
|
TREE_TYPE (op0)))
|
|
{
|
|
tree op1 = (*valueize) (gimple_assign_rhs2 (stmt));
|
|
op0 = (*valueize) (op0);
|
|
if (TREE_CODE (op0) == INTEGER_CST)
|
|
std::swap (op0, op1);
|
|
if (TREE_CODE (op1) == INTEGER_CST
|
|
&& ((subcode == NE_EXPR && integer_zerop (op1))
|
|
|| (subcode == EQ_EXPR && integer_onep (op1))))
|
|
return op0;
|
|
}
|
|
}
|
|
return NULL_TREE;
|
|
|
|
case GIMPLE_TERNARY_RHS:
|
|
{
|
|
/* Handle ternary operators that can appear in GIMPLE form. */
|
|
tree op0 = (*valueize) (gimple_assign_rhs1 (stmt));
|
|
tree op1 = (*valueize) (gimple_assign_rhs2 (stmt));
|
|
tree op2 = (*valueize) (gimple_assign_rhs3 (stmt));
|
|
return fold_ternary_loc (loc, subcode,
|
|
gimple_expr_type (stmt), op0, op1, op2);
|
|
}
|
|
|
|
default:
|
|
gcc_unreachable ();
|
|
}
|
|
}
|
|
|
|
case GIMPLE_CALL:
|
|
{
|
|
tree fn;
|
|
gcall *call_stmt = as_a <gcall *> (stmt);
|
|
|
|
if (gimple_call_internal_p (stmt))
|
|
{
|
|
enum tree_code subcode = ERROR_MARK;
|
|
switch (gimple_call_internal_fn (stmt))
|
|
{
|
|
case IFN_UBSAN_CHECK_ADD:
|
|
subcode = PLUS_EXPR;
|
|
break;
|
|
case IFN_UBSAN_CHECK_SUB:
|
|
subcode = MINUS_EXPR;
|
|
break;
|
|
case IFN_UBSAN_CHECK_MUL:
|
|
subcode = MULT_EXPR;
|
|
break;
|
|
case IFN_BUILTIN_EXPECT:
|
|
{
|
|
tree arg0 = gimple_call_arg (stmt, 0);
|
|
tree op0 = (*valueize) (arg0);
|
|
if (TREE_CODE (op0) == INTEGER_CST)
|
|
return op0;
|
|
return NULL_TREE;
|
|
}
|
|
default:
|
|
return NULL_TREE;
|
|
}
|
|
tree arg0 = gimple_call_arg (stmt, 0);
|
|
tree arg1 = gimple_call_arg (stmt, 1);
|
|
tree op0 = (*valueize) (arg0);
|
|
tree op1 = (*valueize) (arg1);
|
|
|
|
if (TREE_CODE (op0) != INTEGER_CST
|
|
|| TREE_CODE (op1) != INTEGER_CST)
|
|
{
|
|
switch (subcode)
|
|
{
|
|
case MULT_EXPR:
|
|
/* x * 0 = 0 * x = 0 without overflow. */
|
|
if (integer_zerop (op0) || integer_zerop (op1))
|
|
return build_zero_cst (TREE_TYPE (arg0));
|
|
break;
|
|
case MINUS_EXPR:
|
|
/* y - y = 0 without overflow. */
|
|
if (operand_equal_p (op0, op1, 0))
|
|
return build_zero_cst (TREE_TYPE (arg0));
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
tree res
|
|
= fold_binary_loc (loc, subcode, TREE_TYPE (arg0), op0, op1);
|
|
if (res
|
|
&& TREE_CODE (res) == INTEGER_CST
|
|
&& !TREE_OVERFLOW (res))
|
|
return res;
|
|
return NULL_TREE;
|
|
}
|
|
|
|
fn = (*valueize) (gimple_call_fn (stmt));
|
|
if (TREE_CODE (fn) == ADDR_EXPR
|
|
&& TREE_CODE (TREE_OPERAND (fn, 0)) == FUNCTION_DECL
|
|
&& fndecl_built_in_p (TREE_OPERAND (fn, 0))
|
|
&& gimple_builtin_call_types_compatible_p (stmt,
|
|
TREE_OPERAND (fn, 0)))
|
|
{
|
|
tree *args = XALLOCAVEC (tree, gimple_call_num_args (stmt));
|
|
tree retval;
|
|
unsigned i;
|
|
for (i = 0; i < gimple_call_num_args (stmt); ++i)
|
|
args[i] = (*valueize) (gimple_call_arg (stmt, i));
|
|
retval = fold_builtin_call_array (loc,
|
|
gimple_call_return_type (call_stmt),
|
|
fn, gimple_call_num_args (stmt), args);
|
|
if (retval)
|
|
{
|
|
/* fold_call_expr wraps the result inside a NOP_EXPR. */
|
|
STRIP_NOPS (retval);
|
|
retval = fold_convert (gimple_call_return_type (call_stmt),
|
|
retval);
|
|
}
|
|
return retval;
|
|
}
|
|
return NULL_TREE;
|
|
}
|
|
|
|
default:
|
|
return NULL_TREE;
|
|
}
|
|
}
|
|
|
|
/* Fold STMT to a constant using VALUEIZE to valueize SSA names.
|
|
Returns NULL_TREE if folding to a constant is not possible, otherwise
|
|
returns a constant according to is_gimple_min_invariant. */
|
|
|
|
tree
|
|
gimple_fold_stmt_to_constant (gimple *stmt, tree (*valueize) (tree))
|
|
{
|
|
tree res = gimple_fold_stmt_to_constant_1 (stmt, valueize);
|
|
if (res && is_gimple_min_invariant (res))
|
|
return res;
|
|
return NULL_TREE;
|
|
}
|
|
|
|
|
|
/* The following set of functions are supposed to fold references using
|
|
their constant initializers. */
|
|
|
|
/* See if we can find constructor defining value of BASE.
|
|
When we know the consructor with constant offset (such as
|
|
base is array[40] and we do know constructor of array), then
|
|
BIT_OFFSET is adjusted accordingly.
|
|
|
|
As a special case, return error_mark_node when constructor
|
|
is not explicitly available, but it is known to be zero
|
|
such as 'static const int a;'. */
|
|
static tree
|
|
get_base_constructor (tree base, poly_int64_pod *bit_offset,
|
|
tree (*valueize)(tree))
|
|
{
|
|
poly_int64 bit_offset2, size, max_size;
|
|
bool reverse;
|
|
|
|
if (TREE_CODE (base) == MEM_REF)
|
|
{
|
|
poly_offset_int boff = *bit_offset + mem_ref_offset (base) * BITS_PER_UNIT;
|
|
if (!boff.to_shwi (bit_offset))
|
|
return NULL_TREE;
|
|
|
|
if (valueize
|
|
&& TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
|
|
base = valueize (TREE_OPERAND (base, 0));
|
|
if (!base || TREE_CODE (base) != ADDR_EXPR)
|
|
return NULL_TREE;
|
|
base = TREE_OPERAND (base, 0);
|
|
}
|
|
else if (valueize
|
|
&& TREE_CODE (base) == SSA_NAME)
|
|
base = valueize (base);
|
|
|
|
/* Get a CONSTRUCTOR. If BASE is a VAR_DECL, get its
|
|
DECL_INITIAL. If BASE is a nested reference into another
|
|
ARRAY_REF or COMPONENT_REF, make a recursive call to resolve
|
|
the inner reference. */
|
|
switch (TREE_CODE (base))
|
|
{
|
|
case VAR_DECL:
|
|
case CONST_DECL:
|
|
{
|
|
tree init = ctor_for_folding (base);
|
|
|
|
/* Our semantic is exact opposite of ctor_for_folding;
|
|
NULL means unknown, while error_mark_node is 0. */
|
|
if (init == error_mark_node)
|
|
return NULL_TREE;
|
|
if (!init)
|
|
return error_mark_node;
|
|
return init;
|
|
}
|
|
|
|
case VIEW_CONVERT_EXPR:
|
|
return get_base_constructor (TREE_OPERAND (base, 0),
|
|
bit_offset, valueize);
|
|
|
|
case ARRAY_REF:
|
|
case COMPONENT_REF:
|
|
base = get_ref_base_and_extent (base, &bit_offset2, &size, &max_size,
|
|
&reverse);
|
|
if (!known_size_p (max_size) || maybe_ne (size, max_size))
|
|
return NULL_TREE;
|
|
*bit_offset += bit_offset2;
|
|
return get_base_constructor (base, bit_offset, valueize);
|
|
|
|
case CONSTRUCTOR:
|
|
return base;
|
|
|
|
default:
|
|
if (CONSTANT_CLASS_P (base))
|
|
return base;
|
|
|
|
return NULL_TREE;
|
|
}
|
|
}
|
|
|
|
/* CTOR is CONSTRUCTOR of an array type. Fold a reference of SIZE bits
|
|
to the memory at bit OFFSET. When non-null, TYPE is the expected
|
|
type of the reference; otherwise the type of the referenced element
|
|
is used instead. When SIZE is zero, attempt to fold a reference to
|
|
the entire element which OFFSET refers to. Increment *SUBOFF by
|
|
the bit offset of the accessed element. */
|
|
|
|
static tree
|
|
fold_array_ctor_reference (tree type, tree ctor,
|
|
unsigned HOST_WIDE_INT offset,
|
|
unsigned HOST_WIDE_INT size,
|
|
tree from_decl,
|
|
unsigned HOST_WIDE_INT *suboff)
|
|
{
|
|
offset_int low_bound;
|
|
offset_int elt_size;
|
|
offset_int access_index;
|
|
tree domain_type = NULL_TREE;
|
|
HOST_WIDE_INT inner_offset;
|
|
|
|
/* Compute low bound and elt size. */
|
|
if (TREE_CODE (TREE_TYPE (ctor)) == ARRAY_TYPE)
|
|
domain_type = TYPE_DOMAIN (TREE_TYPE (ctor));
|
|
if (domain_type && TYPE_MIN_VALUE (domain_type))
|
|
{
|
|
/* Static constructors for variably sized objects make no sense. */
|
|
if (TREE_CODE (TYPE_MIN_VALUE (domain_type)) != INTEGER_CST)
|
|
return NULL_TREE;
|
|
low_bound = wi::to_offset (TYPE_MIN_VALUE (domain_type));
|
|
}
|
|
else
|
|
low_bound = 0;
|
|
/* Static constructors for variably sized objects make no sense. */
|
|
if (TREE_CODE (TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (ctor)))) != INTEGER_CST)
|
|
return NULL_TREE;
|
|
elt_size = wi::to_offset (TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (ctor))));
|
|
|
|
/* When TYPE is non-null, verify that it specifies a constant-sized
|
|
access of a multiple of the array element size. Avoid division
|
|
by zero below when ELT_SIZE is zero, such as with the result of
|
|
an initializer for a zero-length array or an empty struct. */
|
|
if (elt_size == 0
|
|
|| (type
|
|
&& (!TYPE_SIZE_UNIT (type)
|
|
|| TREE_CODE (TYPE_SIZE_UNIT (type)) != INTEGER_CST)))
|
|
return NULL_TREE;
|
|
|
|
/* Compute the array index we look for. */
|
|
access_index = wi::udiv_trunc (offset_int (offset / BITS_PER_UNIT),
|
|
elt_size);
|
|
access_index += low_bound;
|
|
|
|
/* And offset within the access. */
|
|
inner_offset = offset % (elt_size.to_uhwi () * BITS_PER_UNIT);
|
|
|
|
unsigned HOST_WIDE_INT elt_sz = elt_size.to_uhwi ();
|
|
if (size > elt_sz * BITS_PER_UNIT)
|
|
{
|
|
/* native_encode_expr constraints. */
|
|
if (size > MAX_BITSIZE_MODE_ANY_MODE
|
|
|| size % BITS_PER_UNIT != 0
|
|
|| inner_offset % BITS_PER_UNIT != 0
|
|
|| elt_sz > MAX_BITSIZE_MODE_ANY_MODE / BITS_PER_UNIT)
|
|
return NULL_TREE;
|
|
|
|
unsigned ctor_idx;
|
|
tree val = get_array_ctor_element_at_index (ctor, access_index,
|
|
&ctor_idx);
|
|
if (!val && ctor_idx >= CONSTRUCTOR_NELTS (ctor))
|
|
return build_zero_cst (type);
|
|
|
|
/* native-encode adjacent ctor elements. */
|
|
unsigned char buf[MAX_BITSIZE_MODE_ANY_MODE / BITS_PER_UNIT];
|
|
unsigned bufoff = 0;
|
|
offset_int index = 0;
|
|
offset_int max_index = access_index;
|
|
constructor_elt *elt = CONSTRUCTOR_ELT (ctor, ctor_idx);
|
|
if (!val)
|
|
val = build_zero_cst (TREE_TYPE (TREE_TYPE (ctor)));
|
|
else if (!CONSTANT_CLASS_P (val))
|
|
return NULL_TREE;
|
|
if (!elt->index)
|
|
;
|
|
else if (TREE_CODE (elt->index) == RANGE_EXPR)
|
|
{
|
|
index = wi::to_offset (TREE_OPERAND (elt->index, 0));
|
|
max_index = wi::to_offset (TREE_OPERAND (elt->index, 1));
|
|
}
|
|
else
|
|
index = max_index = wi::to_offset (elt->index);
|
|
index = wi::umax (index, access_index);
|
|
do
|
|
{
|
|
if (bufoff + elt_sz > sizeof (buf))
|
|
elt_sz = sizeof (buf) - bufoff;
|
|
int len = native_encode_expr (val, buf + bufoff, elt_sz,
|
|
inner_offset / BITS_PER_UNIT);
|
|
if (len != (int) elt_sz - inner_offset / BITS_PER_UNIT)
|
|
return NULL_TREE;
|
|
inner_offset = 0;
|
|
bufoff += len;
|
|
|
|
access_index += 1;
|
|
if (wi::cmpu (access_index, index) == 0)
|
|
val = elt->value;
|
|
else if (wi::cmpu (access_index, max_index) > 0)
|
|
{
|
|
ctor_idx++;
|
|
if (ctor_idx >= CONSTRUCTOR_NELTS (ctor))
|
|
{
|
|
val = build_zero_cst (TREE_TYPE (TREE_TYPE (ctor)));
|
|
++max_index;
|
|
}
|
|
else
|
|
{
|
|
elt = CONSTRUCTOR_ELT (ctor, ctor_idx);
|
|
index = 0;
|
|
max_index = access_index;
|
|
if (!elt->index)
|
|
;
|
|
else if (TREE_CODE (elt->index) == RANGE_EXPR)
|
|
{
|
|
index = wi::to_offset (TREE_OPERAND (elt->index, 0));
|
|
max_index = wi::to_offset (TREE_OPERAND (elt->index, 1));
|
|
}
|
|
else
|
|
index = max_index = wi::to_offset (elt->index);
|
|
index = wi::umax (index, access_index);
|
|
if (wi::cmpu (access_index, index) == 0)
|
|
val = elt->value;
|
|
else
|
|
val = build_zero_cst (TREE_TYPE (TREE_TYPE (ctor)));
|
|
}
|
|
}
|
|
}
|
|
while (bufoff < size / BITS_PER_UNIT);
|
|
*suboff += size;
|
|
return native_interpret_expr (type, buf, size / BITS_PER_UNIT);
|
|
}
|
|
|
|
if (tree val = get_array_ctor_element_at_index (ctor, access_index))
|
|
{
|
|
if (!size && TREE_CODE (val) != CONSTRUCTOR)
|
|
{
|
|
/* For the final reference to the entire accessed element
|
|
(SIZE is zero), reset INNER_OFFSET, disegard TYPE (which
|
|
may be null) in favor of the type of the element, and set
|
|
SIZE to the size of the accessed element. */
|
|
inner_offset = 0;
|
|
type = TREE_TYPE (val);
|
|
size = elt_size.to_uhwi () * BITS_PER_UNIT;
|
|
}
|
|
|
|
*suboff += (access_index * elt_size * BITS_PER_UNIT).to_uhwi ();
|
|
return fold_ctor_reference (type, val, inner_offset, size, from_decl,
|
|
suboff);
|
|
}
|
|
|
|
/* Memory not explicitly mentioned in constructor is 0 (or
|
|
the reference is out of range). */
|
|
return type ? build_zero_cst (type) : NULL_TREE;
|
|
}
|
|
|
|
/* CTOR is CONSTRUCTOR of an aggregate or vector. Fold a reference
|
|
of SIZE bits to the memory at bit OFFSET. When non-null, TYPE
|
|
is the expected type of the reference; otherwise the type of
|
|
the referenced member is used instead. When SIZE is zero,
|
|
attempt to fold a reference to the entire member which OFFSET
|
|
refers to; in this case. Increment *SUBOFF by the bit offset
|
|
of the accessed member. */
|
|
|
|
static tree
|
|
fold_nonarray_ctor_reference (tree type, tree ctor,
|
|
unsigned HOST_WIDE_INT offset,
|
|
unsigned HOST_WIDE_INT size,
|
|
tree from_decl,
|
|
unsigned HOST_WIDE_INT *suboff)
|
|
{
|
|
unsigned HOST_WIDE_INT cnt;
|
|
tree cfield, cval;
|
|
|
|
FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), cnt, cfield,
|
|
cval)
|
|
{
|
|
tree byte_offset = DECL_FIELD_OFFSET (cfield);
|
|
tree field_offset = DECL_FIELD_BIT_OFFSET (cfield);
|
|
tree field_size = DECL_SIZE (cfield);
|
|
|
|
if (!field_size)
|
|
{
|
|
/* Determine the size of the flexible array member from
|
|
the size of the initializer provided for it. */
|
|
field_size = TYPE_SIZE (TREE_TYPE (cval));
|
|
}
|
|
|
|
/* Variable sized objects in static constructors makes no sense,
|
|
but field_size can be NULL for flexible array members. */
|
|
gcc_assert (TREE_CODE (field_offset) == INTEGER_CST
|
|
&& TREE_CODE (byte_offset) == INTEGER_CST
|
|
&& (field_size != NULL_TREE
|
|
? TREE_CODE (field_size) == INTEGER_CST
|
|
: TREE_CODE (TREE_TYPE (cfield)) == ARRAY_TYPE));
|
|
|
|
/* Compute bit offset of the field. */
|
|
offset_int bitoffset
|
|
= (wi::to_offset (field_offset)
|
|
+ (wi::to_offset (byte_offset) << LOG2_BITS_PER_UNIT));
|
|
/* Compute bit offset where the field ends. */
|
|
offset_int bitoffset_end;
|
|
if (field_size != NULL_TREE)
|
|
bitoffset_end = bitoffset + wi::to_offset (field_size);
|
|
else
|
|
bitoffset_end = 0;
|
|
|
|
/* Compute the bit offset of the end of the desired access.
|
|
As a special case, if the size of the desired access is
|
|
zero, assume the access is to the entire field (and let
|
|
the caller make any necessary adjustments by storing
|
|
the actual bounds of the field in FIELDBOUNDS). */
|
|
offset_int access_end = offset_int (offset);
|
|
if (size)
|
|
access_end += size;
|
|
else
|
|
access_end = bitoffset_end;
|
|
|
|
/* Is there any overlap between the desired access at
|
|
[OFFSET, OFFSET+SIZE) and the offset of the field within
|
|
the object at [BITOFFSET, BITOFFSET_END)? */
|
|
if (wi::cmps (access_end, bitoffset) > 0
|
|
&& (field_size == NULL_TREE
|
|
|| wi::lts_p (offset, bitoffset_end)))
|
|
{
|
|
*suboff += bitoffset.to_uhwi ();
|
|
|
|
if (!size && TREE_CODE (cval) != CONSTRUCTOR)
|
|
{
|
|
/* For the final reference to the entire accessed member
|
|
(SIZE is zero), reset OFFSET, disegard TYPE (which may
|
|
be null) in favor of the type of the member, and set
|
|
SIZE to the size of the accessed member. */
|
|
offset = bitoffset.to_uhwi ();
|
|
type = TREE_TYPE (cval);
|
|
size = (bitoffset_end - bitoffset).to_uhwi ();
|
|
}
|
|
|
|
/* We do have overlap. Now see if the field is large enough
|
|
to cover the access. Give up for accesses that extend
|
|
beyond the end of the object or that span multiple fields. */
|
|
if (wi::cmps (access_end, bitoffset_end) > 0)
|
|
return NULL_TREE;
|
|
if (offset < bitoffset)
|
|
return NULL_TREE;
|
|
|
|
offset_int inner_offset = offset_int (offset) - bitoffset;
|
|
return fold_ctor_reference (type, cval,
|
|
inner_offset.to_uhwi (), size,
|
|
from_decl, suboff);
|
|
}
|
|
}
|
|
|
|
if (!type)
|
|
return NULL_TREE;
|
|
|
|
return build_zero_cst (type);
|
|
}
|
|
|
|
/* CTOR is value initializing memory. Fold a reference of TYPE and
|
|
bit size POLY_SIZE to the memory at bit POLY_OFFSET. When POLY_SIZE
|
|
is zero, attempt to fold a reference to the entire subobject
|
|
which OFFSET refers to. This is used when folding accesses to
|
|
string members of aggregates. When non-null, set *SUBOFF to
|
|
the bit offset of the accessed subobject. */
|
|
|
|
tree
|
|
fold_ctor_reference (tree type, tree ctor, const poly_uint64 &poly_offset,
|
|
const poly_uint64 &poly_size, tree from_decl,
|
|
unsigned HOST_WIDE_INT *suboff /* = NULL */)
|
|
{
|
|
tree ret;
|
|
|
|
/* We found the field with exact match. */
|
|
if (type
|
|
&& useless_type_conversion_p (type, TREE_TYPE (ctor))
|
|
&& known_eq (poly_offset, 0U))
|
|
return canonicalize_constructor_val (unshare_expr (ctor), from_decl);
|
|
|
|
/* The remaining optimizations need a constant size and offset. */
|
|
unsigned HOST_WIDE_INT size, offset;
|
|
if (!poly_size.is_constant (&size) || !poly_offset.is_constant (&offset))
|
|
return NULL_TREE;
|
|
|
|
/* We are at the end of walk, see if we can view convert the
|
|
result. */
|
|
if (!AGGREGATE_TYPE_P (TREE_TYPE (ctor)) && !offset
|
|
/* VIEW_CONVERT_EXPR is defined only for matching sizes. */
|
|
&& !compare_tree_int (TYPE_SIZE (type), size)
|
|
&& !compare_tree_int (TYPE_SIZE (TREE_TYPE (ctor)), size))
|
|
{
|
|
ret = canonicalize_constructor_val (unshare_expr (ctor), from_decl);
|
|
if (ret)
|
|
{
|
|
ret = fold_unary (VIEW_CONVERT_EXPR, type, ret);
|
|
if (ret)
|
|
STRIP_USELESS_TYPE_CONVERSION (ret);
|
|
}
|
|
return ret;
|
|
}
|
|
/* For constants and byte-aligned/sized reads try to go through
|
|
native_encode/interpret. */
|
|
if (CONSTANT_CLASS_P (ctor)
|
|
&& BITS_PER_UNIT == 8
|
|
&& offset % BITS_PER_UNIT == 0
|
|
&& offset / BITS_PER_UNIT <= INT_MAX
|
|
&& size % BITS_PER_UNIT == 0
|
|
&& size <= MAX_BITSIZE_MODE_ANY_MODE
|
|
&& can_native_interpret_type_p (type))
|
|
{
|
|
unsigned char buf[MAX_BITSIZE_MODE_ANY_MODE / BITS_PER_UNIT];
|
|
int len = native_encode_expr (ctor, buf, size / BITS_PER_UNIT,
|
|
offset / BITS_PER_UNIT);
|
|
if (len > 0)
|
|
return native_interpret_expr (type, buf, len);
|
|
}
|
|
if (TREE_CODE (ctor) == CONSTRUCTOR)
|
|
{
|
|
unsigned HOST_WIDE_INT dummy = 0;
|
|
if (!suboff)
|
|
suboff = &dummy;
|
|
|
|
tree ret;
|
|
if (TREE_CODE (TREE_TYPE (ctor)) == ARRAY_TYPE
|
|
|| TREE_CODE (TREE_TYPE (ctor)) == VECTOR_TYPE)
|
|
ret = fold_array_ctor_reference (type, ctor, offset, size,
|
|
from_decl, suboff);
|
|
else
|
|
ret = fold_nonarray_ctor_reference (type, ctor, offset, size,
|
|
from_decl, suboff);
|
|
|
|
/* Fall back to native_encode_initializer. Needs to be done
|
|
only in the outermost fold_ctor_reference call (because it itself
|
|
recurses into CONSTRUCTORs) and doesn't update suboff. */
|
|
if (ret == NULL_TREE
|
|
&& suboff == &dummy
|
|
&& BITS_PER_UNIT == 8
|
|
&& offset % BITS_PER_UNIT == 0
|
|
&& offset / BITS_PER_UNIT <= INT_MAX
|
|
&& size % BITS_PER_UNIT == 0
|
|
&& size <= MAX_BITSIZE_MODE_ANY_MODE
|
|
&& can_native_interpret_type_p (type))
|
|
{
|
|
unsigned char buf[MAX_BITSIZE_MODE_ANY_MODE / BITS_PER_UNIT];
|
|
int len = native_encode_initializer (ctor, buf, size / BITS_PER_UNIT,
|
|
offset / BITS_PER_UNIT);
|
|
if (len > 0)
|
|
return native_interpret_expr (type, buf, len);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
return NULL_TREE;
|
|
}
|
|
|
|
/* Return the tree representing the element referenced by T if T is an
|
|
ARRAY_REF or COMPONENT_REF into constant aggregates valuezing SSA
|
|
names using VALUEIZE. Return NULL_TREE otherwise. */
|
|
|
|
tree
|
|
fold_const_aggregate_ref_1 (tree t, tree (*valueize) (tree))
|
|
{
|
|
tree ctor, idx, base;
|
|
poly_int64 offset, size, max_size;
|
|
tree tem;
|
|
bool reverse;
|
|
|
|
if (TREE_THIS_VOLATILE (t))
|
|
return NULL_TREE;
|
|
|
|
if (DECL_P (t))
|
|
return get_symbol_constant_value (t);
|
|
|
|
tem = fold_read_from_constant_string (t);
|
|
if (tem)
|
|
return tem;
|
|
|
|
switch (TREE_CODE (t))
|
|
{
|
|
case ARRAY_REF:
|
|
case ARRAY_RANGE_REF:
|
|
/* Constant indexes are handled well by get_base_constructor.
|
|
Only special case variable offsets.
|
|
FIXME: This code can't handle nested references with variable indexes
|
|
(they will be handled only by iteration of ccp). Perhaps we can bring
|
|
get_ref_base_and_extent here and make it use a valueize callback. */
|
|
if (TREE_CODE (TREE_OPERAND (t, 1)) == SSA_NAME
|
|
&& valueize
|
|
&& (idx = (*valueize) (TREE_OPERAND (t, 1)))
|
|
&& poly_int_tree_p (idx))
|
|
{
|
|
tree low_bound, unit_size;
|
|
|
|
/* If the resulting bit-offset is constant, track it. */
|
|
if ((low_bound = array_ref_low_bound (t),
|
|
poly_int_tree_p (low_bound))
|
|
&& (unit_size = array_ref_element_size (t),
|
|
tree_fits_uhwi_p (unit_size)))
|
|
{
|
|
poly_offset_int woffset
|
|
= wi::sext (wi::to_poly_offset (idx)
|
|
- wi::to_poly_offset (low_bound),
|
|
TYPE_PRECISION (TREE_TYPE (idx)));
|
|
woffset *= tree_to_uhwi (unit_size);
|
|
woffset *= BITS_PER_UNIT;
|
|
if (woffset.to_shwi (&offset))
|
|
{
|
|
base = TREE_OPERAND (t, 0);
|
|
ctor = get_base_constructor (base, &offset, valueize);
|
|
/* Empty constructor. Always fold to 0. */
|
|
if (ctor == error_mark_node)
|
|
return build_zero_cst (TREE_TYPE (t));
|
|
/* Out of bound array access. Value is undefined,
|
|
but don't fold. */
|
|
if (maybe_lt (offset, 0))
|
|
return NULL_TREE;
|
|
/* We cannot determine ctor. */
|
|
if (!ctor)
|
|
return NULL_TREE;
|
|
return fold_ctor_reference (TREE_TYPE (t), ctor, offset,
|
|
tree_to_uhwi (unit_size)
|
|
* BITS_PER_UNIT,
|
|
base);
|
|
}
|
|
}
|
|
}
|
|
/* Fallthru. */
|
|
|
|
case COMPONENT_REF:
|
|
case BIT_FIELD_REF:
|
|
case TARGET_MEM_REF:
|
|
case MEM_REF:
|
|
base = get_ref_base_and_extent (t, &offset, &size, &max_size, &reverse);
|
|
ctor = get_base_constructor (base, &offset, valueize);
|
|
|
|
/* Empty constructor. Always fold to 0. */
|
|
if (ctor == error_mark_node)
|
|
return build_zero_cst (TREE_TYPE (t));
|
|
/* We do not know precise address. */
|
|
if (!known_size_p (max_size) || maybe_ne (max_size, size))
|
|
return NULL_TREE;
|
|
/* We cannot determine ctor. */
|
|
if (!ctor)
|
|
return NULL_TREE;
|
|
|
|
/* Out of bound array access. Value is undefined, but don't fold. */
|
|
if (maybe_lt (offset, 0))
|
|
return NULL_TREE;
|
|
|
|
return fold_ctor_reference (TREE_TYPE (t), ctor, offset, size,
|
|
base);
|
|
|
|
case REALPART_EXPR:
|
|
case IMAGPART_EXPR:
|
|
{
|
|
tree c = fold_const_aggregate_ref_1 (TREE_OPERAND (t, 0), valueize);
|
|
if (c && TREE_CODE (c) == COMPLEX_CST)
|
|
return fold_build1_loc (EXPR_LOCATION (t),
|
|
TREE_CODE (t), TREE_TYPE (t), c);
|
|
break;
|
|
}
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return NULL_TREE;
|
|
}
|
|
|
|
tree
|
|
fold_const_aggregate_ref (tree t)
|
|
{
|
|
return fold_const_aggregate_ref_1 (t, NULL);
|
|
}
|
|
|
|
/* Lookup virtual method with index TOKEN in a virtual table V
|
|
at OFFSET.
|
|
Set CAN_REFER if non-NULL to false if method
|
|
is not referable or if the virtual table is ill-formed (such as rewriten
|
|
by non-C++ produced symbol). Otherwise just return NULL in that calse. */
|
|
|
|
tree
|
|
gimple_get_virt_method_for_vtable (HOST_WIDE_INT token,
|
|
tree v,
|
|
unsigned HOST_WIDE_INT offset,
|
|
bool *can_refer)
|
|
{
|
|
tree vtable = v, init, fn;
|
|
unsigned HOST_WIDE_INT size;
|
|
unsigned HOST_WIDE_INT elt_size, access_index;
|
|
tree domain_type;
|
|
|
|
if (can_refer)
|
|
*can_refer = true;
|
|
|
|
/* First of all double check we have virtual table. */
|
|
if (!VAR_P (v) || !DECL_VIRTUAL_P (v))
|
|
{
|
|
/* Pass down that we lost track of the target. */
|
|
if (can_refer)
|
|
*can_refer = false;
|
|
return NULL_TREE;
|
|
}
|
|
|
|
init = ctor_for_folding (v);
|
|
|
|
/* The virtual tables should always be born with constructors
|
|
and we always should assume that they are avaialble for
|
|
folding. At the moment we do not stream them in all cases,
|
|
but it should never happen that ctor seem unreachable. */
|
|
gcc_assert (init);
|
|
if (init == error_mark_node)
|
|
{
|
|
/* Pass down that we lost track of the target. */
|
|
if (can_refer)
|
|
*can_refer = false;
|
|
return NULL_TREE;
|
|
}
|
|
gcc_checking_assert (TREE_CODE (TREE_TYPE (v)) == ARRAY_TYPE);
|
|
size = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (TREE_TYPE (v))));
|
|
offset *= BITS_PER_UNIT;
|
|
offset += token * size;
|
|
|
|
/* Lookup the value in the constructor that is assumed to be array.
|
|
This is equivalent to
|
|
fn = fold_ctor_reference (TREE_TYPE (TREE_TYPE (v)), init,
|
|
offset, size, NULL);
|
|
but in a constant time. We expect that frontend produced a simple
|
|
array without indexed initializers. */
|
|
|
|
gcc_checking_assert (TREE_CODE (TREE_TYPE (init)) == ARRAY_TYPE);
|
|
domain_type = TYPE_DOMAIN (TREE_TYPE (init));
|
|
gcc_checking_assert (integer_zerop (TYPE_MIN_VALUE (domain_type)));
|
|
elt_size = tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (init))));
|
|
|
|
access_index = offset / BITS_PER_UNIT / elt_size;
|
|
gcc_checking_assert (offset % (elt_size * BITS_PER_UNIT) == 0);
|
|
|
|
/* The C++ FE can now produce indexed fields, and we check if the indexes
|
|
match. */
|
|
if (access_index < CONSTRUCTOR_NELTS (init))
|
|
{
|
|
fn = CONSTRUCTOR_ELT (init, access_index)->value;
|
|
tree idx = CONSTRUCTOR_ELT (init, access_index)->index;
|
|
gcc_checking_assert (!idx || tree_to_uhwi (idx) == access_index);
|
|
STRIP_NOPS (fn);
|
|
}
|
|
else
|
|
fn = NULL;
|
|
|
|
/* For type inconsistent program we may end up looking up virtual method
|
|
in virtual table that does not contain TOKEN entries. We may overrun
|
|
the virtual table and pick up a constant or RTTI info pointer.
|
|
In any case the call is undefined. */
|
|
if (!fn
|
|
|| (TREE_CODE (fn) != ADDR_EXPR && TREE_CODE (fn) != FDESC_EXPR)
|
|
|| TREE_CODE (TREE_OPERAND (fn, 0)) != FUNCTION_DECL)
|
|
fn = builtin_decl_implicit (BUILT_IN_UNREACHABLE);
|
|
else
|
|
{
|
|
fn = TREE_OPERAND (fn, 0);
|
|
|
|
/* When cgraph node is missing and function is not public, we cannot
|
|
devirtualize. This can happen in WHOPR when the actual method
|
|
ends up in other partition, because we found devirtualization
|
|
possibility too late. */
|
|
if (!can_refer_decl_in_current_unit_p (fn, vtable))
|
|
{
|
|
if (can_refer)
|
|
{
|
|
*can_refer = false;
|
|
return fn;
|
|
}
|
|
return NULL_TREE;
|
|
}
|
|
}
|
|
|
|
/* Make sure we create a cgraph node for functions we'll reference.
|
|
They can be non-existent if the reference comes from an entry
|
|
of an external vtable for example. */
|
|
cgraph_node::get_create (fn);
|
|
|
|
return fn;
|
|
}
|
|
|
|
/* Return a declaration of a function which an OBJ_TYPE_REF references. TOKEN
|
|
is integer form of OBJ_TYPE_REF_TOKEN of the reference expression.
|
|
KNOWN_BINFO carries the binfo describing the true type of
|
|
OBJ_TYPE_REF_OBJECT(REF).
|
|
Set CAN_REFER if non-NULL to false if method
|
|
is not referable or if the virtual table is ill-formed (such as rewriten
|
|
by non-C++ produced symbol). Otherwise just return NULL in that calse. */
|
|
|
|
tree
|
|
gimple_get_virt_method_for_binfo (HOST_WIDE_INT token, tree known_binfo,
|
|
bool *can_refer)
|
|
{
|
|
unsigned HOST_WIDE_INT offset;
|
|
tree v;
|
|
|
|
v = BINFO_VTABLE (known_binfo);
|
|
/* If there is no virtual methods table, leave the OBJ_TYPE_REF alone. */
|
|
if (!v)
|
|
return NULL_TREE;
|
|
|
|
if (!vtable_pointer_value_to_vtable (v, &v, &offset))
|
|
{
|
|
if (can_refer)
|
|
*can_refer = false;
|
|
return NULL_TREE;
|
|
}
|
|
return gimple_get_virt_method_for_vtable (token, v, offset, can_refer);
|
|
}
|
|
|
|
/* Given a pointer value T, return a simplified version of an
|
|
indirection through T, or NULL_TREE if no simplification is
|
|
possible. Note that the resulting type may be different from
|
|
the type pointed to in the sense that it is still compatible
|
|
from the langhooks point of view. */
|
|
|
|
tree
|
|
gimple_fold_indirect_ref (tree t)
|
|
{
|
|
tree ptype = TREE_TYPE (t), type = TREE_TYPE (ptype);
|
|
tree sub = t;
|
|
tree subtype;
|
|
|
|
STRIP_NOPS (sub);
|
|
subtype = TREE_TYPE (sub);
|
|
if (!POINTER_TYPE_P (subtype)
|
|
|| TYPE_REF_CAN_ALIAS_ALL (ptype))
|
|
return NULL_TREE;
|
|
|
|
if (TREE_CODE (sub) == ADDR_EXPR)
|
|
{
|
|
tree op = TREE_OPERAND (sub, 0);
|
|
tree optype = TREE_TYPE (op);
|
|
/* *&p => p */
|
|
if (useless_type_conversion_p (type, optype))
|
|
return op;
|
|
|
|
/* *(foo *)&fooarray => fooarray[0] */
|
|
if (TREE_CODE (optype) == ARRAY_TYPE
|
|
&& TREE_CODE (TYPE_SIZE (TREE_TYPE (optype))) == INTEGER_CST
|
|
&& useless_type_conversion_p (type, TREE_TYPE (optype)))
|
|
{
|
|
tree type_domain = TYPE_DOMAIN (optype);
|
|
tree min_val = size_zero_node;
|
|
if (type_domain && TYPE_MIN_VALUE (type_domain))
|
|
min_val = TYPE_MIN_VALUE (type_domain);
|
|
if (TREE_CODE (min_val) == INTEGER_CST)
|
|
return build4 (ARRAY_REF, type, op, min_val, NULL_TREE, NULL_TREE);
|
|
}
|
|
/* *(foo *)&complexfoo => __real__ complexfoo */
|
|
else if (TREE_CODE (optype) == COMPLEX_TYPE
|
|
&& useless_type_conversion_p (type, TREE_TYPE (optype)))
|
|
return fold_build1 (REALPART_EXPR, type, op);
|
|
/* *(foo *)&vectorfoo => BIT_FIELD_REF<vectorfoo,...> */
|
|
else if (TREE_CODE (optype) == VECTOR_TYPE
|
|
&& useless_type_conversion_p (type, TREE_TYPE (optype)))
|
|
{
|
|
tree part_width = TYPE_SIZE (type);
|
|
tree index = bitsize_int (0);
|
|
return fold_build3 (BIT_FIELD_REF, type, op, part_width, index);
|
|
}
|
|
}
|
|
|
|
/* *(p + CST) -> ... */
|
|
if (TREE_CODE (sub) == POINTER_PLUS_EXPR
|
|
&& TREE_CODE (TREE_OPERAND (sub, 1)) == INTEGER_CST)
|
|
{
|
|
tree addr = TREE_OPERAND (sub, 0);
|
|
tree off = TREE_OPERAND (sub, 1);
|
|
tree addrtype;
|
|
|
|
STRIP_NOPS (addr);
|
|
addrtype = TREE_TYPE (addr);
|
|
|
|
/* ((foo*)&vectorfoo)[1] -> BIT_FIELD_REF<vectorfoo,...> */
|
|
if (TREE_CODE (addr) == ADDR_EXPR
|
|
&& TREE_CODE (TREE_TYPE (addrtype)) == VECTOR_TYPE
|
|
&& useless_type_conversion_p (type, TREE_TYPE (TREE_TYPE (addrtype)))
|
|
&& tree_fits_uhwi_p (off))
|
|
{
|
|
unsigned HOST_WIDE_INT offset = tree_to_uhwi (off);
|
|
tree part_width = TYPE_SIZE (type);
|
|
unsigned HOST_WIDE_INT part_widthi
|
|
= tree_to_shwi (part_width) / BITS_PER_UNIT;
|
|
unsigned HOST_WIDE_INT indexi = offset * BITS_PER_UNIT;
|
|
tree index = bitsize_int (indexi);
|
|
if (known_lt (offset / part_widthi,
|
|
TYPE_VECTOR_SUBPARTS (TREE_TYPE (addrtype))))
|
|
return fold_build3 (BIT_FIELD_REF, type, TREE_OPERAND (addr, 0),
|
|
part_width, index);
|
|
}
|
|
|
|
/* ((foo*)&complexfoo)[1] -> __imag__ complexfoo */
|
|
if (TREE_CODE (addr) == ADDR_EXPR
|
|
&& TREE_CODE (TREE_TYPE (addrtype)) == COMPLEX_TYPE
|
|
&& useless_type_conversion_p (type, TREE_TYPE (TREE_TYPE (addrtype))))
|
|
{
|
|
tree size = TYPE_SIZE_UNIT (type);
|
|
if (tree_int_cst_equal (size, off))
|
|
return fold_build1 (IMAGPART_EXPR, type, TREE_OPERAND (addr, 0));
|
|
}
|
|
|
|
/* *(p + CST) -> MEM_REF <p, CST>. */
|
|
if (TREE_CODE (addr) != ADDR_EXPR
|
|
|| DECL_P (TREE_OPERAND (addr, 0)))
|
|
return fold_build2 (MEM_REF, type,
|
|
addr,
|
|
wide_int_to_tree (ptype, wi::to_wide (off)));
|
|
}
|
|
|
|
/* *(foo *)fooarrptr => (*fooarrptr)[0] */
|
|
if (TREE_CODE (TREE_TYPE (subtype)) == ARRAY_TYPE
|
|
&& TREE_CODE (TYPE_SIZE (TREE_TYPE (TREE_TYPE (subtype)))) == INTEGER_CST
|
|
&& useless_type_conversion_p (type, TREE_TYPE (TREE_TYPE (subtype))))
|
|
{
|
|
tree type_domain;
|
|
tree min_val = size_zero_node;
|
|
tree osub = sub;
|
|
sub = gimple_fold_indirect_ref (sub);
|
|
if (! sub)
|
|
sub = build1 (INDIRECT_REF, TREE_TYPE (subtype), osub);
|
|
type_domain = TYPE_DOMAIN (TREE_TYPE (sub));
|
|
if (type_domain && TYPE_MIN_VALUE (type_domain))
|
|
min_val = TYPE_MIN_VALUE (type_domain);
|
|
if (TREE_CODE (min_val) == INTEGER_CST)
|
|
return build4 (ARRAY_REF, type, sub, min_val, NULL_TREE, NULL_TREE);
|
|
}
|
|
|
|
return NULL_TREE;
|
|
}
|
|
|
|
/* Return true if CODE is an operation that when operating on signed
|
|
integer types involves undefined behavior on overflow and the
|
|
operation can be expressed with unsigned arithmetic. */
|
|
|
|
bool
|
|
arith_code_with_undefined_signed_overflow (tree_code code)
|
|
{
|
|
switch (code)
|
|
{
|
|
case ABS_EXPR:
|
|
case PLUS_EXPR:
|
|
case MINUS_EXPR:
|
|
case MULT_EXPR:
|
|
case NEGATE_EXPR:
|
|
case POINTER_PLUS_EXPR:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/* Rewrite STMT, an assignment with a signed integer or pointer arithmetic
|
|
operation that can be transformed to unsigned arithmetic by converting
|
|
its operand, carrying out the operation in the corresponding unsigned
|
|
type and converting the result back to the original type.
|
|
|
|
Returns a sequence of statements that replace STMT and also contain
|
|
a modified form of STMT itself. */
|
|
|
|
gimple_seq
|
|
rewrite_to_defined_overflow (gimple *stmt)
|
|
{
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "rewriting stmt with undefined signed "
|
|
"overflow ");
|
|
print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
|
|
}
|
|
|
|
tree lhs = gimple_assign_lhs (stmt);
|
|
tree type = unsigned_type_for (TREE_TYPE (lhs));
|
|
gimple_seq stmts = NULL;
|
|
if (gimple_assign_rhs_code (stmt) == ABS_EXPR)
|
|
gimple_assign_set_rhs_code (stmt, ABSU_EXPR);
|
|
else
|
|
for (unsigned i = 1; i < gimple_num_ops (stmt); ++i)
|
|
{
|
|
tree op = gimple_op (stmt, i);
|
|
op = gimple_convert (&stmts, type, op);
|
|
gimple_set_op (stmt, i, op);
|
|
}
|
|
gimple_assign_set_lhs (stmt, make_ssa_name (type, stmt));
|
|
if (gimple_assign_rhs_code (stmt) == POINTER_PLUS_EXPR)
|
|
gimple_assign_set_rhs_code (stmt, PLUS_EXPR);
|
|
gimple_set_modified (stmt, true);
|
|
gimple_seq_add_stmt (&stmts, stmt);
|
|
gimple *cvt = gimple_build_assign (lhs, NOP_EXPR, gimple_assign_lhs (stmt));
|
|
gimple_seq_add_stmt (&stmts, cvt);
|
|
|
|
return stmts;
|
|
}
|
|
|
|
|
|
/* The valueization hook we use for the gimple_build API simplification.
|
|
This makes us match fold_buildN behavior by only combining with
|
|
statements in the sequence(s) we are currently building. */
|
|
|
|
static tree
|
|
gimple_build_valueize (tree op)
|
|
{
|
|
if (gimple_bb (SSA_NAME_DEF_STMT (op)) == NULL)
|
|
return op;
|
|
return NULL_TREE;
|
|
}
|
|
|
|
/* Build the expression CODE OP0 of type TYPE with location LOC,
|
|
simplifying it first if possible. Returns the built
|
|
expression value and appends statements possibly defining it
|
|
to SEQ. */
|
|
|
|
tree
|
|
gimple_build (gimple_seq *seq, location_t loc,
|
|
enum tree_code code, tree type, tree op0)
|
|
{
|
|
tree res = gimple_simplify (code, type, op0, seq, gimple_build_valueize);
|
|
if (!res)
|
|
{
|
|
res = create_tmp_reg_or_ssa_name (type);
|
|
gimple *stmt;
|
|
if (code == REALPART_EXPR
|
|
|| code == IMAGPART_EXPR
|
|
|| code == VIEW_CONVERT_EXPR)
|
|
stmt = gimple_build_assign (res, code, build1 (code, type, op0));
|
|
else
|
|
stmt = gimple_build_assign (res, code, op0);
|
|
gimple_set_location (stmt, loc);
|
|
gimple_seq_add_stmt_without_update (seq, stmt);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
/* Build the expression OP0 CODE OP1 of type TYPE with location LOC,
|
|
simplifying it first if possible. Returns the built
|
|
expression value and appends statements possibly defining it
|
|
to SEQ. */
|
|
|
|
tree
|
|
gimple_build (gimple_seq *seq, location_t loc,
|
|
enum tree_code code, tree type, tree op0, tree op1)
|
|
{
|
|
tree res = gimple_simplify (code, type, op0, op1, seq, gimple_build_valueize);
|
|
if (!res)
|
|
{
|
|
res = create_tmp_reg_or_ssa_name (type);
|
|
gimple *stmt = gimple_build_assign (res, code, op0, op1);
|
|
gimple_set_location (stmt, loc);
|
|
gimple_seq_add_stmt_without_update (seq, stmt);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
/* Build the expression (CODE OP0 OP1 OP2) of type TYPE with location LOC,
|
|
simplifying it first if possible. Returns the built
|
|
expression value and appends statements possibly defining it
|
|
to SEQ. */
|
|
|
|
tree
|
|
gimple_build (gimple_seq *seq, location_t loc,
|
|
enum tree_code code, tree type, tree op0, tree op1, tree op2)
|
|
{
|
|
tree res = gimple_simplify (code, type, op0, op1, op2,
|
|
seq, gimple_build_valueize);
|
|
if (!res)
|
|
{
|
|
res = create_tmp_reg_or_ssa_name (type);
|
|
gimple *stmt;
|
|
if (code == BIT_FIELD_REF)
|
|
stmt = gimple_build_assign (res, code,
|
|
build3 (code, type, op0, op1, op2));
|
|
else
|
|
stmt = gimple_build_assign (res, code, op0, op1, op2);
|
|
gimple_set_location (stmt, loc);
|
|
gimple_seq_add_stmt_without_update (seq, stmt);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
/* Build the call FN (ARG0) with a result of type TYPE
|
|
(or no result if TYPE is void) with location LOC,
|
|
simplifying it first if possible. Returns the built
|
|
expression value (or NULL_TREE if TYPE is void) and appends
|
|
statements possibly defining it to SEQ. */
|
|
|
|
tree
|
|
gimple_build (gimple_seq *seq, location_t loc, combined_fn fn,
|
|
tree type, tree arg0)
|
|
{
|
|
tree res = gimple_simplify (fn, type, arg0, seq, gimple_build_valueize);
|
|
if (!res)
|
|
{
|
|
gcall *stmt;
|
|
if (internal_fn_p (fn))
|
|
stmt = gimple_build_call_internal (as_internal_fn (fn), 1, arg0);
|
|
else
|
|
{
|
|
tree decl = builtin_decl_implicit (as_builtin_fn (fn));
|
|
stmt = gimple_build_call (decl, 1, arg0);
|
|
}
|
|
if (!VOID_TYPE_P (type))
|
|
{
|
|
res = create_tmp_reg_or_ssa_name (type);
|
|
gimple_call_set_lhs (stmt, res);
|
|
}
|
|
gimple_set_location (stmt, loc);
|
|
gimple_seq_add_stmt_without_update (seq, stmt);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
/* Build the call FN (ARG0, ARG1) with a result of type TYPE
|
|
(or no result if TYPE is void) with location LOC,
|
|
simplifying it first if possible. Returns the built
|
|
expression value (or NULL_TREE if TYPE is void) and appends
|
|
statements possibly defining it to SEQ. */
|
|
|
|
tree
|
|
gimple_build (gimple_seq *seq, location_t loc, combined_fn fn,
|
|
tree type, tree arg0, tree arg1)
|
|
{
|
|
tree res = gimple_simplify (fn, type, arg0, arg1, seq, gimple_build_valueize);
|
|
if (!res)
|
|
{
|
|
gcall *stmt;
|
|
if (internal_fn_p (fn))
|
|
stmt = gimple_build_call_internal (as_internal_fn (fn), 2, arg0, arg1);
|
|
else
|
|
{
|
|
tree decl = builtin_decl_implicit (as_builtin_fn (fn));
|
|
stmt = gimple_build_call (decl, 2, arg0, arg1);
|
|
}
|
|
if (!VOID_TYPE_P (type))
|
|
{
|
|
res = create_tmp_reg_or_ssa_name (type);
|
|
gimple_call_set_lhs (stmt, res);
|
|
}
|
|
gimple_set_location (stmt, loc);
|
|
gimple_seq_add_stmt_without_update (seq, stmt);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
/* Build the call FN (ARG0, ARG1, ARG2) with a result of type TYPE
|
|
(or no result if TYPE is void) with location LOC,
|
|
simplifying it first if possible. Returns the built
|
|
expression value (or NULL_TREE if TYPE is void) and appends
|
|
statements possibly defining it to SEQ. */
|
|
|
|
tree
|
|
gimple_build (gimple_seq *seq, location_t loc, combined_fn fn,
|
|
tree type, tree arg0, tree arg1, tree arg2)
|
|
{
|
|
tree res = gimple_simplify (fn, type, arg0, arg1, arg2,
|
|
seq, gimple_build_valueize);
|
|
if (!res)
|
|
{
|
|
gcall *stmt;
|
|
if (internal_fn_p (fn))
|
|
stmt = gimple_build_call_internal (as_internal_fn (fn),
|
|
3, arg0, arg1, arg2);
|
|
else
|
|
{
|
|
tree decl = builtin_decl_implicit (as_builtin_fn (fn));
|
|
stmt = gimple_build_call (decl, 3, arg0, arg1, arg2);
|
|
}
|
|
if (!VOID_TYPE_P (type))
|
|
{
|
|
res = create_tmp_reg_or_ssa_name (type);
|
|
gimple_call_set_lhs (stmt, res);
|
|
}
|
|
gimple_set_location (stmt, loc);
|
|
gimple_seq_add_stmt_without_update (seq, stmt);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
/* Build the conversion (TYPE) OP with a result of type TYPE
|
|
with location LOC if such conversion is neccesary in GIMPLE,
|
|
simplifying it first.
|
|
Returns the built expression value and appends
|
|
statements possibly defining it to SEQ. */
|
|
|
|
tree
|
|
gimple_convert (gimple_seq *seq, location_t loc, tree type, tree op)
|
|
{
|
|
if (useless_type_conversion_p (type, TREE_TYPE (op)))
|
|
return op;
|
|
return gimple_build (seq, loc, NOP_EXPR, type, op);
|
|
}
|
|
|
|
/* Build the conversion (ptrofftype) OP with a result of a type
|
|
compatible with ptrofftype with location LOC if such conversion
|
|
is neccesary in GIMPLE, simplifying it first.
|
|
Returns the built expression value and appends
|
|
statements possibly defining it to SEQ. */
|
|
|
|
tree
|
|
gimple_convert_to_ptrofftype (gimple_seq *seq, location_t loc, tree op)
|
|
{
|
|
if (ptrofftype_p (TREE_TYPE (op)))
|
|
return op;
|
|
return gimple_convert (seq, loc, sizetype, op);
|
|
}
|
|
|
|
/* Build a vector of type TYPE in which each element has the value OP.
|
|
Return a gimple value for the result, appending any new statements
|
|
to SEQ. */
|
|
|
|
tree
|
|
gimple_build_vector_from_val (gimple_seq *seq, location_t loc, tree type,
|
|
tree op)
|
|
{
|
|
if (!TYPE_VECTOR_SUBPARTS (type).is_constant ()
|
|
&& !CONSTANT_CLASS_P (op))
|
|
return gimple_build (seq, loc, VEC_DUPLICATE_EXPR, type, op);
|
|
|
|
tree res, vec = build_vector_from_val (type, op);
|
|
if (is_gimple_val (vec))
|
|
return vec;
|
|
if (gimple_in_ssa_p (cfun))
|
|
res = make_ssa_name (type);
|
|
else
|
|
res = create_tmp_reg (type);
|
|
gimple *stmt = gimple_build_assign (res, vec);
|
|
gimple_set_location (stmt, loc);
|
|
gimple_seq_add_stmt_without_update (seq, stmt);
|
|
return res;
|
|
}
|
|
|
|
/* Build a vector from BUILDER, handling the case in which some elements
|
|
are non-constant. Return a gimple value for the result, appending any
|
|
new instructions to SEQ.
|
|
|
|
BUILDER must not have a stepped encoding on entry. This is because
|
|
the function is not geared up to handle the arithmetic that would
|
|
be needed in the variable case, and any code building a vector that
|
|
is known to be constant should use BUILDER->build () directly. */
|
|
|
|
tree
|
|
gimple_build_vector (gimple_seq *seq, location_t loc,
|
|
tree_vector_builder *builder)
|
|
{
|
|
gcc_assert (builder->nelts_per_pattern () <= 2);
|
|
unsigned int encoded_nelts = builder->encoded_nelts ();
|
|
for (unsigned int i = 0; i < encoded_nelts; ++i)
|
|
if (!TREE_CONSTANT ((*builder)[i]))
|
|
{
|
|
tree type = builder->type ();
|
|
unsigned int nelts = TYPE_VECTOR_SUBPARTS (type).to_constant ();
|
|
vec<constructor_elt, va_gc> *v;
|
|
vec_alloc (v, nelts);
|
|
for (i = 0; i < nelts; ++i)
|
|
CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, builder->elt (i));
|
|
|
|
tree res;
|
|
if (gimple_in_ssa_p (cfun))
|
|
res = make_ssa_name (type);
|
|
else
|
|
res = create_tmp_reg (type);
|
|
gimple *stmt = gimple_build_assign (res, build_constructor (type, v));
|
|
gimple_set_location (stmt, loc);
|
|
gimple_seq_add_stmt_without_update (seq, stmt);
|
|
return res;
|
|
}
|
|
return builder->build ();
|
|
}
|
|
|
|
/* Return true if the result of assignment STMT is known to be non-negative.
|
|
If the return value is based on the assumption that signed overflow is
|
|
undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
|
|
*STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
|
|
|
|
static bool
|
|
gimple_assign_nonnegative_warnv_p (gimple *stmt, bool *strict_overflow_p,
|
|
int depth)
|
|
{
|
|
enum tree_code code = gimple_assign_rhs_code (stmt);
|
|
switch (get_gimple_rhs_class (code))
|
|
{
|
|
case GIMPLE_UNARY_RHS:
|
|
return tree_unary_nonnegative_warnv_p (gimple_assign_rhs_code (stmt),
|
|
gimple_expr_type (stmt),
|
|
gimple_assign_rhs1 (stmt),
|
|
strict_overflow_p, depth);
|
|
case GIMPLE_BINARY_RHS:
|
|
return tree_binary_nonnegative_warnv_p (gimple_assign_rhs_code (stmt),
|
|
gimple_expr_type (stmt),
|
|
gimple_assign_rhs1 (stmt),
|
|
gimple_assign_rhs2 (stmt),
|
|
strict_overflow_p, depth);
|
|
case GIMPLE_TERNARY_RHS:
|
|
return false;
|
|
case GIMPLE_SINGLE_RHS:
|
|
return tree_single_nonnegative_warnv_p (gimple_assign_rhs1 (stmt),
|
|
strict_overflow_p, depth);
|
|
case GIMPLE_INVALID_RHS:
|
|
break;
|
|
}
|
|
gcc_unreachable ();
|
|
}
|
|
|
|
/* Return true if return value of call STMT is known to be non-negative.
|
|
If the return value is based on the assumption that signed overflow is
|
|
undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
|
|
*STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
|
|
|
|
static bool
|
|
gimple_call_nonnegative_warnv_p (gimple *stmt, bool *strict_overflow_p,
|
|
int depth)
|
|
{
|
|
tree arg0 = gimple_call_num_args (stmt) > 0 ?
|
|
gimple_call_arg (stmt, 0) : NULL_TREE;
|
|
tree arg1 = gimple_call_num_args (stmt) > 1 ?
|
|
gimple_call_arg (stmt, 1) : NULL_TREE;
|
|
|
|
return tree_call_nonnegative_warnv_p (gimple_expr_type (stmt),
|
|
gimple_call_combined_fn (stmt),
|
|
arg0,
|
|
arg1,
|
|
strict_overflow_p, depth);
|
|
}
|
|
|
|
/* Return true if return value of call STMT is known to be non-negative.
|
|
If the return value is based on the assumption that signed overflow is
|
|
undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
|
|
*STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
|
|
|
|
static bool
|
|
gimple_phi_nonnegative_warnv_p (gimple *stmt, bool *strict_overflow_p,
|
|
int depth)
|
|
{
|
|
for (unsigned i = 0; i < gimple_phi_num_args (stmt); ++i)
|
|
{
|
|
tree arg = gimple_phi_arg_def (stmt, i);
|
|
if (!tree_single_nonnegative_warnv_p (arg, strict_overflow_p, depth + 1))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/* Return true if STMT is known to compute a non-negative value.
|
|
If the return value is based on the assumption that signed overflow is
|
|
undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
|
|
*STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
|
|
|
|
bool
|
|
gimple_stmt_nonnegative_warnv_p (gimple *stmt, bool *strict_overflow_p,
|
|
int depth)
|
|
{
|
|
switch (gimple_code (stmt))
|
|
{
|
|
case GIMPLE_ASSIGN:
|
|
return gimple_assign_nonnegative_warnv_p (stmt, strict_overflow_p,
|
|
depth);
|
|
case GIMPLE_CALL:
|
|
return gimple_call_nonnegative_warnv_p (stmt, strict_overflow_p,
|
|
depth);
|
|
case GIMPLE_PHI:
|
|
return gimple_phi_nonnegative_warnv_p (stmt, strict_overflow_p,
|
|
depth);
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/* Return true if the floating-point value computed by assignment STMT
|
|
is known to have an integer value. We also allow +Inf, -Inf and NaN
|
|
to be considered integer values. Return false for signaling NaN.
|
|
|
|
DEPTH is the current nesting depth of the query. */
|
|
|
|
static bool
|
|
gimple_assign_integer_valued_real_p (gimple *stmt, int depth)
|
|
{
|
|
enum tree_code code = gimple_assign_rhs_code (stmt);
|
|
switch (get_gimple_rhs_class (code))
|
|
{
|
|
case GIMPLE_UNARY_RHS:
|
|
return integer_valued_real_unary_p (gimple_assign_rhs_code (stmt),
|
|
gimple_assign_rhs1 (stmt), depth);
|
|
case GIMPLE_BINARY_RHS:
|
|
return integer_valued_real_binary_p (gimple_assign_rhs_code (stmt),
|
|
gimple_assign_rhs1 (stmt),
|
|
gimple_assign_rhs2 (stmt), depth);
|
|
case GIMPLE_TERNARY_RHS:
|
|
return false;
|
|
case GIMPLE_SINGLE_RHS:
|
|
return integer_valued_real_single_p (gimple_assign_rhs1 (stmt), depth);
|
|
case GIMPLE_INVALID_RHS:
|
|
break;
|
|
}
|
|
gcc_unreachable ();
|
|
}
|
|
|
|
/* Return true if the floating-point value computed by call STMT is known
|
|
to have an integer value. We also allow +Inf, -Inf and NaN to be
|
|
considered integer values. Return false for signaling NaN.
|
|
|
|
DEPTH is the current nesting depth of the query. */
|
|
|
|
static bool
|
|
gimple_call_integer_valued_real_p (gimple *stmt, int depth)
|
|
{
|
|
tree arg0 = (gimple_call_num_args (stmt) > 0
|
|
? gimple_call_arg (stmt, 0)
|
|
: NULL_TREE);
|
|
tree arg1 = (gimple_call_num_args (stmt) > 1
|
|
? gimple_call_arg (stmt, 1)
|
|
: NULL_TREE);
|
|
return integer_valued_real_call_p (gimple_call_combined_fn (stmt),
|
|
arg0, arg1, depth);
|
|
}
|
|
|
|
/* Return true if the floating-point result of phi STMT is known to have
|
|
an integer value. We also allow +Inf, -Inf and NaN to be considered
|
|
integer values. Return false for signaling NaN.
|
|
|
|
DEPTH is the current nesting depth of the query. */
|
|
|
|
static bool
|
|
gimple_phi_integer_valued_real_p (gimple *stmt, int depth)
|
|
{
|
|
for (unsigned i = 0; i < gimple_phi_num_args (stmt); ++i)
|
|
{
|
|
tree arg = gimple_phi_arg_def (stmt, i);
|
|
if (!integer_valued_real_single_p (arg, depth + 1))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/* Return true if the floating-point value computed by STMT is known
|
|
to have an integer value. We also allow +Inf, -Inf and NaN to be
|
|
considered integer values. Return false for signaling NaN.
|
|
|
|
DEPTH is the current nesting depth of the query. */
|
|
|
|
bool
|
|
gimple_stmt_integer_valued_real_p (gimple *stmt, int depth)
|
|
{
|
|
switch (gimple_code (stmt))
|
|
{
|
|
case GIMPLE_ASSIGN:
|
|
return gimple_assign_integer_valued_real_p (stmt, depth);
|
|
case GIMPLE_CALL:
|
|
return gimple_call_integer_valued_real_p (stmt, depth);
|
|
case GIMPLE_PHI:
|
|
return gimple_phi_integer_valued_real_p (stmt, depth);
|
|
default:
|
|
return false;
|
|
}
|
|
}
|