gcc/libgfortran/generated/product_c4.c
2004-05-13 02:41:07 -04:00

254 lines
6.4 KiB
C

/* Implementation of the PRODUCT intrinsic
Copyright 2002 Free Software Foundation, Inc.
Contributed by Paul Brook <paul@nowt.org>
This file is part of the GNU Fortran 95 runtime library (libgfor).
Libgfortran is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
Libgfortran is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with libgfor; see the file COPYING.LIB. If not,
write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#include "config.h"
#include <stdlib.h>
#include <assert.h>
#include "libgfortran.h"
void
__product_c4 (gfc_array_c4 * retarray, gfc_array_c4 *array, index_type *pdim)
{
index_type count[GFC_MAX_DIMENSIONS - 1];
index_type extent[GFC_MAX_DIMENSIONS - 1];
index_type sstride[GFC_MAX_DIMENSIONS - 1];
index_type dstride[GFC_MAX_DIMENSIONS - 1];
GFC_COMPLEX_4 *base;
GFC_COMPLEX_4 *dest;
index_type rank;
index_type n;
index_type len;
index_type delta;
index_type dim;
/* Make dim zero based to avoid confusion. */
dim = (*pdim) - 1;
rank = GFC_DESCRIPTOR_RANK (array) - 1;
assert (rank == GFC_DESCRIPTOR_RANK (retarray));
if (array->dim[0].stride == 0)
array->dim[0].stride = 1;
if (retarray->dim[0].stride == 0)
retarray->dim[0].stride = 1;
len = array->dim[dim].ubound + 1 - array->dim[dim].lbound;
delta = array->dim[dim].stride;
for (n = 0; n < dim; n++)
{
sstride[n] = array->dim[n].stride;
extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
}
for (n = dim; n < rank; n++)
{
sstride[n] = array->dim[n + 1].stride;
extent[n] =
array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
}
for (n = 0; n < rank; n++)
{
count[n] = 0;
dstride[n] = retarray->dim[n].stride;
if (extent[n] <= 0)
len = 0;
}
base = array->data;
dest = retarray->data;
while (base)
{
GFC_COMPLEX_4 *src;
GFC_COMPLEX_4 result;
src = base;
{
result = 1;
if (len <= 0)
*dest = 1;
else
{
for (n = 0; n < len; n++, src += delta)
{
result *= *src;
}
*dest = result;
}
}
/* Advance to the next element. */
count[0]++;
base += sstride[0];
dest += dstride[0];
n = 0;
while (count[n] == extent[n])
{
/* When we get to the end of a dimension, reset it and increment
the next dimension. */
count[n] = 0;
/* We could precalculate these products, but this is a less
frequently used path so proabably not worth it. */
base -= sstride[n] * extent[n];
dest -= dstride[n] * extent[n];
n++;
if (n == rank)
{
/* Break out of the look. */
base = NULL;
break;
}
else
{
count[n]++;
base += sstride[n];
dest += dstride[n];
}
}
}
}
void
__mproduct_c4 (gfc_array_c4 * retarray, gfc_array_c4 * array, index_type *pdim, gfc_array_l4 * mask)
{
index_type count[GFC_MAX_DIMENSIONS - 1];
index_type extent[GFC_MAX_DIMENSIONS - 1];
index_type sstride[GFC_MAX_DIMENSIONS - 1];
index_type dstride[GFC_MAX_DIMENSIONS - 1];
index_type mstride[GFC_MAX_DIMENSIONS - 1];
GFC_COMPLEX_4 *dest;
GFC_COMPLEX_4 *base;
GFC_LOGICAL_4 *mbase;
int rank;
int dim;
index_type n;
index_type len;
index_type delta;
index_type mdelta;
dim = (*pdim) - 1;
rank = GFC_DESCRIPTOR_RANK (array) - 1;
assert (rank == GFC_DESCRIPTOR_RANK (retarray));
if (array->dim[0].stride == 0)
array->dim[0].stride = 1;
if (retarray->dim[0].stride == 0)
retarray->dim[0].stride = 1;
len = array->dim[dim].ubound + 1 - array->dim[dim].lbound;
if (len <= 0)
return;
delta = array->dim[dim].stride;
mdelta = mask->dim[dim].stride;
for (n = 0; n < dim; n++)
{
sstride[n] = array->dim[n].stride;
mstride[n] = mask->dim[n].stride;
extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
}
for (n = dim; n < rank; n++)
{
sstride[n] = array->dim[n + 1].stride;
mstride[n] = mask->dim[n + 1].stride;
extent[n] =
array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
}
for (n = 0; n < rank; n++)
{
count[n] = 0;
dstride[n] = retarray->dim[n].stride;
if (extent[n] <= 0)
return;
}
dest = retarray->data;
base = array->data;
mbase = mask->data;
if (GFC_DESCRIPTOR_SIZE (mask) != 4)
{
/* This allows the same loop to be used for all logical types. */
assert (GFC_DESCRIPTOR_SIZE (mask) == 8);
for (n = 0; n < rank; n++)
mstride[n] <<= 1;
mdelta <<= 1;
mbase = (GFOR_POINTER_L8_TO_L4 (mbase));
}
while (base)
{
GFC_COMPLEX_4 *src;
GFC_LOGICAL_4 *msrc;
GFC_COMPLEX_4 result;
src = base;
msrc = mbase;
{
result = 1;
if (len <= 0)
*dest = 1;
else
{
for (n = 0; n < len; n++, src += delta, msrc += mdelta)
{
if (*msrc)
result *= *src;
}
*dest = result;
}
}
/* Advance to the next element. */
count[0]++;
base += sstride[0];
mbase += mstride[0];
dest += dstride[0];
n = 0;
while (count[n] == extent[n])
{
/* When we get to the end of a dimension, reset it and increment
the next dimension. */
count[n] = 0;
/* We could precalculate these products, but this is a less
frequently used path so proabably not worth it. */
base -= sstride[n] * extent[n];
mbase -= mstride[n] * extent[n];
dest -= dstride[n] * extent[n];
n++;
if (n == rank)
{
/* Break out of the look. */
base = NULL;
break;
}
else
{
count[n]++;
base += sstride[n];
mbase += mstride[n];
dest += dstride[n];
}
}
}
}