gcc/libgcc/config/rs6000/linux-unwind.h
Jakub Jelinek a554497024 Update copyright years.
From-SVN: r267494
2019-01-01 13:31:55 +01:00

355 lines
10 KiB
C

/* DWARF2 EH unwinding support for PowerPC and PowerPC64 Linux.
Copyright (C) 2004-2019 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published
by the Free Software Foundation; either version 3, or (at your
option) any later version.
GCC is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.
Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.
You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
<http://www.gnu.org/licenses/>. */
#define R_LR 65
#define R_CR2 70
#define R_CR3 71
#define R_CR4 72
#define R_VR0 77
#define R_VRSAVE 109
#ifdef __powerpc64__
#if _CALL_ELF == 2
#define TOC_SAVE_SLOT 24
#else
#define TOC_SAVE_SLOT 40
#endif
#endif
struct gcc_vregs
{
__attribute__ ((vector_size (16))) int vr[32];
#ifdef __powerpc64__
unsigned int pad1[3];
unsigned int vscr;
unsigned int vsave;
unsigned int pad2[3];
#else
unsigned int vsave;
unsigned int pad[2];
unsigned int vscr;
#endif
};
struct gcc_regs
{
unsigned long gpr[32];
unsigned long nip;
unsigned long msr;
unsigned long orig_gpr3;
unsigned long ctr;
unsigned long link;
unsigned long xer;
unsigned long ccr;
unsigned long softe;
unsigned long trap;
unsigned long dar;
unsigned long dsisr;
unsigned long result;
unsigned long pad1[4];
double fpr[32];
unsigned int pad2;
unsigned int fpscr;
#ifdef __powerpc64__
struct gcc_vregs *vp;
#else
unsigned int pad3[2];
#endif
struct gcc_vregs vregs;
};
struct gcc_ucontext
{
#ifdef __powerpc64__
unsigned long pad[28];
#else
unsigned long pad[12];
#endif
struct gcc_regs *regs;
struct gcc_regs rsave;
};
#ifdef __powerpc64__
enum { SIGNAL_FRAMESIZE = 128 };
/* If PC is at a sigreturn trampoline, return a pointer to the
regs. Otherwise return NULL. */
static struct gcc_regs *
get_regs (struct _Unwind_Context *context)
{
const unsigned int *pc = context->ra;
/* addi r1, r1, 128; li r0, 0x0077; sc (sigreturn) */
/* addi r1, r1, 128; li r0, 0x00AC; sc (rt_sigreturn) */
if (pc[0] != 0x38210000 + SIGNAL_FRAMESIZE || pc[2] != 0x44000002)
return NULL;
if (pc[1] == 0x38000077)
{
struct sigframe {
char gap[SIGNAL_FRAMESIZE];
unsigned long pad[7];
struct gcc_regs *regs;
} *frame = (struct sigframe *) context->cfa;
return frame->regs;
}
else if (pc[1] == 0x380000AC)
{
#if _CALL_ELF != 2
/* These old kernel versions never supported ELFv2. */
/* This works for 2.4 kernels, but not for 2.6 kernels with vdso
because pc isn't pointing into the stack. Can be removed when
no one is running 2.4.19 or 2.4.20, the first two ppc64
kernels released. */
const struct rt_sigframe_24 {
int tramp[6];
void *pinfo;
struct gcc_ucontext *puc;
} *frame24 = (const struct rt_sigframe_24 *) context->ra;
/* Test for magic value in *puc of vdso. */
if ((long) frame24->puc != -21 * 8)
return frame24->puc->regs;
else
#endif
{
/* This works for 2.4.21 and later kernels. */
struct rt_sigframe {
char gap[SIGNAL_FRAMESIZE];
struct gcc_ucontext uc;
unsigned long pad[2];
int tramp[6];
void *pinfo;
struct gcc_ucontext *puc;
} *frame = (struct rt_sigframe *) context->cfa;
return frame->uc.regs;
}
}
return NULL;
}
#else /* !__powerpc64__ */
enum { SIGNAL_FRAMESIZE = 64 };
static struct gcc_regs *
get_regs (struct _Unwind_Context *context)
{
const unsigned int *pc = context->ra;
/* li r0, 0x7777; sc (sigreturn old) */
/* li r0, 0x0077; sc (sigreturn new) */
/* li r0, 0x6666; sc (rt_sigreturn old) */
/* li r0, 0x00AC; sc (rt_sigreturn new) */
if (pc[1] != 0x44000002)
return NULL;
if (pc[0] == 0x38007777 || pc[0] == 0x38000077)
{
struct sigframe {
char gap[SIGNAL_FRAMESIZE];
unsigned long pad[7];
struct gcc_regs *regs;
} *frame = (struct sigframe *) context->cfa;
return frame->regs;
}
else if (pc[0] == 0x38006666 || pc[0] == 0x380000AC)
{
struct rt_sigframe {
char gap[SIGNAL_FRAMESIZE + 16];
char siginfo[128];
struct gcc_ucontext uc;
} *frame = (struct rt_sigframe *) context->cfa;
return frame->uc.regs;
}
return NULL;
}
#endif
/* Do code reading to identify a signal frame, and set the frame
state data appropriately. See unwind-dw2.c for the structs. */
#define MD_FALLBACK_FRAME_STATE_FOR ppc_fallback_frame_state
static _Unwind_Reason_Code
ppc_fallback_frame_state (struct _Unwind_Context *context,
_Unwind_FrameState *fs)
{
struct gcc_regs *regs = get_regs (context);
struct gcc_vregs *vregs;
long cr_offset;
long new_cfa;
int i;
if (regs == NULL)
return _URC_END_OF_STACK;
new_cfa = regs->gpr[__LIBGCC_STACK_POINTER_REGNUM__];
fs->regs.cfa_how = CFA_REG_OFFSET;
fs->regs.cfa_reg = __LIBGCC_STACK_POINTER_REGNUM__;
fs->regs.cfa_offset = new_cfa - (long) context->cfa;
#ifdef __powerpc64__
fs->regs.reg[2].how = REG_SAVED_OFFSET;
fs->regs.reg[2].loc.offset = (long) &regs->gpr[2] - new_cfa;
#endif
for (i = 14; i < 32; i++)
{
fs->regs.reg[i].how = REG_SAVED_OFFSET;
fs->regs.reg[i].loc.offset = (long) &regs->gpr[i] - new_cfa;
}
/* The CR is saved in the low 32 bits of regs->ccr. */
cr_offset = (long) &regs->ccr - new_cfa;
#ifndef __LITTLE_ENDIAN__
cr_offset += sizeof (long) - 4;
#endif
/* In the ELFv1 ABI, CR2 stands in for the whole CR. */
fs->regs.reg[R_CR2].how = REG_SAVED_OFFSET;
fs->regs.reg[R_CR2].loc.offset = cr_offset;
#if _CALL_ELF == 2
/* In the ELFv2 ABI, every CR field has a separate CFI entry. */
fs->regs.reg[R_CR3].how = REG_SAVED_OFFSET;
fs->regs.reg[R_CR3].loc.offset = cr_offset;
fs->regs.reg[R_CR4].how = REG_SAVED_OFFSET;
fs->regs.reg[R_CR4].loc.offset = cr_offset;
#endif
fs->regs.reg[R_LR].how = REG_SAVED_OFFSET;
fs->regs.reg[R_LR].loc.offset = (long) &regs->link - new_cfa;
fs->regs.reg[ARG_POINTER_REGNUM].how = REG_SAVED_OFFSET;
fs->regs.reg[ARG_POINTER_REGNUM].loc.offset = (long) &regs->nip - new_cfa;
fs->retaddr_column = ARG_POINTER_REGNUM;
fs->signal_frame = 1;
/* If we have a FPU... */
for (i = 14; i < 32; i++)
{
fs->regs.reg[i + 32].how = REG_SAVED_OFFSET;
fs->regs.reg[i + 32].loc.offset = (long) &regs->fpr[i] - new_cfa;
}
/* If we have a VMX unit... */
#ifdef __powerpc64__
vregs = regs->vp;
#else
vregs = &regs->vregs;
#endif
if (regs->msr & (1 << 25))
{
for (i = 20; i < 32; i++)
{
fs->regs.reg[i + R_VR0].how = REG_SAVED_OFFSET;
fs->regs.reg[i + R_VR0].loc.offset = (long) &vregs->vr[i] - new_cfa;
}
}
fs->regs.reg[R_VRSAVE].how = REG_SAVED_OFFSET;
fs->regs.reg[R_VRSAVE].loc.offset = (long) &vregs->vsave - new_cfa;
/* If we have SPE register high-parts... we check at compile-time to
avoid expanding the code for all other PowerPC. */
#ifdef __SPE__
for (i = 14; i < 32; i++)
{
fs->regs.reg[i + FIRST_SPE_HIGH_REGNO - 4].how = REG_SAVED_OFFSET;
fs->regs.reg[i + FIRST_SPE_HIGH_REGNO - 4].loc.offset
= (long) &regs->vregs - new_cfa + 4 * i;
}
#endif
return _URC_NO_REASON;
}
#define MD_FROB_UPDATE_CONTEXT frob_update_context
static void
frob_update_context (struct _Unwind_Context *context, _Unwind_FrameState *fs ATTRIBUTE_UNUSED)
{
const unsigned int *pc = (const unsigned int *) context->ra;
/* Fix up for 2.6.12 - 2.6.16 Linux kernels that have vDSO, but don't
have S flag in it. */
#ifdef __powerpc64__
/* addi r1, r1, 128; li r0, 0x0077; sc (sigreturn) */
/* addi r1, r1, 128; li r0, 0x00AC; sc (rt_sigreturn) */
if (pc[0] == 0x38210000 + SIGNAL_FRAMESIZE
&& (pc[1] == 0x38000077 || pc[1] == 0x380000AC)
&& pc[2] == 0x44000002)
_Unwind_SetSignalFrame (context, 1);
#else
/* li r0, 0x7777; sc (sigreturn old) */
/* li r0, 0x0077; sc (sigreturn new) */
/* li r0, 0x6666; sc (rt_sigreturn old) */
/* li r0, 0x00AC; sc (rt_sigreturn new) */
if ((pc[0] == 0x38007777 || pc[0] == 0x38000077
|| pc[0] == 0x38006666 || pc[0] == 0x380000AC)
&& pc[1] == 0x44000002)
_Unwind_SetSignalFrame (context, 1);
#endif
#ifdef __powerpc64__
if (fs->regs.reg[2].how == REG_UNSAVED)
{
/* If the current unwind info (FS) does not contain explicit info
saving R2, then we have to do a minor amount of code reading to
figure out if it was saved. The big problem here is that the
code that does the save/restore is generated by the linker, so
we have no good way to determine at compile time what to do. */
if (pc[0] == 0xF8410000 + TOC_SAVE_SLOT
#if _CALL_ELF != 2
/* The ELFv2 linker never generates the old PLT stub form. */
|| ((pc[0] & 0xFFFF0000) == 0x3D820000
&& pc[1] == 0xF8410000 + TOC_SAVE_SLOT)
#endif
)
{
/* We are in a plt call stub or r2 adjusting long branch stub,
before r2 has been saved. Keep REG_UNSAVED. */
}
else
{
unsigned int *insn
= (unsigned int *) _Unwind_GetGR (context, R_LR);
if (insn && *insn == 0xE8410000 + TOC_SAVE_SLOT)
_Unwind_SetGRPtr (context, 2, context->cfa + TOC_SAVE_SLOT);
#if _CALL_ELF != 2
/* ELFv2 does not use this function pointer call sequence. */
else if (pc[0] == 0x4E800421
&& pc[1] == 0xE8410000 + TOC_SAVE_SLOT)
{
/* We are at the bctrl instruction in a call via function
pointer. gcc always emits the load of the new R2 just
before the bctrl so this is the first and only place
we need to use the stored R2. */
_Unwind_Word sp = _Unwind_GetGR (context, 1);
_Unwind_SetGRPtr (context, 2, (void *)(sp + TOC_SAVE_SLOT));
}
#endif
}
}
#endif
}