200359e888
From-SVN: r126353
1805 lines
75 KiB
C
1805 lines
75 KiB
C
/* Copyright (C) 2007 Free Software Foundation, Inc.
|
|
|
|
This file is part of GCC.
|
|
|
|
GCC is free software; you can redistribute it and/or modify it under
|
|
the terms of the GNU General Public License as published by the Free
|
|
Software Foundation; either version 2, or (at your option) any later
|
|
version.
|
|
|
|
In addition to the permissions in the GNU General Public License, the
|
|
Free Software Foundation gives you unlimited permission to link the
|
|
compiled version of this file into combinations with other programs,
|
|
and to distribute those combinations without any restriction coming
|
|
from the use of this file. (The General Public License restrictions
|
|
do apply in other respects; for example, they cover modification of
|
|
the file, and distribution when not linked into a combine
|
|
executable.)
|
|
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GCC; see the file COPYING. If not, write to the Free
|
|
Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
|
|
02110-1301, USA. */
|
|
|
|
#include "bid_internal.h"
|
|
|
|
#if DECIMAL_CALL_BY_REFERENCE
|
|
void
|
|
__bid128_mul (UINT128 * pres, UINT128 * px,
|
|
UINT128 *
|
|
py _RND_MODE_PARAM _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
|
|
_EXC_INFO_PARAM) {
|
|
UINT128 x = *px, y = *py;
|
|
|
|
#if !DECIMAL_GLOBAL_ROUNDING
|
|
unsigned int rnd_mode = *prnd_mode;
|
|
|
|
#endif
|
|
#else
|
|
UINT128
|
|
__bid128_mul (UINT128 x,
|
|
UINT128 y _RND_MODE_PARAM _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
|
|
_EXC_INFO_PARAM) {
|
|
|
|
#endif
|
|
UINT128 res;
|
|
UINT64 x_sign, y_sign, sign;
|
|
UINT64 x_exp, y_exp;
|
|
|
|
// Note: C1.w[1], C1.w[0] represent x_signif_hi, x_signif_lo (all are UINT64)
|
|
// Note: C2.w[1], C2.w[0] represent y_signif_hi, y_signif_lo (all are UINT64)
|
|
UINT64 tmp64, tmp64A;
|
|
BID_UI64DOUBLE tmp1, tmp2;
|
|
int x_nr_bits, y_nr_bits;
|
|
int q1, q2, ind, shift;
|
|
UINT128 C1, C2;
|
|
UINT128 Cstar; // C* represents up to 34 decimal digits ~ 113 bits
|
|
UINT384 fstar;
|
|
int q;
|
|
UINT128 P128, R128; // for underflow path
|
|
UINT192 P192, R192; // for underflow path
|
|
UINT256 C, P256, R256;
|
|
UINT384 P384;
|
|
UINT512 P512;
|
|
int incr_exp = 0; // for underflow path
|
|
int incr_exp1 = 0; // for underflow path
|
|
int tmp_fpa = 0; // if possible underflow and q>=34, use to undo the rounding
|
|
UINT64 C1_hi, C2_hi;
|
|
UINT64 C1_lo, C2_lo;
|
|
int is_inexact = 0;
|
|
int is_midpoint_lt_even = 0, is_midpoint_gt_even = 0;
|
|
int is_inexact_lt_midpoint = 0, is_inexact_gt_midpoint = 0;
|
|
int is_midpoint_lt_even1 = 0, is_midpoint_gt_even1 = 0;
|
|
int is_inexact_lt_midpoint1 = 0, is_inexact_gt_midpoint1 = 0;
|
|
int is_overflow = 0;
|
|
int no_underflow = 0;
|
|
|
|
// unpack the arguments
|
|
// unpack x
|
|
x_sign = x.w[1] & MASK_SIGN; // 0 for positive, MASK_SIGN for negative
|
|
x_exp = x.w[1] & MASK_EXP; // biased and shifted left 49 bit positions
|
|
C1_hi = x.w[1] & MASK_COEFF;
|
|
C1_lo = x.w[0];
|
|
|
|
// unpack y
|
|
y_sign = y.w[1] & MASK_SIGN; // 0 for positive, MASK_SIGN for negative
|
|
y_exp = y.w[1] & MASK_EXP; // biased and shifted left 49 bit positions
|
|
C2_hi = y.w[1] & MASK_COEFF;
|
|
C2_lo = y.w[0];
|
|
sign = x_sign ^ y_sign;
|
|
|
|
// check for NaN or Infinity
|
|
if (((x.w[1] & MASK_SPECIAL) == MASK_SPECIAL)
|
|
|| ((y.w[1] & MASK_SPECIAL) == MASK_SPECIAL)) {
|
|
|
|
// x is special or y is special
|
|
if ((x.w[1] & MASK_NAN) == MASK_NAN) { // x is NAN
|
|
if ((x.w[1] & MASK_SNAN) == MASK_SNAN) { // x is SNAN
|
|
// set invalid flag
|
|
*pfpsf |= INVALID_EXCEPTION;
|
|
|
|
// return quiet (x)
|
|
res.w[1] = x.w[1] & 0xfdffffffffffffffull;
|
|
res.w[0] = x.w[0];
|
|
} else { // x is QNaN
|
|
if ((y.w[1] & MASK_SNAN) == MASK_SNAN) { // y is SNAN
|
|
// set invalid flag
|
|
*pfpsf |= INVALID_EXCEPTION;
|
|
}
|
|
// return x
|
|
res.w[1] = x.w[1];
|
|
res.w[0] = x.w[0];
|
|
}
|
|
BID_RETURN (res);
|
|
} else if ((y.w[1] & MASK_NAN) == MASK_NAN) { // y is NAN
|
|
if ((y.w[1] & MASK_SNAN) == MASK_SNAN) { // y is SNAN
|
|
// set invalid flag
|
|
*pfpsf |= INVALID_EXCEPTION;
|
|
|
|
// return quiet (y)
|
|
res.w[1] = y.w[1] & 0xfdffffffffffffffull;
|
|
res.w[0] = y.w[0];
|
|
} else { // y is QNaN
|
|
// return y
|
|
res.w[1] = y.w[1];
|
|
res.w[0] = y.w[0];
|
|
}
|
|
BID_RETURN (res);
|
|
} else { // neither x nor y is NaN; at least one is infinity
|
|
if ((x.w[1] & MASK_ANY_INF) == MASK_INF) { // x is infinity
|
|
if (((y.w[1] & MASK_ANY_INF) == MASK_INF) || (C2_hi != 0x0ull)
|
|
|| (C2_lo != 0x0ull)) {
|
|
|
|
// y is infinity OR y is finite
|
|
// if same sign, return +inf otherwise return -inf
|
|
if (!sign) {
|
|
res.w[1] = 0x7800000000000000ull; // +inf
|
|
res.w[0] = 0x0000000000000000ull;
|
|
} else { // x and y are infinities of opposite signs
|
|
res.w[1] = 0xf800000000000000ull; // -inf
|
|
res.w[0] = 0x0000000000000000ull;
|
|
}
|
|
} else { // if y is 0
|
|
// set invalid flag
|
|
*pfpsf |= INVALID_EXCEPTION;
|
|
|
|
// return QNaN Indefinite
|
|
res.w[1] = 0x7c00000000000000ull;
|
|
res.w[0] = 0x0000000000000000ull;
|
|
}
|
|
} else { // x is not NaN or infinity, so y must be infinity
|
|
if ((C1_hi != 0x0ull) || (C1_lo != 0x0ull)) {
|
|
|
|
// x is finite
|
|
// if same sign, return +inf otherwise return -inf
|
|
if (!sign) {
|
|
res.w[1] = 0x7800000000000000ull; // +inf
|
|
res.w[0] = 0x0000000000000000ull;
|
|
} else { // y and x are of opposite signs
|
|
res.w[1] = 0xf800000000000000ull; // -inf
|
|
res.w[0] = 0x0000000000000000ull;
|
|
}
|
|
} else { // if x is 0
|
|
// set invalid flag
|
|
*pfpsf |= INVALID_EXCEPTION;
|
|
|
|
// return QNaN Indefinite
|
|
res.w[1] = 0x7c00000000000000ull;
|
|
res.w[0] = 0x0000000000000000ull;
|
|
}
|
|
}
|
|
BID_RETURN (res);
|
|
}
|
|
}
|
|
// test for non-canonical values:
|
|
// - values whose encoding begins with x00, x01, or x10 and whose
|
|
// coefficient is larger than 10^34 -1, or
|
|
// - values whose encoding begins with x1100, x1101, x1110 (if NaNs
|
|
// and infinitis were eliminated already this test is reduced to
|
|
// checking for x10x)
|
|
|
|
// test for non-canonical values of the argument x
|
|
if ((((C1_hi > 0x0001ed09bead87c0ull) ||
|
|
((C1_hi == 0x0001ed09bead87c0ull) && (C1_lo > 0x378d8e63ffffffffull))) &&
|
|
((x.w[1] & 0x6000000000000000ull) != 0x6000000000000000ull)) ||
|
|
((x.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull)) {
|
|
// check for the case where the exponent is shifted right by 2 bits!
|
|
if ((x.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull) {
|
|
x_exp = (x.w[1] << 2) & MASK_EXP; // same position as for G[0]G[1] != 11
|
|
}
|
|
x.w[1] = x.w[1] & 0x8000000000000000ull; // preserve the sign bit
|
|
x.w[0] = 0;
|
|
C1_hi = 0;
|
|
C1_lo = 0;
|
|
}
|
|
// test for non-canonical values of the argument y
|
|
if ((((C2_hi > 0x0001ed09bead87c0ull)
|
|
|| ((C2_hi == 0x0001ed09bead87c0ull)
|
|
&& (C2_lo > 0x378d8e63ffffffffull)))
|
|
&& ((y.w[1] & 0x6000000000000000ull) != 0x6000000000000000ull))
|
|
|| ((y.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull)) {
|
|
|
|
// check for the case where the exponent is shifted right by 2 bits!
|
|
if ((y.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull) {
|
|
y_exp = (y.w[1] << 2) & MASK_EXP; // same position as for G[0]G[1] != 11
|
|
}
|
|
y.w[1] = y.w[1] & 0x8000000000000000ull; // preserve the sign bit
|
|
y.w[0] = 0;
|
|
C2_hi = 0;
|
|
C2_lo = 0;
|
|
}
|
|
if (((C1_hi == 0x0ull) && (C1_lo == 0x0ull)) || ((C2_hi == 0x0ull)
|
|
&& (C2_lo == 0x0ull))) {
|
|
|
|
// x is 0 and y is not special OR y is 0 and x is not special
|
|
// if same sign, return +0 otherwise return -0
|
|
ind = (x_exp >> 49) + (y_exp >> 49) - 6176;
|
|
if (ind < 0)
|
|
ind = 0;
|
|
if (ind > 0x2fff)
|
|
ind = 0x2fff; // 6111 + 6176
|
|
if ((x.w[1] & MASK_SIGN) == (y.w[1] & MASK_SIGN)) {
|
|
res.w[1] = 0x0000000000000000ull | ((UINT64) ind << 49); // +0.0
|
|
res.w[0] = 0x0000000000000000ull;
|
|
} else { // opposite signs
|
|
res.w[1] = 0x8000000000000000ull | ((UINT64) ind << 49); // -0.0
|
|
res.w[0] = 0x0000000000000000ull;
|
|
}
|
|
BID_RETURN (res);
|
|
} else { // x and y are not special and are not zero
|
|
// unpack x
|
|
C1.w[1] = C1_hi;
|
|
C1.w[0] = C1_lo;
|
|
|
|
// q1 = nr. of decimal digits in x
|
|
// determine first the nr. of bits in x
|
|
if (C1.w[1] == 0) {
|
|
if (C1.w[0] >= 0x0020000000000000ull) { // x >= 2^53
|
|
// split the 64-bit value in two 32-bit halves to avoid rounding errors
|
|
if (C1.w[0] >= 0x0000000100000000ull) { // x >= 2^32
|
|
tmp1.d = (double) (C1.w[0] >> 32); // exact conversion
|
|
x_nr_bits =
|
|
33 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
|
|
} else { // x < 2^32
|
|
tmp1.d = (double) (C1.w[0]); // exact conversion
|
|
x_nr_bits =
|
|
1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
|
|
}} else { // if x < 2^53
|
|
tmp1.d = (double) C1.w[0]; // exact conversion
|
|
x_nr_bits =
|
|
1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
|
|
}} else { // C1.w[1] != 0 => nr. bits = 64 + nr_bits (C1.w[1])
|
|
tmp1.d = (double) C1.w[1]; // exact conversion
|
|
x_nr_bits =
|
|
65 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
|
|
} q1 = __bid_nr_digits[x_nr_bits - 1].digits;
|
|
if (q1 == 0) {
|
|
q1 = __bid_nr_digits[x_nr_bits - 1].digits1;
|
|
if (C1.w[1] > __bid_nr_digits[x_nr_bits - 1].threshold_hi
|
|
|| (C1.w[1] == __bid_nr_digits[x_nr_bits - 1].threshold_hi
|
|
&& C1.w[0] >= __bid_nr_digits[x_nr_bits - 1].threshold_lo))
|
|
q1++;
|
|
}
|
|
C2.w[1] = C2_hi;
|
|
C2.w[0] = C2_lo;
|
|
if (C2.w[1] == 0) {
|
|
if (C2.w[0] >= 0x0020000000000000ull) { // y >= 2^53
|
|
// split the 64-bit value in two 32-bit halves to avoid rounding errors
|
|
if (C2.w[0] >= 0x0000000100000000ull) { // y >= 2^32
|
|
tmp2.d = (double) (C2.w[0] >> 32); // exact conversion
|
|
y_nr_bits =
|
|
32 + ((((unsigned int) (tmp2.ui64 >> 52)) & 0x7ff) - 0x3ff);
|
|
} else { // y < 2^32
|
|
tmp2.d = (double) C2.w[0]; // exact conversion
|
|
y_nr_bits =
|
|
((((unsigned int) (tmp2.ui64 >> 52)) & 0x7ff) - 0x3ff);
|
|
}} else { // if y < 2^53
|
|
tmp2.d = (double) C2.w[0]; // exact conversion
|
|
y_nr_bits =
|
|
((((unsigned int) (tmp2.ui64 >> 52)) & 0x7ff) - 0x3ff);
|
|
}} else { // C2.w[1] != 0 => nr. bits = 64 + nr_bits (C2.w[1])
|
|
tmp2.d = (double) C2.w[1]; // exact conversion
|
|
y_nr_bits =
|
|
64 + ((((unsigned int) (tmp2.ui64 >> 52)) & 0x7ff) - 0x3ff);
|
|
} q2 = __bid_nr_digits[y_nr_bits].digits;
|
|
if (q2 == 0) {
|
|
q2 = __bid_nr_digits[y_nr_bits].digits1;
|
|
if (C2.w[1] > __bid_nr_digits[y_nr_bits].threshold_hi
|
|
|| (C2.w[1] == __bid_nr_digits[y_nr_bits].threshold_hi
|
|
&& C2.w[0] >= __bid_nr_digits[y_nr_bits].threshold_lo))
|
|
q2++;
|
|
}
|
|
// the exact product has either q1 + q2 - 1 or q1 + q2 decimal digits
|
|
// where 2 <= q1 + q2 <= 68
|
|
// calculate C' = C1 * C2 and determine q
|
|
C.w[3] = C.w[2] = C.w[1] = C.w[0] = 0;
|
|
if (q1 + q2 <= 19) { // if 2 <= q1 + q2 <= 19, C' = C1 * C2 fits in 64 bits
|
|
C.w[0] = C1.w[0] * C2.w[0];
|
|
|
|
// if C' < 10^(q1+q2-1) then q = q1 + q2 - 1 else q = q1 + q2
|
|
if (C.w[0] < __bid_ten2k64[q1 + q2 - 1])
|
|
q = q1 + q2 - 1; // q in [1, 18]
|
|
else
|
|
q = q1 + q2; // q in [2, 19]
|
|
// length of C1 * C2 rounded up to a multiple of 64 bits is len = 64;
|
|
} else if (q1 + q2 == 20) { // C' = C1 * C2 fits in 64 or 128 bits
|
|
// q1 <= 19 and q2 <= 19 so both C1 and C2 fit in 64 bits
|
|
__mul_64x64_to_128MACH (C, C1.w[0], C2.w[0]);
|
|
|
|
// if C' < 10^(q1+q2-1) = 10^19 then q = q1+q2-1 = 19 else q = q1+q2 = 20
|
|
if (C.w[1] == 0 && C.w[0] < __bid_ten2k64[19]) { // 19 = q1+q2-1
|
|
// length of C1 * C2 rounded up to a multiple of 64 bits is len = 64;
|
|
q = 19; // 19 = q1 + q2 - 1
|
|
} else {
|
|
|
|
// if (C.w[1] == 0)
|
|
// length of C1 * C2 rounded up to a multiple of 64 bits is len = 64;
|
|
// else
|
|
// length of C1 * C2 rounded up to a multiple of 64 bits is len = 128;
|
|
q = 20; // 20 = q1 + q2
|
|
}
|
|
} else if (q1 + q2 <= 38) { // 21 <= q1 + q2 <= 38
|
|
// C' = C1 * C2 fits in 64 or 128 bits
|
|
// (64 bits possibly, but only when q1 + q2 = 21 and C' has 20 digits)
|
|
// at least one of C1, C2 has at most 19 decimal digits & fits in 64 bits
|
|
if (q1 <= 19) {
|
|
__mul_128x64_to_128 (C, C1.w[0], C2);
|
|
} else { // q2 <= 19
|
|
__mul_128x64_to_128 (C, C2.w[0], C1);
|
|
}
|
|
|
|
// if C' < 10^(q1+q2-1) then q = q1 + q2 - 1 else q = q1 + q2
|
|
if (C.w[1] < __bid_ten2k128[q1 + q2 - 21].w[1]
|
|
|| (C.w[1] == __bid_ten2k128[q1 + q2 - 21].w[1]
|
|
&& C.w[0] < __bid_ten2k128[q1 + q2 - 21].w[0])) {
|
|
|
|
// if (C.w[1] == 0) // q = 20, necessarily
|
|
// length of C1 * C2 rounded up to a multiple of 64 bits is len = 64;
|
|
// else
|
|
// length of C1 * C2 rounded up to a multiple of 64 bits is len = 128;
|
|
q = q1 + q2 - 1; // q in [20, 37]
|
|
} else {
|
|
|
|
// length of C1 * C2 rounded up to a multiple of 64 bits is len = 128;
|
|
q = q1 + q2; // q in [21, 38]
|
|
}
|
|
} else if (q1 + q2 == 39) { // C' = C1 * C2 fits in 128 or 192 bits
|
|
// both C1 and C2 fit in 128 bits (actually in 113 bits)
|
|
// may replace this by 128x128_to192
|
|
__mul_128x128_to_256 (C, C1, C2); // C.w[3] is 0
|
|
// if C' < 10^(q1+q2-1) = 10^38 then q = q1+q2-1 = 38 else q = q1+q2 = 39
|
|
if (C.w[2] == 0 && (C.w[1] < __bid_ten2k128[18].w[1] ||
|
|
(C.w[1] == __bid_ten2k128[18].w[1] && C.w[0] < __bid_ten2k128[18].w[0]))) {
|
|
// 18 = 38 - 20 = q1+q2-1 - 20
|
|
// length of C1 * C2 rounded up to a multiple of 64 bits is len = 128;
|
|
q = 38; // 38 = q1 + q2 - 1
|
|
} else {
|
|
|
|
// if (C.w[2] == 0)
|
|
// length of C1 * C2 rounded up to a multiple of 64 bits is len = 128;
|
|
// else
|
|
// length of C1 * C2 rounded up to a multiple of 64 bits is len = 192;
|
|
q = 39; // 39 = q1 + q2
|
|
}
|
|
} else if (q1 + q2 <= 57) { // 40 <= q1 + q2 <= 57
|
|
// C' = C1 * C2 fits in 128 or 192 bits
|
|
// (128 bits possibly, but only when q1 + q2 = 40 and C' has 39 digits)
|
|
// both C1 and C2 fit in 128 bits (actually in 113 bits); at most one
|
|
// may fit in 64 bits
|
|
if (C1.w[1] == 0) { // C1 fits in 64 bits
|
|
// __mul_64x128_full (REShi64, RESlo128, A64, B128)
|
|
__mul_64x128_full (C.w[2], C, C1.w[0], C2);
|
|
} else if (C2.w[1] == 0) { // C2 fits in 64 bits
|
|
// __mul_64x128_full (REShi64, RESlo128, A64, B128)
|
|
__mul_64x128_full (C.w[2], C, C2.w[0], C1);
|
|
} else { // both C1 and C2 require 128 bits
|
|
// may use __mul_128x128_to_192 (C.w[2], C.w[0], C2.w[0], C1);
|
|
__mul_128x128_to_256 (C, C1, C2); // C.w[3] = 0
|
|
}
|
|
|
|
// if C' < 10^(q1+q2-1) then q = q1 + q2 - 1 else q = q1 + q2
|
|
if (C.w[2] < __bid_ten2k256[q1 + q2 - 40].w[2]
|
|
|| (C.w[2] == __bid_ten2k256[q1 + q2 - 40].w[2]
|
|
&& (C.w[1] < __bid_ten2k256[q1 + q2 - 40].w[1]
|
|
|| (C.w[1] == __bid_ten2k256[q1 + q2 - 40].w[1]
|
|
&& C.w[0] < __bid_ten2k256[q1 + q2 - 40].w[0])))) {
|
|
|
|
// if (C.w[2] == 0) // q = 39, necessarily
|
|
// length of C1 * C2 rounded up to a multiple of 64 bits is len = 128;
|
|
// else
|
|
// length of C1 * C2 rounded up to a multiple of 64 bits is len = 192;
|
|
q = q1 + q2 - 1; // q in [39, 56]
|
|
} else {
|
|
|
|
// length of C1 * C2 rounded up to a multiple of 64 bits is len = 192;
|
|
q = q1 + q2; // q in [40, 57]
|
|
}
|
|
} else if (q1 + q2 == 58) { // C' = C1 * C2 fits in 192 or 256 bits
|
|
// both C1 and C2 fit in 128 bits (actually in 113 bits); at most one
|
|
// may fit in 64 bits
|
|
if (C1.w[1] == 0) { // C1 * C2 will fit in 192 bits
|
|
__mul_64x128_full (C.w[2], C, C1.w[0], C2); // may use 64x128_to_192
|
|
} else if (C2.w[1] == 0) { // C1 * C2 will fit in 192 bits
|
|
__mul_64x128_full (C.w[2], C, C2.w[0], C1); // may use 64x128_to_192
|
|
} else { // C1 * C2 will fit in 192 bits or in 256 bits
|
|
__mul_128x128_to_256 (C, C1, C2);
|
|
}
|
|
|
|
// if C' < 10^(q1+q2-1) = 10^57 then q = q1+q2-1 = 57 else q = q1+q2 = 58
|
|
if (C.w[3] == 0 && (C.w[2] < __bid_ten2k256[18].w[2] ||
|
|
(C.w[2] == __bid_ten2k256[18].w[2] && (C.w[1] < __bid_ten2k256[18].w[1] ||
|
|
(C.w[1] == __bid_ten2k256[18].w[1] && C.w[0] < __bid_ten2k256[18].w[0]))))) {
|
|
// 18 = 57 - 39 = q1+q2-1 - 39
|
|
// length of C1 * C2 rounded up to a multiple of 64 bits is len = 192;
|
|
q = 57; // 57 = q1 + q2 - 1
|
|
} else {
|
|
|
|
// if (C.w[3] == 0)
|
|
// length of C1 * C2 rounded up to a multiple of 64 bits is len = 192;
|
|
// else
|
|
// length of C1 * C2 rounded up to a multiple of 64 bits is len = 256;
|
|
q = 58; // 58 = q1 + q2
|
|
}
|
|
} else { // if 59 <= q1 + q2 <= 68
|
|
// C' = C1 * C2 fits in 192 or 256 bits
|
|
// (192 bits possibly, but only when q1 + q2 = 59 and C' has 58 digits)
|
|
// both C1 and C2 fit in 128 bits (actually in 113 bits); none fits in
|
|
// 64 bits
|
|
// may use __mul_128x128_to_192 (C.w[2], C.w[0], C2.w[0], C1);
|
|
__mul_128x128_to_256 (C, C1, C2); // C.w[3] = 0
|
|
// if C' < 10^(q1+q2-1) then q = q1 + q2 - 1 else q = q1 + q2
|
|
if (C.w[3] < __bid_ten2k256[q1 + q2 - 40].w[3]
|
|
|| (C.w[3] == __bid_ten2k256[q1 + q2 - 40].w[3]
|
|
&& (C.w[2] < __bid_ten2k256[q1 + q2 - 40].w[2]
|
|
|| (C.w[2] == __bid_ten2k256[q1 + q2 - 40].w[2]
|
|
&& (C.w[1] < __bid_ten2k256[q1 + q2 - 40].w[1]
|
|
|| (C.w[1] == __bid_ten2k256[q1 + q2 - 40].w[1]
|
|
&& C.w[0] < __bid_ten2k256[q1 + q2 - 40].w[0])))))) {
|
|
|
|
// if (C.w[3] == 0) // q = 58, necessarily
|
|
// length of C1 * C2 rounded up to a multiple of 64 bits is len = 192;
|
|
// else
|
|
// length of C1 * C2 rounded up to a multiple of 64 bits is len = 256;
|
|
q = q1 + q2 - 1; // q in [58, 67]
|
|
} else {
|
|
|
|
// length of C1 * C2 rounded up to a multiple of 64 bits is len = 256;
|
|
q = q1 + q2; // q in [59, 68]
|
|
}
|
|
}
|
|
if (((UINT64) q << 49) + x_exp + y_exp <
|
|
((UINT64) P34 << 49) + EXP_MIN + BIN_EXP_BIAS) {
|
|
|
|
// possible underflow
|
|
// q + ex + ey < P34 + EMIN <=> q - P34 < EMIN - ex - ey <=> q - P34 < ind
|
|
goto _underflow_path;
|
|
}
|
|
if (q <= 34) { // 2 <= q <= 34 the result is exact, and fits in 113 bits
|
|
tmp64 = x_exp + y_exp;
|
|
if (tmp64 > EXP_MAX + BIN_EXP_BIAS) { // possible overflow
|
|
ind = (tmp64 - EXP_MAX - BIN_EXP_BIAS) >> 49;
|
|
if (ind > 34 - q) { // overflow in all rounding modes
|
|
// |res| >= 10^p * 10^emax = 10^(p-1) * 10^(emax+1)
|
|
// assemble the result
|
|
if (rnd_mode == ROUNDING_TO_NEAREST
|
|
|| rnd_mode == ROUNDING_TIES_AWAY) {
|
|
res.w[1] = sign | 0x7800000000000000ull;
|
|
res.w[0] = 0x0ull;
|
|
} else if (rnd_mode == ROUNDING_DOWN) {
|
|
if (sign) { // res = -inf
|
|
res.w[1] = 0xf800000000000000ull;
|
|
res.w[0] = 0x0ull;
|
|
} else { // res = +MAXFP
|
|
res.w[1] = 0x5fffed09bead87c0ull;
|
|
res.w[0] = 0x378d8e63ffffffffull;
|
|
}
|
|
} else if (rnd_mode == ROUNDING_UP) {
|
|
if (sign) { // res = -MAXFP
|
|
res.w[1] = 0xdfffed09bead87c0ull;
|
|
res.w[0] = 0x378d8e63ffffffffull;
|
|
} else { // res = +inf
|
|
res.w[1] = 0x7800000000000000ull;
|
|
res.w[0] = 0x0ull;
|
|
}
|
|
} else { // if (rnd_mode == ROUNDING_TO_ZERO)
|
|
// |res| = (10^34 - 1) * 10^6111 = +MAXFP
|
|
res.w[1] = sign | 0x5fffed09bead87c0ull;
|
|
res.w[0] = 0x378d8e63ffffffffull;
|
|
}
|
|
|
|
// set the inexact flag
|
|
*pfpsf |= INEXACT_EXCEPTION;
|
|
|
|
// set the overflow flag
|
|
*pfpsf |= OVERFLOW_EXCEPTION;
|
|
|
|
// is_overflow = 1;
|
|
BID_RETURN (res);
|
|
} else { // tmp64 > EXP_MAX + BIN_EXP_BIAS but
|
|
// ind = ((tmp64-EXP_MAX-BIN_EXP_BIAS)>>49) <= 34 - q
|
|
// the exponent will be the maximum exponent
|
|
// multiply C by 10^ind; the result fits in 34 digits
|
|
if (ind <= 19) { // multiply by __bid_ten2k64[ind]
|
|
if (q <= 19) { // 64x64 -> 128
|
|
__mul_64x64_to_128MACH (C, C.w[0], __bid_ten2k64[ind]);
|
|
} else { // 128 x 64 -> 128
|
|
// may optimize to multiply 64 x 128 -> 128
|
|
__mul_64x128_full (tmp64, C, __bid_ten2k64[ind], C);
|
|
}
|
|
} else { // if 20 <= ind <= 32 multiply by __bid_ten2k128[ind - 20]
|
|
// it must be that C.w[1] = 0, as C < 10^14
|
|
// may optimize to multiply 64 x 128 -> 128
|
|
__mul_64x128_full (tmp64, C, C.w[0], __bid_ten2k128[ind - 20]);
|
|
}
|
|
res.w[0] = C.w[0];
|
|
res.w[1] = C.w[1];
|
|
res.w[1] |= EXP_MAX; // EXP MAX
|
|
}
|
|
} else {
|
|
res.w[0] = C.w[0];
|
|
res.w[1] = C.w[1];
|
|
res.w[1] |= (tmp64 - BIN_EXP_BIAS);
|
|
}
|
|
res.w[1] |= sign;
|
|
} else if (q <= 38) { // 35 <= q <= 38; exact coefficient fits in 128 bits
|
|
// C = C + 1/2 * 10^x where the result C fits in 127 bits
|
|
ind = q - 35;
|
|
tmp64 = C.w[0];
|
|
C.w[0] = C.w[0] + __bid_midpoint64[ind];
|
|
if (C.w[0] < tmp64)
|
|
C.w[1]++;
|
|
|
|
// x = q - p = q - 34, 1 <= x <= 4
|
|
// kx = 10^(-x) = __bid_ten2mk128M[ind]
|
|
// C* = (C + 1/2 * 10^x) * 10^(-x)
|
|
// the approximation of 10^(-x) was rounded up to 128 bits
|
|
__mul_128x128_to_256 (P256, C, __bid_ten2mk128M[ind]);
|
|
Cstar.w[1] = P256.w[3];
|
|
Cstar.w[0] = P256.w[2];
|
|
fstar.w[2] = Cstar.w[0] & __bid_maskhigh128M[ind]; // fstar.w[3|4|5]=0
|
|
fstar.w[1] = P256.w[1];
|
|
fstar.w[0] = P256.w[0];
|
|
|
|
// calculate C* and f*
|
|
// C* is actually floor(C*) in this case
|
|
// C* and f* need shifting and masking, as shown by
|
|
// __bid_shiftright128M[] and __bid_maskhigh128M[]
|
|
// the top Ex bits of 10^(-x) are T* = __bid_ten2mk128truncM[ind], e.g.
|
|
// if x=1, T*=__bid_ten2mk128truncM[0]=0xcccccccccccccccccccccccccccccccc
|
|
// if (0 < f* < 10^(-x)) then the result is a midpoint
|
|
// if floor(C*) is even then C* = floor(C*) - logical right
|
|
// shift; C* has p decimal digits, correct by Prop. 1)
|
|
// else if floor(C*) is odd C* = floor(C*)-1 (logical right
|
|
// shift; C* has p decimal digits, correct by Pr. 1)
|
|
// else
|
|
// C* = floor(C*) (logical right shift; C has p decimal digits,
|
|
// correct by Property 1)
|
|
// n = C* * 10^(e+x)
|
|
|
|
// shift right C* by Ex-128 = __bid_shiftright128M[ind]
|
|
shift = __bid_shiftright128M[ind]; // 3 <= shift <= 13
|
|
Cstar.w[0] = (Cstar.w[0] >> shift) | (Cstar.w[1] << (64 - shift));
|
|
Cstar.w[1] = (Cstar.w[1] >> shift);
|
|
|
|
// determine inexactness of the rounding of C*
|
|
// if (0 < f* - 1/2 < 10^(-x)) then
|
|
// the result is exact
|
|
// else // if (f* - 1/2 > T*) then
|
|
// the result is inexact
|
|
if (fstar.w[2] > __bid_one_half128M[ind]
|
|
|| (fstar.w[2] == __bid_one_half128M[ind]
|
|
&& (fstar.w[1] || fstar.w[0]))) {
|
|
|
|
// f* > 1/2 and the result may be exact
|
|
// Calculate f* - 1/2
|
|
tmp64 = fstar.w[2] - __bid_one_half128M[ind];
|
|
if (tmp64 || fstar.w[1] > __bid_ten2mk128truncM[ind].w[1] ||
|
|
(fstar.w[1] == __bid_ten2mk128truncM[ind].w[1] &&
|
|
fstar.w[0] > __bid_ten2mk128truncM[ind].w[0])) { // f* - 1/2 > 10^(-x)
|
|
// set the inexact flag
|
|
*pfpsf |= INEXACT_EXCEPTION;
|
|
is_inexact_lt_midpoint = 1;
|
|
} // else the result is exact
|
|
} else { // the result is inexact; f2* <= 1/2
|
|
// set the inexact flag
|
|
*pfpsf |= INEXACT_EXCEPTION;
|
|
tmp_fpa = 1;
|
|
is_inexact_gt_midpoint = 1;
|
|
}
|
|
|
|
// check for midpoints (could do this before determining inexactness)
|
|
if ((fstar.w[2] == 0) && (fstar.w[1] || fstar.w[0])
|
|
&& (fstar.w[1] < __bid_ten2mk128truncM[ind].w[1]
|
|
|| (fstar.w[1] == __bid_ten2mk128truncM[ind].w[1]
|
|
&& fstar.w[0] <= __bid_ten2mk128truncM[ind].w[0]))) {
|
|
|
|
// the result is a midpoint
|
|
if (Cstar.w[0] & 0x01) { // Cstar.w[0] is odd; MP in [EVEN, ODD]
|
|
// if floor(C*) is odd C = floor(C*) - 1; the result may be 0
|
|
Cstar.w[0]--; // Cstar.w[0] is now even
|
|
if (tmp_fpa == 1)
|
|
tmp_fpa = 0;
|
|
is_midpoint_gt_even = 1;
|
|
is_inexact_lt_midpoint = 0;
|
|
is_inexact_gt_midpoint = 0;
|
|
} else { // else MP in [ODD, EVEN]
|
|
is_midpoint_lt_even = 1;
|
|
is_inexact_lt_midpoint = 0;
|
|
is_inexact_gt_midpoint = 0;
|
|
}
|
|
}
|
|
// check for rounding overflow
|
|
if (Cstar.w[1] == 0x0001ed09bead87c0ull &&
|
|
Cstar.w[0] == 0x378d8e6400000000ull) { // if Cstar = 10^34
|
|
tmp64 = x_exp + y_exp + ((UINT64) (ind + 2) << 49);
|
|
Cstar.w[1] = 0x0000314dc6448d93ull; // Cstar = 10^33
|
|
Cstar.w[0] = 0x38c15b0a00000000ull;
|
|
|
|
// if rounding overflow made the exponent equal to emin, set underflow
|
|
if (tmp64 == EXP_MIN + BIN_EXP_BIAS)
|
|
*pfpsf |= UNDERFLOW_EXCEPTION;
|
|
} else { // 10^33 <= Cstar <= 10^34 - 1
|
|
tmp64 = x_exp + y_exp + ((UINT64) (ind + 1) << 49); // ind+1 = q-34
|
|
}
|
|
if (tmp64 >= EXP_MAX + BIN_EXP_BIAS) { // possibble overflow
|
|
// exp >= emax for the result rounded to nearest even
|
|
if (rnd_mode == ROUNDING_TO_NEAREST
|
|
|| rnd_mode == ROUNDING_TIES_AWAY) {
|
|
if (tmp64 > EXP_MAX + BIN_EXP_BIAS) {
|
|
|
|
// |res| >= 10^(p-1) * 10^(emax+1) <=> exp >= emax+1
|
|
res.w[1] = sign | 0x7800000000000000ull; // +/-inf
|
|
res.w[0] = 0x0ull;
|
|
*pfpsf |= INEXACT_EXCEPTION; // set the inexact flag
|
|
*pfpsf |= OVERFLOW_EXCEPTION; // set the overflow flag
|
|
is_overflow = 1;
|
|
} else { // not overflow
|
|
res.w[0] = Cstar.w[0];
|
|
res.w[1] = Cstar.w[1];
|
|
res.w[1] |= (tmp64 - BIN_EXP_BIAS);
|
|
}
|
|
} else if (rnd_mode == ROUNDING_DOWN) {
|
|
if (!sign && (tmp64 > EXP_MAX + BIN_EXP_BIAS) &&
|
|
!(tmp64 == EXP_MAX + BIN_EXP_BIAS + EXP_P1 &&
|
|
Cstar.w[1] == 0x0000314dc6448d93ull &&
|
|
Cstar.w[0] == 0x38c15b0a00000000ull && // 10^33 * 10^(emax+1)
|
|
(is_midpoint_lt_even || is_inexact_gt_midpoint))) {
|
|
|
|
// res = +MAXFP
|
|
res.w[1] = 0x5fffed09bead87c0ull;
|
|
res.w[0] = 0x378d8e63ffffffffull; // (10^34-1) * 10^emax
|
|
*pfpsf |= INEXACT_EXCEPTION; // set the inexact flag
|
|
*pfpsf |= OVERFLOW_EXCEPTION; // set the overflow flag
|
|
is_overflow = 1;
|
|
} else if (sign && ((tmp64 > EXP_MAX + BIN_EXP_BIAS) ||
|
|
((tmp64 == EXP_MAX + BIN_EXP_BIAS) &&
|
|
Cstar.w[1] == 0x0001ed09bead87c0ull &&
|
|
Cstar.w[0] == 0x378d8e63ffffffffull && // (10^34-1) * 10^emax
|
|
is_inexact_lt_midpoint))) {
|
|
res.w[1] = 0xf800000000000000ull; // -inf
|
|
res.w[0] = 0x0ull;
|
|
*pfpsf |= INEXACT_EXCEPTION; // set the inexact flag
|
|
*pfpsf |= OVERFLOW_EXCEPTION; // set the overflow flag
|
|
is_overflow = 1;
|
|
} else { // not overflow
|
|
res.w[0] = Cstar.w[0];
|
|
res.w[1] = Cstar.w[1];
|
|
res.w[1] |= (tmp64 - BIN_EXP_BIAS);
|
|
}
|
|
} else if (rnd_mode == ROUNDING_UP) {
|
|
if (sign && (tmp64 > EXP_MAX + BIN_EXP_BIAS) &&
|
|
!(tmp64 == EXP_MAX + BIN_EXP_BIAS + EXP_P1 &&
|
|
Cstar.w[1] == 0x0000314dc6448d93ull &&
|
|
Cstar.w[0] == 0x38c15b0a00000000ull && // 10^33 * 10^(emax+1)
|
|
(is_midpoint_lt_even || is_inexact_gt_midpoint))) {
|
|
// res = -MAXFP
|
|
res.w[1] = 0xdfffed09bead87c0ull;
|
|
res.w[0] = 0x378d8e63ffffffffull; // -(10^34-1) * 10^emax
|
|
*pfpsf |= INEXACT_EXCEPTION; // set the inexact flag
|
|
*pfpsf |= OVERFLOW_EXCEPTION; // set the overflow flag
|
|
is_overflow = 1;
|
|
} else if (!sign && ((tmp64 > EXP_MAX + BIN_EXP_BIAS) ||
|
|
((tmp64 == EXP_MAX + BIN_EXP_BIAS) &&
|
|
Cstar.w[1] == 0x0001ed09bead87c0ull &&
|
|
Cstar.w[0] == 0x378d8e63ffffffffull && // (10^34-1) * 10^emax
|
|
is_inexact_lt_midpoint))) {
|
|
res.w[1] = 0x7800000000000000ull; // inf
|
|
res.w[0] = 0x0ull;
|
|
*pfpsf |= INEXACT_EXCEPTION; // set the inexact flag
|
|
*pfpsf |= OVERFLOW_EXCEPTION; // set the overflow flag
|
|
is_overflow = 1;
|
|
} else { // not overflow
|
|
res.w[0] = Cstar.w[0];
|
|
res.w[1] = Cstar.w[1];
|
|
res.w[1] |= (tmp64 - BIN_EXP_BIAS);
|
|
}
|
|
} else { // if (rnd_mode == ROUNDING_TO_ZERO)
|
|
if (!sign && (tmp64 > EXP_MAX + BIN_EXP_BIAS) &&
|
|
!(tmp64 == EXP_MAX + BIN_EXP_BIAS + EXP_P1 &&
|
|
Cstar.w[1] == 0x0000314dc6448d93ull &&
|
|
Cstar.w[0] == 0x38c15b0a00000000ull && // 10^33 * 10^(emax+1)
|
|
(is_midpoint_lt_even || is_inexact_gt_midpoint))) {
|
|
// res = +MAXFP
|
|
res.w[1] = 0x5fffed09bead87c0ull;
|
|
res.w[0] = 0x378d8e63ffffffffull; // (10^34-1) * 10^emax
|
|
*pfpsf |= INEXACT_EXCEPTION; // set the inexact flag
|
|
*pfpsf |= OVERFLOW_EXCEPTION; // set the overflow flag
|
|
is_overflow = 1;
|
|
} else if (sign && (tmp64 > EXP_MAX + BIN_EXP_BIAS) &&
|
|
!(tmp64 == EXP_MAX + BIN_EXP_BIAS + EXP_P1 &&
|
|
Cstar.w[1] == 0x0000314dc6448d93ull &&
|
|
Cstar.w[0] == 0x38c15b0a00000000ull && // 10^33 * 10^(emax+1)
|
|
(is_midpoint_lt_even || is_inexact_gt_midpoint))) {
|
|
// res = -MAXFP
|
|
res.w[1] = 0xdfffed09bead87c0ull;
|
|
res.w[0] = 0x378d8e63ffffffffull; // -(10^34-1) * 10^emax
|
|
*pfpsf |= INEXACT_EXCEPTION; // set the inexact flag
|
|
*pfpsf |= OVERFLOW_EXCEPTION; // set the overflow flag
|
|
is_overflow = 1;
|
|
} else { // not overflow
|
|
res.w[0] = Cstar.w[0];
|
|
res.w[1] = Cstar.w[1];
|
|
res.w[1] |= (tmp64 - BIN_EXP_BIAS);
|
|
}
|
|
}
|
|
if (is_overflow) { // return for overflow
|
|
// set the inexact flag
|
|
*pfpsf |= INEXACT_EXCEPTION;
|
|
|
|
// set the overflow flag
|
|
*pfpsf |= OVERFLOW_EXCEPTION;
|
|
|
|
// is_overflow = 1;
|
|
BID_RETURN (res);
|
|
}
|
|
} else {
|
|
res.w[0] = Cstar.w[0];
|
|
res.w[1] = Cstar.w[1];
|
|
res.w[1] |= (tmp64 - BIN_EXP_BIAS);
|
|
}
|
|
res.w[1] |= sign;
|
|
} else if (q <= 57) { // 39 <= q <= 57; exact coefficient takes 128-192 bits
|
|
// C = C + 1/2 * 10^x where the result C fits in 190 bits
|
|
// (10^57 - 1 + 1/2 * 10^23 can be represented with 190 bits)
|
|
// x = q - p = q - 34, 5 <= x <= 23
|
|
// kx = 10^(-x) = __bid_ten2mk192M[ind]
|
|
// C* = (C + 1/2 * 10^x) * 10^(-x)
|
|
// the approximation of 10^(-x) was rounded up to 192 bits
|
|
ind = q - 39; // 0 <= ind <= 18
|
|
tmp64 = C.w[0];
|
|
tmp64A = C.w[1];
|
|
|
|
// Note:
|
|
// if 5 <= x <= 19 <=> 0 <= ind <= 14 then
|
|
// f* has 256 bits
|
|
// else // if 20 <= x <= 23 <=> 15 <= ind <= 18 then
|
|
// f* has 320 bits
|
|
if (ind <= 14) { // x - 1 = q - 35 = ind + 4 <= 18
|
|
// add one 64-bit word
|
|
C.w[0] = C.w[0] + __bid_midpoint64[ind + 4];
|
|
if (C.w[0] < tmp64)
|
|
C.w[1]++;
|
|
if (C.w[1] < tmp64A)
|
|
C.w[2]++;
|
|
__mul_192x192_to_384 (P384, C, __bid_ten2mk192M[ind])
|
|
// calculate C* and f*; C* is actually floor(C*) in this case
|
|
// C* and f* need shifting and masking, as shown by
|
|
// __bid_shiftright192M[] and __bid_maskhigh192M[]
|
|
// C* has 128 bits; P384.w[5], P384.w[4], P384.w[3] need to be
|
|
// shifted right by Ex-192 = __bid_shiftright192M[ind]
|
|
shift = __bid_shiftright192M[ind]; // 16 <= shift <= 63
|
|
Cstar.w[0] = (P384.w[3] >> shift) | (P384.w[4] << (64 - shift));
|
|
Cstar.w[1] = (P384.w[4] >> shift) | (P384.w[5] << (64 - shift));
|
|
|
|
// f* has 256 bits
|
|
fstar.w[3] = P384.w[3] & __bid_maskhigh192M[ind];
|
|
fstar.w[2] = P384.w[2];
|
|
fstar.w[1] = P384.w[1];
|
|
fstar.w[0] = P384.w[0];
|
|
|
|
// the top Ex bits of 10^(-x) are T* = __bid_ten2mk192truncM[ind], e.g.
|
|
// if x=5, T* = __bid_ten2mk192truncM[0] =
|
|
// 0xa7c5ac471b4784230fcf80dc33721d53cddd6e04c0592103
|
|
// if (0 < f* < 10^(-x)) then the result is a midpoint
|
|
// if floor(C*) is even then C* = floor(C*) - logical right
|
|
// shift; C* has p decimal digits, correct by Prop. 1)
|
|
// else if floor(C*) is odd C* = floor(C*)-1 (logical right
|
|
// shift; C* has p decimal digits, correct by Pr. 1)
|
|
// else
|
|
// C* = floor(C*) (logical right shift; C has p decimal digits,
|
|
// correct by Property 1)
|
|
// n = C* * 10^(e+x)
|
|
|
|
// determine inexactness of the rounding of C*
|
|
// if (0 < f* - 1/2 < T* ~= 10^(-x)) then
|
|
// the result is exact
|
|
// else // if (f* - 1/2 >= T*) then
|
|
// the result is inexact
|
|
if (fstar.w[3] > __bid_one_half192M[ind]
|
|
|| (fstar.w[3] == __bid_one_half192M[ind]
|
|
&& (fstar.w[2] || fstar.w[1] || fstar.w[0]))) {
|
|
|
|
// f* > 1/2 and the result may be exact
|
|
// Calculate f* - 1/2
|
|
tmp64 = fstar.w[3] - __bid_one_half192M[ind];
|
|
if (tmp64 || fstar.w[2] > __bid_ten2mk192truncM[ind].w[2] ||
|
|
(fstar.w[2] == __bid_ten2mk192truncM[ind].w[2] &&
|
|
fstar.w[1] > __bid_ten2mk192truncM[ind].w[1]) ||
|
|
(fstar.w[2] == __bid_ten2mk192truncM[ind].w[2] &&
|
|
fstar.w[1] == __bid_ten2mk192truncM[ind].w[1] &&
|
|
fstar.w[0] > __bid_ten2mk192truncM[ind].w[0])) { // f* - 1/2 > 10^(-x)
|
|
// set the inexact flag
|
|
*pfpsf |= INEXACT_EXCEPTION;
|
|
is_inexact_lt_midpoint = 1;
|
|
} // else the result is exact
|
|
} else { // the result is inexact; f2* <= 1/2
|
|
// set the inexact flag
|
|
*pfpsf |= INEXACT_EXCEPTION;
|
|
tmp_fpa = 1;
|
|
is_inexact_gt_midpoint = 1;
|
|
}
|
|
|
|
// check for midpoints (could do this before determining inexactness)
|
|
if ((fstar.w[3] == 0)
|
|
&& (fstar.w[2] || fstar.w[1] || fstar.w[0])
|
|
&& (fstar.w[2] < __bid_ten2mk192truncM[ind].w[2]
|
|
|| (fstar.w[2] == __bid_ten2mk192truncM[ind].w[2]
|
|
&& fstar.w[1] < __bid_ten2mk192truncM[ind].w[1])
|
|
|| (fstar.w[2] == __bid_ten2mk192truncM[ind].w[2]
|
|
&& fstar.w[1] == __bid_ten2mk192truncM[ind].w[1]
|
|
&& fstar.w[0] <= __bid_ten2mk192truncM[ind].w[0]))) {
|
|
|
|
// the result is a midpoint
|
|
if (Cstar.w[0] & 0x01) { // Cstar.w[0] is odd; MP in [EVEN, ODD]
|
|
// if floor(C*) is odd C = floor(C*) - 1; the result may be 0
|
|
Cstar.w[0]--; // Cstar.w[0] is now even
|
|
if (tmp_fpa == 1)
|
|
tmp_fpa = 0;
|
|
is_midpoint_gt_even = 1;
|
|
is_inexact_lt_midpoint = 0;
|
|
is_inexact_gt_midpoint = 0;
|
|
} else { // else MP in [ODD, EVEN]
|
|
is_midpoint_lt_even = 1;
|
|
is_inexact_lt_midpoint = 0;
|
|
is_inexact_gt_midpoint = 0;
|
|
}
|
|
}
|
|
} else { // if ind >= 15 <=> x - 1 = q - 35 = ind + 4 >= 19
|
|
// add two 64-bit words
|
|
C.w[0] = C.w[0] + __bid_midpoint128[ind - 15].w[0];
|
|
C.w[1] = C.w[1] + __bid_midpoint128[ind - 15].w[1];
|
|
if (C.w[0] < tmp64)
|
|
C.w[1]++;
|
|
if (C.w[1] < tmp64A)
|
|
C.w[2]++;
|
|
__mul_192x192_to_384 (P384, C, __bid_ten2mk192M[ind])
|
|
// calculate C* and f*; C* is actually floor(C*) in this case
|
|
// C* and f* need shifting and masking, as shown by
|
|
// __bid_shiftright192M[] and __bid_maskhigh192M[]
|
|
// C* has 128 bits; P384.w[5], P384.w[4], need to be
|
|
// shifted right by Ex-256 = __bid_shiftright192M[ind]
|
|
shift = __bid_shiftright192M[ind]; // 2 <= shift <= 12
|
|
Cstar.w[0] = (P384.w[4] >> shift) | (P384.w[5] << (64 - shift));
|
|
Cstar.w[1] = (P384.w[5] >> shift);
|
|
|
|
// f* has 320 bits
|
|
fstar.w[4] = P384.w[4] & __bid_maskhigh192M[ind];
|
|
fstar.w[3] = P384.w[3];
|
|
fstar.w[2] = P384.w[2];
|
|
fstar.w[1] = P384.w[1];
|
|
fstar.w[0] = P384.w[0];
|
|
|
|
// the top Ex bits of 10^(-x) are T* = __bid_ten2mk192truncM[ind], e.g.
|
|
// if x=23, T* = __bid_ten2mk192truncM[18] =
|
|
// 0xc16d9a0095928a2775b7053c0f1782938d6f439b43088650
|
|
// if (0 < f* < 10^(-x)) then the result is a midpoint
|
|
// if floor(C*) is even then C* = floor(C*) - logical right
|
|
// shift; C* has p decimal digits, correct by Prop. 1)
|
|
// else if floor(C*) is odd C* = floor(C*)-1 (logical right
|
|
// shift; C* has p decimal digits, correct by Pr. 1)
|
|
// else
|
|
// C* = floor(C*) (logical right shift; C has p decimal digits,
|
|
// correct by Property 1)
|
|
// n = C* * 10^(e+x)
|
|
|
|
// determine inexactness of the rounding of C*
|
|
// if (0 < f* - 1/2 < T* ~= 10^(-x)) then
|
|
// the result is exact
|
|
// else // if (f* - 1/2 >= T*) then
|
|
// the result is inexact
|
|
if (fstar.w[4] > __bid_one_half192M[ind]
|
|
|| (fstar.w[4] == __bid_one_half192M[ind]
|
|
&& (fstar.w[3] || fstar.w[2] || fstar.w[1] || fstar.w[0]))) {
|
|
|
|
// f* > 1/2 and the result may be exact
|
|
// Calculate f* - 1/2
|
|
tmp64 = fstar.w[4] - __bid_one_half192M[ind];
|
|
if (tmp64 || fstar.w[3] || fstar.w[2] > __bid_ten2mk192truncM[ind].w[2] ||
|
|
(fstar.w[2] == __bid_ten2mk192truncM[ind].w[2] &&
|
|
fstar.w[1] > __bid_ten2mk192truncM[ind].w[1]) ||
|
|
(fstar.w[2] == __bid_ten2mk192truncM[ind].w[2] &&
|
|
fstar.w[1] == __bid_ten2mk192truncM[ind].w[1] &&
|
|
fstar.w[0] > __bid_ten2mk192truncM[ind].w[0])) { // f* - 1/2 > 10^(-x)
|
|
// set the inexact flag
|
|
*pfpsf |= INEXACT_EXCEPTION;
|
|
is_inexact_lt_midpoint = 1;
|
|
} // else the result is exact
|
|
} else { // the result is inexact; f2* <= 1/2
|
|
// set the inexact flag
|
|
*pfpsf |= INEXACT_EXCEPTION;
|
|
tmp_fpa = 1;
|
|
is_inexact_gt_midpoint = 1;
|
|
}
|
|
|
|
// check for midpoints (could do this before determining inexactness)
|
|
if ((fstar.w[4] == 0) && (fstar.w[3] == 0)
|
|
&& (fstar.w[2] || fstar.w[1] || fstar.w[0])
|
|
&& (fstar.w[2] < __bid_ten2mk192truncM[ind].w[2]
|
|
|| (fstar.w[2] == __bid_ten2mk192truncM[ind].w[2]
|
|
&& fstar.w[1] < __bid_ten2mk192truncM[ind].w[1])
|
|
|| (fstar.w[2] == __bid_ten2mk192truncM[ind].w[2]
|
|
&& fstar.w[1] == __bid_ten2mk192truncM[ind].w[1]
|
|
&& fstar.w[0] <= __bid_ten2mk192truncM[ind].w[0]))) {
|
|
|
|
// the result is a midpoint
|
|
if (Cstar.w[0] & 0x01) { // Cstar.w[0] is odd; MP in [EVEN, ODD]
|
|
// if floor(C*) is odd C = floor(C*) - 1; the result may be 0
|
|
Cstar.w[0]--; // Cstar.w[0] is now even
|
|
if (tmp_fpa == 1)
|
|
tmp_fpa = 0;
|
|
is_midpoint_gt_even = 1;
|
|
is_inexact_lt_midpoint = 0;
|
|
is_inexact_gt_midpoint = 0;
|
|
} else { // else MP in [ODD, EVEN]
|
|
is_midpoint_lt_even = 1;
|
|
is_inexact_lt_midpoint = 0;
|
|
is_inexact_gt_midpoint = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
// check for rounding overflow
|
|
if (Cstar.w[1] == 0x0001ed09bead87c0ull &&
|
|
Cstar.w[0] == 0x378d8e6400000000ull) { // if Cstar = 10^34
|
|
tmp64 = x_exp + y_exp + ((UINT64) (ind + 6) << 49);
|
|
Cstar.w[1] = 0x0000314dc6448d93ull; // Cstar = 10^33
|
|
Cstar.w[0] = 0x38c15b0a00000000ull;
|
|
} else { // 10^33 <= Cstar <= 10^34 - 1
|
|
tmp64 = x_exp + y_exp + ((UINT64) (ind + 5) << 49); // ind+5 = q-34
|
|
}
|
|
if (tmp64 >= EXP_MAX + BIN_EXP_BIAS) { // possibble overflow
|
|
// exp >= emax for the result rounded to nearest even
|
|
if (rnd_mode == ROUNDING_TO_NEAREST
|
|
|| rnd_mode == ROUNDING_TIES_AWAY) {
|
|
if (tmp64 > EXP_MAX + BIN_EXP_BIAS) {
|
|
|
|
// |res| >= 10^(p-1) * 10^(emax+1) <=> exp >= emax+1
|
|
res.w[1] = sign | 0x7800000000000000ull; // +/-inf
|
|
res.w[0] = 0x0ull;
|
|
*pfpsf |= INEXACT_EXCEPTION; // set the inexact flag
|
|
*pfpsf |= OVERFLOW_EXCEPTION; // set the overflow flag
|
|
is_overflow = 1;
|
|
} else { // not overflow
|
|
res.w[0] = Cstar.w[0];
|
|
res.w[1] = Cstar.w[1];
|
|
res.w[1] |= (tmp64 - BIN_EXP_BIAS);
|
|
}
|
|
} else if (rnd_mode == ROUNDING_DOWN) {
|
|
if (!sign && (tmp64 > EXP_MAX + BIN_EXP_BIAS) &&
|
|
!(tmp64 == EXP_MAX + BIN_EXP_BIAS + EXP_P1 &&
|
|
Cstar.w[1] == 0x0000314dc6448d93ull &&
|
|
Cstar.w[0] == 0x38c15b0a00000000ull && // 10^33 * 10^(emax+1)
|
|
(is_midpoint_lt_even || is_inexact_gt_midpoint))) {
|
|
// res = +MAXFP
|
|
res.w[1] = 0x5fffed09bead87c0ull;
|
|
res.w[0] = 0x378d8e63ffffffffull; // (10^34-1) * 10^emax
|
|
*pfpsf |= INEXACT_EXCEPTION; // set the inexact flag
|
|
*pfpsf |= OVERFLOW_EXCEPTION; // set the overflow flag
|
|
is_overflow = 1;
|
|
} else if (sign && ((tmp64 > EXP_MAX + BIN_EXP_BIAS) ||
|
|
((tmp64 == EXP_MAX + BIN_EXP_BIAS) &&
|
|
Cstar.w[1] == 0x0001ed09bead87c0ull &&
|
|
Cstar.w[0] == 0x378d8e63ffffffffull && // (10^34-1) * 10^emax
|
|
is_inexact_lt_midpoint))) {
|
|
res.w[1] = 0xf800000000000000ull; // -inf
|
|
res.w[0] = 0x0ull;
|
|
*pfpsf |= INEXACT_EXCEPTION; // set the inexact flag
|
|
*pfpsf |= OVERFLOW_EXCEPTION; // set the overflow flag
|
|
is_overflow = 1;
|
|
} else { // not overflow
|
|
res.w[0] = Cstar.w[0];
|
|
res.w[1] = Cstar.w[1];
|
|
res.w[1] |= (tmp64 - BIN_EXP_BIAS);
|
|
}
|
|
} else if (rnd_mode == ROUNDING_UP) {
|
|
if (sign && (tmp64 > EXP_MAX + BIN_EXP_BIAS) &&
|
|
!(tmp64 == EXP_MAX + BIN_EXP_BIAS + EXP_P1 &&
|
|
Cstar.w[1] == 0x0000314dc6448d93ull &&
|
|
Cstar.w[0] == 0x38c15b0a00000000ull && // 10^33 * 10^(emax+1)
|
|
(is_midpoint_lt_even || is_inexact_gt_midpoint))) {
|
|
// res = -MAXFP
|
|
res.w[1] = 0xdfffed09bead87c0ull;
|
|
res.w[0] = 0x378d8e63ffffffffull; // -(10^34-1) * 10^emax
|
|
*pfpsf |= INEXACT_EXCEPTION; // set the inexact flag
|
|
*pfpsf |= OVERFLOW_EXCEPTION; // set the overflow flag
|
|
is_overflow = 1;
|
|
} else if (!sign && ((tmp64 > EXP_MAX + BIN_EXP_BIAS) ||
|
|
((tmp64 == EXP_MAX + BIN_EXP_BIAS) &&
|
|
Cstar.w[1] == 0x0001ed09bead87c0ull &&
|
|
Cstar.w[0] == 0x378d8e63ffffffffull && // (10^34-1) * 10^emax
|
|
is_inexact_lt_midpoint))) {
|
|
res.w[1] = 0x7800000000000000ull; // inf
|
|
res.w[0] = 0x0ull;
|
|
*pfpsf |= INEXACT_EXCEPTION; // set the inexact flag
|
|
*pfpsf |= OVERFLOW_EXCEPTION; // set the overflow flag
|
|
is_overflow = 1;
|
|
} else { // not overflow
|
|
res.w[0] = Cstar.w[0];
|
|
res.w[1] = Cstar.w[1];
|
|
res.w[1] |= (tmp64 - BIN_EXP_BIAS);
|
|
}
|
|
} else { // if (rnd_mode == ROUNDING_TO_ZERO)
|
|
if (!sign && (tmp64 > EXP_MAX + BIN_EXP_BIAS) &&
|
|
!(tmp64 == EXP_MAX + BIN_EXP_BIAS + EXP_P1 &&
|
|
Cstar.w[1] == 0x0000314dc6448d93ull &&
|
|
Cstar.w[0] == 0x38c15b0a00000000ull && // 10^33 * 10^(emax+1)
|
|
(is_midpoint_lt_even || is_inexact_gt_midpoint))) {
|
|
// res = +MAXFP
|
|
res.w[1] = 0x5fffed09bead87c0ull;
|
|
res.w[0] = 0x378d8e63ffffffffull; // (10^34-1) * 10^emax
|
|
*pfpsf |= INEXACT_EXCEPTION; // set the inexact flag
|
|
*pfpsf |= OVERFLOW_EXCEPTION; // set the overflow flag
|
|
is_overflow = 1;
|
|
} else if (sign && (tmp64 > EXP_MAX + BIN_EXP_BIAS) &&
|
|
!(tmp64 == EXP_MAX + BIN_EXP_BIAS + EXP_P1 &&
|
|
Cstar.w[1] == 0x0000314dc6448d93ull &&
|
|
Cstar.w[0] == 0x38c15b0a00000000ull && // 10^33 * 10^(emax+1)
|
|
(is_midpoint_lt_even || is_inexact_gt_midpoint))) {
|
|
// res = -MAXFP
|
|
res.w[1] = 0xdfffed09bead87c0ull;
|
|
res.w[0] = 0x378d8e63ffffffffull; // -(10^34-1) * 10^emax
|
|
*pfpsf |= INEXACT_EXCEPTION; // set the inexact flag
|
|
*pfpsf |= OVERFLOW_EXCEPTION; // set the overflow flag
|
|
is_overflow = 1;
|
|
} else { // not overflow
|
|
res.w[0] = Cstar.w[0];
|
|
res.w[1] = Cstar.w[1];
|
|
res.w[1] |= (tmp64 - BIN_EXP_BIAS);
|
|
}
|
|
}
|
|
if (is_overflow) { // return for overflow
|
|
// set the inexact flag
|
|
*pfpsf |= INEXACT_EXCEPTION;
|
|
|
|
// set the overflow flag
|
|
*pfpsf |= OVERFLOW_EXCEPTION;
|
|
|
|
// is_overflow = 1;
|
|
BID_RETURN (res)}
|
|
} else {
|
|
res.w[0] = Cstar.w[0];
|
|
res.w[1] = Cstar.w[1];
|
|
res.w[1] |= (tmp64 - BIN_EXP_BIAS);
|
|
}
|
|
res.w[1] |= sign;
|
|
} else { // if (58 <= q <= 68) exact coefficient takes 192-226 bits
|
|
// C = C + 1/2 * 10^x where the result C fits in 226 bits
|
|
// (10^68 - 1 + 1/2 * 10^34 can be represented with 226 bits)
|
|
// x = q - p = q - 34, 24 <= x <= 34
|
|
// kx = 10^(-x) = __bid_ten2mk256M[ind]
|
|
// C* = (C + 1/2 * 10^x) * 10^(-x)
|
|
// the approximation of 10^(-x) was rounded up to 256 bits
|
|
ind = q - 58; // 0 <= ind <= 10
|
|
tmp64 = C.w[0];
|
|
tmp64A = C.w[1];
|
|
|
|
// Note:
|
|
// f* has 384 bits (more than 320 bits)
|
|
// x - 1 = q - 35 = ind + 23
|
|
// add two 64-bit words; e.g. for ind=0 <=> q=58, add 1/2*10^24
|
|
C.w[0] = C.w[0] + __bid_midpoint128[ind + 4].w[0];
|
|
C.w[1] = C.w[1] + __bid_midpoint128[ind + 4].w[1];
|
|
if (C.w[0] < tmp64)
|
|
C.w[1]++;
|
|
if (C.w[1] < tmp64A)
|
|
C.w[2]++;
|
|
if (C.w[2] == 0)
|
|
C.w[3]++;
|
|
__mul_256x256_to_512 (P512, C, __bid_ten2mk256M[ind])
|
|
// calculate C* and f*; C* is actually floor(C*) in this case
|
|
// C* and f* need shifting and masking, as shown by
|
|
// __bid_shiftright256M[] and __bid_maskhigh256M[]
|
|
// C* has 128 bits; P512.w[7], P512.w[6], P512.w[5] need to be
|
|
// shifted right by Ex-320 = __bid_shiftright256M[ind]
|
|
shift = __bid_shiftright256M[ind]; // 15 <= shift <= 48
|
|
if (shift == 32) {
|
|
Cstar.w[0] =
|
|
((P512.w[5] >> 31) >> 1) | ((P512.w[6] << 31) << 1);
|
|
Cstar.w[1] =
|
|
((P512.w[6] >> 31) >> 1) | ((P512.w[7] << 31) << 1);
|
|
} else {
|
|
Cstar.w[0] = (P512.w[5] >> shift) | (P512.w[6] << (64 - shift));
|
|
Cstar.w[1] = (P512.w[6] >> shift) | (P512.w[7] << (64 - shift));
|
|
}
|
|
// f* has 384 bits
|
|
fstar.w[5] = P512.w[5] & __bid_maskhigh256M[ind];
|
|
fstar.w[4] = P512.w[4];
|
|
fstar.w[3] = P512.w[3];
|
|
fstar.w[2] = P512.w[2];
|
|
fstar.w[1] = P512.w[1];
|
|
fstar.w[0] = P512.w[0];
|
|
|
|
// the top Ex bits of 10^(-x) are T* = __bid_ten2mk256truncM[ind], e.g.
|
|
// if x=24, T* = __bid_ten2mk256truncM[0] =
|
|
// 0x9abe14cd44753b52c4926a9672793542d78c3615cf3a050cf23472530ce6e3ec =~
|
|
// 10^(-24) * 2^335
|
|
// if (0 < f* < 10^(-x)) then the result is a midpoint
|
|
// if floor(C*) is even then C* = floor(C*) - logical right
|
|
// shift; C* has p decimal digits, correct by Prop. 1)
|
|
// else if floor(C*) is odd C* = floor(C*)-1 (logical right
|
|
// shift; C* has p decimal digits, correct by Pr. 1)
|
|
// else
|
|
// C* = floor(C*) (logical right shift; C has p decimal digits,
|
|
// correct by Property 1)
|
|
// n = C* * 10^(e+x)
|
|
|
|
// determine inexactness of the rounding of C*
|
|
// if (0 < f* - 1/2 < T* ~= 10^(-x)) then
|
|
// the result is exact
|
|
// else // if (f* - 1/2 >= T*) then
|
|
// the result is inexact
|
|
if (fstar.w[5] > __bid_one_half256M[ind]
|
|
|| (fstar.w[5] == __bid_one_half256M[ind]
|
|
&& (fstar.w[4] || fstar.w[3] || fstar.w[2] || fstar.w[1]
|
|
|| fstar.w[0]))) {
|
|
|
|
// f* > 1/2 and the result may be exact
|
|
// Calculate f* - 1/2
|
|
tmp64 = fstar.w[5] - __bid_one_half256M[ind]; // tmp64 >= 0
|
|
if (tmp64 || fstar.w[4] || fstar.w[3] > __bid_ten2mk256truncM[ind].w[3] ||
|
|
(fstar.w[3] == __bid_ten2mk256truncM[ind].w[3] &&
|
|
fstar.w[2] > __bid_ten2mk256truncM[ind].w[2]) ||
|
|
(fstar.w[3] == __bid_ten2mk256truncM[ind].w[3] &&
|
|
fstar.w[2] == __bid_ten2mk256truncM[ind].w[2] &&
|
|
fstar.w[1] > __bid_ten2mk256truncM[ind].w[1]) ||
|
|
(fstar.w[3] == __bid_ten2mk256truncM[ind].w[3] &&
|
|
fstar.w[2] == __bid_ten2mk256truncM[ind].w[2] &&
|
|
fstar.w[1] == __bid_ten2mk256truncM[ind].w[1] &&
|
|
fstar.w[0] > __bid_ten2mk256truncM[ind].w[0])) { // f* - 1/2 > 10^(-x)
|
|
// set the inexact flag
|
|
*pfpsf |= INEXACT_EXCEPTION;
|
|
is_inexact_lt_midpoint = 1;
|
|
} // else the result is exact
|
|
} else { // the result is inexact; f2* <= 1/2
|
|
// set the inexact flag
|
|
*pfpsf |= INEXACT_EXCEPTION;
|
|
tmp_fpa = 1;
|
|
is_inexact_gt_midpoint = 1;
|
|
}
|
|
|
|
// check for midpoints (could do this before determining inexactness)
|
|
if ((fstar.w[5] == 0) && (fstar.w[4] == 0)
|
|
&& (fstar.w[3] || fstar.w[2] || fstar.w[1] || fstar.w[0])
|
|
&& (fstar.w[3] < __bid_ten2mk256truncM[ind].w[3]
|
|
|| (fstar.w[3] == __bid_ten2mk256truncM[ind].w[3]
|
|
&& fstar.w[2] < __bid_ten2mk256truncM[ind].w[2])
|
|
|| (fstar.w[3] == __bid_ten2mk256truncM[ind].w[3]
|
|
&& fstar.w[2] == __bid_ten2mk256truncM[ind].w[2]
|
|
&& fstar.w[1] < __bid_ten2mk256truncM[ind].w[1])
|
|
|| (fstar.w[3] == __bid_ten2mk256truncM[ind].w[3]
|
|
&& fstar.w[2] == __bid_ten2mk256truncM[ind].w[2]
|
|
&& fstar.w[1] == __bid_ten2mk256truncM[ind].w[1]
|
|
&& fstar.w[0] <= __bid_ten2mk256truncM[ind].w[1]))) {
|
|
|
|
// the result is a midpoint
|
|
if (Cstar.w[0] & 0x01) { // Cstar.w[0] is odd; MP in [EVEN, ODD]
|
|
// if floor(C*) is odd C = floor(C*) - 1; the result may be 0
|
|
Cstar.w[0]--; // Cstar.w[0] is now even
|
|
if (tmp_fpa == 1)
|
|
tmp_fpa = 0;
|
|
is_midpoint_gt_even = 1;
|
|
is_inexact_lt_midpoint = 0;
|
|
is_inexact_gt_midpoint = 0;
|
|
} else { // else MP in [ODD, EVEN]
|
|
is_midpoint_lt_even = 1;
|
|
is_inexact_lt_midpoint = 0;
|
|
is_inexact_gt_midpoint = 0;
|
|
}
|
|
}
|
|
// check for rounding overflow
|
|
if (Cstar.w[1] == 0x0001ed09bead87c0ull &&
|
|
Cstar.w[0] == 0x378d8e6400000000ull) { // if Cstar = 10^34
|
|
tmp64 = x_exp + y_exp + ((UINT64) (ind + 25) << 49);
|
|
Cstar.w[1] = 0x0000314dc6448d93ull; // Cstar = 10^33
|
|
Cstar.w[0] = 0x38c15b0a00000000ull;
|
|
} else { // 10^33 <= Cstar <= 10^34 - 1
|
|
tmp64 = x_exp + y_exp + ((UINT64) (ind + 24) << 49); // ind+24 = q-34
|
|
}
|
|
if (tmp64 >= EXP_MAX + BIN_EXP_BIAS) { // possibble overflow
|
|
// exp >= emax for the result rounded to nearest even
|
|
if (rnd_mode == ROUNDING_TO_NEAREST
|
|
|| rnd_mode == ROUNDING_TIES_AWAY) {
|
|
if (tmp64 > EXP_MAX + BIN_EXP_BIAS) {
|
|
|
|
// |res| >= 10^(p-1) * 10^(emax+1) <=> exp >= emax+1
|
|
res.w[1] = sign | 0x7800000000000000ull; // +/-inf
|
|
res.w[0] = 0x0ull;
|
|
*pfpsf |= INEXACT_EXCEPTION; // set the inexact flag
|
|
*pfpsf |= OVERFLOW_EXCEPTION; // set the overflow flag
|
|
is_overflow = 1;
|
|
} else { // not overflow
|
|
res.w[0] = Cstar.w[0];
|
|
res.w[1] = Cstar.w[1];
|
|
res.w[1] |= (tmp64 - BIN_EXP_BIAS);
|
|
}
|
|
} else if (rnd_mode == ROUNDING_DOWN) {
|
|
if (!sign && (tmp64 > EXP_MAX + BIN_EXP_BIAS) &&
|
|
!(tmp64 == EXP_MAX + BIN_EXP_BIAS + EXP_P1 &&
|
|
Cstar.w[1] == 0x0000314dc6448d93ull &&
|
|
Cstar.w[0] == 0x38c15b0a00000000ull && // 10^33 * 10^(emax+1)
|
|
(is_midpoint_lt_even || is_inexact_gt_midpoint))) {
|
|
// res = +MAXFP
|
|
res.w[1] = 0x5fffed09bead87c0ull;
|
|
res.w[0] = 0x378d8e63ffffffffull; // (10^34-1) * 10^emax
|
|
*pfpsf |= INEXACT_EXCEPTION; // set the inexact flag
|
|
*pfpsf |= OVERFLOW_EXCEPTION; // set the overflow flag
|
|
is_overflow = 1;
|
|
} else if (sign && ((tmp64 > EXP_MAX + BIN_EXP_BIAS) ||
|
|
((tmp64 == EXP_MAX + BIN_EXP_BIAS) &&
|
|
Cstar.w[1] == 0x0001ed09bead87c0ull &&
|
|
Cstar.w[0] == 0x378d8e63ffffffffull && // (10^34-1) * 10^emax
|
|
is_inexact_lt_midpoint))) {
|
|
res.w[1] = 0xf800000000000000ull; // -inf
|
|
res.w[0] = 0x0ull;
|
|
*pfpsf |= INEXACT_EXCEPTION; // set the inexact flag
|
|
*pfpsf |= OVERFLOW_EXCEPTION; // set the overflow flag
|
|
is_overflow = 1;
|
|
} else { // not overflow
|
|
res.w[0] = Cstar.w[0];
|
|
res.w[1] = Cstar.w[1];
|
|
res.w[1] |= (tmp64 - BIN_EXP_BIAS);
|
|
}
|
|
} else if (rnd_mode == ROUNDING_UP) {
|
|
if (sign && (tmp64 > EXP_MAX + BIN_EXP_BIAS) &&
|
|
!(tmp64 == EXP_MAX + BIN_EXP_BIAS + EXP_P1 &&
|
|
Cstar.w[1] == 0x0000314dc6448d93ull &&
|
|
Cstar.w[0] == 0x38c15b0a00000000ull && // 10^33 * 10^(emax+1)
|
|
(is_midpoint_lt_even || is_inexact_gt_midpoint))) {
|
|
// res = -MAXFP
|
|
res.w[1] = 0xdfffed09bead87c0ull;
|
|
res.w[0] = 0x378d8e63ffffffffull; // -(10^34-1) * 10^emax
|
|
*pfpsf |= INEXACT_EXCEPTION; // set the inexact flag
|
|
*pfpsf |= OVERFLOW_EXCEPTION; // set the overflow flag
|
|
is_overflow = 1;
|
|
} else if (!sign && ((tmp64 > EXP_MAX + BIN_EXP_BIAS) ||
|
|
((tmp64 == EXP_MAX + BIN_EXP_BIAS) &&
|
|
Cstar.w[1] == 0x0001ed09bead87c0ull &&
|
|
Cstar.w[0] == 0x378d8e63ffffffffull && // (10^34-1) * 10^emax
|
|
is_inexact_lt_midpoint))) {
|
|
res.w[1] = 0x7800000000000000ull; // inf
|
|
res.w[0] = 0x0ull;
|
|
*pfpsf |= INEXACT_EXCEPTION; // set the inexact flag
|
|
*pfpsf |= OVERFLOW_EXCEPTION; // set the overflow flag
|
|
is_overflow = 1;
|
|
} else { // not overflow
|
|
res.w[0] = Cstar.w[0];
|
|
res.w[1] = Cstar.w[1];
|
|
res.w[1] |= (tmp64 - BIN_EXP_BIAS);
|
|
}
|
|
} else { // if (rnd_mode == ROUNDING_TO_ZERO)
|
|
if (!sign && (tmp64 > EXP_MAX + BIN_EXP_BIAS) &&
|
|
!(tmp64 == EXP_MAX + BIN_EXP_BIAS + EXP_P1 &&
|
|
Cstar.w[1] == 0x0000314dc6448d93ull &&
|
|
Cstar.w[0] == 0x38c15b0a00000000ull && // 10^33 * 10^(emax+1)
|
|
(is_midpoint_lt_even || is_inexact_gt_midpoint))) {
|
|
// res = +MAXFP
|
|
res.w[1] = 0x5fffed09bead87c0ull;
|
|
res.w[0] = 0x378d8e63ffffffffull; // (10^34-1) * 10^emax
|
|
*pfpsf |= INEXACT_EXCEPTION; // set the inexact flag
|
|
*pfpsf |= OVERFLOW_EXCEPTION; // set the overflow flag
|
|
is_overflow = 1;
|
|
} else if (sign && (tmp64 > EXP_MAX + BIN_EXP_BIAS) &&
|
|
!(tmp64 == EXP_MAX + BIN_EXP_BIAS + EXP_P1 &&
|
|
Cstar.w[1] == 0x0000314dc6448d93ull &&
|
|
Cstar.w[0] == 0x38c15b0a00000000ull && // 10^33 * 10^(emax+1)
|
|
(is_midpoint_lt_even || is_inexact_gt_midpoint))) {
|
|
// res = -MAXFP
|
|
res.w[1] = 0xdfffed09bead87c0ull;
|
|
res.w[0] = 0x378d8e63ffffffffull; // -(10^34-1) * 10^emax
|
|
*pfpsf |= INEXACT_EXCEPTION; // set the inexact flag
|
|
*pfpsf |= OVERFLOW_EXCEPTION; // set the overflow flag
|
|
is_overflow = 1;
|
|
} else { // not overflow
|
|
res.w[0] = Cstar.w[0];
|
|
res.w[1] = Cstar.w[1];
|
|
res.w[1] |= (tmp64 - BIN_EXP_BIAS);
|
|
}
|
|
}
|
|
if (is_overflow) { // return for overflow
|
|
// set the inexact flag
|
|
*pfpsf |= INEXACT_EXCEPTION;
|
|
|
|
// set the overflow flag
|
|
*pfpsf |= OVERFLOW_EXCEPTION;
|
|
|
|
// is_overflow = 1;
|
|
BID_RETURN (res);
|
|
}
|
|
} else {
|
|
res.w[0] = Cstar.w[0];
|
|
res.w[1] = Cstar.w[1];
|
|
res.w[1] |= (tmp64 - BIN_EXP_BIAS);
|
|
}
|
|
res.w[1] |= sign;
|
|
}
|
|
|
|
// general correction from RN to RA, RM, RP, RZ
|
|
if (rnd_mode != ROUNDING_TO_NEAREST && !is_overflow) { // overflow is solved
|
|
x_exp = res.w[1] & MASK_EXP; // biased and shifted left 49 bit positions
|
|
C1_hi = res.w[1] & MASK_COEFF;
|
|
C1_lo = res.w[0];
|
|
if ((!sign && ((rnd_mode == ROUNDING_UP && is_inexact_lt_midpoint) ||
|
|
((rnd_mode == ROUNDING_TIES_AWAY || rnd_mode == ROUNDING_UP) &&
|
|
is_midpoint_gt_even))) ||
|
|
(sign && ((rnd_mode == ROUNDING_DOWN && is_inexact_lt_midpoint) ||
|
|
((rnd_mode == ROUNDING_TIES_AWAY || rnd_mode == ROUNDING_DOWN) &&
|
|
is_midpoint_gt_even)))) {
|
|
|
|
// C1 = C1 + 1
|
|
C1_lo = C1_lo + 1;
|
|
if (C1_lo == 0) { // rounding overflow in the low 64 bits
|
|
C1_hi = C1_hi + 1;
|
|
if (C1_hi == 0x0001ed09bead87c0ull
|
|
&& C1_lo == 0x378d8e6400000000ull) {
|
|
|
|
// C1 = 10^34 => rounding overflow
|
|
C1_hi = 0x0000314dc6448d93ull;
|
|
C1_lo = 0x38c15b0a00000000ull; // 10^33
|
|
x_exp = x_exp + EXP_P1;
|
|
}
|
|
}
|
|
} else if ((is_midpoint_lt_even || is_inexact_gt_midpoint)
|
|
&& ((sign && (rnd_mode == ROUNDING_UP ||
|
|
rnd_mode == ROUNDING_TO_ZERO)) ||
|
|
(!sign && (rnd_mode == ROUNDING_DOWN ||
|
|
rnd_mode == ROUNDING_TO_ZERO)))) {
|
|
|
|
// C1 = C1 - 1
|
|
C1_lo = C1_lo - 1;
|
|
if (C1_lo == 0xffffffffffffffffull)
|
|
C1_hi--;
|
|
|
|
// check if we crossed into the lower decade
|
|
if (C1_hi == 0x0000314dc6448d93ull && C1_lo == 0x38c15b09ffffffffull) {
|
|
// 10^33 - 1
|
|
C1_hi = 0x0001ed09bead87c0ull; // 10^34 - 1
|
|
C1_lo = 0x378d8e63ffffffffull;
|
|
x_exp = x_exp - EXP_P1; // no underflow (TO CHECK)
|
|
}
|
|
} else {
|
|
; // exact, the result is already correct
|
|
}
|
|
|
|
// assemble the result
|
|
res.w[1] = x_exp | C1_hi;
|
|
res.w[0] = C1_lo;
|
|
}
|
|
res.w[1] |= sign;
|
|
BID_RETURN (res);
|
|
}
|
|
_underflow_path:
|
|
// got here because q - P34 < ind where ind = EMIN - ex - ey
|
|
// q is the number of digits in C; ind is the [positive] exponent of the
|
|
// negative power of 10 that must multiply C in order to make the result's
|
|
// exponent equal to e_min - P34 + 1 = -6176
|
|
ind =
|
|
(int) (((SINT64) EXP_MIN + (SINT64) BIN_EXP_BIAS - (SINT64) x_exp -
|
|
(SINT64) y_exp) >> 49);
|
|
|
|
// q - P34 < ind => -P34 + 1 < ind => -P34 + 2 <= ind
|
|
// ind = EMIN - ex - ey < -6176 + 6176 + 6176 = 6176
|
|
if (q < ind) { // q - ind < 0; result rounds to 0 when rounding to nearest
|
|
// set the inexact and underflow flags
|
|
*pfpsf |= (INEXACT_EXCEPTION | UNDERFLOW_EXCEPTION);
|
|
res.w[1] = EXP_MIN; // EXP_MIN = 0x0
|
|
res.w[0] = 0x0;
|
|
if (rnd_mode != ROUNDING_TO_NEAREST) {
|
|
if ((rnd_mode == ROUNDING_DOWN && sign) ||
|
|
(rnd_mode == ROUNDING_UP && !sign))
|
|
res.w[0] = 0x0000000000000001ull;
|
|
}
|
|
} else if (q == ind) { // q - ind = 0; result rounds to 0 or +/-1*10^EMIN
|
|
// set the inexact and underflow flags
|
|
*pfpsf |= (INEXACT_EXCEPTION | UNDERFLOW_EXCEPTION);
|
|
|
|
// if C <= 5*10^(q-1) then C = 0 else C = 1
|
|
if (q <= 19) {
|
|
if (C.w[0] == __bid_midpoint64[q - 1]) { // C = 0.5 * 10^emin
|
|
if (rnd_mode == ROUNDING_TO_NEAREST || (rnd_mode == ROUNDING_DOWN
|
|
&& !sign) || (rnd_mode == ROUNDING_UP && sign)
|
|
|| rnd_mode == ROUNDING_TO_ZERO) {
|
|
res.w[1] = EXP_MIN;
|
|
res.w[0] = 0;
|
|
} else {
|
|
res.w[1] = EXP_MIN;
|
|
res.w[0] = 1;
|
|
}
|
|
} else if (C.w[0] < __bid_midpoint64[q - 1]) { // C < 0.5 * 10^emin
|
|
if (rnd_mode == ROUNDING_TO_NEAREST
|
|
|| rnd_mode == ROUNDING_TIES_AWAY
|
|
|| (rnd_mode == ROUNDING_DOWN && !sign)
|
|
|| (rnd_mode == ROUNDING_UP && sign)
|
|
|| rnd_mode == ROUNDING_TO_ZERO) {
|
|
res.w[1] = EXP_MIN;
|
|
res.w[0] = 0;
|
|
} else {
|
|
res.w[1] = EXP_MIN;
|
|
res.w[0] = 1;
|
|
}
|
|
} else { // C > 0.5 * 10^emin
|
|
if (rnd_mode == ROUNDING_TO_NEAREST
|
|
|| rnd_mode == ROUNDING_TIES_AWAY
|
|
|| (rnd_mode == ROUNDING_DOWN && sign)
|
|
|| (rnd_mode == ROUNDING_UP && !sign)) {
|
|
res.w[1] = EXP_MIN;
|
|
res.w[0] = 1;
|
|
} else {
|
|
res.w[1] = EXP_MIN;
|
|
res.w[0] = 0;
|
|
}
|
|
}
|
|
} else if (q <= 38) { // 20 <= q <= 38
|
|
// if q <= P34 = 34 the exact result rounded to P34 digits with unbounded
|
|
// exponent will have an exponent smaller than e_min; otherwise if
|
|
// 35 <= q <= 38, it depends
|
|
if (C.w[1] == __bid_midpoint128[q - 20].w[1] &&
|
|
C.w[0] == __bid_midpoint128[q - 20].w[0]) { // C = 0.5 * 10^emin
|
|
if (rnd_mode == ROUNDING_TO_NEAREST || (rnd_mode == ROUNDING_DOWN
|
|
&& !sign) || (rnd_mode == ROUNDING_UP && sign)
|
|
|| rnd_mode == ROUNDING_TO_ZERO) {
|
|
res.w[1] = EXP_MIN;
|
|
res.w[0] = 0;
|
|
} else {
|
|
res.w[1] = EXP_MIN;
|
|
res.w[0] = 1;
|
|
}
|
|
} else if (C.w[1] < __bid_midpoint128[q - 20].w[1] ||
|
|
(C.w[1] == __bid_midpoint128[q - 20].w[1] &&
|
|
C.w[0] < __bid_midpoint128[q - 20].w[0])) { // C < 0.5 * 10^emin
|
|
if (rnd_mode == ROUNDING_TO_NEAREST
|
|
|| rnd_mode == ROUNDING_TIES_AWAY
|
|
|| (rnd_mode == ROUNDING_DOWN && !sign)
|
|
|| (rnd_mode == ROUNDING_UP && sign)
|
|
|| rnd_mode == ROUNDING_TO_ZERO) {
|
|
res.w[1] = EXP_MIN;
|
|
res.w[0] = 0;
|
|
} else {
|
|
res.w[1] = EXP_MIN;
|
|
res.w[0] = 1;
|
|
}
|
|
} else { // C > 0.5 * 10^emin
|
|
if (rnd_mode == ROUNDING_TO_NEAREST
|
|
|| rnd_mode == ROUNDING_TIES_AWAY
|
|
|| (rnd_mode == ROUNDING_DOWN && sign)
|
|
|| (rnd_mode == ROUNDING_UP && !sign)) {
|
|
res.w[1] = EXP_MIN;
|
|
res.w[0] = 1;
|
|
} else {
|
|
res.w[1] = EXP_MIN;
|
|
res.w[0] = 0;
|
|
}
|
|
}
|
|
} else if (q <= 58) { // 39 <= q <= 58
|
|
// Note: for q = 58 C may take 256 bits, so need to test C.w[3]
|
|
if (C.w[3] == 0x0 && C.w[2] == __bid_midpoint192[q - 39].w[2] &&
|
|
C.w[1] == __bid_midpoint192[q - 39].w[1] &&
|
|
C.w[0] == __bid_midpoint192[q - 39].w[0]) { // C = 0.5 * 10^emin
|
|
if (rnd_mode == ROUNDING_TO_NEAREST || (rnd_mode == ROUNDING_DOWN
|
|
&& !sign) || (rnd_mode == ROUNDING_UP && sign)
|
|
|| rnd_mode == ROUNDING_TO_ZERO) {
|
|
res.w[1] = EXP_MIN;
|
|
res.w[0] = 0;
|
|
} else {
|
|
res.w[1] = EXP_MIN;
|
|
res.w[0] = 1;
|
|
}
|
|
} else if ((C.w[3] == 0x0 && C.w[2] < __bid_midpoint192[q - 39].w[2]) ||
|
|
(C.w[3] == 0x0 && C.w[2] == __bid_midpoint192[q - 39].w[2] &&
|
|
C.w[1] < __bid_midpoint192[q - 39].w[1]) || (C.w[3] == 0x0 &&
|
|
C.w[2] == __bid_midpoint192[q - 39].w[2] &&
|
|
C.w[1] == __bid_midpoint192[q - 39].w[1] &&
|
|
C.w[0] < __bid_midpoint192[q - 39].w[0])) { // C < 0.5 * 10^emin
|
|
if (rnd_mode == ROUNDING_TO_NEAREST
|
|
|| rnd_mode == ROUNDING_TIES_AWAY
|
|
|| (rnd_mode == ROUNDING_DOWN && !sign)
|
|
|| (rnd_mode == ROUNDING_UP && sign)
|
|
|| rnd_mode == ROUNDING_TO_ZERO) {
|
|
res.w[1] = EXP_MIN;
|
|
res.w[0] = 0;
|
|
} else {
|
|
res.w[1] = EXP_MIN;
|
|
res.w[0] = 1;
|
|
}
|
|
} else { // C > 0.5 * 10^emin
|
|
if (rnd_mode == ROUNDING_TO_NEAREST
|
|
|| rnd_mode == ROUNDING_TIES_AWAY
|
|
|| (rnd_mode == ROUNDING_DOWN && sign)
|
|
|| (rnd_mode == ROUNDING_UP && !sign)) {
|
|
res.w[1] = EXP_MIN;
|
|
res.w[0] = 1;
|
|
} else {
|
|
res.w[1] = EXP_MIN;
|
|
res.w[0] = 0;
|
|
}
|
|
}
|
|
} else { // if (q <= 68), i.e. 59 <= q <= 68
|
|
if (C.w[3] == __bid_midpoint256[q - 59].w[3] &&
|
|
C.w[2] == __bid_midpoint256[q - 59].w[2] &&
|
|
C.w[1] == __bid_midpoint256[q - 59].w[1] &&
|
|
C.w[0] == __bid_midpoint256[q - 59].w[0]) { // C = 0.5 * 10^emin
|
|
if (rnd_mode == ROUNDING_TO_NEAREST || (rnd_mode == ROUNDING_DOWN
|
|
&& !sign) || (rnd_mode == ROUNDING_UP && sign)
|
|
|| rnd_mode == ROUNDING_TO_ZERO) {
|
|
res.w[1] = EXP_MIN;
|
|
res.w[0] = 0;
|
|
} else {
|
|
res.w[1] = EXP_MIN;
|
|
res.w[0] = 1;
|
|
}
|
|
} else if (C.w[3] < __bid_midpoint256[q - 59].w[3] ||
|
|
(C.w[3] == __bid_midpoint256[q - 59].w[3] &&
|
|
C.w[2] < __bid_midpoint256[q - 59].w[2]) ||
|
|
(C.w[3] == __bid_midpoint256[q - 59].w[3] &&
|
|
C.w[2] == __bid_midpoint256[q - 59].w[2] &&
|
|
C.w[1] < __bid_midpoint256[q - 59].w[1]) ||
|
|
(C.w[3] == __bid_midpoint256[q - 59].w[3] &&
|
|
C.w[2] == __bid_midpoint256[q - 59].w[2] &&
|
|
C.w[1] == __bid_midpoint256[q - 59].w[1] &&
|
|
C.w[0] < __bid_midpoint256[q - 59].w[0])) { // C < 0.5 * 10^emin
|
|
if (rnd_mode == ROUNDING_TO_NEAREST
|
|
|| rnd_mode == ROUNDING_TIES_AWAY
|
|
|| (rnd_mode == ROUNDING_DOWN && !sign)
|
|
|| (rnd_mode == ROUNDING_UP && sign)
|
|
|| rnd_mode == ROUNDING_TO_ZERO) {
|
|
res.w[1] = EXP_MIN;
|
|
res.w[0] = 0;
|
|
} else {
|
|
res.w[1] = EXP_MIN;
|
|
res.w[0] = 1;
|
|
}
|
|
} else { // C > 0.5 * 10^emin
|
|
if (rnd_mode == ROUNDING_TO_NEAREST
|
|
|| rnd_mode == ROUNDING_TIES_AWAY
|
|
|| (rnd_mode == ROUNDING_DOWN && sign)
|
|
|| (rnd_mode == ROUNDING_UP && !sign)) {
|
|
res.w[1] = EXP_MIN;
|
|
res.w[0] = 1;
|
|
} else {
|
|
res.w[1] = EXP_MIN;
|
|
res.w[0] = 0;
|
|
}
|
|
}
|
|
}
|
|
} else { // if 0 < q - ind < P34 <=> 1 <= q - ind <= P34 - 1 = 33
|
|
// In general -P34 + 2 <= ind <= 6176 => -P34 + 2 <= ind < q =>
|
|
// -P34 + 2 <= ind <= q - 1
|
|
if (rnd_mode != ROUNDING_TO_NEAREST) {
|
|
is_inexact_lt_midpoint = 0;
|
|
is_inexact_gt_midpoint = 0;
|
|
is_midpoint_lt_even = 0;
|
|
is_midpoint_gt_even = 0;
|
|
}
|
|
if (ind <= 0) { // 0 <= -ind
|
|
// the result is exact
|
|
res.w[1] = (x_exp + y_exp - BIN_EXP_BIAS) | C.w[1];
|
|
res.w[0] = C.w[0];
|
|
|
|
// because the result is exact the U and I status flags are not set
|
|
} else {
|
|
|
|
// if ind > 0 <=> 1 <= ind <= q - 1; must remove ind digits
|
|
// from C, which may have up to 68 digits; note that q >= ind + 1 >= 2
|
|
// Note: there is no underflow in some cases when the coefficient of
|
|
// the result is 10^33 or 10^33 - 1
|
|
if (q <= 18) { // 2 <= q <= 18
|
|
__bid_round64_2_18 (q, ind, C.w[0], &res.w[0], &incr_exp,
|
|
&is_midpoint_lt_even, &is_midpoint_gt_even,
|
|
&is_inexact_lt_midpoint, &is_inexact_gt_midpoint);
|
|
if (incr_exp) {
|
|
|
|
// multiply by 10; this cannot be 10^33
|
|
__mul_64x64_to_128MACH (res, res.w[0], __bid_ten2k64[1]);
|
|
res.w[1] |= (UINT64) EXP_MIN;
|
|
} else { // underflow
|
|
res.w[1] = (UINT64) EXP_MIN;
|
|
}
|
|
if (is_midpoint_lt_even || is_midpoint_gt_even
|
|
|| is_inexact_lt_midpoint || is_inexact_gt_midpoint) {
|
|
|
|
// set the inexact and underflow flags
|
|
*pfpsf |= (INEXACT_EXCEPTION | UNDERFLOW_EXCEPTION);
|
|
}
|
|
} else if (q <= 38) { // 19 <= q <= 38
|
|
P128.w[1] = C.w[1];
|
|
P128.w[0] = C.w[0];
|
|
__bid_round128_19_38 (q, ind, P128, &res, &incr_exp,
|
|
&is_midpoint_lt_even, &is_midpoint_gt_even,
|
|
&is_inexact_lt_midpoint,
|
|
&is_inexact_gt_midpoint);
|
|
if (incr_exp) {
|
|
|
|
// multiply by 10 and check is this is 10^33, because in that case
|
|
// it is possible that this is not underflow
|
|
if (q - ind <= 19) {
|
|
__mul_64x64_to_128MACH (res, res.w[0], __bid_ten2k64[1]);
|
|
} else { // if 20 <= q - ind
|
|
__mul_128x64_to_128 (res, __bid_ten2k64[1], res);
|
|
}
|
|
if ((q - ind + 1) == P34) { // the result is 10^(P34-1)
|
|
// if the result rounded directly to P34 digits is the same, then
|
|
// there is no underflow
|
|
__bid_round128_19_38 (q, ind - 1, P128, &R128, &incr_exp1,
|
|
&is_midpoint_lt_even1,
|
|
&is_midpoint_gt_even1,
|
|
&is_inexact_lt_midpoint1,
|
|
&is_inexact_gt_midpoint1);
|
|
if (res.w[1] == R128.w[1] && res.w[0] == R128.w[0]) {
|
|
no_underflow = 1;
|
|
}
|
|
}
|
|
// res.w[1] |= (UINT64)EXP_MIN; // redundant
|
|
} else { // underflow
|
|
// res.w[1] = (UINT64)EXP_MIN | res.w[1]; // redundant
|
|
}
|
|
if (is_midpoint_lt_even || is_midpoint_gt_even
|
|
|| is_inexact_lt_midpoint || is_inexact_gt_midpoint) {
|
|
|
|
// set the inexact and underflow flags
|
|
*pfpsf |= INEXACT_EXCEPTION;
|
|
is_inexact = 1;
|
|
if (!no_underflow)
|
|
*pfpsf |= UNDERFLOW_EXCEPTION;
|
|
}
|
|
} else if (q <= 57) { // 39 <= q <= 57
|
|
P192.w[2] = C.w[2];
|
|
P192.w[1] = C.w[1];
|
|
P192.w[0] = C.w[0];
|
|
__bid_round192_39_57 (q, ind, P192, &R192, &incr_exp,
|
|
&is_midpoint_lt_even, &is_midpoint_gt_even,
|
|
&is_inexact_lt_midpoint,
|
|
&is_inexact_gt_midpoint);
|
|
if (incr_exp) {
|
|
|
|
// multiply by 10 and check is this is 10^33, because in that case
|
|
// it is possible that this is not underflow
|
|
res.w[1] = R192.w[1]; // res has q - ind digits
|
|
res.w[0] = R192.w[0];
|
|
if (q - ind <= 19) {
|
|
__mul_64x64_to_128MACH (res, res.w[0], __bid_ten2k64[1]);
|
|
} else { // if 20 <= q - ind
|
|
__mul_128x64_to_128 (res, __bid_ten2k64[1], res);
|
|
}
|
|
if ((q - ind + 1) == P34) { // the result is 10^(P34-1)
|
|
// if the result rounded directly to P34 digits is the same, then
|
|
// there is no underflow
|
|
__bid_round192_39_57 (q, ind - 1, P192, &R192, &incr_exp1,
|
|
&is_midpoint_lt_even1,
|
|
&is_midpoint_gt_even1,
|
|
&is_inexact_lt_midpoint1,
|
|
&is_inexact_gt_midpoint1);
|
|
if (res.w[1] == R192.w[1] && res.w[0] == R192.w[0]) {
|
|
no_underflow = 1;
|
|
}
|
|
}
|
|
// res.w[1] |= (UINT64)EXP_MIN; // redundant
|
|
} else { // underflow
|
|
res.w[1] = (UINT64) EXP_MIN | R192.w[1];
|
|
res.w[0] = R192.w[0];
|
|
}
|
|
if (is_midpoint_lt_even || is_midpoint_gt_even
|
|
|| is_inexact_lt_midpoint || is_inexact_gt_midpoint) {
|
|
|
|
// set the inexact and underflow flags
|
|
*pfpsf |= INEXACT_EXCEPTION;
|
|
is_inexact = 1;
|
|
if (!no_underflow)
|
|
*pfpsf |= UNDERFLOW_EXCEPTION;
|
|
}
|
|
} else if (q <= 76) { // 58 <= q <= 76 (actually 58 <= q <= 68)
|
|
P256.w[3] = C.w[3];
|
|
P256.w[2] = C.w[2];
|
|
P256.w[1] = C.w[1];
|
|
P256.w[0] = C.w[0];
|
|
__bid_round256_58_76 (q, ind, P256, &R256, &incr_exp,
|
|
&is_midpoint_lt_even, &is_midpoint_gt_even,
|
|
&is_inexact_lt_midpoint,
|
|
&is_inexact_gt_midpoint);
|
|
if (incr_exp) {
|
|
|
|
// multiply by 10 and check is this is 10^33, because in that case
|
|
// it is possible that this is not underflow
|
|
res.w[1] = R256.w[1]; // res has q - ind digits
|
|
res.w[0] = R256.w[0];
|
|
if (q - ind <= 19) {
|
|
__mul_64x64_to_128MACH (res, res.w[0], __bid_ten2k64[1]);
|
|
} else { // if 20 <= q - ind
|
|
__mul_128x64_to_128 (res, __bid_ten2k64[1], res);
|
|
}
|
|
if ((q - ind + 1) == P34) { // the result is 10^(P34-1)
|
|
// if the result rounded directly to P34 digits is the same, then
|
|
// there is no underflow
|
|
__bid_round256_58_76 (q, ind - 1, P256, &R256, &incr_exp1,
|
|
&is_midpoint_lt_even1,
|
|
&is_midpoint_gt_even1,
|
|
&is_inexact_lt_midpoint1,
|
|
&is_inexact_gt_midpoint1);
|
|
if (res.w[1] == R256.w[1] && res.w[0] == R256.w[0]) {
|
|
no_underflow = 1;
|
|
}
|
|
}
|
|
// res.w[1] |= (UINT64)EXP_MIN; // redundant
|
|
} else { // underflow
|
|
res.w[1] = (UINT64) EXP_MIN | R256.w[1];
|
|
res.w[0] = R256.w[0];
|
|
}
|
|
if (is_midpoint_lt_even || is_midpoint_gt_even
|
|
|| is_inexact_lt_midpoint || is_inexact_gt_midpoint) {
|
|
|
|
// set the inexact and underflow flags
|
|
*pfpsf |= INEXACT_EXCEPTION;
|
|
is_inexact = 1;
|
|
if (!no_underflow)
|
|
*pfpsf |= UNDERFLOW_EXCEPTION;
|
|
}
|
|
}
|
|
}
|
|
|
|
// general correction from RN to RA, RM, RP, RZ
|
|
if (rnd_mode != ROUNDING_TO_NEAREST) {
|
|
x_exp = res.w[1] & MASK_EXP; // biased and shifted left 49 bit positions
|
|
// this must be e_min
|
|
C1_hi = res.w[1] & MASK_COEFF;
|
|
C1_lo = res.w[0];
|
|
if ((!sign && ((rnd_mode == ROUNDING_UP && is_inexact_lt_midpoint) ||
|
|
((rnd_mode == ROUNDING_TIES_AWAY || rnd_mode == ROUNDING_UP) &&
|
|
is_midpoint_gt_even))) ||
|
|
(sign && ((rnd_mode == ROUNDING_DOWN && is_inexact_lt_midpoint) ||
|
|
((rnd_mode == ROUNDING_TIES_AWAY || rnd_mode == ROUNDING_DOWN) &&
|
|
is_midpoint_gt_even)))) {
|
|
|
|
// C1 = C1 + 1
|
|
C1_lo = C1_lo + 1;
|
|
if (C1_lo == 0) { // rounding overflow in the low 64 bits
|
|
C1_hi = C1_hi + 1;
|
|
if (C1_hi == 0x0001ed09bead87c0ull
|
|
&& C1_lo == 0x378d8e6400000000ull) {
|
|
|
|
// C1 = 10^34 => rounding overflow (not possible) TO CHECK
|
|
C1_hi = 0x0000314dc6448d93ull;
|
|
C1_lo = 0x38c15b0a00000000ull; // 10^33
|
|
x_exp = x_exp + EXP_P1; // this must be e_min
|
|
}
|
|
}
|
|
} else if ((is_midpoint_lt_even || is_inexact_gt_midpoint) &&
|
|
((sign &&
|
|
(rnd_mode == ROUNDING_UP || rnd_mode == ROUNDING_TO_ZERO)) ||
|
|
(!sign &&
|
|
(rnd_mode == ROUNDING_DOWN || rnd_mode == ROUNDING_TO_ZERO)))) {
|
|
|
|
// C1 = C1 - 1 (the exponent is emin already)
|
|
C1_lo = C1_lo - 1;
|
|
if (C1_lo == 0xffffffffffffffffull)
|
|
C1_hi--;
|
|
|
|
// cannot cross into the lower decade anymore, but the result can be 0
|
|
} else {
|
|
; // exact, the result is already correct
|
|
}
|
|
|
|
// no overflow is possible
|
|
// assemble the result
|
|
res.w[1] = x_exp | C1_hi;
|
|
res.w[0] = C1_lo;
|
|
|
|
// Now fix the case where the general rounding routine returned a non-tiny
|
|
// result, but after the correction for rounding modes other than to
|
|
// nearest, the result is less in magnitude than 100...0[34] * 10^(-6176)
|
|
// (this is due to the fact that the general rounding routine works only
|
|
// with rounding to nearest)
|
|
if (is_inexact && (x_exp == EXP_MIN)
|
|
&& (C1_hi < 0x0000314dc6448d93ull
|
|
|| (C1_hi == 0x0000314dc6448d93ull
|
|
&& C1_lo < 0x38c15b0a00000000ull))) {
|
|
*pfpsf |= UNDERFLOW_EXCEPTION;
|
|
}
|
|
}
|
|
}
|
|
res.w[1] |= sign;
|
|
BID_RETURN (res);
|
|
}
|