gcc/libgcc/config/libbid/bid64_fma.c
2007-07-04 22:36:50 -07:00

628 lines
19 KiB
C

/* Copyright (C) 2007 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.
In addition to the permissions in the GNU General Public License, the
Free Software Foundation gives you unlimited permission to link the
compiled version of this file into combinations with other programs,
and to distribute those combinations without any restriction coming
from the use of this file. (The General Public License restrictions
do apply in other respects; for example, they cover modification of
the file, and distribution when not linked into a combine
executable.)
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING. If not, write to the Free
Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA. */
/*****************************************************************************
* BID64 fma
*****************************************************************************
*
* Algorithm description:
*
* if multiplication is guranteed exact (short coefficients)
* call the unpacked arg. equivalent of __bid64_add(x*y, z)
* else
* get full coefficient_x*coefficient_y product
* call subroutine to perform addition of 64-bit argument
* to 128-bit product
*
****************************************************************************/
#include "inline_bid_add.h"
//////////////////////////////////////////////////////////////////////////
//
// If coefficient_z is less than 16 digits long, normalize to 16 digits
//
/////////////////////////////////////////////////////////////////////////
#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
#ifndef IEEE_ROUND_NEAREST
static UINT64
__bid_normalize (UINT64 sign_z, int exponent_z,
UINT64 coefficient_z, UINT64 round_dir, int round_flag,
int rounding_mode, unsigned *fpsc) {
#else
static UINT64
__bid_normalize (UINT64 z, UINT64 sign_z, int exponent_z,
UINT64 coefficient_z, UINT64 round_dir, int round_flag,
int rounding_mode, unsigned *fpsc) {
#endif
#else
static UINT64
__bid_normalize (UINT64 z, UINT64 sign_z, int exponent_z,
UINT64 coefficient_z, UINT64 round_dir, int round_flag,
int rounding_mode, unsigned *fpsc) {
#endif
SINT64 D;
int_double tempx;
int digits_z, bin_expon, scale, rmode;
#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
#ifndef IEEE_ROUND_NEAREST
rmode = rounding_mode;
if (sign_z && (unsigned) (rmode - 1) < 2)
rmode = 3 - rmode;
#else
if (coefficient_z >= __bid_power10_table_128[15].w[0])
return z;
#endif
#endif
#ifdef IEEE_ROUND_NEAREST_TIES_AWAY
if (coefficient_z >= __bid_power10_table_128[15].w[0])
return z;
#endif
//--- get number of bits in the coefficients of x and y ---
tempx.d = (double) coefficient_z;
bin_expon = ((tempx.i & MASK_BINARY_EXPONENT) >> 52) - 0x3ff;
// get number of decimal digits in the coeff_x
digits_z = __bid_estimate_decimal_digits[bin_expon];
if (coefficient_z >= __bid_power10_table_128[digits_z].w[0])
digits_z++;
scale = 16 - digits_z;
exponent_z -= scale;
if (exponent_z < 0) {
scale += exponent_z;
exponent_z = 0;
}
coefficient_z *= __bid_power10_table_128[scale].w[0];
#ifdef SET_STATUS_FLAGS
if (round_flag) {
__set_status_flags (fpsc, INEXACT_EXCEPTION);
if (coefficient_z < 1000000000000000ull)
__set_status_flags (fpsc, UNDERFLOW_EXCEPTION);
else if ((coefficient_z == 1000000000000000ull) && !exponent_z
&& ((SINT64) (round_dir ^ sign_z) < 0) && round_flag
&& (rmode == ROUNDING_DOWN || rmode == ROUNDING_TO_ZERO))
__set_status_flags (fpsc, UNDERFLOW_EXCEPTION);
}
#endif
#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
#ifndef IEEE_ROUND_NEAREST
if (round_flag && (rmode & 3)) {
D = round_dir ^ sign_z;
if (rmode == ROUNDING_UP) {
if (D >= 0)
coefficient_z++;
} else {
if (D < 0)
coefficient_z--;
if (coefficient_z < 1000000000000000ull && exponent_z) {
coefficient_z = 9999999999999999ull;
exponent_z--;
}
}
}
#endif
#endif
return get_BID64 (sign_z, exponent_z, coefficient_z, rounding_mode,
fpsc);
}
#if DECIMAL_CALL_BY_REFERENCE
extern void __bid64_mul (UINT64 * pres, UINT64 * px,
UINT64 *
py _RND_MODE_PARAM _EXC_FLAGS_PARAM
_EXC_MASKS_PARAM _EXC_INFO_PARAM);
#else
extern UINT64 __bid64_mul (UINT64 x,
UINT64 y _RND_MODE_PARAM
_EXC_FLAGS_PARAM _EXC_MASKS_PARAM
_EXC_INFO_PARAM);
#endif
#if DECIMAL_CALL_BY_REFERENCE
void
__bid64_fma (UINT64 * pres, UINT64 * px, UINT64 * py,
UINT64 *
pz _RND_MODE_PARAM _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
_EXC_INFO_PARAM) {
UINT64 x, y, z;
#else
UINT64
__bid64_fma (UINT64 x, UINT64 y,
UINT64 z _RND_MODE_PARAM _EXC_FLAGS_PARAM
_EXC_MASKS_PARAM _EXC_INFO_PARAM) {
#endif
UINT128 P, PU, CT, CZ;
UINT64 sign_x, sign_y, coefficient_x, coefficient_y, sign_z,
coefficient_z;
UINT64 C64, remainder_y, res;
UINT64 CYh, CY0L, T;
int_double tempx, tempy;
int extra_digits, exponent_x = 0, exponent_y = 0, bin_expon_cx, bin_expon_cy,
bin_expon_product, rmode;
int digits_p, bp, final_exponent, exponent_z, digits_z, ez, ey,
scale_z, uf_status;
#if DECIMAL_CALL_BY_REFERENCE
#if !DECIMAL_GLOBAL_ROUNDING
_IDEC_round rnd_mode = *prnd_mode;
#endif
x = *px;
y = *py;
z = *pz;
#endif
// unpack arguments, check for NaN or Infinity
if (!unpack_BID64 (&sign_x, &exponent_x, &coefficient_x, x)) {
// x is Inf. or NaN
// test if x is NaN
if ((x & 0x7c00000000000000ull) == 0x7c00000000000000ull) {
#ifdef SET_STATUS_FLAGS
if (((x & 0x7e00000000000000ull) == 0x7e00000000000000ull) || // sNaN
((y & 0x7e00000000000000ull) == 0x7e00000000000000ull) || // sNaN
((z & 0x7e00000000000000ull) == 0x7e00000000000000ull)) // sNaN
__set_status_flags (pfpsf, INVALID_EXCEPTION);
#endif
BID_RETURN (x & QUIET_MASK64);
}
// x is Infinity?
if ((x & 0x7800000000000000ull) == 0x7800000000000000ull) {
// check if y is 0
if (((y & 0x6000000000000000ull) != 0x6000000000000000ull)
&& !(y << (64 - 53))) {
// y==0, return NaN
#ifdef SET_STATUS_FLAGS
if ((z & 0x7e00000000000000ull) != 0x7c00000000000000ull)
__set_status_flags (pfpsf, INVALID_EXCEPTION);
#endif
BID_RETURN (0x7c00000000000000ull);
}
// test if z is Inf of oposite sign
if (((z & 0x7c00000000000000ull) == 0x7800000000000000ull)
&& (((x ^ y) ^ z) & 0x8000000000000000ull)) {
// return NaN
#ifdef SET_STATUS_FLAGS
if (((y & 0x7e00000000000000ull) != 0x7c00000000000000ull) || // qNaN
((z & 0x7e00000000000000ull) == 0x7e00000000000000ull)) // sNaN
__set_status_flags (pfpsf, INVALID_EXCEPTION);
#endif
BID_RETURN (0x7c00000000000000ull);
}
if ((y & 0x7c00000000000000ull) == 0x7c00000000000000ull) {
#ifdef SET_STATUS_FLAGS
if (((y & 0x7e00000000000000ull) == 0x7e00000000000000ull) || // sNaN
((z & 0x7e00000000000000ull) == 0x7e00000000000000ull)) // sNaN
__set_status_flags (pfpsf, INVALID_EXCEPTION);
#endif
BID_RETURN (y & QUIET_MASK64);
}
if ((z & 0x7c00000000000000ull) == 0x7c00000000000000ull) {
#ifdef SET_STATUS_FLAGS
if (((z & 0x7e00000000000000ull) == 0x7e00000000000000ull)) // sNaN
__set_status_flags (pfpsf, INVALID_EXCEPTION);
#endif
BID_RETURN (z & QUIET_MASK64);
}
// otherwise return +/-Inf
BID_RETURN (((x ^ y) & 0x8000000000000000ull) |
0x7800000000000000ull);
}
// x is 0
if (((y & 0x7800000000000000ull) != 0x7800000000000000ull)
&& ((z & 0x7800000000000000ull) != 0x7800000000000000ull)) {
if ((z & 0x6000000000000000ull) == 0x6000000000000000ull) {
exponent_z = ((UINT32) (z >> 51)) & 0x3ff;
coefficient_z =
(z & 0x0007ffffffffffffull) | 0x0020000000000000ull;
} else {
exponent_z = ((UINT32) (z >> 53)) & 0x3ff;
coefficient_z = z & 0x001fffffffffffffull;
}
if (coefficient_z) {
if ((y & 0x6000000000000000ull) == 0x6000000000000000ull)
exponent_y =
exponent_x - DECIMAL_EXPONENT_BIAS +
(((UINT32) (y >> 51)) & 0x3ff);
else
exponent_y =
exponent_x - DECIMAL_EXPONENT_BIAS +
(((UINT32) (y >> 53)) & 0x3ff);
sign_z = z & 0x8000000000000000ull;
if (exponent_y >= exponent_z)
BID_RETURN (z);
res =
add_zero64 (exponent_y, sign_z, exponent_z, coefficient_z,
&rnd_mode, pfpsf);
BID_RETURN (res);
}
}
}
if (!unpack_BID64 (&sign_y, &exponent_y, &coefficient_y, y)) {
// y is Inf. or NaN
// test if y is NaN
if ((y & 0x7c00000000000000ull) == 0x7c00000000000000ull) {
#ifdef SET_STATUS_FLAGS
if (((y & 0x7e00000000000000ull) == 0x7e00000000000000ull) || // sNaN
((z & 0x7e00000000000000ull) == 0x7e00000000000000ull)) // sNaN
__set_status_flags (pfpsf, INVALID_EXCEPTION);
#endif
BID_RETURN (y & QUIET_MASK64);
}
// y is Infinity?
if ((y & 0x7800000000000000ull) == 0x7800000000000000ull) {
// check if x is 0
if (((x & 0x6000000000000000ull) != 0x6000000000000000ull)
&& !(x << (64 - 53))) {
// y==0, return NaN
#ifdef SET_STATUS_FLAGS
if ((z & 0x7e00000000000000ull) != 0x7c00000000000000ull)
__set_status_flags (pfpsf, INVALID_EXCEPTION);
#endif
BID_RETURN (0x7c00000000000000ull);
}
// test if z is Inf of oposite sign
if (((z & 0x7c00000000000000ull) == 0x7800000000000000ull)
&& (((x ^ y) ^ z) & 0x8000000000000000ull)) {
#ifdef SET_STATUS_FLAGS
__set_status_flags (pfpsf, INVALID_EXCEPTION);
#endif
// return NaN
BID_RETURN (0x7c00000000000000ull);
}
if ((z & 0x7c00000000000000ull) == 0x7c00000000000000ull) {
#ifdef SET_STATUS_FLAGS
if (((z & 0x7e00000000000000ull) == 0x7e00000000000000ull)) // sNaN
__set_status_flags (pfpsf, INVALID_EXCEPTION);
#endif
BID_RETURN (z & QUIET_MASK64);
}
// otherwise return +/-Inf
BID_RETURN (((x ^ y) & 0x8000000000000000ull) |
0x7800000000000000ull);
}
// y is 0
if (((z & 0x7800000000000000ull) != 0x7800000000000000ull)) {
if ((z & 0x6000000000000000ull) == 0x6000000000000000ull) {
exponent_z = ((UINT32) (z >> 51)) & 0x3ff;
coefficient_z =
(z & 0x0007ffffffffffffull) | 0x0020000000000000ull;
} else {
exponent_z = ((UINT32) (z >> 53)) & 0x3ff;
coefficient_z = z & 0x001fffffffffffffull;
}
if (coefficient_z) {
exponent_y += exponent_x - DECIMAL_EXPONENT_BIAS;
sign_z = z & 0x8000000000000000ull;
if (exponent_y >= exponent_z)
BID_RETURN (z);
res =
add_zero64 (exponent_y, sign_z, exponent_z, coefficient_z,
&rnd_mode, pfpsf);
BID_RETURN (res);
}
}
}
if (!unpack_BID64 (&sign_z, &exponent_z, &coefficient_z, z)) {
// y is Inf. or NaN or 0
// test if y is NaN/Inf
if ((z & 0x7800000000000000ull) == 0x7800000000000000ull) {
#ifdef SET_STATUS_FLAGS
if ((z & 0x7e00000000000000ull) == 0x7e00000000000000ull) // sNaN
__set_status_flags (pfpsf, INVALID_EXCEPTION);
#endif
BID_RETURN (z & QUIET_MASK64);
}
// z is 0, return x*y
if ((!coefficient_x) || (!coefficient_y)) {
//0+/-0
exponent_x += exponent_y - DECIMAL_EXPONENT_BIAS;
if (exponent_x > DECIMAL_MAX_EXPON_64)
exponent_x = DECIMAL_MAX_EXPON_64;
else if (exponent_x < 0)
exponent_x = 0;
if (exponent_x <= exponent_z)
res = ((UINT64) exponent_x) << 53;
else
res = ((z << 1) >> 1);
if ((sign_x ^ sign_y) == sign_z)
res |= sign_z;
#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
#ifndef IEEE_ROUND_NEAREST
else if (rnd_mode == ROUNDING_DOWN)
res |= 0x8000000000000000ull;
#endif
#endif
BID_RETURN (res);
}
}
/* get binary coefficients of x and y */
//--- get number of bits in the coefficients of x and y ---
// version 2 (original)
tempx.d = (double) coefficient_x;
bin_expon_cx = ((tempx.i & MASK_BINARY_EXPONENT) >> 52);
tempy.d = (double) coefficient_y;
bin_expon_cy = ((tempy.i & MASK_BINARY_EXPONENT) >> 52);
// magnitude estimate for coefficient_x*coefficient_y is
// 2^(unbiased_bin_expon_cx + unbiased_bin_expon_cx)
bin_expon_product = bin_expon_cx + bin_expon_cy;
// check if coefficient_x*coefficient_y<2^(10*k+3)
// equivalent to unbiased_bin_expon_cx + unbiased_bin_expon_cx < 10*k+1
if (bin_expon_product < UPPER_EXPON_LIMIT + 2 * BINARY_EXPONENT_BIAS) {
// easy multiply
C64 = coefficient_x * coefficient_y;
final_exponent = exponent_x + exponent_y - DECIMAL_EXPONENT_BIAS;
if ((final_exponent > 0) || (!coefficient_z)) {
res =
get_add64 (sign_z, exponent_z, coefficient_z, sign_x ^ sign_y,
final_exponent, C64, rnd_mode, pfpsf);
BID_RETURN (res);
} else {
P.w[0] = C64;
P.w[1] = 0;
extra_digits = 0;
}
} else {
if (!coefficient_z) {
#if DECIMAL_CALL_BY_REFERENCE
__bid64_mul (&res, px,
py _RND_MODE_ARG _EXC_FLAGS_ARG _EXC_MASKS_ARG
_EXC_INFO_ARG);
#else
res =
__bid64_mul (x,
y _RND_MODE_ARG _EXC_FLAGS_ARG _EXC_MASKS_ARG
_EXC_INFO_ARG);
#endif
BID_RETURN (res);
}
// get 128-bit product: coefficient_x*coefficient_y
__mul_64x64_to_128 (P, coefficient_x, coefficient_y);
// tighten binary range of P: leading bit is 2^bp
// unbiased_bin_expon_product <= bp <= unbiased_bin_expon_product+1
bin_expon_product -= 2 * BINARY_EXPONENT_BIAS;
__tight_bin_range_128 (bp, P, bin_expon_product);
// get number of decimal digits in the product
digits_p = __bid_estimate_decimal_digits[bp];
if (!(__unsigned_compare_gt_128 (__bid_power10_table_128[digits_p], P)))
digits_p++; // if __bid_power10_table_128[digits_p] <= P
// determine number of decimal digits to be rounded out
extra_digits = digits_p - MAX_FORMAT_DIGITS;
final_exponent =
exponent_x + exponent_y + extra_digits - DECIMAL_EXPONENT_BIAS;
}
if (((unsigned) final_exponent) >= 3 * 256) {
if (final_exponent < 0) {
//--- get number of bits in the coefficients of z ---
tempx.d = (double) coefficient_z;
bin_expon_cx = ((tempx.i & MASK_BINARY_EXPONENT) >> 52) - 0x3ff;
// get number of decimal digits in the coeff_x
digits_z = __bid_estimate_decimal_digits[bin_expon_cx];
if (coefficient_z >= __bid_power10_table_128[digits_z].w[0])
digits_z++;
// underflow
if ((final_exponent + 16 < 0)
|| (exponent_z + digits_z > 33 + final_exponent)) {
#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
#ifndef IEEE_ROUND_NEAREST
res = __bid_normalize (sign_z, exponent_z, coefficient_z,
sign_x ^ sign_y, 1, rnd_mode, pfpsf);
#else
res = __bid_normalize (z, sign_z, exponent_z, coefficient_z,
sign_x ^ sign_y, 1, rnd_mode, pfpsf);
#endif
#else
res = __bid_normalize (z, sign_z, exponent_z, coefficient_z,
sign_x ^ sign_y, 1, rnd_mode, pfpsf);
#endif
BID_RETURN (res);
}
ez = exponent_z + digits_z - 16;
if (ez < 0)
ez = 0;
scale_z = exponent_z - ez;
coefficient_z *= __bid_power10_table_128[scale_z].w[0];
ey = final_exponent - extra_digits;
extra_digits = ez - ey;
if (extra_digits > 33) {
#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
#ifndef IEEE_ROUND_NEAREST
res = __bid_normalize (sign_z, exponent_z, coefficient_z,
sign_x ^ sign_y, 1, rnd_mode, pfpsf);
#else
res = __bid_normalize (z, sign_z, exponent_z, coefficient_z,
sign_x ^ sign_y, 1, rnd_mode, pfpsf);
#endif
#else
res = __bid_normalize (z, sign_z, exponent_z, coefficient_z,
sign_x ^ sign_y, 1, rnd_mode, pfpsf);
#endif
BID_RETURN (res);
}
//else // extra_digits<=32
if (extra_digits > 17) {
CYh = __truncate (P, 16);
// get remainder
T = __bid_power10_table_128[16].w[0];
__mul_64x64_to_64 (CY0L, CYh, T);
remainder_y = P.w[0] - CY0L;
extra_digits -= 16;
P.w[0] = CYh;
P.w[1] = 0;
} else
remainder_y = 0;
// align coeff_x, CYh
__mul_64x64_to_128 (CZ, coefficient_z,
__bid_power10_table_128[extra_digits].w[0]);
if (sign_z == (sign_y ^ sign_x)) {
__add_128_128 (CT, CZ, P);
if (__unsigned_compare_ge_128
(CT, __bid_power10_table_128[16 + extra_digits])) {
extra_digits++;
ez++;
}
} else {
if (remainder_y && (__unsigned_compare_ge_128 (CZ, P))) {
P.w[0]++;
if (!P.w[0])
P.w[1]++;
}
__sub_128_128 (CT, CZ, P);
if (((SINT64) CT.w[1]) < 0) {
sign_z = sign_y ^ sign_x;
CT.w[0] = 0 - CT.w[0];
CT.w[1] = 0 - CT.w[1];
if (CT.w[0])
CT.w[1]--;
}
if (ez
&&
(__unsigned_compare_gt_128
(__bid_power10_table_128[15 + extra_digits], CT))) {
extra_digits--;
ez--;
}
}
#ifdef SET_STATUS_FLAGS
uf_status = 0;
if ((!ez)
&&
__unsigned_compare_gt_128 (__bid_power10_table_128
[extra_digits + 15], CT)) {
rmode = rnd_mode;
if (sign_z && (unsigned) (rmode - 1) < 2)
rmode = 3 - rmode;
//__add_128_64(PU, CT, __bid_round_const_table[rmode][extra_digits]);
PU = __bid_power10_table_128[extra_digits + 15];
PU.w[0]--;
if (__unsigned_compare_gt_128 (PU, CT)
|| (rmode == ROUNDING_DOWN)
|| (rmode == ROUNDING_TO_ZERO))
uf_status = UNDERFLOW_EXCEPTION;
else if (extra_digits < 2) {
if ((rmode == ROUNDING_UP)) {
if (!extra_digits)
uf_status = UNDERFLOW_EXCEPTION;
else {
if (remainder_y && (sign_z != (sign_y ^ sign_x)))
remainder_y = __bid_power10_table_128[16].w[0] - remainder_y;
if (__bid_power10_table_128[15].w[0] > remainder_y)
uf_status = UNDERFLOW_EXCEPTION;
}
} else // RN or RN_away
{
if (remainder_y && (sign_z != (sign_y ^ sign_x)))
remainder_y = __bid_power10_table_128[16].w[0] - remainder_y;
if (!extra_digits) {
remainder_y += __bid_round_const_table[rmode][15];
if (remainder_y < __bid_power10_table_128[16].w[0])
uf_status = UNDERFLOW_EXCEPTION;
} else {
if (remainder_y < __bid_round_const_table[rmode][16])
uf_status = UNDERFLOW_EXCEPTION;
}
}
//__set_status_flags (pfpsf, uf_status);
}
}
#endif
res =
__bid_full_round64_remainder (sign_z, ez - extra_digits, CT,
extra_digits, remainder_y,
rnd_mode, pfpsf, uf_status);
BID_RETURN (res);
} else {
if ((sign_z == (sign_x ^ sign_y))
|| (final_exponent > 3 * 256 + 15)) {
res =
fast_get_BID64_check_OF (sign_x ^ sign_y, final_exponent,
1000000000000000ull, rnd_mode,
pfpsf);
BID_RETURN (res);
}
}
}
if (extra_digits > 0) {
res =
get_add128 (sign_z, exponent_z, coefficient_z, sign_x ^ sign_y,
final_exponent, P, extra_digits, rnd_mode, pfpsf);
BID_RETURN (res);
}
// go to convert_format and exit
else {
C64 = __low_64 (P);
res =
get_add64 (sign_z, exponent_z, coefficient_z, sign_x ^ sign_y,
exponent_x + exponent_y - DECIMAL_EXPONENT_BIAS, C64,
rnd_mode, pfpsf);
BID_RETURN (res);
}
}