200359e888
From-SVN: r126353
628 lines
19 KiB
C
628 lines
19 KiB
C
/* Copyright (C) 2007 Free Software Foundation, Inc.
|
|
|
|
This file is part of GCC.
|
|
|
|
GCC is free software; you can redistribute it and/or modify it under
|
|
the terms of the GNU General Public License as published by the Free
|
|
Software Foundation; either version 2, or (at your option) any later
|
|
version.
|
|
|
|
In addition to the permissions in the GNU General Public License, the
|
|
Free Software Foundation gives you unlimited permission to link the
|
|
compiled version of this file into combinations with other programs,
|
|
and to distribute those combinations without any restriction coming
|
|
from the use of this file. (The General Public License restrictions
|
|
do apply in other respects; for example, they cover modification of
|
|
the file, and distribution when not linked into a combine
|
|
executable.)
|
|
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GCC; see the file COPYING. If not, write to the Free
|
|
Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
|
|
02110-1301, USA. */
|
|
|
|
/*****************************************************************************
|
|
* BID64 fma
|
|
*****************************************************************************
|
|
*
|
|
* Algorithm description:
|
|
*
|
|
* if multiplication is guranteed exact (short coefficients)
|
|
* call the unpacked arg. equivalent of __bid64_add(x*y, z)
|
|
* else
|
|
* get full coefficient_x*coefficient_y product
|
|
* call subroutine to perform addition of 64-bit argument
|
|
* to 128-bit product
|
|
*
|
|
****************************************************************************/
|
|
|
|
#include "inline_bid_add.h"
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// If coefficient_z is less than 16 digits long, normalize to 16 digits
|
|
//
|
|
/////////////////////////////////////////////////////////////////////////
|
|
|
|
#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
|
|
#ifndef IEEE_ROUND_NEAREST
|
|
static UINT64
|
|
__bid_normalize (UINT64 sign_z, int exponent_z,
|
|
UINT64 coefficient_z, UINT64 round_dir, int round_flag,
|
|
int rounding_mode, unsigned *fpsc) {
|
|
#else
|
|
static UINT64
|
|
__bid_normalize (UINT64 z, UINT64 sign_z, int exponent_z,
|
|
UINT64 coefficient_z, UINT64 round_dir, int round_flag,
|
|
int rounding_mode, unsigned *fpsc) {
|
|
#endif
|
|
#else
|
|
static UINT64
|
|
__bid_normalize (UINT64 z, UINT64 sign_z, int exponent_z,
|
|
UINT64 coefficient_z, UINT64 round_dir, int round_flag,
|
|
int rounding_mode, unsigned *fpsc) {
|
|
#endif
|
|
SINT64 D;
|
|
int_double tempx;
|
|
int digits_z, bin_expon, scale, rmode;
|
|
|
|
#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
|
|
#ifndef IEEE_ROUND_NEAREST
|
|
rmode = rounding_mode;
|
|
if (sign_z && (unsigned) (rmode - 1) < 2)
|
|
rmode = 3 - rmode;
|
|
#else
|
|
if (coefficient_z >= __bid_power10_table_128[15].w[0])
|
|
return z;
|
|
#endif
|
|
#endif
|
|
#ifdef IEEE_ROUND_NEAREST_TIES_AWAY
|
|
if (coefficient_z >= __bid_power10_table_128[15].w[0])
|
|
return z;
|
|
#endif
|
|
|
|
//--- get number of bits in the coefficients of x and y ---
|
|
tempx.d = (double) coefficient_z;
|
|
bin_expon = ((tempx.i & MASK_BINARY_EXPONENT) >> 52) - 0x3ff;
|
|
// get number of decimal digits in the coeff_x
|
|
digits_z = __bid_estimate_decimal_digits[bin_expon];
|
|
if (coefficient_z >= __bid_power10_table_128[digits_z].w[0])
|
|
digits_z++;
|
|
|
|
scale = 16 - digits_z;
|
|
exponent_z -= scale;
|
|
if (exponent_z < 0) {
|
|
scale += exponent_z;
|
|
exponent_z = 0;
|
|
}
|
|
coefficient_z *= __bid_power10_table_128[scale].w[0];
|
|
|
|
#ifdef SET_STATUS_FLAGS
|
|
if (round_flag) {
|
|
__set_status_flags (fpsc, INEXACT_EXCEPTION);
|
|
if (coefficient_z < 1000000000000000ull)
|
|
__set_status_flags (fpsc, UNDERFLOW_EXCEPTION);
|
|
else if ((coefficient_z == 1000000000000000ull) && !exponent_z
|
|
&& ((SINT64) (round_dir ^ sign_z) < 0) && round_flag
|
|
&& (rmode == ROUNDING_DOWN || rmode == ROUNDING_TO_ZERO))
|
|
__set_status_flags (fpsc, UNDERFLOW_EXCEPTION);
|
|
}
|
|
#endif
|
|
|
|
#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
|
|
#ifndef IEEE_ROUND_NEAREST
|
|
if (round_flag && (rmode & 3)) {
|
|
D = round_dir ^ sign_z;
|
|
|
|
if (rmode == ROUNDING_UP) {
|
|
if (D >= 0)
|
|
coefficient_z++;
|
|
} else {
|
|
if (D < 0)
|
|
coefficient_z--;
|
|
if (coefficient_z < 1000000000000000ull && exponent_z) {
|
|
coefficient_z = 9999999999999999ull;
|
|
exponent_z--;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
#endif
|
|
|
|
return get_BID64 (sign_z, exponent_z, coefficient_z, rounding_mode,
|
|
fpsc);
|
|
}
|
|
|
|
|
|
#if DECIMAL_CALL_BY_REFERENCE
|
|
extern void __bid64_mul (UINT64 * pres, UINT64 * px,
|
|
UINT64 *
|
|
py _RND_MODE_PARAM _EXC_FLAGS_PARAM
|
|
_EXC_MASKS_PARAM _EXC_INFO_PARAM);
|
|
#else
|
|
|
|
extern UINT64 __bid64_mul (UINT64 x,
|
|
UINT64 y _RND_MODE_PARAM
|
|
_EXC_FLAGS_PARAM _EXC_MASKS_PARAM
|
|
_EXC_INFO_PARAM);
|
|
#endif
|
|
|
|
#if DECIMAL_CALL_BY_REFERENCE
|
|
|
|
void
|
|
__bid64_fma (UINT64 * pres, UINT64 * px, UINT64 * py,
|
|
UINT64 *
|
|
pz _RND_MODE_PARAM _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
|
|
_EXC_INFO_PARAM) {
|
|
UINT64 x, y, z;
|
|
#else
|
|
|
|
UINT64
|
|
__bid64_fma (UINT64 x, UINT64 y,
|
|
UINT64 z _RND_MODE_PARAM _EXC_FLAGS_PARAM
|
|
_EXC_MASKS_PARAM _EXC_INFO_PARAM) {
|
|
#endif
|
|
UINT128 P, PU, CT, CZ;
|
|
UINT64 sign_x, sign_y, coefficient_x, coefficient_y, sign_z,
|
|
coefficient_z;
|
|
UINT64 C64, remainder_y, res;
|
|
UINT64 CYh, CY0L, T;
|
|
int_double tempx, tempy;
|
|
int extra_digits, exponent_x = 0, exponent_y = 0, bin_expon_cx, bin_expon_cy,
|
|
bin_expon_product, rmode;
|
|
int digits_p, bp, final_exponent, exponent_z, digits_z, ez, ey,
|
|
scale_z, uf_status;
|
|
|
|
#if DECIMAL_CALL_BY_REFERENCE
|
|
#if !DECIMAL_GLOBAL_ROUNDING
|
|
_IDEC_round rnd_mode = *prnd_mode;
|
|
#endif
|
|
x = *px;
|
|
y = *py;
|
|
z = *pz;
|
|
#endif
|
|
|
|
// unpack arguments, check for NaN or Infinity
|
|
if (!unpack_BID64 (&sign_x, &exponent_x, &coefficient_x, x)) {
|
|
// x is Inf. or NaN
|
|
|
|
// test if x is NaN
|
|
if ((x & 0x7c00000000000000ull) == 0x7c00000000000000ull) {
|
|
#ifdef SET_STATUS_FLAGS
|
|
if (((x & 0x7e00000000000000ull) == 0x7e00000000000000ull) || // sNaN
|
|
((y & 0x7e00000000000000ull) == 0x7e00000000000000ull) || // sNaN
|
|
((z & 0x7e00000000000000ull) == 0x7e00000000000000ull)) // sNaN
|
|
__set_status_flags (pfpsf, INVALID_EXCEPTION);
|
|
#endif
|
|
BID_RETURN (x & QUIET_MASK64);
|
|
}
|
|
// x is Infinity?
|
|
if ((x & 0x7800000000000000ull) == 0x7800000000000000ull) {
|
|
// check if y is 0
|
|
if (((y & 0x6000000000000000ull) != 0x6000000000000000ull)
|
|
&& !(y << (64 - 53))) {
|
|
// y==0, return NaN
|
|
#ifdef SET_STATUS_FLAGS
|
|
if ((z & 0x7e00000000000000ull) != 0x7c00000000000000ull)
|
|
__set_status_flags (pfpsf, INVALID_EXCEPTION);
|
|
#endif
|
|
BID_RETURN (0x7c00000000000000ull);
|
|
}
|
|
// test if z is Inf of oposite sign
|
|
if (((z & 0x7c00000000000000ull) == 0x7800000000000000ull)
|
|
&& (((x ^ y) ^ z) & 0x8000000000000000ull)) {
|
|
// return NaN
|
|
#ifdef SET_STATUS_FLAGS
|
|
if (((y & 0x7e00000000000000ull) != 0x7c00000000000000ull) || // qNaN
|
|
((z & 0x7e00000000000000ull) == 0x7e00000000000000ull)) // sNaN
|
|
__set_status_flags (pfpsf, INVALID_EXCEPTION);
|
|
#endif
|
|
BID_RETURN (0x7c00000000000000ull);
|
|
}
|
|
if ((y & 0x7c00000000000000ull) == 0x7c00000000000000ull) {
|
|
#ifdef SET_STATUS_FLAGS
|
|
if (((y & 0x7e00000000000000ull) == 0x7e00000000000000ull) || // sNaN
|
|
((z & 0x7e00000000000000ull) == 0x7e00000000000000ull)) // sNaN
|
|
__set_status_flags (pfpsf, INVALID_EXCEPTION);
|
|
#endif
|
|
BID_RETURN (y & QUIET_MASK64);
|
|
}
|
|
if ((z & 0x7c00000000000000ull) == 0x7c00000000000000ull) {
|
|
#ifdef SET_STATUS_FLAGS
|
|
if (((z & 0x7e00000000000000ull) == 0x7e00000000000000ull)) // sNaN
|
|
__set_status_flags (pfpsf, INVALID_EXCEPTION);
|
|
#endif
|
|
BID_RETURN (z & QUIET_MASK64);
|
|
}
|
|
// otherwise return +/-Inf
|
|
BID_RETURN (((x ^ y) & 0x8000000000000000ull) |
|
|
0x7800000000000000ull);
|
|
}
|
|
// x is 0
|
|
if (((y & 0x7800000000000000ull) != 0x7800000000000000ull)
|
|
&& ((z & 0x7800000000000000ull) != 0x7800000000000000ull)) {
|
|
if ((z & 0x6000000000000000ull) == 0x6000000000000000ull) {
|
|
exponent_z = ((UINT32) (z >> 51)) & 0x3ff;
|
|
coefficient_z =
|
|
(z & 0x0007ffffffffffffull) | 0x0020000000000000ull;
|
|
} else {
|
|
exponent_z = ((UINT32) (z >> 53)) & 0x3ff;
|
|
coefficient_z = z & 0x001fffffffffffffull;
|
|
}
|
|
|
|
if (coefficient_z) {
|
|
if ((y & 0x6000000000000000ull) == 0x6000000000000000ull)
|
|
exponent_y =
|
|
exponent_x - DECIMAL_EXPONENT_BIAS +
|
|
(((UINT32) (y >> 51)) & 0x3ff);
|
|
else
|
|
exponent_y =
|
|
exponent_x - DECIMAL_EXPONENT_BIAS +
|
|
(((UINT32) (y >> 53)) & 0x3ff);
|
|
|
|
sign_z = z & 0x8000000000000000ull;
|
|
|
|
if (exponent_y >= exponent_z)
|
|
BID_RETURN (z);
|
|
res =
|
|
add_zero64 (exponent_y, sign_z, exponent_z, coefficient_z,
|
|
&rnd_mode, pfpsf);
|
|
BID_RETURN (res);
|
|
}
|
|
}
|
|
}
|
|
if (!unpack_BID64 (&sign_y, &exponent_y, &coefficient_y, y)) {
|
|
// y is Inf. or NaN
|
|
|
|
// test if y is NaN
|
|
if ((y & 0x7c00000000000000ull) == 0x7c00000000000000ull) {
|
|
#ifdef SET_STATUS_FLAGS
|
|
if (((y & 0x7e00000000000000ull) == 0x7e00000000000000ull) || // sNaN
|
|
((z & 0x7e00000000000000ull) == 0x7e00000000000000ull)) // sNaN
|
|
__set_status_flags (pfpsf, INVALID_EXCEPTION);
|
|
#endif
|
|
BID_RETURN (y & QUIET_MASK64);
|
|
}
|
|
// y is Infinity?
|
|
if ((y & 0x7800000000000000ull) == 0x7800000000000000ull) {
|
|
// check if x is 0
|
|
if (((x & 0x6000000000000000ull) != 0x6000000000000000ull)
|
|
&& !(x << (64 - 53))) {
|
|
// y==0, return NaN
|
|
#ifdef SET_STATUS_FLAGS
|
|
if ((z & 0x7e00000000000000ull) != 0x7c00000000000000ull)
|
|
__set_status_flags (pfpsf, INVALID_EXCEPTION);
|
|
#endif
|
|
BID_RETURN (0x7c00000000000000ull);
|
|
}
|
|
// test if z is Inf of oposite sign
|
|
if (((z & 0x7c00000000000000ull) == 0x7800000000000000ull)
|
|
&& (((x ^ y) ^ z) & 0x8000000000000000ull)) {
|
|
#ifdef SET_STATUS_FLAGS
|
|
__set_status_flags (pfpsf, INVALID_EXCEPTION);
|
|
#endif
|
|
// return NaN
|
|
BID_RETURN (0x7c00000000000000ull);
|
|
}
|
|
if ((z & 0x7c00000000000000ull) == 0x7c00000000000000ull) {
|
|
#ifdef SET_STATUS_FLAGS
|
|
if (((z & 0x7e00000000000000ull) == 0x7e00000000000000ull)) // sNaN
|
|
__set_status_flags (pfpsf, INVALID_EXCEPTION);
|
|
#endif
|
|
BID_RETURN (z & QUIET_MASK64);
|
|
}
|
|
// otherwise return +/-Inf
|
|
BID_RETURN (((x ^ y) & 0x8000000000000000ull) |
|
|
0x7800000000000000ull);
|
|
}
|
|
// y is 0
|
|
if (((z & 0x7800000000000000ull) != 0x7800000000000000ull)) {
|
|
if ((z & 0x6000000000000000ull) == 0x6000000000000000ull) {
|
|
exponent_z = ((UINT32) (z >> 51)) & 0x3ff;
|
|
coefficient_z =
|
|
(z & 0x0007ffffffffffffull) | 0x0020000000000000ull;
|
|
} else {
|
|
exponent_z = ((UINT32) (z >> 53)) & 0x3ff;
|
|
coefficient_z = z & 0x001fffffffffffffull;
|
|
}
|
|
|
|
if (coefficient_z) {
|
|
exponent_y += exponent_x - DECIMAL_EXPONENT_BIAS;
|
|
|
|
sign_z = z & 0x8000000000000000ull;
|
|
|
|
if (exponent_y >= exponent_z)
|
|
BID_RETURN (z);
|
|
res =
|
|
add_zero64 (exponent_y, sign_z, exponent_z, coefficient_z,
|
|
&rnd_mode, pfpsf);
|
|
BID_RETURN (res);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!unpack_BID64 (&sign_z, &exponent_z, &coefficient_z, z)) {
|
|
// y is Inf. or NaN or 0
|
|
|
|
// test if y is NaN/Inf
|
|
if ((z & 0x7800000000000000ull) == 0x7800000000000000ull) {
|
|
#ifdef SET_STATUS_FLAGS
|
|
if ((z & 0x7e00000000000000ull) == 0x7e00000000000000ull) // sNaN
|
|
__set_status_flags (pfpsf, INVALID_EXCEPTION);
|
|
#endif
|
|
BID_RETURN (z & QUIET_MASK64);
|
|
}
|
|
// z is 0, return x*y
|
|
if ((!coefficient_x) || (!coefficient_y)) {
|
|
//0+/-0
|
|
exponent_x += exponent_y - DECIMAL_EXPONENT_BIAS;
|
|
if (exponent_x > DECIMAL_MAX_EXPON_64)
|
|
exponent_x = DECIMAL_MAX_EXPON_64;
|
|
else if (exponent_x < 0)
|
|
exponent_x = 0;
|
|
if (exponent_x <= exponent_z)
|
|
res = ((UINT64) exponent_x) << 53;
|
|
else
|
|
res = ((z << 1) >> 1);
|
|
if ((sign_x ^ sign_y) == sign_z)
|
|
res |= sign_z;
|
|
#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
|
|
#ifndef IEEE_ROUND_NEAREST
|
|
else if (rnd_mode == ROUNDING_DOWN)
|
|
res |= 0x8000000000000000ull;
|
|
#endif
|
|
#endif
|
|
BID_RETURN (res);
|
|
}
|
|
}
|
|
|
|
|
|
/* get binary coefficients of x and y */
|
|
|
|
//--- get number of bits in the coefficients of x and y ---
|
|
// version 2 (original)
|
|
tempx.d = (double) coefficient_x;
|
|
bin_expon_cx = ((tempx.i & MASK_BINARY_EXPONENT) >> 52);
|
|
|
|
tempy.d = (double) coefficient_y;
|
|
bin_expon_cy = ((tempy.i & MASK_BINARY_EXPONENT) >> 52);
|
|
|
|
// magnitude estimate for coefficient_x*coefficient_y is
|
|
// 2^(unbiased_bin_expon_cx + unbiased_bin_expon_cx)
|
|
bin_expon_product = bin_expon_cx + bin_expon_cy;
|
|
|
|
// check if coefficient_x*coefficient_y<2^(10*k+3)
|
|
// equivalent to unbiased_bin_expon_cx + unbiased_bin_expon_cx < 10*k+1
|
|
if (bin_expon_product < UPPER_EXPON_LIMIT + 2 * BINARY_EXPONENT_BIAS) {
|
|
// easy multiply
|
|
C64 = coefficient_x * coefficient_y;
|
|
final_exponent = exponent_x + exponent_y - DECIMAL_EXPONENT_BIAS;
|
|
if ((final_exponent > 0) || (!coefficient_z)) {
|
|
res =
|
|
get_add64 (sign_z, exponent_z, coefficient_z, sign_x ^ sign_y,
|
|
final_exponent, C64, rnd_mode, pfpsf);
|
|
BID_RETURN (res);
|
|
} else {
|
|
P.w[0] = C64;
|
|
P.w[1] = 0;
|
|
extra_digits = 0;
|
|
}
|
|
} else {
|
|
if (!coefficient_z) {
|
|
#if DECIMAL_CALL_BY_REFERENCE
|
|
__bid64_mul (&res, px,
|
|
py _RND_MODE_ARG _EXC_FLAGS_ARG _EXC_MASKS_ARG
|
|
_EXC_INFO_ARG);
|
|
#else
|
|
res =
|
|
__bid64_mul (x,
|
|
y _RND_MODE_ARG _EXC_FLAGS_ARG _EXC_MASKS_ARG
|
|
_EXC_INFO_ARG);
|
|
#endif
|
|
BID_RETURN (res);
|
|
}
|
|
// get 128-bit product: coefficient_x*coefficient_y
|
|
__mul_64x64_to_128 (P, coefficient_x, coefficient_y);
|
|
|
|
// tighten binary range of P: leading bit is 2^bp
|
|
// unbiased_bin_expon_product <= bp <= unbiased_bin_expon_product+1
|
|
bin_expon_product -= 2 * BINARY_EXPONENT_BIAS;
|
|
__tight_bin_range_128 (bp, P, bin_expon_product);
|
|
|
|
// get number of decimal digits in the product
|
|
digits_p = __bid_estimate_decimal_digits[bp];
|
|
if (!(__unsigned_compare_gt_128 (__bid_power10_table_128[digits_p], P)))
|
|
digits_p++; // if __bid_power10_table_128[digits_p] <= P
|
|
|
|
// determine number of decimal digits to be rounded out
|
|
extra_digits = digits_p - MAX_FORMAT_DIGITS;
|
|
final_exponent =
|
|
exponent_x + exponent_y + extra_digits - DECIMAL_EXPONENT_BIAS;
|
|
}
|
|
|
|
if (((unsigned) final_exponent) >= 3 * 256) {
|
|
if (final_exponent < 0) {
|
|
//--- get number of bits in the coefficients of z ---
|
|
tempx.d = (double) coefficient_z;
|
|
bin_expon_cx = ((tempx.i & MASK_BINARY_EXPONENT) >> 52) - 0x3ff;
|
|
// get number of decimal digits in the coeff_x
|
|
digits_z = __bid_estimate_decimal_digits[bin_expon_cx];
|
|
if (coefficient_z >= __bid_power10_table_128[digits_z].w[0])
|
|
digits_z++;
|
|
// underflow
|
|
if ((final_exponent + 16 < 0)
|
|
|| (exponent_z + digits_z > 33 + final_exponent)) {
|
|
#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
|
|
#ifndef IEEE_ROUND_NEAREST
|
|
res = __bid_normalize (sign_z, exponent_z, coefficient_z,
|
|
sign_x ^ sign_y, 1, rnd_mode, pfpsf);
|
|
#else
|
|
res = __bid_normalize (z, sign_z, exponent_z, coefficient_z,
|
|
sign_x ^ sign_y, 1, rnd_mode, pfpsf);
|
|
#endif
|
|
#else
|
|
res = __bid_normalize (z, sign_z, exponent_z, coefficient_z,
|
|
sign_x ^ sign_y, 1, rnd_mode, pfpsf);
|
|
#endif
|
|
BID_RETURN (res);
|
|
}
|
|
|
|
ez = exponent_z + digits_z - 16;
|
|
if (ez < 0)
|
|
ez = 0;
|
|
scale_z = exponent_z - ez;
|
|
coefficient_z *= __bid_power10_table_128[scale_z].w[0];
|
|
ey = final_exponent - extra_digits;
|
|
extra_digits = ez - ey;
|
|
if (extra_digits > 33) {
|
|
#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
|
|
#ifndef IEEE_ROUND_NEAREST
|
|
res = __bid_normalize (sign_z, exponent_z, coefficient_z,
|
|
sign_x ^ sign_y, 1, rnd_mode, pfpsf);
|
|
#else
|
|
res = __bid_normalize (z, sign_z, exponent_z, coefficient_z,
|
|
sign_x ^ sign_y, 1, rnd_mode, pfpsf);
|
|
|
|
#endif
|
|
#else
|
|
res = __bid_normalize (z, sign_z, exponent_z, coefficient_z,
|
|
sign_x ^ sign_y, 1, rnd_mode, pfpsf);
|
|
#endif
|
|
BID_RETURN (res);
|
|
}
|
|
//else // extra_digits<=32
|
|
|
|
if (extra_digits > 17) {
|
|
CYh = __truncate (P, 16);
|
|
// get remainder
|
|
T = __bid_power10_table_128[16].w[0];
|
|
__mul_64x64_to_64 (CY0L, CYh, T);
|
|
remainder_y = P.w[0] - CY0L;
|
|
|
|
extra_digits -= 16;
|
|
P.w[0] = CYh;
|
|
P.w[1] = 0;
|
|
} else
|
|
remainder_y = 0;
|
|
|
|
// align coeff_x, CYh
|
|
__mul_64x64_to_128 (CZ, coefficient_z,
|
|
__bid_power10_table_128[extra_digits].w[0]);
|
|
|
|
if (sign_z == (sign_y ^ sign_x)) {
|
|
__add_128_128 (CT, CZ, P);
|
|
if (__unsigned_compare_ge_128
|
|
(CT, __bid_power10_table_128[16 + extra_digits])) {
|
|
extra_digits++;
|
|
ez++;
|
|
}
|
|
} else {
|
|
if (remainder_y && (__unsigned_compare_ge_128 (CZ, P))) {
|
|
P.w[0]++;
|
|
if (!P.w[0])
|
|
P.w[1]++;
|
|
}
|
|
__sub_128_128 (CT, CZ, P);
|
|
if (((SINT64) CT.w[1]) < 0) {
|
|
sign_z = sign_y ^ sign_x;
|
|
CT.w[0] = 0 - CT.w[0];
|
|
CT.w[1] = 0 - CT.w[1];
|
|
if (CT.w[0])
|
|
CT.w[1]--;
|
|
}
|
|
if (ez
|
|
&&
|
|
(__unsigned_compare_gt_128
|
|
(__bid_power10_table_128[15 + extra_digits], CT))) {
|
|
extra_digits--;
|
|
ez--;
|
|
}
|
|
}
|
|
|
|
#ifdef SET_STATUS_FLAGS
|
|
uf_status = 0;
|
|
if ((!ez)
|
|
&&
|
|
__unsigned_compare_gt_128 (__bid_power10_table_128
|
|
[extra_digits + 15], CT)) {
|
|
rmode = rnd_mode;
|
|
if (sign_z && (unsigned) (rmode - 1) < 2)
|
|
rmode = 3 - rmode;
|
|
//__add_128_64(PU, CT, __bid_round_const_table[rmode][extra_digits]);
|
|
PU = __bid_power10_table_128[extra_digits + 15];
|
|
PU.w[0]--;
|
|
if (__unsigned_compare_gt_128 (PU, CT)
|
|
|| (rmode == ROUNDING_DOWN)
|
|
|| (rmode == ROUNDING_TO_ZERO))
|
|
uf_status = UNDERFLOW_EXCEPTION;
|
|
else if (extra_digits < 2) {
|
|
if ((rmode == ROUNDING_UP)) {
|
|
if (!extra_digits)
|
|
uf_status = UNDERFLOW_EXCEPTION;
|
|
else {
|
|
if (remainder_y && (sign_z != (sign_y ^ sign_x)))
|
|
remainder_y = __bid_power10_table_128[16].w[0] - remainder_y;
|
|
|
|
if (__bid_power10_table_128[15].w[0] > remainder_y)
|
|
uf_status = UNDERFLOW_EXCEPTION;
|
|
}
|
|
} else // RN or RN_away
|
|
{
|
|
if (remainder_y && (sign_z != (sign_y ^ sign_x)))
|
|
remainder_y = __bid_power10_table_128[16].w[0] - remainder_y;
|
|
|
|
if (!extra_digits) {
|
|
remainder_y += __bid_round_const_table[rmode][15];
|
|
if (remainder_y < __bid_power10_table_128[16].w[0])
|
|
uf_status = UNDERFLOW_EXCEPTION;
|
|
} else {
|
|
if (remainder_y < __bid_round_const_table[rmode][16])
|
|
uf_status = UNDERFLOW_EXCEPTION;
|
|
}
|
|
}
|
|
//__set_status_flags (pfpsf, uf_status);
|
|
}
|
|
}
|
|
#endif
|
|
res =
|
|
__bid_full_round64_remainder (sign_z, ez - extra_digits, CT,
|
|
extra_digits, remainder_y,
|
|
rnd_mode, pfpsf, uf_status);
|
|
BID_RETURN (res);
|
|
|
|
} else {
|
|
if ((sign_z == (sign_x ^ sign_y))
|
|
|| (final_exponent > 3 * 256 + 15)) {
|
|
res =
|
|
fast_get_BID64_check_OF (sign_x ^ sign_y, final_exponent,
|
|
1000000000000000ull, rnd_mode,
|
|
pfpsf);
|
|
BID_RETURN (res);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
if (extra_digits > 0) {
|
|
res =
|
|
get_add128 (sign_z, exponent_z, coefficient_z, sign_x ^ sign_y,
|
|
final_exponent, P, extra_digits, rnd_mode, pfpsf);
|
|
BID_RETURN (res);
|
|
}
|
|
// go to convert_format and exit
|
|
else {
|
|
C64 = __low_64 (P);
|
|
|
|
res =
|
|
get_add64 (sign_z, exponent_z, coefficient_z, sign_x ^ sign_y,
|
|
exponent_x + exponent_y - DECIMAL_EXPONENT_BIAS, C64,
|
|
rnd_mode, pfpsf);
|
|
BID_RETURN (res);
|
|
}
|
|
}
|