b12ebd96ba
* tree-flow.h (FREE_SSANAMES): Move to tree-ssanames.c (SSANAMES, MODIFIED_NORETURN_CALLS, DEFAULT_DEFS, ptr_info_def, num_ssa_names, ssa_name): Move to tree-ssanames.h + prototypes. * tree-flow-inline.h (make_ssa_name, copy_ssa_name, duplicate_ssa_name, make_temp_ssa_name): move to tree-ssanames.h * tree-ssa-alias.h: Move prototype. * tree-ssa.h: Include tree-ssanames.h. * tree-ssanames.c (FREE_SSANAMES): Move to here. * tree-ssanames.h: New. Move items from tree-flow*.h * Makefile.in (tree-ssanames.h): Add to tree-ssanames.o and GTFILES. From-SVN: r202527
1307 lines
33 KiB
C
1307 lines
33 KiB
C
/* Inline functions for tree-flow.h
|
|
Copyright (C) 2001-2013 Free Software Foundation, Inc.
|
|
Contributed by Diego Novillo <dnovillo@redhat.com>
|
|
|
|
This file is part of GCC.
|
|
|
|
GCC is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3, or (at your option)
|
|
any later version.
|
|
|
|
GCC is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GCC; see the file COPYING3. If not see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#ifndef _TREE_FLOW_INLINE_H
|
|
#define _TREE_FLOW_INLINE_H 1
|
|
|
|
/* Inline functions for manipulating various data structures defined in
|
|
tree-flow.h. See tree-flow.h for documentation. */
|
|
|
|
/* Return true when gimple SSA form was built.
|
|
gimple_in_ssa_p is queried by gimplifier in various early stages before SSA
|
|
infrastructure is initialized. Check for presence of the datastructures
|
|
at first place. */
|
|
static inline bool
|
|
gimple_in_ssa_p (const struct function *fun)
|
|
{
|
|
return fun && fun->gimple_df && fun->gimple_df->in_ssa_p;
|
|
}
|
|
|
|
/* Artificial variable used for the virtual operand FUD chain. */
|
|
static inline tree
|
|
gimple_vop (const struct function *fun)
|
|
{
|
|
gcc_checking_assert (fun && fun->gimple_df);
|
|
return fun->gimple_df->vop;
|
|
}
|
|
|
|
/* Initialize the hashtable iterator HTI to point to hashtable TABLE */
|
|
|
|
static inline void *
|
|
first_htab_element (htab_iterator *hti, htab_t table)
|
|
{
|
|
hti->htab = table;
|
|
hti->slot = table->entries;
|
|
hti->limit = hti->slot + htab_size (table);
|
|
do
|
|
{
|
|
PTR x = *(hti->slot);
|
|
if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY)
|
|
break;
|
|
} while (++(hti->slot) < hti->limit);
|
|
|
|
if (hti->slot < hti->limit)
|
|
return *(hti->slot);
|
|
return NULL;
|
|
}
|
|
|
|
/* Return current non-empty/deleted slot of the hashtable pointed to by HTI,
|
|
or NULL if we have reached the end. */
|
|
|
|
static inline bool
|
|
end_htab_p (const htab_iterator *hti)
|
|
{
|
|
if (hti->slot >= hti->limit)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/* Advance the hashtable iterator pointed to by HTI to the next element of the
|
|
hashtable. */
|
|
|
|
static inline void *
|
|
next_htab_element (htab_iterator *hti)
|
|
{
|
|
while (++(hti->slot) < hti->limit)
|
|
{
|
|
PTR x = *(hti->slot);
|
|
if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY)
|
|
return x;
|
|
};
|
|
return NULL;
|
|
}
|
|
|
|
/* Get the number of the next statement uid to be allocated. */
|
|
static inline unsigned int
|
|
gimple_stmt_max_uid (struct function *fn)
|
|
{
|
|
return fn->last_stmt_uid;
|
|
}
|
|
|
|
/* Set the number of the next statement uid to be allocated. */
|
|
static inline void
|
|
set_gimple_stmt_max_uid (struct function *fn, unsigned int maxid)
|
|
{
|
|
fn->last_stmt_uid = maxid;
|
|
}
|
|
|
|
/* Set the number of the next statement uid to be allocated. */
|
|
static inline unsigned int
|
|
inc_gimple_stmt_max_uid (struct function *fn)
|
|
{
|
|
return fn->last_stmt_uid++;
|
|
}
|
|
|
|
/* Return the line number for EXPR, or return -1 if we have no line
|
|
number information for it. */
|
|
static inline int
|
|
get_lineno (const_gimple stmt)
|
|
{
|
|
location_t loc;
|
|
|
|
if (!stmt)
|
|
return -1;
|
|
|
|
loc = gimple_location (stmt);
|
|
if (loc == UNKNOWN_LOCATION)
|
|
return -1;
|
|
|
|
return LOCATION_LINE (loc);
|
|
}
|
|
|
|
/* Delink an immediate_uses node from its chain. */
|
|
static inline void
|
|
delink_imm_use (ssa_use_operand_t *linknode)
|
|
{
|
|
/* Return if this node is not in a list. */
|
|
if (linknode->prev == NULL)
|
|
return;
|
|
|
|
linknode->prev->next = linknode->next;
|
|
linknode->next->prev = linknode->prev;
|
|
linknode->prev = NULL;
|
|
linknode->next = NULL;
|
|
}
|
|
|
|
/* Link ssa_imm_use node LINKNODE into the chain for LIST. */
|
|
static inline void
|
|
link_imm_use_to_list (ssa_use_operand_t *linknode, ssa_use_operand_t *list)
|
|
{
|
|
/* Link the new node at the head of the list. If we are in the process of
|
|
traversing the list, we won't visit any new nodes added to it. */
|
|
linknode->prev = list;
|
|
linknode->next = list->next;
|
|
list->next->prev = linknode;
|
|
list->next = linknode;
|
|
}
|
|
|
|
/* Link ssa_imm_use node LINKNODE into the chain for DEF. */
|
|
static inline void
|
|
link_imm_use (ssa_use_operand_t *linknode, tree def)
|
|
{
|
|
ssa_use_operand_t *root;
|
|
|
|
if (!def || TREE_CODE (def) != SSA_NAME)
|
|
linknode->prev = NULL;
|
|
else
|
|
{
|
|
root = &(SSA_NAME_IMM_USE_NODE (def));
|
|
if (linknode->use)
|
|
gcc_checking_assert (*(linknode->use) == def);
|
|
link_imm_use_to_list (linknode, root);
|
|
}
|
|
}
|
|
|
|
/* Set the value of a use pointed to by USE to VAL. */
|
|
static inline void
|
|
set_ssa_use_from_ptr (use_operand_p use, tree val)
|
|
{
|
|
delink_imm_use (use);
|
|
*(use->use) = val;
|
|
link_imm_use (use, val);
|
|
}
|
|
|
|
/* Link ssa_imm_use node LINKNODE into the chain for DEF, with use occurring
|
|
in STMT. */
|
|
static inline void
|
|
link_imm_use_stmt (ssa_use_operand_t *linknode, tree def, gimple stmt)
|
|
{
|
|
if (stmt)
|
|
link_imm_use (linknode, def);
|
|
else
|
|
link_imm_use (linknode, NULL);
|
|
linknode->loc.stmt = stmt;
|
|
}
|
|
|
|
/* Relink a new node in place of an old node in the list. */
|
|
static inline void
|
|
relink_imm_use (ssa_use_operand_t *node, ssa_use_operand_t *old)
|
|
{
|
|
/* The node one had better be in the same list. */
|
|
gcc_checking_assert (*(old->use) == *(node->use));
|
|
node->prev = old->prev;
|
|
node->next = old->next;
|
|
if (old->prev)
|
|
{
|
|
old->prev->next = node;
|
|
old->next->prev = node;
|
|
/* Remove the old node from the list. */
|
|
old->prev = NULL;
|
|
}
|
|
}
|
|
|
|
/* Relink ssa_imm_use node LINKNODE into the chain for OLD, with use occurring
|
|
in STMT. */
|
|
static inline void
|
|
relink_imm_use_stmt (ssa_use_operand_t *linknode, ssa_use_operand_t *old,
|
|
gimple stmt)
|
|
{
|
|
if (stmt)
|
|
relink_imm_use (linknode, old);
|
|
else
|
|
link_imm_use (linknode, NULL);
|
|
linknode->loc.stmt = stmt;
|
|
}
|
|
|
|
|
|
/* Return true is IMM has reached the end of the immediate use list. */
|
|
static inline bool
|
|
end_readonly_imm_use_p (const imm_use_iterator *imm)
|
|
{
|
|
return (imm->imm_use == imm->end_p);
|
|
}
|
|
|
|
/* Initialize iterator IMM to process the list for VAR. */
|
|
static inline use_operand_p
|
|
first_readonly_imm_use (imm_use_iterator *imm, tree var)
|
|
{
|
|
imm->end_p = &(SSA_NAME_IMM_USE_NODE (var));
|
|
imm->imm_use = imm->end_p->next;
|
|
#ifdef ENABLE_CHECKING
|
|
imm->iter_node.next = imm->imm_use->next;
|
|
#endif
|
|
if (end_readonly_imm_use_p (imm))
|
|
return NULL_USE_OPERAND_P;
|
|
return imm->imm_use;
|
|
}
|
|
|
|
/* Bump IMM to the next use in the list. */
|
|
static inline use_operand_p
|
|
next_readonly_imm_use (imm_use_iterator *imm)
|
|
{
|
|
use_operand_p old = imm->imm_use;
|
|
|
|
#ifdef ENABLE_CHECKING
|
|
/* If this assertion fails, it indicates the 'next' pointer has changed
|
|
since the last bump. This indicates that the list is being modified
|
|
via stmt changes, or SET_USE, or somesuch thing, and you need to be
|
|
using the SAFE version of the iterator. */
|
|
gcc_assert (imm->iter_node.next == old->next);
|
|
imm->iter_node.next = old->next->next;
|
|
#endif
|
|
|
|
imm->imm_use = old->next;
|
|
if (end_readonly_imm_use_p (imm))
|
|
return NULL_USE_OPERAND_P;
|
|
return imm->imm_use;
|
|
}
|
|
|
|
/* tree-cfg.c */
|
|
extern bool has_zero_uses_1 (const ssa_use_operand_t *head);
|
|
extern bool single_imm_use_1 (const ssa_use_operand_t *head,
|
|
use_operand_p *use_p, gimple *stmt);
|
|
|
|
/* Return true if VAR has no nondebug uses. */
|
|
static inline bool
|
|
has_zero_uses (const_tree var)
|
|
{
|
|
const ssa_use_operand_t *const ptr = &(SSA_NAME_IMM_USE_NODE (var));
|
|
|
|
/* A single use_operand means there is no items in the list. */
|
|
if (ptr == ptr->next)
|
|
return true;
|
|
|
|
/* If there are debug stmts, we have to look at each use and see
|
|
whether there are any nondebug uses. */
|
|
if (!MAY_HAVE_DEBUG_STMTS)
|
|
return false;
|
|
|
|
return has_zero_uses_1 (ptr);
|
|
}
|
|
|
|
/* Return true if VAR has a single nondebug use. */
|
|
static inline bool
|
|
has_single_use (const_tree var)
|
|
{
|
|
const ssa_use_operand_t *const ptr = &(SSA_NAME_IMM_USE_NODE (var));
|
|
|
|
/* If there aren't any uses whatsoever, we're done. */
|
|
if (ptr == ptr->next)
|
|
return false;
|
|
|
|
/* If there's a single use, check that it's not a debug stmt. */
|
|
if (ptr == ptr->next->next)
|
|
return !is_gimple_debug (USE_STMT (ptr->next));
|
|
|
|
/* If there are debug stmts, we have to look at each of them. */
|
|
if (!MAY_HAVE_DEBUG_STMTS)
|
|
return false;
|
|
|
|
return single_imm_use_1 (ptr, NULL, NULL);
|
|
}
|
|
|
|
|
|
/* If VAR has only a single immediate nondebug use, return true, and
|
|
set USE_P and STMT to the use pointer and stmt of occurrence. */
|
|
static inline bool
|
|
single_imm_use (const_tree var, use_operand_p *use_p, gimple *stmt)
|
|
{
|
|
const ssa_use_operand_t *const ptr = &(SSA_NAME_IMM_USE_NODE (var));
|
|
|
|
/* If there aren't any uses whatsoever, we're done. */
|
|
if (ptr == ptr->next)
|
|
{
|
|
return_false:
|
|
*use_p = NULL_USE_OPERAND_P;
|
|
*stmt = NULL;
|
|
return false;
|
|
}
|
|
|
|
/* If there's a single use, check that it's not a debug stmt. */
|
|
if (ptr == ptr->next->next)
|
|
{
|
|
if (!is_gimple_debug (USE_STMT (ptr->next)))
|
|
{
|
|
*use_p = ptr->next;
|
|
*stmt = ptr->next->loc.stmt;
|
|
return true;
|
|
}
|
|
else
|
|
goto return_false;
|
|
}
|
|
|
|
/* If there are debug stmts, we have to look at each of them. */
|
|
if (!MAY_HAVE_DEBUG_STMTS)
|
|
goto return_false;
|
|
|
|
return single_imm_use_1 (ptr, use_p, stmt);
|
|
}
|
|
|
|
/* Return the number of nondebug immediate uses of VAR. */
|
|
static inline unsigned int
|
|
num_imm_uses (const_tree var)
|
|
{
|
|
const ssa_use_operand_t *const start = &(SSA_NAME_IMM_USE_NODE (var));
|
|
const ssa_use_operand_t *ptr;
|
|
unsigned int num = 0;
|
|
|
|
if (!MAY_HAVE_DEBUG_STMTS)
|
|
for (ptr = start->next; ptr != start; ptr = ptr->next)
|
|
num++;
|
|
else
|
|
for (ptr = start->next; ptr != start; ptr = ptr->next)
|
|
if (!is_gimple_debug (USE_STMT (ptr)))
|
|
num++;
|
|
|
|
return num;
|
|
}
|
|
|
|
/* Return the tree pointed-to by USE. */
|
|
static inline tree
|
|
get_use_from_ptr (use_operand_p use)
|
|
{
|
|
return *(use->use);
|
|
}
|
|
|
|
/* Return the tree pointed-to by DEF. */
|
|
static inline tree
|
|
get_def_from_ptr (def_operand_p def)
|
|
{
|
|
return *def;
|
|
}
|
|
|
|
/* Return a use_operand_p pointer for argument I of PHI node GS. */
|
|
|
|
static inline use_operand_p
|
|
gimple_phi_arg_imm_use_ptr (gimple gs, int i)
|
|
{
|
|
return &gimple_phi_arg (gs, i)->imm_use;
|
|
}
|
|
|
|
/* Return the tree operand for argument I of PHI node GS. */
|
|
|
|
static inline tree
|
|
gimple_phi_arg_def (gimple gs, size_t index)
|
|
{
|
|
struct phi_arg_d *pd = gimple_phi_arg (gs, index);
|
|
return get_use_from_ptr (&pd->imm_use);
|
|
}
|
|
|
|
/* Return a pointer to the tree operand for argument I of PHI node GS. */
|
|
|
|
static inline tree *
|
|
gimple_phi_arg_def_ptr (gimple gs, size_t index)
|
|
{
|
|
return &gimple_phi_arg (gs, index)->def;
|
|
}
|
|
|
|
/* Return the edge associated with argument I of phi node GS. */
|
|
|
|
static inline edge
|
|
gimple_phi_arg_edge (gimple gs, size_t i)
|
|
{
|
|
return EDGE_PRED (gimple_bb (gs), i);
|
|
}
|
|
|
|
/* Return the source location of gimple argument I of phi node GS. */
|
|
|
|
static inline source_location
|
|
gimple_phi_arg_location (gimple gs, size_t i)
|
|
{
|
|
return gimple_phi_arg (gs, i)->locus;
|
|
}
|
|
|
|
/* Return the source location of the argument on edge E of phi node GS. */
|
|
|
|
static inline source_location
|
|
gimple_phi_arg_location_from_edge (gimple gs, edge e)
|
|
{
|
|
return gimple_phi_arg (gs, e->dest_idx)->locus;
|
|
}
|
|
|
|
/* Set the source location of gimple argument I of phi node GS to LOC. */
|
|
|
|
static inline void
|
|
gimple_phi_arg_set_location (gimple gs, size_t i, source_location loc)
|
|
{
|
|
gimple_phi_arg (gs, i)->locus = loc;
|
|
}
|
|
|
|
/* Return TRUE if argument I of phi node GS has a location record. */
|
|
|
|
static inline bool
|
|
gimple_phi_arg_has_location (gimple gs, size_t i)
|
|
{
|
|
return gimple_phi_arg_location (gs, i) != UNKNOWN_LOCATION;
|
|
}
|
|
|
|
|
|
/* Return the PHI nodes for basic block BB, or NULL if there are no
|
|
PHI nodes. */
|
|
static inline gimple_seq
|
|
phi_nodes (const_basic_block bb)
|
|
{
|
|
gcc_checking_assert (!(bb->flags & BB_RTL));
|
|
return bb->il.gimple.phi_nodes;
|
|
}
|
|
|
|
static inline gimple_seq *
|
|
phi_nodes_ptr (basic_block bb)
|
|
{
|
|
gcc_checking_assert (!(bb->flags & BB_RTL));
|
|
return &bb->il.gimple.phi_nodes;
|
|
}
|
|
|
|
/* Set PHI nodes of a basic block BB to SEQ. */
|
|
|
|
static inline void
|
|
set_phi_nodes (basic_block bb, gimple_seq seq)
|
|
{
|
|
gimple_stmt_iterator i;
|
|
|
|
gcc_checking_assert (!(bb->flags & BB_RTL));
|
|
bb->il.gimple.phi_nodes = seq;
|
|
if (seq)
|
|
for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
|
|
gimple_set_bb (gsi_stmt (i), bb);
|
|
}
|
|
|
|
/* Return the phi argument which contains the specified use. */
|
|
|
|
static inline int
|
|
phi_arg_index_from_use (use_operand_p use)
|
|
{
|
|
struct phi_arg_d *element, *root;
|
|
size_t index;
|
|
gimple phi;
|
|
|
|
/* Since the use is the first thing in a PHI argument element, we can
|
|
calculate its index based on casting it to an argument, and performing
|
|
pointer arithmetic. */
|
|
|
|
phi = USE_STMT (use);
|
|
|
|
element = (struct phi_arg_d *)use;
|
|
root = gimple_phi_arg (phi, 0);
|
|
index = element - root;
|
|
|
|
/* Make sure the calculation doesn't have any leftover bytes. If it does,
|
|
then imm_use is likely not the first element in phi_arg_d. */
|
|
gcc_checking_assert ((((char *)element - (char *)root)
|
|
% sizeof (struct phi_arg_d)) == 0
|
|
&& index < gimple_phi_capacity (phi));
|
|
|
|
return index;
|
|
}
|
|
|
|
/* Return true if T (assumed to be a DECL) is a global variable.
|
|
A variable is considered global if its storage is not automatic. */
|
|
|
|
static inline bool
|
|
is_global_var (const_tree t)
|
|
{
|
|
return (TREE_STATIC (t) || DECL_EXTERNAL (t));
|
|
}
|
|
|
|
|
|
/* Return true if VAR may be aliased. A variable is considered as
|
|
maybe aliased if it has its address taken by the local TU
|
|
or possibly by another TU and might be modified through a pointer. */
|
|
|
|
static inline bool
|
|
may_be_aliased (const_tree var)
|
|
{
|
|
return (TREE_CODE (var) != CONST_DECL
|
|
&& !((TREE_STATIC (var) || TREE_PUBLIC (var) || DECL_EXTERNAL (var))
|
|
&& TREE_READONLY (var)
|
|
&& !TYPE_NEEDS_CONSTRUCTING (TREE_TYPE (var)))
|
|
&& (TREE_PUBLIC (var)
|
|
|| DECL_EXTERNAL (var)
|
|
|| TREE_ADDRESSABLE (var)));
|
|
}
|
|
|
|
|
|
/* PHI nodes should contain only ssa_names and invariants. A test
|
|
for ssa_name is definitely simpler; don't let invalid contents
|
|
slip in in the meantime. */
|
|
|
|
static inline bool
|
|
phi_ssa_name_p (const_tree t)
|
|
{
|
|
if (TREE_CODE (t) == SSA_NAME)
|
|
return true;
|
|
gcc_checking_assert (is_gimple_min_invariant (t));
|
|
return false;
|
|
}
|
|
|
|
|
|
/* Returns the loop of the statement STMT. */
|
|
|
|
static inline struct loop *
|
|
loop_containing_stmt (gimple stmt)
|
|
{
|
|
basic_block bb = gimple_bb (stmt);
|
|
if (!bb)
|
|
return NULL;
|
|
|
|
return bb->loop_father;
|
|
}
|
|
|
|
|
|
/* ----------------------------------------------------------------------- */
|
|
|
|
/* The following set of routines are used to iterator over various type of
|
|
SSA operands. */
|
|
|
|
/* Return true if PTR is finished iterating. */
|
|
static inline bool
|
|
op_iter_done (const ssa_op_iter *ptr)
|
|
{
|
|
return ptr->done;
|
|
}
|
|
|
|
/* Get the next iterator use value for PTR. */
|
|
static inline use_operand_p
|
|
op_iter_next_use (ssa_op_iter *ptr)
|
|
{
|
|
use_operand_p use_p;
|
|
gcc_checking_assert (ptr->iter_type == ssa_op_iter_use);
|
|
if (ptr->uses)
|
|
{
|
|
use_p = USE_OP_PTR (ptr->uses);
|
|
ptr->uses = ptr->uses->next;
|
|
return use_p;
|
|
}
|
|
if (ptr->i < ptr->numops)
|
|
{
|
|
return PHI_ARG_DEF_PTR (ptr->stmt, (ptr->i)++);
|
|
}
|
|
ptr->done = true;
|
|
return NULL_USE_OPERAND_P;
|
|
}
|
|
|
|
/* Get the next iterator def value for PTR. */
|
|
static inline def_operand_p
|
|
op_iter_next_def (ssa_op_iter *ptr)
|
|
{
|
|
gcc_checking_assert (ptr->iter_type == ssa_op_iter_def);
|
|
if (ptr->flags & SSA_OP_VDEF)
|
|
{
|
|
tree *p;
|
|
ptr->flags &= ~SSA_OP_VDEF;
|
|
p = gimple_vdef_ptr (ptr->stmt);
|
|
if (p && *p)
|
|
return p;
|
|
}
|
|
if (ptr->flags & SSA_OP_DEF)
|
|
{
|
|
while (ptr->i < ptr->numops)
|
|
{
|
|
tree *val = gimple_op_ptr (ptr->stmt, ptr->i);
|
|
ptr->i++;
|
|
if (*val)
|
|
{
|
|
if (TREE_CODE (*val) == TREE_LIST)
|
|
val = &TREE_VALUE (*val);
|
|
if (TREE_CODE (*val) == SSA_NAME
|
|
|| is_gimple_reg (*val))
|
|
return val;
|
|
}
|
|
}
|
|
ptr->flags &= ~SSA_OP_DEF;
|
|
}
|
|
|
|
ptr->done = true;
|
|
return NULL_DEF_OPERAND_P;
|
|
}
|
|
|
|
/* Get the next iterator tree value for PTR. */
|
|
static inline tree
|
|
op_iter_next_tree (ssa_op_iter *ptr)
|
|
{
|
|
tree val;
|
|
gcc_checking_assert (ptr->iter_type == ssa_op_iter_tree);
|
|
if (ptr->uses)
|
|
{
|
|
val = USE_OP (ptr->uses);
|
|
ptr->uses = ptr->uses->next;
|
|
return val;
|
|
}
|
|
if (ptr->flags & SSA_OP_VDEF)
|
|
{
|
|
ptr->flags &= ~SSA_OP_VDEF;
|
|
if ((val = gimple_vdef (ptr->stmt)))
|
|
return val;
|
|
}
|
|
if (ptr->flags & SSA_OP_DEF)
|
|
{
|
|
while (ptr->i < ptr->numops)
|
|
{
|
|
val = gimple_op (ptr->stmt, ptr->i);
|
|
ptr->i++;
|
|
if (val)
|
|
{
|
|
if (TREE_CODE (val) == TREE_LIST)
|
|
val = TREE_VALUE (val);
|
|
if (TREE_CODE (val) == SSA_NAME
|
|
|| is_gimple_reg (val))
|
|
return val;
|
|
}
|
|
}
|
|
ptr->flags &= ~SSA_OP_DEF;
|
|
}
|
|
|
|
ptr->done = true;
|
|
return NULL_TREE;
|
|
}
|
|
|
|
|
|
/* This functions clears the iterator PTR, and marks it done. This is normally
|
|
used to prevent warnings in the compile about might be uninitialized
|
|
components. */
|
|
|
|
static inline void
|
|
clear_and_done_ssa_iter (ssa_op_iter *ptr)
|
|
{
|
|
ptr->i = 0;
|
|
ptr->numops = 0;
|
|
ptr->uses = NULL;
|
|
ptr->iter_type = ssa_op_iter_none;
|
|
ptr->stmt = NULL;
|
|
ptr->done = true;
|
|
ptr->flags = 0;
|
|
}
|
|
|
|
/* Initialize the iterator PTR to the virtual defs in STMT. */
|
|
static inline void
|
|
op_iter_init (ssa_op_iter *ptr, gimple stmt, int flags)
|
|
{
|
|
/* PHI nodes require a different iterator initialization path. We
|
|
do not support iterating over virtual defs or uses without
|
|
iterating over defs or uses at the same time. */
|
|
gcc_checking_assert (gimple_code (stmt) != GIMPLE_PHI
|
|
&& (!(flags & SSA_OP_VDEF) || (flags & SSA_OP_DEF))
|
|
&& (!(flags & SSA_OP_VUSE) || (flags & SSA_OP_USE)));
|
|
ptr->numops = 0;
|
|
if (flags & (SSA_OP_DEF | SSA_OP_VDEF))
|
|
{
|
|
switch (gimple_code (stmt))
|
|
{
|
|
case GIMPLE_ASSIGN:
|
|
case GIMPLE_CALL:
|
|
ptr->numops = 1;
|
|
break;
|
|
case GIMPLE_ASM:
|
|
ptr->numops = gimple_asm_noutputs (stmt);
|
|
break;
|
|
default:
|
|
ptr->numops = 0;
|
|
flags &= ~(SSA_OP_DEF | SSA_OP_VDEF);
|
|
break;
|
|
}
|
|
}
|
|
ptr->uses = (flags & (SSA_OP_USE|SSA_OP_VUSE)) ? gimple_use_ops (stmt) : NULL;
|
|
if (!(flags & SSA_OP_VUSE)
|
|
&& ptr->uses
|
|
&& gimple_vuse (stmt) != NULL_TREE)
|
|
ptr->uses = ptr->uses->next;
|
|
ptr->done = false;
|
|
ptr->i = 0;
|
|
|
|
ptr->stmt = stmt;
|
|
ptr->flags = flags;
|
|
}
|
|
|
|
/* Initialize iterator PTR to the use operands in STMT based on FLAGS. Return
|
|
the first use. */
|
|
static inline use_operand_p
|
|
op_iter_init_use (ssa_op_iter *ptr, gimple stmt, int flags)
|
|
{
|
|
gcc_checking_assert ((flags & SSA_OP_ALL_DEFS) == 0
|
|
&& (flags & SSA_OP_USE));
|
|
op_iter_init (ptr, stmt, flags);
|
|
ptr->iter_type = ssa_op_iter_use;
|
|
return op_iter_next_use (ptr);
|
|
}
|
|
|
|
/* Initialize iterator PTR to the def operands in STMT based on FLAGS. Return
|
|
the first def. */
|
|
static inline def_operand_p
|
|
op_iter_init_def (ssa_op_iter *ptr, gimple stmt, int flags)
|
|
{
|
|
gcc_checking_assert ((flags & SSA_OP_ALL_USES) == 0
|
|
&& (flags & SSA_OP_DEF));
|
|
op_iter_init (ptr, stmt, flags);
|
|
ptr->iter_type = ssa_op_iter_def;
|
|
return op_iter_next_def (ptr);
|
|
}
|
|
|
|
/* Initialize iterator PTR to the operands in STMT based on FLAGS. Return
|
|
the first operand as a tree. */
|
|
static inline tree
|
|
op_iter_init_tree (ssa_op_iter *ptr, gimple stmt, int flags)
|
|
{
|
|
op_iter_init (ptr, stmt, flags);
|
|
ptr->iter_type = ssa_op_iter_tree;
|
|
return op_iter_next_tree (ptr);
|
|
}
|
|
|
|
|
|
/* If there is a single operand in STMT matching FLAGS, return it. Otherwise
|
|
return NULL. */
|
|
static inline tree
|
|
single_ssa_tree_operand (gimple stmt, int flags)
|
|
{
|
|
tree var;
|
|
ssa_op_iter iter;
|
|
|
|
var = op_iter_init_tree (&iter, stmt, flags);
|
|
if (op_iter_done (&iter))
|
|
return NULL_TREE;
|
|
op_iter_next_tree (&iter);
|
|
if (op_iter_done (&iter))
|
|
return var;
|
|
return NULL_TREE;
|
|
}
|
|
|
|
|
|
/* If there is a single operand in STMT matching FLAGS, return it. Otherwise
|
|
return NULL. */
|
|
static inline use_operand_p
|
|
single_ssa_use_operand (gimple stmt, int flags)
|
|
{
|
|
use_operand_p var;
|
|
ssa_op_iter iter;
|
|
|
|
var = op_iter_init_use (&iter, stmt, flags);
|
|
if (op_iter_done (&iter))
|
|
return NULL_USE_OPERAND_P;
|
|
op_iter_next_use (&iter);
|
|
if (op_iter_done (&iter))
|
|
return var;
|
|
return NULL_USE_OPERAND_P;
|
|
}
|
|
|
|
|
|
|
|
/* If there is a single operand in STMT matching FLAGS, return it. Otherwise
|
|
return NULL. */
|
|
static inline def_operand_p
|
|
single_ssa_def_operand (gimple stmt, int flags)
|
|
{
|
|
def_operand_p var;
|
|
ssa_op_iter iter;
|
|
|
|
var = op_iter_init_def (&iter, stmt, flags);
|
|
if (op_iter_done (&iter))
|
|
return NULL_DEF_OPERAND_P;
|
|
op_iter_next_def (&iter);
|
|
if (op_iter_done (&iter))
|
|
return var;
|
|
return NULL_DEF_OPERAND_P;
|
|
}
|
|
|
|
|
|
/* Return true if there are zero operands in STMT matching the type
|
|
given in FLAGS. */
|
|
static inline bool
|
|
zero_ssa_operands (gimple stmt, int flags)
|
|
{
|
|
ssa_op_iter iter;
|
|
|
|
op_iter_init_tree (&iter, stmt, flags);
|
|
return op_iter_done (&iter);
|
|
}
|
|
|
|
|
|
/* Return the number of operands matching FLAGS in STMT. */
|
|
static inline int
|
|
num_ssa_operands (gimple stmt, int flags)
|
|
{
|
|
ssa_op_iter iter;
|
|
tree t;
|
|
int num = 0;
|
|
|
|
gcc_checking_assert (gimple_code (stmt) != GIMPLE_PHI);
|
|
FOR_EACH_SSA_TREE_OPERAND (t, stmt, iter, flags)
|
|
num++;
|
|
return num;
|
|
}
|
|
|
|
static inline use_operand_p
|
|
op_iter_init_phiuse (ssa_op_iter *ptr, gimple phi, int flags);
|
|
|
|
/* Delink all immediate_use information for STMT. */
|
|
static inline void
|
|
delink_stmt_imm_use (gimple stmt)
|
|
{
|
|
ssa_op_iter iter;
|
|
use_operand_p use_p;
|
|
|
|
if (ssa_operands_active (cfun))
|
|
FOR_EACH_PHI_OR_STMT_USE (use_p, stmt, iter, SSA_OP_ALL_USES)
|
|
delink_imm_use (use_p);
|
|
}
|
|
|
|
|
|
/* If there is a single DEF in the PHI node which matches FLAG, return it.
|
|
Otherwise return NULL_DEF_OPERAND_P. */
|
|
static inline tree
|
|
single_phi_def (gimple stmt, int flags)
|
|
{
|
|
tree def = PHI_RESULT (stmt);
|
|
if ((flags & SSA_OP_DEF) && is_gimple_reg (def))
|
|
return def;
|
|
if ((flags & SSA_OP_VIRTUAL_DEFS) && !is_gimple_reg (def))
|
|
return def;
|
|
return NULL_TREE;
|
|
}
|
|
|
|
/* Initialize the iterator PTR for uses matching FLAGS in PHI. FLAGS should
|
|
be either SSA_OP_USES or SSA_OP_VIRTUAL_USES. */
|
|
static inline use_operand_p
|
|
op_iter_init_phiuse (ssa_op_iter *ptr, gimple phi, int flags)
|
|
{
|
|
tree phi_def = gimple_phi_result (phi);
|
|
int comp;
|
|
|
|
clear_and_done_ssa_iter (ptr);
|
|
ptr->done = false;
|
|
|
|
gcc_checking_assert ((flags & (SSA_OP_USE | SSA_OP_VIRTUAL_USES)) != 0);
|
|
|
|
comp = (is_gimple_reg (phi_def) ? SSA_OP_USE : SSA_OP_VIRTUAL_USES);
|
|
|
|
/* If the PHI node doesn't the operand type we care about, we're done. */
|
|
if ((flags & comp) == 0)
|
|
{
|
|
ptr->done = true;
|
|
return NULL_USE_OPERAND_P;
|
|
}
|
|
|
|
ptr->stmt = phi;
|
|
ptr->numops = gimple_phi_num_args (phi);
|
|
ptr->iter_type = ssa_op_iter_use;
|
|
ptr->flags = flags;
|
|
return op_iter_next_use (ptr);
|
|
}
|
|
|
|
|
|
/* Start an iterator for a PHI definition. */
|
|
|
|
static inline def_operand_p
|
|
op_iter_init_phidef (ssa_op_iter *ptr, gimple phi, int flags)
|
|
{
|
|
tree phi_def = PHI_RESULT (phi);
|
|
int comp;
|
|
|
|
clear_and_done_ssa_iter (ptr);
|
|
ptr->done = false;
|
|
|
|
gcc_checking_assert ((flags & (SSA_OP_DEF | SSA_OP_VIRTUAL_DEFS)) != 0);
|
|
|
|
comp = (is_gimple_reg (phi_def) ? SSA_OP_DEF : SSA_OP_VIRTUAL_DEFS);
|
|
|
|
/* If the PHI node doesn't have the operand type we care about,
|
|
we're done. */
|
|
if ((flags & comp) == 0)
|
|
{
|
|
ptr->done = true;
|
|
return NULL_DEF_OPERAND_P;
|
|
}
|
|
|
|
ptr->iter_type = ssa_op_iter_def;
|
|
/* The first call to op_iter_next_def will terminate the iterator since
|
|
all the fields are NULL. Simply return the result here as the first and
|
|
therefore only result. */
|
|
return PHI_RESULT_PTR (phi);
|
|
}
|
|
|
|
/* Return true is IMM has reached the end of the immediate use stmt list. */
|
|
|
|
static inline bool
|
|
end_imm_use_stmt_p (const imm_use_iterator *imm)
|
|
{
|
|
return (imm->imm_use == imm->end_p);
|
|
}
|
|
|
|
/* Finished the traverse of an immediate use stmt list IMM by removing the
|
|
placeholder node from the list. */
|
|
|
|
static inline void
|
|
end_imm_use_stmt_traverse (imm_use_iterator *imm)
|
|
{
|
|
delink_imm_use (&(imm->iter_node));
|
|
}
|
|
|
|
/* Immediate use traversal of uses within a stmt require that all the
|
|
uses on a stmt be sequentially listed. This routine is used to build up
|
|
this sequential list by adding USE_P to the end of the current list
|
|
currently delimited by HEAD and LAST_P. The new LAST_P value is
|
|
returned. */
|
|
|
|
static inline use_operand_p
|
|
move_use_after_head (use_operand_p use_p, use_operand_p head,
|
|
use_operand_p last_p)
|
|
{
|
|
gcc_checking_assert (USE_FROM_PTR (use_p) == USE_FROM_PTR (head));
|
|
/* Skip head when we find it. */
|
|
if (use_p != head)
|
|
{
|
|
/* If use_p is already linked in after last_p, continue. */
|
|
if (last_p->next == use_p)
|
|
last_p = use_p;
|
|
else
|
|
{
|
|
/* Delink from current location, and link in at last_p. */
|
|
delink_imm_use (use_p);
|
|
link_imm_use_to_list (use_p, last_p);
|
|
last_p = use_p;
|
|
}
|
|
}
|
|
return last_p;
|
|
}
|
|
|
|
|
|
/* This routine will relink all uses with the same stmt as HEAD into the list
|
|
immediately following HEAD for iterator IMM. */
|
|
|
|
static inline void
|
|
link_use_stmts_after (use_operand_p head, imm_use_iterator *imm)
|
|
{
|
|
use_operand_p use_p;
|
|
use_operand_p last_p = head;
|
|
gimple head_stmt = USE_STMT (head);
|
|
tree use = USE_FROM_PTR (head);
|
|
ssa_op_iter op_iter;
|
|
int flag;
|
|
|
|
/* Only look at virtual or real uses, depending on the type of HEAD. */
|
|
flag = (is_gimple_reg (use) ? SSA_OP_USE : SSA_OP_VIRTUAL_USES);
|
|
|
|
if (gimple_code (head_stmt) == GIMPLE_PHI)
|
|
{
|
|
FOR_EACH_PHI_ARG (use_p, head_stmt, op_iter, flag)
|
|
if (USE_FROM_PTR (use_p) == use)
|
|
last_p = move_use_after_head (use_p, head, last_p);
|
|
}
|
|
else
|
|
{
|
|
if (flag == SSA_OP_USE)
|
|
{
|
|
FOR_EACH_SSA_USE_OPERAND (use_p, head_stmt, op_iter, flag)
|
|
if (USE_FROM_PTR (use_p) == use)
|
|
last_p = move_use_after_head (use_p, head, last_p);
|
|
}
|
|
else if ((use_p = gimple_vuse_op (head_stmt)) != NULL_USE_OPERAND_P)
|
|
{
|
|
if (USE_FROM_PTR (use_p) == use)
|
|
last_p = move_use_after_head (use_p, head, last_p);
|
|
}
|
|
}
|
|
/* Link iter node in after last_p. */
|
|
if (imm->iter_node.prev != NULL)
|
|
delink_imm_use (&imm->iter_node);
|
|
link_imm_use_to_list (&(imm->iter_node), last_p);
|
|
}
|
|
|
|
/* Initialize IMM to traverse over uses of VAR. Return the first statement. */
|
|
static inline gimple
|
|
first_imm_use_stmt (imm_use_iterator *imm, tree var)
|
|
{
|
|
imm->end_p = &(SSA_NAME_IMM_USE_NODE (var));
|
|
imm->imm_use = imm->end_p->next;
|
|
imm->next_imm_name = NULL_USE_OPERAND_P;
|
|
|
|
/* iter_node is used as a marker within the immediate use list to indicate
|
|
where the end of the current stmt's uses are. Initialize it to NULL
|
|
stmt and use, which indicates a marker node. */
|
|
imm->iter_node.prev = NULL_USE_OPERAND_P;
|
|
imm->iter_node.next = NULL_USE_OPERAND_P;
|
|
imm->iter_node.loc.stmt = NULL;
|
|
imm->iter_node.use = NULL;
|
|
|
|
if (end_imm_use_stmt_p (imm))
|
|
return NULL;
|
|
|
|
link_use_stmts_after (imm->imm_use, imm);
|
|
|
|
return USE_STMT (imm->imm_use);
|
|
}
|
|
|
|
/* Bump IMM to the next stmt which has a use of var. */
|
|
|
|
static inline gimple
|
|
next_imm_use_stmt (imm_use_iterator *imm)
|
|
{
|
|
imm->imm_use = imm->iter_node.next;
|
|
if (end_imm_use_stmt_p (imm))
|
|
{
|
|
if (imm->iter_node.prev != NULL)
|
|
delink_imm_use (&imm->iter_node);
|
|
return NULL;
|
|
}
|
|
|
|
link_use_stmts_after (imm->imm_use, imm);
|
|
return USE_STMT (imm->imm_use);
|
|
}
|
|
|
|
/* This routine will return the first use on the stmt IMM currently refers
|
|
to. */
|
|
|
|
static inline use_operand_p
|
|
first_imm_use_on_stmt (imm_use_iterator *imm)
|
|
{
|
|
imm->next_imm_name = imm->imm_use->next;
|
|
return imm->imm_use;
|
|
}
|
|
|
|
/* Return TRUE if the last use on the stmt IMM refers to has been visited. */
|
|
|
|
static inline bool
|
|
end_imm_use_on_stmt_p (const imm_use_iterator *imm)
|
|
{
|
|
return (imm->imm_use == &(imm->iter_node));
|
|
}
|
|
|
|
/* Bump to the next use on the stmt IMM refers to, return NULL if done. */
|
|
|
|
static inline use_operand_p
|
|
next_imm_use_on_stmt (imm_use_iterator *imm)
|
|
{
|
|
imm->imm_use = imm->next_imm_name;
|
|
if (end_imm_use_on_stmt_p (imm))
|
|
return NULL_USE_OPERAND_P;
|
|
else
|
|
{
|
|
imm->next_imm_name = imm->imm_use->next;
|
|
return imm->imm_use;
|
|
}
|
|
}
|
|
|
|
/* Return true if VAR cannot be modified by the program. */
|
|
|
|
static inline bool
|
|
unmodifiable_var_p (const_tree var)
|
|
{
|
|
if (TREE_CODE (var) == SSA_NAME)
|
|
var = SSA_NAME_VAR (var);
|
|
|
|
return TREE_READONLY (var) && (TREE_STATIC (var) || DECL_EXTERNAL (var));
|
|
}
|
|
|
|
/* Return true if REF, a handled component reference, has an ARRAY_REF
|
|
somewhere in it. */
|
|
|
|
static inline bool
|
|
ref_contains_array_ref (const_tree ref)
|
|
{
|
|
gcc_checking_assert (handled_component_p (ref));
|
|
|
|
do {
|
|
if (TREE_CODE (ref) == ARRAY_REF)
|
|
return true;
|
|
ref = TREE_OPERAND (ref, 0);
|
|
} while (handled_component_p (ref));
|
|
|
|
return false;
|
|
}
|
|
|
|
/* Return true if REF has an VIEW_CONVERT_EXPR somewhere in it. */
|
|
|
|
static inline bool
|
|
contains_view_convert_expr_p (const_tree ref)
|
|
{
|
|
while (handled_component_p (ref))
|
|
{
|
|
if (TREE_CODE (ref) == VIEW_CONVERT_EXPR)
|
|
return true;
|
|
ref = TREE_OPERAND (ref, 0);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/* Return true, if the two ranges [POS1, SIZE1] and [POS2, SIZE2]
|
|
overlap. SIZE1 and/or SIZE2 can be (unsigned)-1 in which case the
|
|
range is open-ended. Otherwise return false. */
|
|
|
|
static inline bool
|
|
ranges_overlap_p (unsigned HOST_WIDE_INT pos1,
|
|
unsigned HOST_WIDE_INT size1,
|
|
unsigned HOST_WIDE_INT pos2,
|
|
unsigned HOST_WIDE_INT size2)
|
|
{
|
|
if (pos1 >= pos2
|
|
&& (size2 == (unsigned HOST_WIDE_INT)-1
|
|
|| pos1 < (pos2 + size2)))
|
|
return true;
|
|
if (pos2 >= pos1
|
|
&& (size1 == (unsigned HOST_WIDE_INT)-1
|
|
|| pos2 < (pos1 + size1)))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/* Accessor to tree-ssa-operands.c caches. */
|
|
static inline struct ssa_operands *
|
|
gimple_ssa_operands (const struct function *fun)
|
|
{
|
|
return &fun->gimple_df->ssa_operands;
|
|
}
|
|
|
|
|
|
/* Returns the base object and a constant BITS_PER_UNIT offset in *POFFSET that
|
|
denotes the starting address of the memory access EXP.
|
|
Returns NULL_TREE if the offset is not constant or any component
|
|
is not BITS_PER_UNIT-aligned.
|
|
VALUEIZE if non-NULL is used to valueize SSA names. It should return
|
|
its argument or a constant if the argument is known to be constant. */
|
|
/* ??? This is a static inline here to avoid the overhead of the indirect calls
|
|
to VALUEIZE. But is this overhead really that significant? And should we
|
|
perhaps just rely on WHOPR to specialize the function? */
|
|
|
|
static inline tree
|
|
get_addr_base_and_unit_offset_1 (tree exp, HOST_WIDE_INT *poffset,
|
|
tree (*valueize) (tree))
|
|
{
|
|
HOST_WIDE_INT byte_offset = 0;
|
|
|
|
/* Compute cumulative byte-offset for nested component-refs and array-refs,
|
|
and find the ultimate containing object. */
|
|
while (1)
|
|
{
|
|
switch (TREE_CODE (exp))
|
|
{
|
|
case BIT_FIELD_REF:
|
|
{
|
|
HOST_WIDE_INT this_off = TREE_INT_CST_LOW (TREE_OPERAND (exp, 2));
|
|
if (this_off % BITS_PER_UNIT)
|
|
return NULL_TREE;
|
|
byte_offset += this_off / BITS_PER_UNIT;
|
|
}
|
|
break;
|
|
|
|
case COMPONENT_REF:
|
|
{
|
|
tree field = TREE_OPERAND (exp, 1);
|
|
tree this_offset = component_ref_field_offset (exp);
|
|
HOST_WIDE_INT hthis_offset;
|
|
|
|
if (!this_offset
|
|
|| TREE_CODE (this_offset) != INTEGER_CST
|
|
|| (TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (field))
|
|
% BITS_PER_UNIT))
|
|
return NULL_TREE;
|
|
|
|
hthis_offset = TREE_INT_CST_LOW (this_offset);
|
|
hthis_offset += (TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (field))
|
|
/ BITS_PER_UNIT);
|
|
byte_offset += hthis_offset;
|
|
}
|
|
break;
|
|
|
|
case ARRAY_REF:
|
|
case ARRAY_RANGE_REF:
|
|
{
|
|
tree index = TREE_OPERAND (exp, 1);
|
|
tree low_bound, unit_size;
|
|
|
|
if (valueize
|
|
&& TREE_CODE (index) == SSA_NAME)
|
|
index = (*valueize) (index);
|
|
|
|
/* If the resulting bit-offset is constant, track it. */
|
|
if (TREE_CODE (index) == INTEGER_CST
|
|
&& (low_bound = array_ref_low_bound (exp),
|
|
TREE_CODE (low_bound) == INTEGER_CST)
|
|
&& (unit_size = array_ref_element_size (exp),
|
|
TREE_CODE (unit_size) == INTEGER_CST))
|
|
{
|
|
HOST_WIDE_INT hindex = TREE_INT_CST_LOW (index);
|
|
|
|
hindex -= TREE_INT_CST_LOW (low_bound);
|
|
hindex *= TREE_INT_CST_LOW (unit_size);
|
|
byte_offset += hindex;
|
|
}
|
|
else
|
|
return NULL_TREE;
|
|
}
|
|
break;
|
|
|
|
case REALPART_EXPR:
|
|
break;
|
|
|
|
case IMAGPART_EXPR:
|
|
byte_offset += TREE_INT_CST_LOW (TYPE_SIZE_UNIT (TREE_TYPE (exp)));
|
|
break;
|
|
|
|
case VIEW_CONVERT_EXPR:
|
|
break;
|
|
|
|
case MEM_REF:
|
|
{
|
|
tree base = TREE_OPERAND (exp, 0);
|
|
if (valueize
|
|
&& TREE_CODE (base) == SSA_NAME)
|
|
base = (*valueize) (base);
|
|
|
|
/* Hand back the decl for MEM[&decl, off]. */
|
|
if (TREE_CODE (base) == ADDR_EXPR)
|
|
{
|
|
if (!integer_zerop (TREE_OPERAND (exp, 1)))
|
|
{
|
|
double_int off = mem_ref_offset (exp);
|
|
gcc_assert (off.high == -1 || off.high == 0);
|
|
byte_offset += off.to_shwi ();
|
|
}
|
|
exp = TREE_OPERAND (base, 0);
|
|
}
|
|
goto done;
|
|
}
|
|
|
|
case TARGET_MEM_REF:
|
|
{
|
|
tree base = TREE_OPERAND (exp, 0);
|
|
if (valueize
|
|
&& TREE_CODE (base) == SSA_NAME)
|
|
base = (*valueize) (base);
|
|
|
|
/* Hand back the decl for MEM[&decl, off]. */
|
|
if (TREE_CODE (base) == ADDR_EXPR)
|
|
{
|
|
if (TMR_INDEX (exp) || TMR_INDEX2 (exp))
|
|
return NULL_TREE;
|
|
if (!integer_zerop (TMR_OFFSET (exp)))
|
|
{
|
|
double_int off = mem_ref_offset (exp);
|
|
gcc_assert (off.high == -1 || off.high == 0);
|
|
byte_offset += off.to_shwi ();
|
|
}
|
|
exp = TREE_OPERAND (base, 0);
|
|
}
|
|
goto done;
|
|
}
|
|
|
|
default:
|
|
goto done;
|
|
}
|
|
|
|
exp = TREE_OPERAND (exp, 0);
|
|
}
|
|
done:
|
|
|
|
*poffset = byte_offset;
|
|
return exp;
|
|
}
|
|
|
|
#endif /* _TREE_FLOW_INLINE_H */
|