gcc/libstdc++-v3/include/bits/stl_map.h
Jonathan Wakely 0a2bf18874 Improve doxygen comments for allocators in containers
PR libstdc++/70716
	* include/bits/forward_list.h (forward_list): Update doxygen comments
	to reflect allocator propagation semantics. Remove ambiguous
	statements about data being lost.
	* include/bits/stl_deque.h (deque): Likewise.
	* include/bits/stl_list.h (list): Likewise.
	* include/bits/stl_map.h (map): Likewise.
	* include/bits/stl_multimap.h (multimap): Likewise.
	* include/bits/stl_multiset.h (multiset): Likewise.
	* include/bits/stl_set.h (set): Likewise.
	* include/bits/stl_vector.h (vector): Likewise.
	* include/bits/unordered_map.h (unordered_map, unordered_multimap):
	Likewise.
	* include/bits/unordered_set.h (unordered_set, unordered_multiset):
	Likewise.

From-SVN: r238332
2016-07-14 11:02:10 +01:00

1371 lines
49 KiB
C++

// Map implementation -*- C++ -*-
// Copyright (C) 2001-2016 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
/*
*
* Copyright (c) 1994
* Hewlett-Packard Company
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Hewlett-Packard Company makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*
*
* Copyright (c) 1996,1997
* Silicon Graphics Computer Systems, Inc.
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Silicon Graphics makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*/
/** @file bits/stl_map.h
* This is an internal header file, included by other library headers.
* Do not attempt to use it directly. @headername{map}
*/
#ifndef _STL_MAP_H
#define _STL_MAP_H 1
#include <bits/functexcept.h>
#include <bits/concept_check.h>
#if __cplusplus >= 201103L
#include <initializer_list>
#include <tuple>
#endif
namespace std _GLIBCXX_VISIBILITY(default)
{
_GLIBCXX_BEGIN_NAMESPACE_CONTAINER
/**
* @brief A standard container made up of (key,value) pairs, which can be
* retrieved based on a key, in logarithmic time.
*
* @ingroup associative_containers
*
* @tparam _Key Type of key objects.
* @tparam _Tp Type of mapped objects.
* @tparam _Compare Comparison function object type, defaults to less<_Key>.
* @tparam _Alloc Allocator type, defaults to
* allocator<pair<const _Key, _Tp>.
*
* Meets the requirements of a <a href="tables.html#65">container</a>, a
* <a href="tables.html#66">reversible container</a>, and an
* <a href="tables.html#69">associative container</a> (using unique keys).
* For a @c map<Key,T> the key_type is Key, the mapped_type is T, and the
* value_type is std::pair<const Key,T>.
*
* Maps support bidirectional iterators.
*
* The private tree data is declared exactly the same way for map and
* multimap; the distinction is made entirely in how the tree functions are
* called (*_unique versus *_equal, same as the standard).
*/
template <typename _Key, typename _Tp, typename _Compare = std::less<_Key>,
typename _Alloc = std::allocator<std::pair<const _Key, _Tp> > >
class map
{
public:
typedef _Key key_type;
typedef _Tp mapped_type;
typedef std::pair<const _Key, _Tp> value_type;
typedef _Compare key_compare;
typedef _Alloc allocator_type;
private:
// concept requirements
typedef typename _Alloc::value_type _Alloc_value_type;
__glibcxx_class_requires(_Tp, _SGIAssignableConcept)
__glibcxx_class_requires4(_Compare, bool, _Key, _Key,
_BinaryFunctionConcept)
__glibcxx_class_requires2(value_type, _Alloc_value_type, _SameTypeConcept)
public:
class value_compare
: public std::binary_function<value_type, value_type, bool>
{
friend class map<_Key, _Tp, _Compare, _Alloc>;
protected:
_Compare comp;
value_compare(_Compare __c)
: comp(__c) { }
public:
bool operator()(const value_type& __x, const value_type& __y) const
{ return comp(__x.first, __y.first); }
};
private:
/// This turns a red-black tree into a [multi]map.
typedef typename __gnu_cxx::__alloc_traits<_Alloc>::template
rebind<value_type>::other _Pair_alloc_type;
typedef _Rb_tree<key_type, value_type, _Select1st<value_type>,
key_compare, _Pair_alloc_type> _Rep_type;
/// The actual tree structure.
_Rep_type _M_t;
typedef __gnu_cxx::__alloc_traits<_Pair_alloc_type> _Alloc_traits;
public:
// many of these are specified differently in ISO, but the following are
// "functionally equivalent"
typedef typename _Alloc_traits::pointer pointer;
typedef typename _Alloc_traits::const_pointer const_pointer;
typedef typename _Alloc_traits::reference reference;
typedef typename _Alloc_traits::const_reference const_reference;
typedef typename _Rep_type::iterator iterator;
typedef typename _Rep_type::const_iterator const_iterator;
typedef typename _Rep_type::size_type size_type;
typedef typename _Rep_type::difference_type difference_type;
typedef typename _Rep_type::reverse_iterator reverse_iterator;
typedef typename _Rep_type::const_reverse_iterator const_reverse_iterator;
// [23.3.1.1] construct/copy/destroy
// (get_allocator() is also listed in this section)
/**
* @brief Default constructor creates no elements.
*/
map()
#if __cplusplus >= 201103L
noexcept(is_nothrow_default_constructible<allocator_type>::value)
#endif
: _M_t() { }
/**
* @brief Creates a %map with no elements.
* @param __comp A comparison object.
* @param __a An allocator object.
*/
explicit
map(const _Compare& __comp,
const allocator_type& __a = allocator_type())
: _M_t(__comp, _Pair_alloc_type(__a)) { }
/**
* @brief %Map copy constructor.
* @param __x A %map of identical element and allocator types.
*
* The newly-created %map uses a copy of the allocator object used
* by @a __x (unless the allocator traits dictate a different object).
*/
map(const map& __x)
: _M_t(__x._M_t) { }
#if __cplusplus >= 201103L
/**
* @brief %Map move constructor.
* @param __x A %map of identical element and allocator types.
*
* The newly-created %map contains the exact contents of @a __x.
* The contents of @a __x are a valid, but unspecified %map.
*/
map(map&& __x)
noexcept(is_nothrow_copy_constructible<_Compare>::value)
: _M_t(std::move(__x._M_t)) { }
/**
* @brief Builds a %map from an initializer_list.
* @param __l An initializer_list.
* @param __comp A comparison object.
* @param __a An allocator object.
*
* Create a %map consisting of copies of the elements in the
* initializer_list @a __l.
* This is linear in N if the range is already sorted, and NlogN
* otherwise (where N is @a __l.size()).
*/
map(initializer_list<value_type> __l,
const _Compare& __comp = _Compare(),
const allocator_type& __a = allocator_type())
: _M_t(__comp, _Pair_alloc_type(__a))
{ _M_t._M_insert_unique(__l.begin(), __l.end()); }
/// Allocator-extended default constructor.
explicit
map(const allocator_type& __a)
: _M_t(_Compare(), _Pair_alloc_type(__a)) { }
/// Allocator-extended copy constructor.
map(const map& __m, const allocator_type& __a)
: _M_t(__m._M_t, _Pair_alloc_type(__a)) { }
/// Allocator-extended move constructor.
map(map&& __m, const allocator_type& __a)
noexcept(is_nothrow_copy_constructible<_Compare>::value
&& _Alloc_traits::_S_always_equal())
: _M_t(std::move(__m._M_t), _Pair_alloc_type(__a)) { }
/// Allocator-extended initialier-list constructor.
map(initializer_list<value_type> __l, const allocator_type& __a)
: _M_t(_Compare(), _Pair_alloc_type(__a))
{ _M_t._M_insert_unique(__l.begin(), __l.end()); }
/// Allocator-extended range constructor.
template<typename _InputIterator>
map(_InputIterator __first, _InputIterator __last,
const allocator_type& __a)
: _M_t(_Compare(), _Pair_alloc_type(__a))
{ _M_t._M_insert_unique(__first, __last); }
#endif
/**
* @brief Builds a %map from a range.
* @param __first An input iterator.
* @param __last An input iterator.
*
* Create a %map consisting of copies of the elements from
* [__first,__last). This is linear in N if the range is
* already sorted, and NlogN otherwise (where N is
* distance(__first,__last)).
*/
template<typename _InputIterator>
map(_InputIterator __first, _InputIterator __last)
: _M_t()
{ _M_t._M_insert_unique(__first, __last); }
/**
* @brief Builds a %map from a range.
* @param __first An input iterator.
* @param __last An input iterator.
* @param __comp A comparison functor.
* @param __a An allocator object.
*
* Create a %map consisting of copies of the elements from
* [__first,__last). This is linear in N if the range is
* already sorted, and NlogN otherwise (where N is
* distance(__first,__last)).
*/
template<typename _InputIterator>
map(_InputIterator __first, _InputIterator __last,
const _Compare& __comp,
const allocator_type& __a = allocator_type())
: _M_t(__comp, _Pair_alloc_type(__a))
{ _M_t._M_insert_unique(__first, __last); }
// FIXME There is no dtor declared, but we should have something
// generated by Doxygen. I don't know what tags to add to this
// paragraph to make that happen:
/**
* The dtor only erases the elements, and note that if the elements
* themselves are pointers, the pointed-to memory is not touched in any
* way. Managing the pointer is the user's responsibility.
*/
/**
* @brief %Map assignment operator.
* @param __x A %map of identical element and allocator types.
*
* All the elements of @a __x are copied.
*
* Whether the allocator is copied depends on the allocator traits.
*/
map&
operator=(const map& __x)
{
_M_t = __x._M_t;
return *this;
}
#if __cplusplus >= 201103L
/// Move assignment operator.
map&
operator=(map&&) = default;
/**
* @brief %Map list assignment operator.
* @param __l An initializer_list.
*
* This function fills a %map with copies of the elements in the
* initializer list @a __l.
*
* Note that the assignment completely changes the %map and
* that the resulting %map's size is the same as the number
* of elements assigned.
*/
map&
operator=(initializer_list<value_type> __l)
{
_M_t._M_assign_unique(__l.begin(), __l.end());
return *this;
}
#endif
/// Get a copy of the memory allocation object.
allocator_type
get_allocator() const _GLIBCXX_NOEXCEPT
{ return allocator_type(_M_t.get_allocator()); }
// iterators
/**
* Returns a read/write iterator that points to the first pair in the
* %map.
* Iteration is done in ascending order according to the keys.
*/
iterator
begin() _GLIBCXX_NOEXCEPT
{ return _M_t.begin(); }
/**
* Returns a read-only (constant) iterator that points to the first pair
* in the %map. Iteration is done in ascending order according to the
* keys.
*/
const_iterator
begin() const _GLIBCXX_NOEXCEPT
{ return _M_t.begin(); }
/**
* Returns a read/write iterator that points one past the last
* pair in the %map. Iteration is done in ascending order
* according to the keys.
*/
iterator
end() _GLIBCXX_NOEXCEPT
{ return _M_t.end(); }
/**
* Returns a read-only (constant) iterator that points one past the last
* pair in the %map. Iteration is done in ascending order according to
* the keys.
*/
const_iterator
end() const _GLIBCXX_NOEXCEPT
{ return _M_t.end(); }
/**
* Returns a read/write reverse iterator that points to the last pair in
* the %map. Iteration is done in descending order according to the
* keys.
*/
reverse_iterator
rbegin() _GLIBCXX_NOEXCEPT
{ return _M_t.rbegin(); }
/**
* Returns a read-only (constant) reverse iterator that points to the
* last pair in the %map. Iteration is done in descending order
* according to the keys.
*/
const_reverse_iterator
rbegin() const _GLIBCXX_NOEXCEPT
{ return _M_t.rbegin(); }
/**
* Returns a read/write reverse iterator that points to one before the
* first pair in the %map. Iteration is done in descending order
* according to the keys.
*/
reverse_iterator
rend() _GLIBCXX_NOEXCEPT
{ return _M_t.rend(); }
/**
* Returns a read-only (constant) reverse iterator that points to one
* before the first pair in the %map. Iteration is done in descending
* order according to the keys.
*/
const_reverse_iterator
rend() const _GLIBCXX_NOEXCEPT
{ return _M_t.rend(); }
#if __cplusplus >= 201103L
/**
* Returns a read-only (constant) iterator that points to the first pair
* in the %map. Iteration is done in ascending order according to the
* keys.
*/
const_iterator
cbegin() const noexcept
{ return _M_t.begin(); }
/**
* Returns a read-only (constant) iterator that points one past the last
* pair in the %map. Iteration is done in ascending order according to
* the keys.
*/
const_iterator
cend() const noexcept
{ return _M_t.end(); }
/**
* Returns a read-only (constant) reverse iterator that points to the
* last pair in the %map. Iteration is done in descending order
* according to the keys.
*/
const_reverse_iterator
crbegin() const noexcept
{ return _M_t.rbegin(); }
/**
* Returns a read-only (constant) reverse iterator that points to one
* before the first pair in the %map. Iteration is done in descending
* order according to the keys.
*/
const_reverse_iterator
crend() const noexcept
{ return _M_t.rend(); }
#endif
// capacity
/** Returns true if the %map is empty. (Thus begin() would equal
* end().)
*/
bool
empty() const _GLIBCXX_NOEXCEPT
{ return _M_t.empty(); }
/** Returns the size of the %map. */
size_type
size() const _GLIBCXX_NOEXCEPT
{ return _M_t.size(); }
/** Returns the maximum size of the %map. */
size_type
max_size() const _GLIBCXX_NOEXCEPT
{ return _M_t.max_size(); }
// [23.3.1.2] element access
/**
* @brief Subscript ( @c [] ) access to %map data.
* @param __k The key for which data should be retrieved.
* @return A reference to the data of the (key,data) %pair.
*
* Allows for easy lookup with the subscript ( @c [] )
* operator. Returns data associated with the key specified in
* subscript. If the key does not exist, a pair with that key
* is created using default values, which is then returned.
*
* Lookup requires logarithmic time.
*/
mapped_type&
operator[](const key_type& __k)
{
// concept requirements
__glibcxx_function_requires(_DefaultConstructibleConcept<mapped_type>)
iterator __i = lower_bound(__k);
// __i->first is greater than or equivalent to __k.
if (__i == end() || key_comp()(__k, (*__i).first))
#if __cplusplus >= 201103L
__i = _M_t._M_emplace_hint_unique(__i, std::piecewise_construct,
std::tuple<const key_type&>(__k),
std::tuple<>());
#else
__i = insert(__i, value_type(__k, mapped_type()));
#endif
return (*__i).second;
}
#if __cplusplus >= 201103L
mapped_type&
operator[](key_type&& __k)
{
// concept requirements
__glibcxx_function_requires(_DefaultConstructibleConcept<mapped_type>)
iterator __i = lower_bound(__k);
// __i->first is greater than or equivalent to __k.
if (__i == end() || key_comp()(__k, (*__i).first))
__i = _M_t._M_emplace_hint_unique(__i, std::piecewise_construct,
std::forward_as_tuple(std::move(__k)),
std::tuple<>());
return (*__i).second;
}
#endif
// _GLIBCXX_RESOLVE_LIB_DEFECTS
// DR 464. Suggestion for new member functions in standard containers.
/**
* @brief Access to %map data.
* @param __k The key for which data should be retrieved.
* @return A reference to the data whose key is equivalent to @a __k, if
* such a data is present in the %map.
* @throw std::out_of_range If no such data is present.
*/
mapped_type&
at(const key_type& __k)
{
iterator __i = lower_bound(__k);
if (__i == end() || key_comp()(__k, (*__i).first))
__throw_out_of_range(__N("map::at"));
return (*__i).second;
}
const mapped_type&
at(const key_type& __k) const
{
const_iterator __i = lower_bound(__k);
if (__i == end() || key_comp()(__k, (*__i).first))
__throw_out_of_range(__N("map::at"));
return (*__i).second;
}
// modifiers
#if __cplusplus >= 201103L
/**
* @brief Attempts to build and insert a std::pair into the %map.
*
* @param __args Arguments used to generate a new pair instance (see
* std::piecewise_contruct for passing arguments to each
* part of the pair constructor).
*
* @return A pair, of which the first element is an iterator that points
* to the possibly inserted pair, and the second is a bool that
* is true if the pair was actually inserted.
*
* This function attempts to build and insert a (key, value) %pair into
* the %map.
* A %map relies on unique keys and thus a %pair is only inserted if its
* first element (the key) is not already present in the %map.
*
* Insertion requires logarithmic time.
*/
template<typename... _Args>
std::pair<iterator, bool>
emplace(_Args&&... __args)
{ return _M_t._M_emplace_unique(std::forward<_Args>(__args)...); }
/**
* @brief Attempts to build and insert a std::pair into the %map.
*
* @param __pos An iterator that serves as a hint as to where the pair
* should be inserted.
* @param __args Arguments used to generate a new pair instance (see
* std::piecewise_contruct for passing arguments to each
* part of the pair constructor).
* @return An iterator that points to the element with key of the
* std::pair built from @a __args (may or may not be that
* std::pair).
*
* This function is not concerned about whether the insertion took place,
* and thus does not return a boolean like the single-argument emplace()
* does.
* Note that the first parameter is only a hint and can potentially
* improve the performance of the insertion process. A bad hint would
* cause no gains in efficiency.
*
* See
* https://gcc.gnu.org/onlinedocs/libstdc++/manual/associative.html#containers.associative.insert_hints
* for more on @a hinting.
*
* Insertion requires logarithmic time (if the hint is not taken).
*/
template<typename... _Args>
iterator
emplace_hint(const_iterator __pos, _Args&&... __args)
{
return _M_t._M_emplace_hint_unique(__pos,
std::forward<_Args>(__args)...);
}
#endif
#if __cplusplus > 201402L
#define __cpp_lib_map_try_emplace 201411
/**
* @brief Attempts to build and insert a std::pair into the %map.
*
* @param __k Key to use for finding a possibly existing pair in
* the map.
* @param __args Arguments used to generate the .second for a new pair
* instance.
*
* @return A pair, of which the first element is an iterator that points
* to the possibly inserted pair, and the second is a bool that
* is true if the pair was actually inserted.
*
* This function attempts to build and insert a (key, value) %pair into
* the %map.
* A %map relies on unique keys and thus a %pair is only inserted if its
* first element (the key) is not already present in the %map.
* If a %pair is not inserted, this function has no effect.
*
* Insertion requires logarithmic time.
*/
template <typename... _Args>
pair<iterator, bool>
try_emplace(const key_type& __k, _Args&&... __args)
{
iterator __i = lower_bound(__k);
if (__i == end() || key_comp()(__k, (*__i).first))
{
__i = emplace_hint(__i, std::piecewise_construct,
std::forward_as_tuple(__k),
std::forward_as_tuple(
std::forward<_Args>(__args)...));
return {__i, true};
}
return {__i, false};
}
// move-capable overload
template <typename... _Args>
pair<iterator, bool>
try_emplace(key_type&& __k, _Args&&... __args)
{
iterator __i = lower_bound(__k);
if (__i == end() || key_comp()(__k, (*__i).first))
{
__i = emplace_hint(__i, std::piecewise_construct,
std::forward_as_tuple(std::move(__k)),
std::forward_as_tuple(
std::forward<_Args>(__args)...));
return {__i, true};
}
return {__i, false};
}
/**
* @brief Attempts to build and insert a std::pair into the %map.
*
* @param __hint An iterator that serves as a hint as to where the
* pair should be inserted.
* @param __k Key to use for finding a possibly existing pair in
* the map.
* @param __args Arguments used to generate the .second for a new pair
* instance.
* @return An iterator that points to the element with key of the
* std::pair built from @a __args (may or may not be that
* std::pair).
*
* This function is not concerned about whether the insertion took place,
* and thus does not return a boolean like the single-argument
* try_emplace() does. However, if insertion did not take place,
* this function has no effect.
* Note that the first parameter is only a hint and can potentially
* improve the performance of the insertion process. A bad hint would
* cause no gains in efficiency.
*
* See
* https://gcc.gnu.org/onlinedocs/libstdc++/manual/associative.html#containers.associative.insert_hints
* for more on @a hinting.
*
* Insertion requires logarithmic time (if the hint is not taken).
*/
template <typename... _Args>
iterator
try_emplace(const_iterator __hint, const key_type& __k,
_Args&&... __args)
{
iterator __i;
auto __true_hint = _M_t._M_get_insert_hint_unique_pos(__hint, __k);
if (__true_hint.second)
__i = emplace_hint(iterator(__true_hint.second),
std::piecewise_construct,
std::forward_as_tuple(__k),
std::forward_as_tuple(
std::forward<_Args>(__args)...));
else
__i = iterator(__true_hint.first);
return __i;
}
// move-capable overload
template <typename... _Args>
iterator
try_emplace(const_iterator __hint, key_type&& __k, _Args&&... __args)
{
iterator __i;
auto __true_hint = _M_t._M_get_insert_hint_unique_pos(__hint, __k);
if (__true_hint.second)
__i = emplace_hint(iterator(__true_hint.second),
std::piecewise_construct,
std::forward_as_tuple(std::move(__k)),
std::forward_as_tuple(
std::forward<_Args>(__args)...));
else
__i = iterator(__true_hint.first);
return __i;
}
#endif
/**
* @brief Attempts to insert a std::pair into the %map.
* @param __x Pair to be inserted (see std::make_pair for easy
* creation of pairs).
*
* @return A pair, of which the first element is an iterator that
* points to the possibly inserted pair, and the second is
* a bool that is true if the pair was actually inserted.
*
* This function attempts to insert a (key, value) %pair into the %map.
* A %map relies on unique keys and thus a %pair is only inserted if its
* first element (the key) is not already present in the %map.
*
* Insertion requires logarithmic time.
*/
std::pair<iterator, bool>
insert(const value_type& __x)
{ return _M_t._M_insert_unique(__x); }
#if __cplusplus >= 201103L
template<typename _Pair, typename = typename
std::enable_if<std::is_constructible<value_type,
_Pair&&>::value>::type>
std::pair<iterator, bool>
insert(_Pair&& __x)
{ return _M_t._M_insert_unique(std::forward<_Pair>(__x)); }
#endif
#if __cplusplus >= 201103L
/**
* @brief Attempts to insert a list of std::pairs into the %map.
* @param __list A std::initializer_list<value_type> of pairs to be
* inserted.
*
* Complexity similar to that of the range constructor.
*/
void
insert(std::initializer_list<value_type> __list)
{ insert(__list.begin(), __list.end()); }
#endif
/**
* @brief Attempts to insert a std::pair into the %map.
* @param __position An iterator that serves as a hint as to where the
* pair should be inserted.
* @param __x Pair to be inserted (see std::make_pair for easy creation
* of pairs).
* @return An iterator that points to the element with key of
* @a __x (may or may not be the %pair passed in).
*
* This function is not concerned about whether the insertion
* took place, and thus does not return a boolean like the
* single-argument insert() does. Note that the first
* parameter is only a hint and can potentially improve the
* performance of the insertion process. A bad hint would
* cause no gains in efficiency.
*
* See
* https://gcc.gnu.org/onlinedocs/libstdc++/manual/associative.html#containers.associative.insert_hints
* for more on @a hinting.
*
* Insertion requires logarithmic time (if the hint is not taken).
*/
iterator
#if __cplusplus >= 201103L
insert(const_iterator __position, const value_type& __x)
#else
insert(iterator __position, const value_type& __x)
#endif
{ return _M_t._M_insert_unique_(__position, __x); }
#if __cplusplus >= 201103L
template<typename _Pair, typename = typename
std::enable_if<std::is_constructible<value_type,
_Pair&&>::value>::type>
iterator
insert(const_iterator __position, _Pair&& __x)
{ return _M_t._M_insert_unique_(__position,
std::forward<_Pair>(__x)); }
#endif
/**
* @brief Template function that attempts to insert a range of elements.
* @param __first Iterator pointing to the start of the range to be
* inserted.
* @param __last Iterator pointing to the end of the range.
*
* Complexity similar to that of the range constructor.
*/
template<typename _InputIterator>
void
insert(_InputIterator __first, _InputIterator __last)
{ _M_t._M_insert_unique(__first, __last); }
#if __cplusplus > 201402L
#define __cpp_lib_map_insertion 201411
/**
* @brief Attempts to insert or assign a std::pair into the %map.
* @param __k Key to use for finding a possibly existing pair in
* the map.
* @param __obj Argument used to generate the .second for a pair
* instance.
*
* @return A pair, of which the first element is an iterator that
* points to the possibly inserted pair, and the second is
* a bool that is true if the pair was actually inserted.
*
* This function attempts to insert a (key, value) %pair into the %map.
* A %map relies on unique keys and thus a %pair is only inserted if its
* first element (the key) is not already present in the %map.
* If the %pair was already in the %map, the .second of the %pair
* is assigned from __obj.
*
* Insertion requires logarithmic time.
*/
template <typename _Obj>
pair<iterator, bool>
insert_or_assign(const key_type& __k, _Obj&& __obj)
{
iterator __i = lower_bound(__k);
if (__i == end() || key_comp()(__k, (*__i).first))
{
__i = emplace_hint(__i, std::piecewise_construct,
std::forward_as_tuple(__k),
std::forward_as_tuple(
std::forward<_Obj>(__obj)));
return {__i, true};
}
(*__i).second = std::forward<_Obj>(__obj);
return {__i, false};
}
// move-capable overload
template <typename _Obj>
pair<iterator, bool>
insert_or_assign(key_type&& __k, _Obj&& __obj)
{
iterator __i = lower_bound(__k);
if (__i == end() || key_comp()(__k, (*__i).first))
{
__i = emplace_hint(__i, std::piecewise_construct,
std::forward_as_tuple(std::move(__k)),
std::forward_as_tuple(
std::forward<_Obj>(__obj)));
return {__i, true};
}
(*__i).second = std::forward<_Obj>(__obj);
return {__i, false};
}
/**
* @brief Attempts to insert or assign a std::pair into the %map.
* @param __hint An iterator that serves as a hint as to where the
* pair should be inserted.
* @param __k Key to use for finding a possibly existing pair in
* the map.
* @param __obj Argument used to generate the .second for a pair
* instance.
*
* @return An iterator that points to the element with key of
* @a __x (may or may not be the %pair passed in).
*
* This function attempts to insert a (key, value) %pair into the %map.
* A %map relies on unique keys and thus a %pair is only inserted if its
* first element (the key) is not already present in the %map.
* If the %pair was already in the %map, the .second of the %pair
* is assigned from __obj.
*
* Insertion requires logarithmic time.
*/
template <typename _Obj>
iterator
insert_or_assign(const_iterator __hint,
const key_type& __k, _Obj&& __obj)
{
iterator __i;
auto __true_hint = _M_t._M_get_insert_hint_unique_pos(__hint, __k);
if (__true_hint.second)
{
return emplace_hint(iterator(__true_hint.second),
std::piecewise_construct,
std::forward_as_tuple(__k),
std::forward_as_tuple(
std::forward<_Obj>(__obj)));
}
__i = iterator(__true_hint.first);
(*__i).second = std::forward<_Obj>(__obj);
return __i;
}
// move-capable overload
template <typename _Obj>
iterator
insert_or_assign(const_iterator __hint, key_type&& __k, _Obj&& __obj)
{
iterator __i;
auto __true_hint = _M_t._M_get_insert_hint_unique_pos(__hint, __k);
if (__true_hint.second)
{
return emplace_hint(iterator(__true_hint.second),
std::piecewise_construct,
std::forward_as_tuple(std::move(__k)),
std::forward_as_tuple(
std::forward<_Obj>(__obj)));
}
__i = iterator(__true_hint.first);
(*__i).second = std::forward<_Obj>(__obj);
return __i;
}
#endif
#if __cplusplus >= 201103L
// _GLIBCXX_RESOLVE_LIB_DEFECTS
// DR 130. Associative erase should return an iterator.
/**
* @brief Erases an element from a %map.
* @param __position An iterator pointing to the element to be erased.
* @return An iterator pointing to the element immediately following
* @a position prior to the element being erased. If no such
* element exists, end() is returned.
*
* This function erases an element, pointed to by the given
* iterator, from a %map. Note that this function only erases
* the element, and that if the element is itself a pointer,
* the pointed-to memory is not touched in any way. Managing
* the pointer is the user's responsibility.
*/
iterator
erase(const_iterator __position)
{ return _M_t.erase(__position); }
// LWG 2059
_GLIBCXX_ABI_TAG_CXX11
iterator
erase(iterator __position)
{ return _M_t.erase(__position); }
#else
/**
* @brief Erases an element from a %map.
* @param __position An iterator pointing to the element to be erased.
*
* This function erases an element, pointed to by the given
* iterator, from a %map. Note that this function only erases
* the element, and that if the element is itself a pointer,
* the pointed-to memory is not touched in any way. Managing
* the pointer is the user's responsibility.
*/
void
erase(iterator __position)
{ _M_t.erase(__position); }
#endif
/**
* @brief Erases elements according to the provided key.
* @param __x Key of element to be erased.
* @return The number of elements erased.
*
* This function erases all the elements located by the given key from
* a %map.
* Note that this function only erases the element, and that if
* the element is itself a pointer, the pointed-to memory is not touched
* in any way. Managing the pointer is the user's responsibility.
*/
size_type
erase(const key_type& __x)
{ return _M_t.erase(__x); }
#if __cplusplus >= 201103L
// _GLIBCXX_RESOLVE_LIB_DEFECTS
// DR 130. Associative erase should return an iterator.
/**
* @brief Erases a [first,last) range of elements from a %map.
* @param __first Iterator pointing to the start of the range to be
* erased.
* @param __last Iterator pointing to the end of the range to
* be erased.
* @return The iterator @a __last.
*
* This function erases a sequence of elements from a %map.
* Note that this function only erases the element, and that if
* the element is itself a pointer, the pointed-to memory is not touched
* in any way. Managing the pointer is the user's responsibility.
*/
iterator
erase(const_iterator __first, const_iterator __last)
{ return _M_t.erase(__first, __last); }
#else
/**
* @brief Erases a [__first,__last) range of elements from a %map.
* @param __first Iterator pointing to the start of the range to be
* erased.
* @param __last Iterator pointing to the end of the range to
* be erased.
*
* This function erases a sequence of elements from a %map.
* Note that this function only erases the element, and that if
* the element is itself a pointer, the pointed-to memory is not touched
* in any way. Managing the pointer is the user's responsibility.
*/
void
erase(iterator __first, iterator __last)
{ _M_t.erase(__first, __last); }
#endif
/**
* @brief Swaps data with another %map.
* @param __x A %map of the same element and allocator types.
*
* This exchanges the elements between two maps in constant
* time. (It is only swapping a pointer, an integer, and an
* instance of the @c Compare type (which itself is often
* stateless and empty), so it should be quite fast.) Note
* that the global std::swap() function is specialized such
* that std::swap(m1,m2) will feed to this function.
*
* Whether the allocators are swapped depends on the allocator traits.
*/
void
swap(map& __x)
_GLIBCXX_NOEXCEPT_IF(__is_nothrow_swappable<_Compare>::value)
{ _M_t.swap(__x._M_t); }
/**
* Erases all elements in a %map. Note that this function only
* erases the elements, and that if the elements themselves are
* pointers, the pointed-to memory is not touched in any way.
* Managing the pointer is the user's responsibility.
*/
void
clear() _GLIBCXX_NOEXCEPT
{ _M_t.clear(); }
// observers
/**
* Returns the key comparison object out of which the %map was
* constructed.
*/
key_compare
key_comp() const
{ return _M_t.key_comp(); }
/**
* Returns a value comparison object, built from the key comparison
* object out of which the %map was constructed.
*/
value_compare
value_comp() const
{ return value_compare(_M_t.key_comp()); }
// [23.3.1.3] map operations
//@{
/**
* @brief Tries to locate an element in a %map.
* @param __x Key of (key, value) %pair to be located.
* @return Iterator pointing to sought-after element, or end() if not
* found.
*
* This function takes a key and tries to locate the element with which
* the key matches. If successful the function returns an iterator
* pointing to the sought after %pair. If unsuccessful it returns the
* past-the-end ( @c end() ) iterator.
*/
iterator
find(const key_type& __x)
{ return _M_t.find(__x); }
#if __cplusplus > 201103L
template<typename _Kt>
auto
find(const _Kt& __x) -> decltype(_M_t._M_find_tr(__x))
{ return _M_t._M_find_tr(__x); }
#endif
//@}
//@{
/**
* @brief Tries to locate an element in a %map.
* @param __x Key of (key, value) %pair to be located.
* @return Read-only (constant) iterator pointing to sought-after
* element, or end() if not found.
*
* This function takes a key and tries to locate the element with which
* the key matches. If successful the function returns a constant
* iterator pointing to the sought after %pair. If unsuccessful it
* returns the past-the-end ( @c end() ) iterator.
*/
const_iterator
find(const key_type& __x) const
{ return _M_t.find(__x); }
#if __cplusplus > 201103L
template<typename _Kt>
auto
find(const _Kt& __x) const -> decltype(_M_t._M_find_tr(__x))
{ return _M_t._M_find_tr(__x); }
#endif
//@}
//@{
/**
* @brief Finds the number of elements with given key.
* @param __x Key of (key, value) pairs to be located.
* @return Number of elements with specified key.
*
* This function only makes sense for multimaps; for map the result will
* either be 0 (not present) or 1 (present).
*/
size_type
count(const key_type& __x) const
{ return _M_t.find(__x) == _M_t.end() ? 0 : 1; }
#if __cplusplus > 201103L
template<typename _Kt>
auto
count(const _Kt& __x) const -> decltype(_M_t._M_count_tr(__x))
{ return _M_t._M_find_tr(__x) == _M_t.end() ? 0 : 1; }
#endif
//@}
//@{
/**
* @brief Finds the beginning of a subsequence matching given key.
* @param __x Key of (key, value) pair to be located.
* @return Iterator pointing to first element equal to or greater
* than key, or end().
*
* This function returns the first element of a subsequence of elements
* that matches the given key. If unsuccessful it returns an iterator
* pointing to the first element that has a greater value than given key
* or end() if no such element exists.
*/
iterator
lower_bound(const key_type& __x)
{ return _M_t.lower_bound(__x); }
#if __cplusplus > 201103L
template<typename _Kt>
auto
lower_bound(const _Kt& __x)
-> decltype(_M_t._M_lower_bound_tr(__x))
{ return _M_t._M_lower_bound_tr(__x); }
#endif
//@}
//@{
/**
* @brief Finds the beginning of a subsequence matching given key.
* @param __x Key of (key, value) pair to be located.
* @return Read-only (constant) iterator pointing to first element
* equal to or greater than key, or end().
*
* This function returns the first element of a subsequence of elements
* that matches the given key. If unsuccessful it returns an iterator
* pointing to the first element that has a greater value than given key
* or end() if no such element exists.
*/
const_iterator
lower_bound(const key_type& __x) const
{ return _M_t.lower_bound(__x); }
#if __cplusplus > 201103L
template<typename _Kt>
auto
lower_bound(const _Kt& __x) const
-> decltype(_M_t._M_lower_bound_tr(__x))
{ return _M_t._M_lower_bound_tr(__x); }
#endif
//@}
//@{
/**
* @brief Finds the end of a subsequence matching given key.
* @param __x Key of (key, value) pair to be located.
* @return Iterator pointing to the first element
* greater than key, or end().
*/
iterator
upper_bound(const key_type& __x)
{ return _M_t.upper_bound(__x); }
#if __cplusplus > 201103L
template<typename _Kt>
auto
upper_bound(const _Kt& __x)
-> decltype(_M_t._M_upper_bound_tr(__x))
{ return _M_t._M_upper_bound_tr(__x); }
#endif
//@}
//@{
/**
* @brief Finds the end of a subsequence matching given key.
* @param __x Key of (key, value) pair to be located.
* @return Read-only (constant) iterator pointing to first iterator
* greater than key, or end().
*/
const_iterator
upper_bound(const key_type& __x) const
{ return _M_t.upper_bound(__x); }
#if __cplusplus > 201103L
template<typename _Kt>
auto
upper_bound(const _Kt& __x) const
-> decltype(_M_t._M_upper_bound_tr(__x))
{ return _M_t._M_upper_bound_tr(__x); }
#endif
//@}
//@{
/**
* @brief Finds a subsequence matching given key.
* @param __x Key of (key, value) pairs to be located.
* @return Pair of iterators that possibly points to the subsequence
* matching given key.
*
* This function is equivalent to
* @code
* std::make_pair(c.lower_bound(val),
* c.upper_bound(val))
* @endcode
* (but is faster than making the calls separately).
*
* This function probably only makes sense for multimaps.
*/
std::pair<iterator, iterator>
equal_range(const key_type& __x)
{ return _M_t.equal_range(__x); }
#if __cplusplus > 201103L
template<typename _Kt>
auto
equal_range(const _Kt& __x)
-> decltype(_M_t._M_equal_range_tr(__x))
{ return _M_t._M_equal_range_tr(__x); }
#endif
//@}
//@{
/**
* @brief Finds a subsequence matching given key.
* @param __x Key of (key, value) pairs to be located.
* @return Pair of read-only (constant) iterators that possibly points
* to the subsequence matching given key.
*
* This function is equivalent to
* @code
* std::make_pair(c.lower_bound(val),
* c.upper_bound(val))
* @endcode
* (but is faster than making the calls separately).
*
* This function probably only makes sense for multimaps.
*/
std::pair<const_iterator, const_iterator>
equal_range(const key_type& __x) const
{ return _M_t.equal_range(__x); }
#if __cplusplus > 201103L
template<typename _Kt>
auto
equal_range(const _Kt& __x) const
-> decltype(_M_t._M_equal_range_tr(__x))
{ return _M_t._M_equal_range_tr(__x); }
#endif
//@}
template<typename _K1, typename _T1, typename _C1, typename _A1>
friend bool
operator==(const map<_K1, _T1, _C1, _A1>&,
const map<_K1, _T1, _C1, _A1>&);
template<typename _K1, typename _T1, typename _C1, typename _A1>
friend bool
operator<(const map<_K1, _T1, _C1, _A1>&,
const map<_K1, _T1, _C1, _A1>&);
};
/**
* @brief Map equality comparison.
* @param __x A %map.
* @param __y A %map of the same type as @a x.
* @return True iff the size and elements of the maps are equal.
*
* This is an equivalence relation. It is linear in the size of the
* maps. Maps are considered equivalent if their sizes are equal,
* and if corresponding elements compare equal.
*/
template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
inline bool
operator==(const map<_Key, _Tp, _Compare, _Alloc>& __x,
const map<_Key, _Tp, _Compare, _Alloc>& __y)
{ return __x._M_t == __y._M_t; }
/**
* @brief Map ordering relation.
* @param __x A %map.
* @param __y A %map of the same type as @a x.
* @return True iff @a x is lexicographically less than @a y.
*
* This is a total ordering relation. It is linear in the size of the
* maps. The elements must be comparable with @c <.
*
* See std::lexicographical_compare() for how the determination is made.
*/
template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
inline bool
operator<(const map<_Key, _Tp, _Compare, _Alloc>& __x,
const map<_Key, _Tp, _Compare, _Alloc>& __y)
{ return __x._M_t < __y._M_t; }
/// Based on operator==
template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
inline bool
operator!=(const map<_Key, _Tp, _Compare, _Alloc>& __x,
const map<_Key, _Tp, _Compare, _Alloc>& __y)
{ return !(__x == __y); }
/// Based on operator<
template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
inline bool
operator>(const map<_Key, _Tp, _Compare, _Alloc>& __x,
const map<_Key, _Tp, _Compare, _Alloc>& __y)
{ return __y < __x; }
/// Based on operator<
template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
inline bool
operator<=(const map<_Key, _Tp, _Compare, _Alloc>& __x,
const map<_Key, _Tp, _Compare, _Alloc>& __y)
{ return !(__y < __x); }
/// Based on operator<
template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
inline bool
operator>=(const map<_Key, _Tp, _Compare, _Alloc>& __x,
const map<_Key, _Tp, _Compare, _Alloc>& __y)
{ return !(__x < __y); }
/// See std::map::swap().
template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
inline void
swap(map<_Key, _Tp, _Compare, _Alloc>& __x,
map<_Key, _Tp, _Compare, _Alloc>& __y)
_GLIBCXX_NOEXCEPT_IF(noexcept(__x.swap(__y)))
{ __x.swap(__y); }
_GLIBCXX_END_NAMESPACE_CONTAINER
} // namespace std
#endif /* _STL_MAP_H */