85 lines
2.0 KiB
Go
85 lines
2.0 KiB
Go
// Copyright 2010 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package math
|
|
|
|
// The original C code, the long comment, and the constants
|
|
// below are from FreeBSD's /usr/src/lib/msun/src/e_atanh.c
|
|
// and came with this notice. The go code is a simplified
|
|
// version of the original C.
|
|
//
|
|
// ====================================================
|
|
// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
|
//
|
|
// Developed at SunPro, a Sun Microsystems, Inc. business.
|
|
// Permission to use, copy, modify, and distribute this
|
|
// software is freely granted, provided that this notice
|
|
// is preserved.
|
|
// ====================================================
|
|
//
|
|
//
|
|
// __ieee754_atanh(x)
|
|
// Method :
|
|
// 1. Reduce x to positive by atanh(-x) = -atanh(x)
|
|
// 2. For x>=0.5
|
|
// 1 2x x
|
|
// atanh(x) = --- * log(1 + -------) = 0.5 * log1p(2 * --------)
|
|
// 2 1 - x 1 - x
|
|
//
|
|
// For x<0.5
|
|
// atanh(x) = 0.5*log1p(2x+2x*x/(1-x))
|
|
//
|
|
// Special cases:
|
|
// atanh(x) is NaN if |x| > 1 with signal;
|
|
// atanh(NaN) is that NaN with no signal;
|
|
// atanh(+-1) is +-INF with signal.
|
|
//
|
|
|
|
// Atanh returns the inverse hyperbolic tangent of x.
|
|
//
|
|
// Special cases are:
|
|
// Atanh(1) = +Inf
|
|
// Atanh(±0) = ±0
|
|
// Atanh(-1) = -Inf
|
|
// Atanh(x) = NaN if x < -1 or x > 1
|
|
// Atanh(NaN) = NaN
|
|
func Atanh(x float64) float64 {
|
|
return libc_atanh(x)
|
|
}
|
|
|
|
//extern atanh
|
|
func libc_atanh(float64) float64
|
|
|
|
func atanh(x float64) float64 {
|
|
const NearZero = 1.0 / (1 << 28) // 2**-28
|
|
// special cases
|
|
switch {
|
|
case x < -1 || x > 1 || IsNaN(x):
|
|
return NaN()
|
|
case x == 1:
|
|
return Inf(1)
|
|
case x == -1:
|
|
return Inf(-1)
|
|
}
|
|
sign := false
|
|
if x < 0 {
|
|
x = -x
|
|
sign = true
|
|
}
|
|
var temp float64
|
|
switch {
|
|
case x < NearZero:
|
|
temp = x
|
|
case x < 0.5:
|
|
temp = x + x
|
|
temp = 0.5 * Log1p(temp+temp*x/(1-x))
|
|
default:
|
|
temp = 0.5 * Log1p((x+x)/(1-x))
|
|
}
|
|
if sign {
|
|
temp = -temp
|
|
}
|
|
return temp
|
|
}
|