1153 lines
32 KiB
Go
1153 lines
32 KiB
Go
// Copyright 2009 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
// Malloc profiling.
|
|
// Patterned after tcmalloc's algorithms; shorter code.
|
|
|
|
package runtime
|
|
|
|
import (
|
|
"runtime/internal/atomic"
|
|
"unsafe"
|
|
)
|
|
|
|
// For gofrontend, use go:linkname for blockevent so that
|
|
// runtime/pprof/pprof_test can call it.
|
|
//go:linkname blockevent
|
|
|
|
// NOTE(rsc): Everything here could use cas if contention became an issue.
|
|
var proflock mutex
|
|
|
|
// All memory allocations are local and do not escape outside of the profiler.
|
|
// The profiler is forbidden from referring to garbage-collected memory.
|
|
|
|
const (
|
|
// profile types
|
|
memProfile bucketType = 1 + iota
|
|
blockProfile
|
|
mutexProfile
|
|
|
|
// a profile bucket from one of the categories above whose stack
|
|
// trace has been fixed up / pruned.
|
|
prunedProfile
|
|
|
|
// size of bucket hash table
|
|
buckHashSize = 179999
|
|
|
|
// max depth of stack to record in bucket
|
|
maxStack = 32
|
|
)
|
|
|
|
type bucketType int
|
|
|
|
// A bucket holds per-call-stack profiling information.
|
|
// The representation is a bit sleazy, inherited from C.
|
|
// This struct defines the bucket header. It is followed in
|
|
// memory by the stack words and then the actual record
|
|
// data, either a memRecord or a blockRecord.
|
|
//
|
|
// Per-call-stack profiling information.
|
|
// Lookup by hashing call stack into a linked-list hash table.
|
|
//
|
|
// No heap pointers.
|
|
//
|
|
//go:notinheap
|
|
type bucket struct {
|
|
next *bucket
|
|
allnext *bucket
|
|
typ bucketType // memBucket or blockBucket (includes mutexProfile)
|
|
hash uintptr
|
|
size uintptr
|
|
nstk uintptr
|
|
skip int
|
|
}
|
|
|
|
// A memRecord is the bucket data for a bucket of type memProfile,
|
|
// part of the memory profile.
|
|
type memRecord struct {
|
|
// The following complex 3-stage scheme of stats accumulation
|
|
// is required to obtain a consistent picture of mallocs and frees
|
|
// for some point in time.
|
|
// The problem is that mallocs come in real time, while frees
|
|
// come only after a GC during concurrent sweeping. So if we would
|
|
// naively count them, we would get a skew toward mallocs.
|
|
//
|
|
// Hence, we delay information to get consistent snapshots as
|
|
// of mark termination. Allocations count toward the next mark
|
|
// termination's snapshot, while sweep frees count toward the
|
|
// previous mark termination's snapshot:
|
|
//
|
|
// MT MT MT MT
|
|
// .·| .·| .·| .·|
|
|
// .·˙ | .·˙ | .·˙ | .·˙ |
|
|
// .·˙ | .·˙ | .·˙ | .·˙ |
|
|
// .·˙ |.·˙ |.·˙ |.·˙ |
|
|
//
|
|
// alloc → ▲ ← free
|
|
// ┠┅┅┅┅┅┅┅┅┅┅┅P
|
|
// C+2 → C+1 → C
|
|
//
|
|
// alloc → ▲ ← free
|
|
// ┠┅┅┅┅┅┅┅┅┅┅┅P
|
|
// C+2 → C+1 → C
|
|
//
|
|
// Since we can't publish a consistent snapshot until all of
|
|
// the sweep frees are accounted for, we wait until the next
|
|
// mark termination ("MT" above) to publish the previous mark
|
|
// termination's snapshot ("P" above). To do this, allocation
|
|
// and free events are accounted to *future* heap profile
|
|
// cycles ("C+n" above) and we only publish a cycle once all
|
|
// of the events from that cycle must be done. Specifically:
|
|
//
|
|
// Mallocs are accounted to cycle C+2.
|
|
// Explicit frees are accounted to cycle C+2.
|
|
// GC frees (done during sweeping) are accounted to cycle C+1.
|
|
//
|
|
// After mark termination, we increment the global heap
|
|
// profile cycle counter and accumulate the stats from cycle C
|
|
// into the active profile.
|
|
|
|
// active is the currently published profile. A profiling
|
|
// cycle can be accumulated into active once its complete.
|
|
active memRecordCycle
|
|
|
|
// future records the profile events we're counting for cycles
|
|
// that have not yet been published. This is ring buffer
|
|
// indexed by the global heap profile cycle C and stores
|
|
// cycles C, C+1, and C+2. Unlike active, these counts are
|
|
// only for a single cycle; they are not cumulative across
|
|
// cycles.
|
|
//
|
|
// We store cycle C here because there's a window between when
|
|
// C becomes the active cycle and when we've flushed it to
|
|
// active.
|
|
future [3]memRecordCycle
|
|
}
|
|
|
|
// memRecordCycle
|
|
type memRecordCycle struct {
|
|
allocs, frees uintptr
|
|
alloc_bytes, free_bytes uintptr
|
|
}
|
|
|
|
// add accumulates b into a. It does not zero b.
|
|
func (a *memRecordCycle) add(b *memRecordCycle) {
|
|
a.allocs += b.allocs
|
|
a.frees += b.frees
|
|
a.alloc_bytes += b.alloc_bytes
|
|
a.free_bytes += b.free_bytes
|
|
}
|
|
|
|
// A blockRecord is the bucket data for a bucket of type blockProfile,
|
|
// which is used in blocking and mutex profiles.
|
|
type blockRecord struct {
|
|
count float64
|
|
cycles int64
|
|
}
|
|
|
|
var (
|
|
mbuckets *bucket // memory profile buckets
|
|
bbuckets *bucket // blocking profile buckets
|
|
xbuckets *bucket // mutex profile buckets
|
|
sbuckets *bucket // pre-symbolization profile buckets (stacks fixed up)
|
|
freebuckets *bucket // freelist of unused fixed up profile buckets
|
|
buckhash *[buckHashSize]*bucket
|
|
bucketmem uintptr
|
|
|
|
mProf struct {
|
|
// All fields in mProf are protected by proflock.
|
|
|
|
// cycle is the global heap profile cycle. This wraps
|
|
// at mProfCycleWrap.
|
|
cycle uint32
|
|
// flushed indicates that future[cycle] in all buckets
|
|
// has been flushed to the active profile.
|
|
flushed bool
|
|
}
|
|
)
|
|
|
|
const mProfCycleWrap = uint32(len(memRecord{}.future)) * (2 << 24)
|
|
|
|
// payloadOffset() returns a pointer into the part of a bucket
|
|
// containing the profile payload (skips past the bucket struct itself
|
|
// and then the stack trace).
|
|
func payloadOffset(typ bucketType, nstk uintptr) uintptr {
|
|
if typ == prunedProfile {
|
|
// To allow reuse of prunedProfile buckets between different
|
|
// collections, allocate them with the max stack size (the portion
|
|
// of the stack used will vary from trace to trace).
|
|
nstk = maxStack
|
|
}
|
|
return unsafe.Sizeof(bucket{}) + uintptr(nstk)*unsafe.Sizeof(uintptr)
|
|
}
|
|
|
|
func max(x, y uintptr) uintptr {
|
|
if x > y {
|
|
return x
|
|
}
|
|
return y
|
|
}
|
|
|
|
// newBucket allocates a bucket with the given type and number of stack entries.
|
|
func newBucket(typ bucketType, nstk int, skipCount int) *bucket {
|
|
size := payloadOffset(typ, uintptr(nstk))
|
|
switch typ {
|
|
default:
|
|
throw("invalid profile bucket type")
|
|
case prunedProfile:
|
|
// stack-fixed buckets are large enough to accommodate any payload.
|
|
size += max(unsafe.Sizeof(memRecord{}), unsafe.Sizeof(blockRecord{}))
|
|
case memProfile:
|
|
size += unsafe.Sizeof(memRecord{})
|
|
case blockProfile, mutexProfile:
|
|
size += unsafe.Sizeof(blockRecord{})
|
|
}
|
|
|
|
b := (*bucket)(persistentalloc(size, 0, &memstats.buckhash_sys))
|
|
bucketmem += size
|
|
b.typ = typ
|
|
b.nstk = uintptr(nstk)
|
|
b.skip = skipCount
|
|
return b
|
|
}
|
|
|
|
// stk returns the slice in b holding the stack.
|
|
func (b *bucket) stk() []uintptr {
|
|
stk := (*[maxStack]uintptr)(add(unsafe.Pointer(b), unsafe.Sizeof(*b)))
|
|
return stk[:b.nstk:b.nstk]
|
|
}
|
|
|
|
// mp returns the memRecord associated with the memProfile bucket b.
|
|
func (b *bucket) mp() *memRecord {
|
|
if b.typ != memProfile && b.typ != prunedProfile {
|
|
throw("bad use of bucket.mp")
|
|
}
|
|
return (*memRecord)(add(unsafe.Pointer(b), payloadOffset(b.typ, b.nstk)))
|
|
}
|
|
|
|
// bp returns the blockRecord associated with the blockProfile bucket b.
|
|
func (b *bucket) bp() *blockRecord {
|
|
if b.typ != blockProfile && b.typ != mutexProfile && b.typ != prunedProfile {
|
|
throw("bad use of bucket.bp")
|
|
}
|
|
return (*blockRecord)(add(unsafe.Pointer(b), payloadOffset(b.typ, b.nstk)))
|
|
}
|
|
|
|
// Return the bucket for stk[0:nstk], allocating new bucket if needed.
|
|
func stkbucket(typ bucketType, size uintptr, skip int, stk []uintptr, alloc bool) *bucket {
|
|
if buckhash == nil {
|
|
buckhash = (*[buckHashSize]*bucket)(sysAlloc(unsafe.Sizeof(*buckhash), &memstats.buckhash_sys))
|
|
if buckhash == nil {
|
|
throw("runtime: cannot allocate memory")
|
|
}
|
|
}
|
|
|
|
// Hash stack.
|
|
var h uintptr
|
|
for _, pc := range stk {
|
|
h += pc
|
|
h += h << 10
|
|
h ^= h >> 6
|
|
}
|
|
// hash in size
|
|
h += size
|
|
h += h << 10
|
|
h ^= h >> 6
|
|
// finalize
|
|
h += h << 3
|
|
h ^= h >> 11
|
|
|
|
i := int(h % buckHashSize)
|
|
for b := buckhash[i]; b != nil; b = b.next {
|
|
if b.typ == typ && b.hash == h && b.size == size && eqslice(b.stk(), stk) {
|
|
return b
|
|
}
|
|
}
|
|
|
|
if !alloc {
|
|
return nil
|
|
}
|
|
|
|
// Create new bucket.
|
|
b := newBucket(typ, len(stk), skip)
|
|
copy(b.stk(), stk)
|
|
b.hash = h
|
|
b.size = size
|
|
b.next = buckhash[i]
|
|
buckhash[i] = b
|
|
if typ == memProfile {
|
|
b.allnext = mbuckets
|
|
mbuckets = b
|
|
} else if typ == mutexProfile {
|
|
b.allnext = xbuckets
|
|
xbuckets = b
|
|
} else if typ == prunedProfile {
|
|
b.allnext = sbuckets
|
|
sbuckets = b
|
|
} else {
|
|
b.allnext = bbuckets
|
|
bbuckets = b
|
|
}
|
|
return b
|
|
}
|
|
|
|
func eqslice(x, y []uintptr) bool {
|
|
if len(x) != len(y) {
|
|
return false
|
|
}
|
|
for i, xi := range x {
|
|
if xi != y[i] {
|
|
return false
|
|
}
|
|
}
|
|
return true
|
|
}
|
|
|
|
// mProf_NextCycle publishes the next heap profile cycle and creates a
|
|
// fresh heap profile cycle. This operation is fast and can be done
|
|
// during STW. The caller must call mProf_Flush before calling
|
|
// mProf_NextCycle again.
|
|
//
|
|
// This is called by mark termination during STW so allocations and
|
|
// frees after the world is started again count towards a new heap
|
|
// profiling cycle.
|
|
func mProf_NextCycle() {
|
|
lock(&proflock)
|
|
// We explicitly wrap mProf.cycle rather than depending on
|
|
// uint wraparound because the memRecord.future ring does not
|
|
// itself wrap at a power of two.
|
|
mProf.cycle = (mProf.cycle + 1) % mProfCycleWrap
|
|
mProf.flushed = false
|
|
unlock(&proflock)
|
|
}
|
|
|
|
// mProf_Flush flushes the events from the current heap profiling
|
|
// cycle into the active profile. After this it is safe to start a new
|
|
// heap profiling cycle with mProf_NextCycle.
|
|
//
|
|
// This is called by GC after mark termination starts the world. In
|
|
// contrast with mProf_NextCycle, this is somewhat expensive, but safe
|
|
// to do concurrently.
|
|
func mProf_Flush() {
|
|
lock(&proflock)
|
|
if !mProf.flushed {
|
|
mProf_FlushLocked()
|
|
mProf.flushed = true
|
|
}
|
|
unlock(&proflock)
|
|
}
|
|
|
|
func mProf_FlushLocked() {
|
|
c := mProf.cycle
|
|
for b := mbuckets; b != nil; b = b.allnext {
|
|
mp := b.mp()
|
|
|
|
// Flush cycle C into the published profile and clear
|
|
// it for reuse.
|
|
mpc := &mp.future[c%uint32(len(mp.future))]
|
|
mp.active.add(mpc)
|
|
*mpc = memRecordCycle{}
|
|
}
|
|
}
|
|
|
|
// mProf_PostSweep records that all sweep frees for this GC cycle have
|
|
// completed. This has the effect of publishing the heap profile
|
|
// snapshot as of the last mark termination without advancing the heap
|
|
// profile cycle.
|
|
func mProf_PostSweep() {
|
|
lock(&proflock)
|
|
// Flush cycle C+1 to the active profile so everything as of
|
|
// the last mark termination becomes visible. *Don't* advance
|
|
// the cycle, since we're still accumulating allocs in cycle
|
|
// C+2, which have to become C+1 in the next mark termination
|
|
// and so on.
|
|
c := mProf.cycle
|
|
for b := mbuckets; b != nil; b = b.allnext {
|
|
mp := b.mp()
|
|
mpc := &mp.future[(c+1)%uint32(len(mp.future))]
|
|
mp.active.add(mpc)
|
|
*mpc = memRecordCycle{}
|
|
}
|
|
unlock(&proflock)
|
|
}
|
|
|
|
// Called by malloc to record a profiled block.
|
|
func mProf_Malloc(p unsafe.Pointer, size uintptr) {
|
|
var stk [maxStack]uintptr
|
|
nstk := callersRaw(stk[:])
|
|
lock(&proflock)
|
|
skip := 1
|
|
b := stkbucket(memProfile, size, skip, stk[:nstk], true)
|
|
c := mProf.cycle
|
|
mp := b.mp()
|
|
mpc := &mp.future[(c+2)%uint32(len(mp.future))]
|
|
mpc.allocs++
|
|
mpc.alloc_bytes += size
|
|
unlock(&proflock)
|
|
|
|
// Setprofilebucket locks a bunch of other mutexes, so we call it outside of proflock.
|
|
// This reduces potential contention and chances of deadlocks.
|
|
// Since the object must be alive during call to mProf_Malloc,
|
|
// it's fine to do this non-atomically.
|
|
systemstack(func() {
|
|
setprofilebucket(p, b)
|
|
})
|
|
}
|
|
|
|
// Called when freeing a profiled block.
|
|
func mProf_Free(b *bucket, size uintptr) {
|
|
lock(&proflock)
|
|
c := mProf.cycle
|
|
mp := b.mp()
|
|
mpc := &mp.future[(c+1)%uint32(len(mp.future))]
|
|
mpc.frees++
|
|
mpc.free_bytes += size
|
|
unlock(&proflock)
|
|
}
|
|
|
|
var blockprofilerate uint64 // in CPU ticks
|
|
|
|
// SetBlockProfileRate controls the fraction of goroutine blocking events
|
|
// that are reported in the blocking profile. The profiler aims to sample
|
|
// an average of one blocking event per rate nanoseconds spent blocked.
|
|
//
|
|
// To include every blocking event in the profile, pass rate = 1.
|
|
// To turn off profiling entirely, pass rate <= 0.
|
|
func SetBlockProfileRate(rate int) {
|
|
var r int64
|
|
if rate <= 0 {
|
|
r = 0 // disable profiling
|
|
} else if rate == 1 {
|
|
r = 1 // profile everything
|
|
} else {
|
|
// convert ns to cycles, use float64 to prevent overflow during multiplication
|
|
r = int64(float64(rate) * float64(tickspersecond()) / (1000 * 1000 * 1000))
|
|
if r == 0 {
|
|
r = 1
|
|
}
|
|
}
|
|
|
|
atomic.Store64(&blockprofilerate, uint64(r))
|
|
}
|
|
|
|
func blockevent(cycles int64, skip int) {
|
|
if cycles <= 0 {
|
|
cycles = 1
|
|
}
|
|
|
|
rate := int64(atomic.Load64(&blockprofilerate))
|
|
if blocksampled(cycles, rate) {
|
|
saveblockevent(cycles, rate, skip+1, blockProfile)
|
|
}
|
|
}
|
|
|
|
// blocksampled returns true for all events where cycles >= rate. Shorter
|
|
// events have a cycles/rate random chance of returning true.
|
|
func blocksampled(cycles, rate int64) bool {
|
|
if rate <= 0 || (rate > cycles && int64(fastrand())%rate > cycles) {
|
|
return false
|
|
}
|
|
return true
|
|
}
|
|
|
|
func saveblockevent(cycles, rate int64, skip int, which bucketType) {
|
|
gp := getg()
|
|
var nstk int
|
|
var stk [maxStack]uintptr
|
|
if gp.m.curg == nil || gp.m.curg == gp {
|
|
nstk = callersRaw(stk[:])
|
|
} else {
|
|
// FIXME: This should get a traceback of gp.m.curg.
|
|
// nstk = gcallers(gp.m.curg, skip, stk[:])
|
|
nstk = callersRaw(stk[:])
|
|
}
|
|
lock(&proflock)
|
|
b := stkbucket(which, 0, skip, stk[:nstk], true)
|
|
|
|
if which == blockProfile && cycles < rate {
|
|
// Remove sampling bias, see discussion on http://golang.org/cl/299991.
|
|
b.bp().count += float64(rate) / float64(cycles)
|
|
b.bp().cycles += rate
|
|
} else {
|
|
b.bp().count++
|
|
b.bp().cycles += cycles
|
|
}
|
|
unlock(&proflock)
|
|
}
|
|
|
|
var mutexprofilerate uint64 // fraction sampled
|
|
|
|
// SetMutexProfileFraction controls the fraction of mutex contention events
|
|
// that are reported in the mutex profile. On average 1/rate events are
|
|
// reported. The previous rate is returned.
|
|
//
|
|
// To turn off profiling entirely, pass rate 0.
|
|
// To just read the current rate, pass rate < 0.
|
|
// (For n>1 the details of sampling may change.)
|
|
func SetMutexProfileFraction(rate int) int {
|
|
if rate < 0 {
|
|
return int(mutexprofilerate)
|
|
}
|
|
old := mutexprofilerate
|
|
atomic.Store64(&mutexprofilerate, uint64(rate))
|
|
return int(old)
|
|
}
|
|
|
|
//go:linkname mutexevent sync.event
|
|
func mutexevent(cycles int64, skip int) {
|
|
if cycles < 0 {
|
|
cycles = 0
|
|
}
|
|
rate := int64(atomic.Load64(&mutexprofilerate))
|
|
// TODO(pjw): measure impact of always calling fastrand vs using something
|
|
// like malloc.go:nextSample()
|
|
if rate > 0 && int64(fastrand())%rate == 0 {
|
|
saveblockevent(cycles, rate, skip+1, mutexProfile)
|
|
}
|
|
}
|
|
|
|
// Go interface to profile data.
|
|
|
|
// A StackRecord describes a single execution stack.
|
|
type StackRecord struct {
|
|
Stack0 [32]uintptr // stack trace for this record; ends at first 0 entry
|
|
}
|
|
|
|
// Stack returns the stack trace associated with the record,
|
|
// a prefix of r.Stack0.
|
|
func (r *StackRecord) Stack() []uintptr {
|
|
for i, v := range r.Stack0 {
|
|
if v == 0 {
|
|
return r.Stack0[0:i]
|
|
}
|
|
}
|
|
return r.Stack0[0:]
|
|
}
|
|
|
|
// MemProfileRate controls the fraction of memory allocations
|
|
// that are recorded and reported in the memory profile.
|
|
// The profiler aims to sample an average of
|
|
// one allocation per MemProfileRate bytes allocated.
|
|
//
|
|
// To include every allocated block in the profile, set MemProfileRate to 1.
|
|
// To turn off profiling entirely, set MemProfileRate to 0.
|
|
//
|
|
// The tools that process the memory profiles assume that the
|
|
// profile rate is constant across the lifetime of the program
|
|
// and equal to the current value. Programs that change the
|
|
// memory profiling rate should do so just once, as early as
|
|
// possible in the execution of the program (for example,
|
|
// at the beginning of main).
|
|
var MemProfileRate int = defaultMemProfileRate(512 * 1024)
|
|
|
|
// defaultMemProfileRate returns 0 if disableMemoryProfiling is set.
|
|
// It exists primarily for the godoc rendering of MemProfileRate
|
|
// above.
|
|
func defaultMemProfileRate(v int) int {
|
|
if disableMemoryProfiling {
|
|
return 0
|
|
}
|
|
return v
|
|
}
|
|
|
|
// disableMemoryProfiling is set by the linker if runtime.MemProfile
|
|
// is not used and the link type guarantees nobody else could use it
|
|
// elsewhere.
|
|
var disableMemoryProfiling bool
|
|
|
|
// A MemProfileRecord describes the live objects allocated
|
|
// by a particular call sequence (stack trace).
|
|
type MemProfileRecord struct {
|
|
AllocBytes, FreeBytes int64 // number of bytes allocated, freed
|
|
AllocObjects, FreeObjects int64 // number of objects allocated, freed
|
|
Stack0 [32]uintptr // stack trace for this record; ends at first 0 entry
|
|
}
|
|
|
|
// InUseBytes returns the number of bytes in use (AllocBytes - FreeBytes).
|
|
func (r *MemProfileRecord) InUseBytes() int64 { return r.AllocBytes - r.FreeBytes }
|
|
|
|
// InUseObjects returns the number of objects in use (AllocObjects - FreeObjects).
|
|
func (r *MemProfileRecord) InUseObjects() int64 {
|
|
return r.AllocObjects - r.FreeObjects
|
|
}
|
|
|
|
// Stack returns the stack trace associated with the record,
|
|
// a prefix of r.Stack0.
|
|
func (r *MemProfileRecord) Stack() []uintptr {
|
|
for i, v := range r.Stack0 {
|
|
if v == 0 {
|
|
return r.Stack0[0:i]
|
|
}
|
|
}
|
|
return r.Stack0[0:]
|
|
}
|
|
|
|
// reusebucket tries to pick a prunedProfile bucket off
|
|
// the freebuckets list, returning it if one is available or nil
|
|
// if the free list is empty.
|
|
func reusebucket(nstk int) *bucket {
|
|
var b *bucket
|
|
if freebuckets != nil {
|
|
b = freebuckets
|
|
freebuckets = freebuckets.allnext
|
|
b.typ = prunedProfile
|
|
b.nstk = uintptr(nstk)
|
|
mp := b.mp()
|
|
// Hack: rely on the fact that memprofile records are
|
|
// larger than blockprofile records when clearing.
|
|
*mp = memRecord{}
|
|
}
|
|
return b
|
|
}
|
|
|
|
// freebucket appends the specified prunedProfile bucket
|
|
// onto the free list, and removes references to it from the hash.
|
|
func freebucket(tofree *bucket) *bucket {
|
|
// Thread this bucket into the free list.
|
|
ret := tofree.allnext
|
|
tofree.allnext = freebuckets
|
|
freebuckets = tofree
|
|
|
|
// Clean up the hash. The hash may point directly to this bucket...
|
|
i := int(tofree.hash % buckHashSize)
|
|
if buckhash[i] == tofree {
|
|
buckhash[i] = tofree.next
|
|
} else {
|
|
// ... or when this bucket was inserted by stkbucket, it may have been
|
|
// chained off some other unrelated bucket.
|
|
for b := buckhash[i]; b != nil; b = b.next {
|
|
if b.next == tofree {
|
|
b.next = tofree.next
|
|
break
|
|
}
|
|
}
|
|
}
|
|
return ret
|
|
}
|
|
|
|
// fixupStack takes a 'raw' stack trace (stack of PCs generated by
|
|
// callersRaw) and performs pre-symbolization fixup on it, returning
|
|
// the results in 'canonStack'. For each frame we look at the
|
|
// file/func/line information, then use that info to decide whether to
|
|
// include the frame in the final symbolized stack (removing frames
|
|
// corresponding to 'morestack' routines, for example). We also expand
|
|
// frames if the PC values to which they refer correponds to inlined
|
|
// functions to allow for expanded symbolic info to be filled in
|
|
// later. Note: there is code in go-callers.c's backtrace_full callback()
|
|
// function that performs very similar fixups; these two code paths
|
|
// should be kept in sync.
|
|
func fixupStack(stk []uintptr, skip int, canonStack *[maxStack]uintptr, size uintptr) int {
|
|
var cidx int
|
|
var termTrace bool
|
|
// Increase the skip count to take into account the frames corresponding
|
|
// to runtime.callersRaw and to the C routine that it invokes.
|
|
skip += 2
|
|
sawSigtramp := false
|
|
for _, pc := range stk {
|
|
// Subtract 1 from PC to undo the 1 we added in callback in
|
|
// go-callers.c.
|
|
function, file, _, frames := funcfileline(pc-1, -1, false)
|
|
|
|
// Skip an unnamed function above sigtramp, as it is
|
|
// likely the signal handler.
|
|
if sawSigtramp {
|
|
sawSigtramp = false
|
|
if function == "" {
|
|
continue
|
|
}
|
|
}
|
|
|
|
// Skip split-stack functions (match by function name)
|
|
skipFrame := false
|
|
if hasPrefix(function, "_____morestack_") || hasPrefix(function, "__morestack_") {
|
|
skipFrame = true
|
|
}
|
|
|
|
// Skip split-stack functions (match by file)
|
|
if hasSuffix(file, "/morestack.S") {
|
|
skipFrame = true
|
|
}
|
|
|
|
// Skip thunks and recover functions and other functions
|
|
// specific to gccgo, that do not appear in the gc toolchain.
|
|
fcn := function
|
|
if hasSuffix(fcn, "..r") {
|
|
skipFrame = true
|
|
} else if function == "runtime.deferreturn" || function == "runtime.sighandler" {
|
|
skipFrame = true
|
|
} else if function == "runtime.sigtramp" || function == "runtime.sigtrampgo" {
|
|
skipFrame = true
|
|
// Also skip subsequent unnamed functions,
|
|
// which will be the signal handler itself.
|
|
sawSigtramp = true
|
|
} else {
|
|
for fcn != "" && (fcn[len(fcn)-1] >= '0' && fcn[len(fcn)-1] <= '9') {
|
|
fcn = fcn[:len(fcn)-1]
|
|
}
|
|
if hasSuffix(fcn, "..stub") || hasSuffix(fcn, "..thunk") {
|
|
skipFrame = true
|
|
}
|
|
}
|
|
if skipFrame {
|
|
continue
|
|
}
|
|
|
|
// Terminate the trace if we encounter a frame corresponding to
|
|
// runtime.main, runtime.kickoff, makecontext, etc. See the
|
|
// corresponding code in go-callers.c, callback function used
|
|
// with backtrace_full.
|
|
if function == "makecontext" {
|
|
termTrace = true
|
|
}
|
|
if hasSuffix(file, "/proc.c") && function == "runtime_mstart" {
|
|
termTrace = true
|
|
}
|
|
if hasSuffix(file, "/proc.go") &&
|
|
(function == "runtime.main" || function == "runtime.kickoff") {
|
|
termTrace = true
|
|
}
|
|
|
|
// Expand inline frames.
|
|
for i := 0; i < frames; i++ {
|
|
(*canonStack)[cidx] = pc
|
|
cidx++
|
|
if cidx >= maxStack {
|
|
termTrace = true
|
|
break
|
|
}
|
|
}
|
|
if termTrace {
|
|
break
|
|
}
|
|
}
|
|
|
|
// Apply skip count. Needs to be done after expanding inline frames.
|
|
if skip != 0 {
|
|
if skip >= cidx {
|
|
return 0
|
|
}
|
|
copy(canonStack[:cidx-skip], canonStack[skip:])
|
|
return cidx - skip
|
|
}
|
|
|
|
return cidx
|
|
}
|
|
|
|
// fixupBucket takes a raw memprofile bucket and creates a new bucket
|
|
// in which the stack trace has been fixed up (inline frames expanded,
|
|
// unwanted frames stripped out). Original bucket is left unmodified;
|
|
// a new symbolizeProfile bucket may be generated as a side effect.
|
|
// Payload information from the original bucket is incorporated into
|
|
// the new bucket.
|
|
func fixupBucket(b *bucket) {
|
|
var canonStack [maxStack]uintptr
|
|
frames := fixupStack(b.stk(), b.skip, &canonStack, b.size)
|
|
cb := stkbucket(prunedProfile, b.size, 0, canonStack[:frames], true)
|
|
switch b.typ {
|
|
default:
|
|
throw("invalid profile bucket type")
|
|
case memProfile:
|
|
rawrecord := b.mp()
|
|
cb.mp().active.add(&rawrecord.active)
|
|
case blockProfile, mutexProfile:
|
|
cb.bp().count += b.bp().count
|
|
cb.bp().cycles += b.bp().cycles
|
|
}
|
|
}
|
|
|
|
// MemProfile returns a profile of memory allocated and freed per allocation
|
|
// site.
|
|
//
|
|
// MemProfile returns n, the number of records in the current memory profile.
|
|
// If len(p) >= n, MemProfile copies the profile into p and returns n, true.
|
|
// If len(p) < n, MemProfile does not change p and returns n, false.
|
|
//
|
|
// If inuseZero is true, the profile includes allocation records
|
|
// where r.AllocBytes > 0 but r.AllocBytes == r.FreeBytes.
|
|
// These are sites where memory was allocated, but it has all
|
|
// been released back to the runtime.
|
|
//
|
|
// The returned profile may be up to two garbage collection cycles old.
|
|
// This is to avoid skewing the profile toward allocations; because
|
|
// allocations happen in real time but frees are delayed until the garbage
|
|
// collector performs sweeping, the profile only accounts for allocations
|
|
// that have had a chance to be freed by the garbage collector.
|
|
//
|
|
// Most clients should use the runtime/pprof package or
|
|
// the testing package's -test.memprofile flag instead
|
|
// of calling MemProfile directly.
|
|
func MemProfile(p []MemProfileRecord, inuseZero bool) (n int, ok bool) {
|
|
lock(&proflock)
|
|
// If we're between mProf_NextCycle and mProf_Flush, take care
|
|
// of flushing to the active profile so we only have to look
|
|
// at the active profile below.
|
|
mProf_FlushLocked()
|
|
clear := true
|
|
for b := mbuckets; b != nil; b = b.allnext {
|
|
mp := b.mp()
|
|
if inuseZero || mp.active.alloc_bytes != mp.active.free_bytes {
|
|
n++
|
|
}
|
|
if mp.active.allocs != 0 || mp.active.frees != 0 {
|
|
clear = false
|
|
}
|
|
}
|
|
if clear {
|
|
// Absolutely no data, suggesting that a garbage collection
|
|
// has not yet happened. In order to allow profiling when
|
|
// garbage collection is disabled from the beginning of execution,
|
|
// accumulate all of the cycles, and recount buckets.
|
|
n = 0
|
|
for b := mbuckets; b != nil; b = b.allnext {
|
|
mp := b.mp()
|
|
for c := range mp.future {
|
|
mp.active.add(&mp.future[c])
|
|
mp.future[c] = memRecordCycle{}
|
|
}
|
|
if inuseZero || mp.active.alloc_bytes != mp.active.free_bytes {
|
|
n++
|
|
}
|
|
}
|
|
}
|
|
if n <= len(p) {
|
|
var bnext *bucket
|
|
|
|
// Post-process raw buckets to fix up their stack traces
|
|
for b := mbuckets; b != nil; b = bnext {
|
|
bnext = b.allnext
|
|
mp := b.mp()
|
|
if inuseZero || mp.active.alloc_bytes != mp.active.free_bytes {
|
|
fixupBucket(b)
|
|
}
|
|
}
|
|
|
|
// Record pruned/fixed-up buckets
|
|
ok = true
|
|
idx := 0
|
|
for b := sbuckets; b != nil; b = b.allnext {
|
|
record(&p[idx], b)
|
|
idx++
|
|
}
|
|
n = idx
|
|
|
|
// Free up pruned buckets for use in next round
|
|
for b := sbuckets; b != nil; b = bnext {
|
|
bnext = freebucket(b)
|
|
}
|
|
sbuckets = nil
|
|
}
|
|
unlock(&proflock)
|
|
return
|
|
}
|
|
|
|
// Write b's data to r.
|
|
func record(r *MemProfileRecord, b *bucket) {
|
|
mp := b.mp()
|
|
r.AllocBytes = int64(mp.active.alloc_bytes)
|
|
r.FreeBytes = int64(mp.active.free_bytes)
|
|
r.AllocObjects = int64(mp.active.allocs)
|
|
r.FreeObjects = int64(mp.active.frees)
|
|
for i, pc := range b.stk() {
|
|
if i >= len(r.Stack0) {
|
|
break
|
|
}
|
|
r.Stack0[i] = pc
|
|
}
|
|
for i := int(b.nstk); i < len(r.Stack0); i++ {
|
|
r.Stack0[i] = 0
|
|
}
|
|
}
|
|
|
|
func iterate_memprof(fn func(*bucket, uintptr, *uintptr, uintptr, uintptr, uintptr)) {
|
|
lock(&proflock)
|
|
for b := mbuckets; b != nil; b = b.allnext {
|
|
mp := b.mp()
|
|
fn(b, b.nstk, &b.stk()[0], b.size, mp.active.allocs, mp.active.frees)
|
|
}
|
|
unlock(&proflock)
|
|
}
|
|
|
|
// BlockProfileRecord describes blocking events originated
|
|
// at a particular call sequence (stack trace).
|
|
type BlockProfileRecord struct {
|
|
Count int64
|
|
Cycles int64
|
|
StackRecord
|
|
}
|
|
|
|
func harvestBlockMutexProfile(buckets *bucket, p []BlockProfileRecord) (n int, ok bool) {
|
|
for b := buckets; b != nil; b = b.allnext {
|
|
n++
|
|
}
|
|
if n <= len(p) {
|
|
var bnext *bucket
|
|
|
|
// Post-process raw buckets to create pruned/fixed-up buckets
|
|
for b := buckets; b != nil; b = bnext {
|
|
bnext = b.allnext
|
|
fixupBucket(b)
|
|
}
|
|
|
|
// Record
|
|
ok = true
|
|
for b := sbuckets; b != nil; b = b.allnext {
|
|
bp := b.bp()
|
|
r := &p[0]
|
|
r.Count = int64(bp.count)
|
|
// Prevent callers from having to worry about division by zero errors.
|
|
// See discussion on http://golang.org/cl/299991.
|
|
if r.Count == 0 {
|
|
r.Count = 1
|
|
}
|
|
r.Cycles = bp.cycles
|
|
i := 0
|
|
var pc uintptr
|
|
for i, pc = range b.stk() {
|
|
if i >= len(r.Stack0) {
|
|
break
|
|
}
|
|
r.Stack0[i] = pc
|
|
}
|
|
for ; i < len(r.Stack0); i++ {
|
|
r.Stack0[i] = 0
|
|
}
|
|
p = p[1:]
|
|
}
|
|
|
|
// Free up pruned buckets for use in next round.
|
|
for b := sbuckets; b != nil; b = bnext {
|
|
bnext = freebucket(b)
|
|
}
|
|
sbuckets = nil
|
|
}
|
|
return
|
|
}
|
|
|
|
// BlockProfile returns n, the number of records in the current blocking profile.
|
|
// If len(p) >= n, BlockProfile copies the profile into p and returns n, true.
|
|
// If len(p) < n, BlockProfile does not change p and returns n, false.
|
|
//
|
|
// Most clients should use the runtime/pprof package or
|
|
// the testing package's -test.blockprofile flag instead
|
|
// of calling BlockProfile directly.
|
|
func BlockProfile(p []BlockProfileRecord) (n int, ok bool) {
|
|
lock(&proflock)
|
|
n, ok = harvestBlockMutexProfile(bbuckets, p)
|
|
unlock(&proflock)
|
|
return
|
|
}
|
|
|
|
// MutexProfile returns n, the number of records in the current mutex profile.
|
|
// If len(p) >= n, MutexProfile copies the profile into p and returns n, true.
|
|
// Otherwise, MutexProfile does not change p, and returns n, false.
|
|
//
|
|
// Most clients should use the runtime/pprof package
|
|
// instead of calling MutexProfile directly.
|
|
func MutexProfile(p []BlockProfileRecord) (n int, ok bool) {
|
|
lock(&proflock)
|
|
n, ok = harvestBlockMutexProfile(xbuckets, p)
|
|
unlock(&proflock)
|
|
return
|
|
}
|
|
|
|
// ThreadCreateProfile returns n, the number of records in the thread creation profile.
|
|
// If len(p) >= n, ThreadCreateProfile copies the profile into p and returns n, true.
|
|
// If len(p) < n, ThreadCreateProfile does not change p and returns n, false.
|
|
//
|
|
// Most clients should use the runtime/pprof package instead
|
|
// of calling ThreadCreateProfile directly.
|
|
func ThreadCreateProfile(p []StackRecord) (n int, ok bool) {
|
|
first := (*m)(atomic.Loadp(unsafe.Pointer(&allm)))
|
|
for mp := first; mp != nil; mp = mp.alllink {
|
|
n++
|
|
}
|
|
if n <= len(p) {
|
|
ok = true
|
|
i := 0
|
|
for mp := first; mp != nil; mp = mp.alllink {
|
|
for j := range mp.createstack {
|
|
p[i].Stack0[j] = mp.createstack[j].pc
|
|
}
|
|
i++
|
|
}
|
|
}
|
|
return
|
|
}
|
|
|
|
//go:linkname runtime_goroutineProfileWithLabels runtime_1pprof.runtime__goroutineProfileWithLabels
|
|
func runtime_goroutineProfileWithLabels(p []StackRecord, labels []unsafe.Pointer) (n int, ok bool) {
|
|
return goroutineProfileWithLabels(p, labels)
|
|
}
|
|
|
|
// labels may be nil. If labels is non-nil, it must have the same length as p.
|
|
func goroutineProfileWithLabels(p []StackRecord, labels []unsafe.Pointer) (n int, ok bool) {
|
|
if labels != nil && len(labels) != len(p) {
|
|
labels = nil
|
|
}
|
|
gp := getg()
|
|
|
|
isOK := func(gp1 *g) bool {
|
|
// Checking isSystemGoroutine here makes GoroutineProfile
|
|
// consistent with both NumGoroutine and Stack.
|
|
return gp1 != gp && readgstatus(gp1) != _Gdead && !isSystemGoroutine(gp1, false)
|
|
}
|
|
|
|
stopTheWorld("profile")
|
|
|
|
// World is stopped, no locking required.
|
|
n = 1
|
|
forEachGRace(func(gp1 *g) {
|
|
if isOK(gp1) {
|
|
n++
|
|
}
|
|
})
|
|
|
|
if n <= len(p) {
|
|
ok = true
|
|
r, lbl := p, labels
|
|
|
|
// Save current goroutine.
|
|
saveg(gp, &r[0])
|
|
r = r[1:]
|
|
|
|
// If we have a place to put our goroutine labelmap, insert it there.
|
|
if labels != nil {
|
|
lbl[0] = gp.labels
|
|
lbl = lbl[1:]
|
|
}
|
|
|
|
// Save other goroutines.
|
|
forEachGRace(func(gp1 *g) {
|
|
if isOK(gp1) {
|
|
return
|
|
}
|
|
|
|
if len(r) == 0 {
|
|
// Should be impossible, but better to return a
|
|
// truncated profile than to crash the entire process.
|
|
return
|
|
}
|
|
saveg(gp1, &r[0])
|
|
if labels != nil {
|
|
lbl[0] = gp1.labels
|
|
lbl = lbl[1:]
|
|
}
|
|
r = r[1:]
|
|
})
|
|
}
|
|
|
|
startTheWorld()
|
|
return n, ok
|
|
}
|
|
|
|
// GoroutineProfile returns n, the number of records in the active goroutine stack profile.
|
|
// If len(p) >= n, GoroutineProfile copies the profile into p and returns n, true.
|
|
// If len(p) < n, GoroutineProfile does not change p and returns n, false.
|
|
//
|
|
// Most clients should use the runtime/pprof package instead
|
|
// of calling GoroutineProfile directly.
|
|
func GoroutineProfile(p []StackRecord) (n int, ok bool) {
|
|
|
|
return goroutineProfileWithLabels(p, nil)
|
|
}
|
|
|
|
func saveg(gp *g, r *StackRecord) {
|
|
if gp == getg() {
|
|
var locbuf [32]location
|
|
n := callers(1, locbuf[:])
|
|
for i := 0; i < n; i++ {
|
|
r.Stack0[i] = locbuf[i].pc
|
|
}
|
|
if n < len(r.Stack0) {
|
|
r.Stack0[n] = 0
|
|
}
|
|
} else {
|
|
// FIXME: Not implemented.
|
|
r.Stack0[0] = 0
|
|
}
|
|
}
|
|
|
|
// Stack formats a stack trace of the calling goroutine into buf
|
|
// and returns the number of bytes written to buf.
|
|
// If all is true, Stack formats stack traces of all other goroutines
|
|
// into buf after the trace for the current goroutine.
|
|
func Stack(buf []byte, all bool) int {
|
|
if all {
|
|
stopTheWorld("stack trace")
|
|
}
|
|
|
|
n := 0
|
|
if len(buf) > 0 {
|
|
gp := getg()
|
|
// Force traceback=1 to override GOTRACEBACK setting,
|
|
// so that Stack's results are consistent.
|
|
// GOTRACEBACK is only about crash dumps.
|
|
gp.m.traceback = 1
|
|
gp.writebuf = buf[0:0:len(buf)]
|
|
goroutineheader(gp)
|
|
traceback(1)
|
|
if all {
|
|
tracebackothers(gp)
|
|
}
|
|
gp.m.traceback = 0
|
|
n = len(gp.writebuf)
|
|
gp.writebuf = nil
|
|
}
|
|
|
|
if all {
|
|
startTheWorld()
|
|
}
|
|
return n
|
|
}
|
|
|
|
// Tracing of alloc/free/gc.
|
|
|
|
var tracelock mutex
|
|
|
|
func tracealloc(p unsafe.Pointer, size uintptr, typ *_type) {
|
|
lock(&tracelock)
|
|
gp := getg()
|
|
gp.m.traceback = 2
|
|
if typ == nil {
|
|
print("tracealloc(", p, ", ", hex(size), ")\n")
|
|
} else {
|
|
print("tracealloc(", p, ", ", hex(size), ", ", typ.string(), ")\n")
|
|
}
|
|
if gp.m.curg == nil || gp == gp.m.curg {
|
|
goroutineheader(gp)
|
|
traceback(1)
|
|
} else {
|
|
goroutineheader(gp.m.curg)
|
|
// FIXME: Can't do traceback of other g.
|
|
}
|
|
print("\n")
|
|
gp.m.traceback = 0
|
|
unlock(&tracelock)
|
|
}
|
|
|
|
func tracefree(p unsafe.Pointer, size uintptr) {
|
|
lock(&tracelock)
|
|
gp := getg()
|
|
gp.m.traceback = 2
|
|
print("tracefree(", p, ", ", hex(size), ")\n")
|
|
goroutineheader(gp)
|
|
traceback(1)
|
|
print("\n")
|
|
gp.m.traceback = 0
|
|
unlock(&tracelock)
|
|
}
|
|
|
|
func tracegc() {
|
|
lock(&tracelock)
|
|
gp := getg()
|
|
gp.m.traceback = 2
|
|
print("tracegc()\n")
|
|
// running on m->g0 stack; show all non-g0 goroutines
|
|
tracebackothers(gp)
|
|
print("end tracegc\n")
|
|
print("\n")
|
|
gp.m.traceback = 0
|
|
unlock(&tracelock)
|
|
}
|