gcc/libquadmath/math/cbrtq.c
Tobias Burnus f029f4be17 Makefile.am (libquadmath_la_SOURCES): Add new math/* files.
2012-11-01  Tobias Burnus  <burnus@net-b.de>

        * Makefile.am (libquadmath_la_SOURCES): Add new math/* files.
        * Makefile.in: Regenerated.
        * math/acoshq.c: Update comment.
        * math/acosq.c: Ditto.
        * math/asinhq.c: Ditto.
        * math/asinq.c: Ditto.
        * math/atan2q.c: Ditto.
        * math/atanhq.c: Ditto.
        * math/ceilq.c: Ditto.
        * math/copysignq.c: Ditto.
        * math/cosq.c: Ditto.
        * math/coshq.c: Ditto.
        * math/erfq.c: Ditto.
        * math/fabsq.c: Ditto.
        * math/finiteq.c: Ditto.
        * math/floorq.c: Ditto.
        * math/fmodq.c: Ditto.
        * math/frexpq.c: Ditto.
        * math/isnanq.c: Ditto.
        * math/j0q.c: Ditto.
        * math/j1q.c: Ditto.
        * math/ldexpq.c: Ditto.
        * math/llroundq.c: Ditto.
        * math/log10q.c: Ditto.
        * math/log1pq.c: Ditto.
        * math/log2q.c: Ditto.
        * math/logq.c: Ditto.
        * math/lroundq.c: Ditto.
        * math/modfq.c: Ditto.
        * math/nextafterq.c: Ditto.
        * math/powq.c: Ditto.
        * math/rem_pio2q.c: Ditto.
        * math/remainderq.c: Ditto.
        * math/rintq.c: Ditto.
        * math/roundq.c: Ditto.
        * math/scalblnq.c: Ditto.
        * math/scalbnq.c: Ditto.
        * math/sincosq_kernel.c: Ditto.
        * math/sinq.c: Ditto.
        * math/tanq.c: Ditto.
        * math/expq.c: Ditto.
        (__expq_table, expq): Renamed local array from __expl_table.
        * math/cosq_kernel.c (__quadmath_kernel_cosq): Fix sign
        * handling.
        * math/cacoshq.c: Changes from GLIBC; fix returned sign.
        * math/casinhq.c: Changes from GLIBC to fix special-case.
        * math/cbrtq.c: Use modified GLIBC version.
        * math/complex.c (ccoshd, cexpq, clog10q, clogq, csinhq, csinq,
        ctanhq, ctanq): Moved to separates files.
        (mult_c128, div_c128): Removed no longer needed functions.
        (cexpiq): Call sincosq instead of sinq and cosq.
        (cosq): Call cosh(-re,im) instead of cosq/sinq/sinh/cosh.
        * math/ccoshq.c (ccoshq): New file, moved from complex.c and
        modified based on GLIBC.
        * math/cexpq.c (cexp): Ditto.
        * math/clog10q.c (clog10q): Ditto.
        * math/clogq.c (clogq): Ditto.
        * math/csinhq.c: Ditto.
        * math/csinq.c: Ditto.
        * math/csqrtq.c: Ditto.
        * math/ctanhq.c: Ditto.
        * math/ctanq.c: Ditto.
        * math/fmaq.c (fmaq): Port TININESS_AFTER_ROUNDING handling
        from GLIBC.
        * math/ilogbq.c (ilogbq): Add errno = EDOM handling.
        * math/isinf_nsq.c (__quadmath_isinf_nsq): New file, ported
        from GLIBC.
        * math/lgammaq.c (lgammaq): Add signgam handling.
        * math/sinhq.c (sinhq): Fix sign handling.
        * math/sinq_kernel.c (__quadmath_kernel_sinq): Ditto.
        * math/tgammaq.c (tgammaq): Ditto.
        * math/x2y2m1q.c: New file.
        * quadmath-imp.h (TININESS_AFTER_ROUNDING): New define.
        (__quadmath_x2y2m1q, __quadmath_isinf_nsq): New prototypes.

From-SVN: r193063
2012-11-01 17:14:42 +01:00

133 lines
3.2 KiB
C

/* cbrtq.c
*
* Cube root, __float128 precision
*
*
*
* SYNOPSIS:
*
* __float128 x, y, cbrtq();
*
* y = cbrtq( x );
*
*
*
* DESCRIPTION:
*
* Returns the cube root of the argument, which may be negative.
*
* Range reduction involves determining the power of 2 of
* the argument. A polynomial of degree 2 applied to the
* mantissa, and multiplication by the cube root of 1, 2, or 4
* approximates the root to within about 0.1%. Then Newton's
* iteration is used three times to converge to an accurate
* result.
*
*
*
* ACCURACY:
*
* Relative error:
* arithmetic domain # trials peak rms
* IEEE -8,8 100000 1.3e-34 3.9e-35
* IEEE exp(+-707) 100000 1.3e-34 4.3e-35
*
*/
/*
Cephes Math Library Release 2.2: January, 1991
Copyright 1984, 1991 by Stephen L. Moshier
Adapted for glibc October, 2001.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, see
<http://www.gnu.org/licenses/>. */
#include "quadmath-imp.h"
static const long double CBRT2 = 1.259921049894873164767210607278228350570251Q;
static const long double CBRT4 = 1.587401051968199474751705639272308260391493Q;
static const long double CBRT2I = 0.7937005259840997373758528196361541301957467Q;
static const long double CBRT4I = 0.6299605249474365823836053036391141752851257Q;
__float128
cbrtq ( __float128 x)
{
int e, rem, sign;
__float128 z;
if (!finiteq (x))
return x + x;
if (x == 0)
return (x);
if (x > 0)
sign = 1;
else
{
sign = -1;
x = -x;
}
z = x;
/* extract power of 2, leaving mantissa between 0.5 and 1 */
x = frexpq (x, &e);
/* Approximate cube root of number between .5 and 1,
peak relative error = 1.2e-6 */
x = ((((1.3584464340920900529734e-1L * x
- 6.3986917220457538402318e-1L) * x
+ 1.2875551670318751538055e0L) * x
- 1.4897083391357284957891e0L) * x
+ 1.3304961236013647092521e0L) * x + 3.7568280825958912391243e-1L;
/* exponent divided by 3 */
if (e >= 0)
{
rem = e;
e /= 3;
rem -= 3 * e;
if (rem == 1)
x *= CBRT2;
else if (rem == 2)
x *= CBRT4;
}
else
{ /* argument less than 1 */
e = -e;
rem = e;
e /= 3;
rem -= 3 * e;
if (rem == 1)
x *= CBRT2I;
else if (rem == 2)
x *= CBRT4I;
e = -e;
}
/* multiply by power of 2 */
x = ldexpq (x, e);
/* Newton iteration */
x -= (x - (z / (x * x))) * 0.3333333333333333333333333333333333333333L;
x -= (x - (z / (x * x))) * 0.3333333333333333333333333333333333333333L;
x -= (x - (z / (x * x))) * 0.3333333333333333333333333333333333333333L;
if (sign < 0)
x = -x;
return (x);
}