aa8901e9bb
Reviewed-on: https://go-review.googlesource.com/c/gofrontend/+/193497 From-SVN: r275473
257 lines
6.7 KiB
Go
257 lines
6.7 KiB
Go
// Copyright 2009 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package runtime
|
|
|
|
import (
|
|
"runtime/internal/math"
|
|
"runtime/internal/sys"
|
|
"unsafe"
|
|
)
|
|
|
|
// For gccgo, use go:linkname to export compiler-called functions.
|
|
//
|
|
//go:linkname makeslice
|
|
//go:linkname makeslice64
|
|
//go:linkname growslice
|
|
//go:linkname slicecopy
|
|
//go:linkname slicestringcopy
|
|
|
|
type slice struct {
|
|
array unsafe.Pointer
|
|
len int
|
|
cap int
|
|
}
|
|
|
|
// An notInHeapSlice is a slice backed by go:notinheap memory.
|
|
type notInHeapSlice struct {
|
|
array *notInHeap
|
|
len int
|
|
cap int
|
|
}
|
|
|
|
func panicmakeslicelen() {
|
|
panic(errorString("makeslice: len out of range"))
|
|
}
|
|
|
|
func panicmakeslicecap() {
|
|
panic(errorString("makeslice: cap out of range"))
|
|
}
|
|
|
|
func makeslice(et *_type, len, cap int) unsafe.Pointer {
|
|
mem, overflow := math.MulUintptr(et.size, uintptr(cap))
|
|
if overflow || mem > maxAlloc || len < 0 || len > cap {
|
|
// NOTE: Produce a 'len out of range' error instead of a
|
|
// 'cap out of range' error when someone does make([]T, bignumber).
|
|
// 'cap out of range' is true too, but since the cap is only being
|
|
// supplied implicitly, saying len is clearer.
|
|
// See golang.org/issue/4085.
|
|
mem, overflow := math.MulUintptr(et.size, uintptr(len))
|
|
if overflow || mem > maxAlloc || len < 0 {
|
|
panicmakeslicelen()
|
|
}
|
|
panicmakeslicecap()
|
|
}
|
|
|
|
return mallocgc(mem, et, true)
|
|
}
|
|
|
|
func makeslice64(et *_type, len64, cap64 int64) unsafe.Pointer {
|
|
len := int(len64)
|
|
if int64(len) != len64 {
|
|
panicmakeslicelen()
|
|
}
|
|
|
|
cap := int(cap64)
|
|
if int64(cap) != cap64 {
|
|
panicmakeslicecap()
|
|
}
|
|
|
|
return makeslice(et, len, cap)
|
|
}
|
|
|
|
// growslice handles slice growth during append.
|
|
// It is passed the slice element type, the old slice, and the desired new minimum capacity,
|
|
// and it returns a new slice with at least that capacity, with the old data
|
|
// copied into it.
|
|
// The new slice's length is set to the requested capacity.
|
|
func growslice(et *_type, oldarray unsafe.Pointer, oldlen, oldcap, cap int) slice {
|
|
if raceenabled {
|
|
callerpc := getcallerpc()
|
|
racereadrangepc(oldarray, uintptr(oldlen*int(et.size)), callerpc, funcPC(growslice))
|
|
}
|
|
if msanenabled {
|
|
msanread(oldarray, uintptr(oldlen*int(et.size)))
|
|
}
|
|
|
|
if cap < oldcap {
|
|
panic(errorString("growslice: cap out of range"))
|
|
}
|
|
|
|
if et.size == 0 {
|
|
// append should not create a slice with nil pointer but non-zero len.
|
|
// We assume that append doesn't need to preserve oldarray in this case.
|
|
return slice{unsafe.Pointer(&zerobase), cap, cap}
|
|
}
|
|
|
|
newcap := oldcap
|
|
doublecap := newcap + newcap
|
|
if cap > doublecap {
|
|
newcap = cap
|
|
} else {
|
|
if oldlen < 1024 {
|
|
newcap = doublecap
|
|
} else {
|
|
// Check 0 < newcap to detect overflow
|
|
// and prevent an infinite loop.
|
|
for 0 < newcap && newcap < cap {
|
|
newcap += newcap / 4
|
|
}
|
|
// Set newcap to the requested cap when
|
|
// the newcap calculation overflowed.
|
|
if newcap <= 0 {
|
|
newcap = cap
|
|
}
|
|
}
|
|
}
|
|
|
|
var overflow bool
|
|
var lenmem, newlenmem, capmem uintptr
|
|
// Specialize for common values of et.size.
|
|
// For 1 we don't need any division/multiplication.
|
|
// For sys.PtrSize, compiler will optimize division/multiplication into a shift by a constant.
|
|
// For powers of 2, use a variable shift.
|
|
switch {
|
|
case et.size == 1:
|
|
lenmem = uintptr(oldlen)
|
|
newlenmem = uintptr(cap)
|
|
capmem = roundupsize(uintptr(newcap))
|
|
overflow = uintptr(newcap) > maxAlloc
|
|
newcap = int(capmem)
|
|
case et.size == sys.PtrSize:
|
|
lenmem = uintptr(oldlen) * sys.PtrSize
|
|
newlenmem = uintptr(cap) * sys.PtrSize
|
|
capmem = roundupsize(uintptr(newcap) * sys.PtrSize)
|
|
overflow = uintptr(newcap) > maxAlloc/sys.PtrSize
|
|
newcap = int(capmem / sys.PtrSize)
|
|
case isPowerOfTwo(et.size):
|
|
var shift uintptr
|
|
if sys.PtrSize == 8 {
|
|
// Mask shift for better code generation.
|
|
shift = uintptr(sys.Ctz64(uint64(et.size))) & 63
|
|
} else {
|
|
shift = uintptr(sys.Ctz32(uint32(et.size))) & 31
|
|
}
|
|
lenmem = uintptr(oldlen) << shift
|
|
newlenmem = uintptr(cap) << shift
|
|
capmem = roundupsize(uintptr(newcap) << shift)
|
|
overflow = uintptr(newcap) > (maxAlloc >> shift)
|
|
newcap = int(capmem >> shift)
|
|
default:
|
|
lenmem = uintptr(oldlen) * et.size
|
|
newlenmem = uintptr(cap) * et.size
|
|
capmem, overflow = math.MulUintptr(et.size, uintptr(newcap))
|
|
capmem = roundupsize(capmem)
|
|
newcap = int(capmem / et.size)
|
|
}
|
|
|
|
// The check of overflow in addition to capmem > maxAlloc is needed
|
|
// to prevent an overflow which can be used to trigger a segfault
|
|
// on 32bit architectures with this example program:
|
|
//
|
|
// type T [1<<27 + 1]int64
|
|
//
|
|
// var d T
|
|
// var s []T
|
|
//
|
|
// func main() {
|
|
// s = append(s, d, d, d, d)
|
|
// print(len(s), "\n")
|
|
// }
|
|
if overflow || capmem > maxAlloc {
|
|
panic(errorString("growslice: cap out of range"))
|
|
}
|
|
|
|
var p unsafe.Pointer
|
|
if et.ptrdata == 0 {
|
|
p = mallocgc(capmem, nil, false)
|
|
// The append() that calls growslice is going to overwrite from oldlen to cap (which will be the new length).
|
|
// Only clear the part that will not be overwritten.
|
|
memclrNoHeapPointers(add(p, newlenmem), capmem-newlenmem)
|
|
} else {
|
|
// Note: can't use rawmem (which avoids zeroing of memory), because then GC can scan uninitialized memory.
|
|
p = mallocgc(capmem, et, true)
|
|
if lenmem > 0 && writeBarrier.enabled {
|
|
// Only shade the pointers in old.array since we know the destination slice p
|
|
// only contains nil pointers because it has been cleared during alloc.
|
|
bulkBarrierPreWriteSrcOnly(uintptr(p), uintptr(oldarray), lenmem)
|
|
}
|
|
}
|
|
memmove(p, oldarray, lenmem)
|
|
|
|
return slice{p, cap, newcap}
|
|
}
|
|
|
|
func isPowerOfTwo(x uintptr) bool {
|
|
return x&(x-1) == 0
|
|
}
|
|
|
|
func slicecopy(to, fm slice, width uintptr) int {
|
|
if fm.len == 0 || to.len == 0 {
|
|
return 0
|
|
}
|
|
|
|
n := fm.len
|
|
if to.len < n {
|
|
n = to.len
|
|
}
|
|
|
|
if width == 0 {
|
|
return n
|
|
}
|
|
|
|
if raceenabled {
|
|
callerpc := getcallerpc()
|
|
pc := funcPC(slicecopy)
|
|
racewriterangepc(to.array, uintptr(n*int(width)), callerpc, pc)
|
|
racereadrangepc(fm.array, uintptr(n*int(width)), callerpc, pc)
|
|
}
|
|
if msanenabled {
|
|
msanwrite(to.array, uintptr(n*int(width)))
|
|
msanread(fm.array, uintptr(n*int(width)))
|
|
}
|
|
|
|
size := uintptr(n) * width
|
|
if size == 1 { // common case worth about 2x to do here
|
|
// TODO: is this still worth it with new memmove impl?
|
|
*(*byte)(to.array) = *(*byte)(fm.array) // known to be a byte pointer
|
|
} else {
|
|
memmove(to.array, fm.array, size)
|
|
}
|
|
return n
|
|
}
|
|
|
|
func slicestringcopy(to []byte, fm string) int {
|
|
if len(fm) == 0 || len(to) == 0 {
|
|
return 0
|
|
}
|
|
|
|
n := len(fm)
|
|
if len(to) < n {
|
|
n = len(to)
|
|
}
|
|
|
|
if raceenabled {
|
|
callerpc := getcallerpc()
|
|
pc := funcPC(slicestringcopy)
|
|
racewriterangepc(unsafe.Pointer(&to[0]), uintptr(n), callerpc, pc)
|
|
}
|
|
if msanenabled {
|
|
msanwrite(unsafe.Pointer(&to[0]), uintptr(n))
|
|
}
|
|
|
|
memmove(unsafe.Pointer(&to[0]), stringStructOf(&fm).str, uintptr(n))
|
|
return n
|
|
}
|