748086b7b2
From-SVN: r145841
751 lines
27 KiB
C++
751 lines
27 KiB
C++
// Special functions -*- C++ -*-
|
|
|
|
// Copyright (C) 2006, 2007, 2008, 2009
|
|
// Free Software Foundation, Inc.
|
|
//
|
|
// This file is part of the GNU ISO C++ Library. This library is free
|
|
// software; you can redistribute it and/or modify it under the
|
|
// terms of the GNU General Public License as published by the
|
|
// Free Software Foundation; either version 3, or (at your option)
|
|
// any later version.
|
|
//
|
|
// This library is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// Under Section 7 of GPL version 3, you are granted additional
|
|
// permissions described in the GCC Runtime Library Exception, version
|
|
// 3.1, as published by the Free Software Foundation.
|
|
|
|
// You should have received a copy of the GNU General Public License and
|
|
// a copy of the GCC Runtime Library Exception along with this program;
|
|
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
|
|
// <http://www.gnu.org/licenses/>.
|
|
|
|
/** @file tr1/ell_integral.tcc
|
|
* This is an internal header file, included by other library headers.
|
|
* You should not attempt to use it directly.
|
|
*/
|
|
|
|
//
|
|
// ISO C++ 14882 TR1: 5.2 Special functions
|
|
//
|
|
|
|
// Written by Edward Smith-Rowland based on:
|
|
// (1) B. C. Carlson Numer. Math. 33, 1 (1979)
|
|
// (2) B. C. Carlson, Special Functions of Applied Mathematics (1977)
|
|
// (3) The Gnu Scientific Library, http://www.gnu.org/software/gsl
|
|
// (4) Numerical Recipes in C, 2nd ed, by W. H. Press, S. A. Teukolsky,
|
|
// W. T. Vetterling, B. P. Flannery, Cambridge University Press
|
|
// (1992), pp. 261-269
|
|
|
|
#ifndef _GLIBCXX_TR1_ELL_INTEGRAL_TCC
|
|
#define _GLIBCXX_TR1_ELL_INTEGRAL_TCC 1
|
|
|
|
namespace std
|
|
{
|
|
namespace tr1
|
|
{
|
|
|
|
// [5.2] Special functions
|
|
|
|
// Implementation-space details.
|
|
namespace __detail
|
|
{
|
|
|
|
/**
|
|
* @brief Return the Carlson elliptic function @f$ R_F(x,y,z) @f$
|
|
* of the first kind.
|
|
*
|
|
* The Carlson elliptic function of the first kind is defined by:
|
|
* @f[
|
|
* R_F(x,y,z) = \frac{1}{2} \int_0^\infty
|
|
* \frac{dt}{(t + x)^{1/2}(t + y)^{1/2}(t + z)^{1/2}}
|
|
* @f]
|
|
*
|
|
* @param __x The first of three symmetric arguments.
|
|
* @param __y The second of three symmetric arguments.
|
|
* @param __z The third of three symmetric arguments.
|
|
* @return The Carlson elliptic function of the first kind.
|
|
*/
|
|
template<typename _Tp>
|
|
_Tp
|
|
__ellint_rf(const _Tp __x, const _Tp __y, const _Tp __z)
|
|
{
|
|
const _Tp __min = std::numeric_limits<_Tp>::min();
|
|
const _Tp __max = std::numeric_limits<_Tp>::max();
|
|
const _Tp __lolim = _Tp(5) * __min;
|
|
const _Tp __uplim = __max / _Tp(5);
|
|
|
|
if (__x < _Tp(0) || __y < _Tp(0) || __z < _Tp(0))
|
|
std::__throw_domain_error(__N("Argument less than zero "
|
|
"in __ellint_rf."));
|
|
else if (__x + __y < __lolim || __x + __z < __lolim
|
|
|| __y + __z < __lolim)
|
|
std::__throw_domain_error(__N("Argument too small in __ellint_rf"));
|
|
else
|
|
{
|
|
const _Tp __c0 = _Tp(1) / _Tp(4);
|
|
const _Tp __c1 = _Tp(1) / _Tp(24);
|
|
const _Tp __c2 = _Tp(1) / _Tp(10);
|
|
const _Tp __c3 = _Tp(3) / _Tp(44);
|
|
const _Tp __c4 = _Tp(1) / _Tp(14);
|
|
|
|
_Tp __xn = __x;
|
|
_Tp __yn = __y;
|
|
_Tp __zn = __z;
|
|
|
|
const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
|
|
const _Tp __errtol = std::pow(__eps, _Tp(1) / _Tp(6));
|
|
_Tp __mu;
|
|
_Tp __xndev, __yndev, __zndev;
|
|
|
|
const unsigned int __max_iter = 100;
|
|
for (unsigned int __iter = 0; __iter < __max_iter; ++__iter)
|
|
{
|
|
__mu = (__xn + __yn + __zn) / _Tp(3);
|
|
__xndev = 2 - (__mu + __xn) / __mu;
|
|
__yndev = 2 - (__mu + __yn) / __mu;
|
|
__zndev = 2 - (__mu + __zn) / __mu;
|
|
_Tp __epsilon = std::max(std::abs(__xndev), std::abs(__yndev));
|
|
__epsilon = std::max(__epsilon, std::abs(__zndev));
|
|
if (__epsilon < __errtol)
|
|
break;
|
|
const _Tp __xnroot = std::sqrt(__xn);
|
|
const _Tp __ynroot = std::sqrt(__yn);
|
|
const _Tp __znroot = std::sqrt(__zn);
|
|
const _Tp __lambda = __xnroot * (__ynroot + __znroot)
|
|
+ __ynroot * __znroot;
|
|
__xn = __c0 * (__xn + __lambda);
|
|
__yn = __c0 * (__yn + __lambda);
|
|
__zn = __c0 * (__zn + __lambda);
|
|
}
|
|
|
|
const _Tp __e2 = __xndev * __yndev - __zndev * __zndev;
|
|
const _Tp __e3 = __xndev * __yndev * __zndev;
|
|
const _Tp __s = _Tp(1) + (__c1 * __e2 - __c2 - __c3 * __e3) * __e2
|
|
+ __c4 * __e3;
|
|
|
|
return __s / std::sqrt(__mu);
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* @brief Return the complete elliptic integral of the first kind
|
|
* @f$ K(k) @f$ by series expansion.
|
|
*
|
|
* The complete elliptic integral of the first kind is defined as
|
|
* @f[
|
|
* K(k) = F(k,\pi/2) = \int_0^{\pi/2}\frac{d\theta}
|
|
* {\sqrt{1 - k^2sin^2\theta}}
|
|
* @f]
|
|
*
|
|
* This routine is not bad as long as |k| is somewhat smaller than 1
|
|
* but is not is good as the Carlson elliptic integral formulation.
|
|
*
|
|
* @param __k The argument of the complete elliptic function.
|
|
* @return The complete elliptic function of the first kind.
|
|
*/
|
|
template<typename _Tp>
|
|
_Tp
|
|
__comp_ellint_1_series(const _Tp __k)
|
|
{
|
|
|
|
const _Tp __kk = __k * __k;
|
|
|
|
_Tp __term = __kk / _Tp(4);
|
|
_Tp __sum = _Tp(1) + __term;
|
|
|
|
const unsigned int __max_iter = 1000;
|
|
for (unsigned int __i = 2; __i < __max_iter; ++__i)
|
|
{
|
|
__term *= (2 * __i - 1) * __kk / (2 * __i);
|
|
if (__term < std::numeric_limits<_Tp>::epsilon())
|
|
break;
|
|
__sum += __term;
|
|
}
|
|
|
|
return __numeric_constants<_Tp>::__pi_2() * __sum;
|
|
}
|
|
|
|
|
|
/**
|
|
* @brief Return the complete elliptic integral of the first kind
|
|
* @f$ K(k) @f$ using the Carlson formulation.
|
|
*
|
|
* The complete elliptic integral of the first kind is defined as
|
|
* @f[
|
|
* K(k) = F(k,\pi/2) = \int_0^{\pi/2}\frac{d\theta}
|
|
* {\sqrt{1 - k^2 sin^2\theta}}
|
|
* @f]
|
|
* where @f$ F(k,\phi) @f$ is the incomplete elliptic integral of the
|
|
* first kind.
|
|
*
|
|
* @param __k The argument of the complete elliptic function.
|
|
* @return The complete elliptic function of the first kind.
|
|
*/
|
|
template<typename _Tp>
|
|
_Tp
|
|
__comp_ellint_1(const _Tp __k)
|
|
{
|
|
|
|
if (__isnan(__k))
|
|
return std::numeric_limits<_Tp>::quiet_NaN();
|
|
else if (std::abs(__k) >= _Tp(1))
|
|
return std::numeric_limits<_Tp>::quiet_NaN();
|
|
else
|
|
return __ellint_rf(_Tp(0), _Tp(1) - __k * __k, _Tp(1));
|
|
}
|
|
|
|
|
|
/**
|
|
* @brief Return the incomplete elliptic integral of the first kind
|
|
* @f$ F(k,\phi) @f$ using the Carlson formulation.
|
|
*
|
|
* The incomplete elliptic integral of the first kind is defined as
|
|
* @f[
|
|
* F(k,\phi) = \int_0^{\phi}\frac{d\theta}
|
|
* {\sqrt{1 - k^2 sin^2\theta}}
|
|
* @f]
|
|
*
|
|
* @param __k The argument of the elliptic function.
|
|
* @param __phi The integral limit argument of the elliptic function.
|
|
* @return The elliptic function of the first kind.
|
|
*/
|
|
template<typename _Tp>
|
|
_Tp
|
|
__ellint_1(const _Tp __k, const _Tp __phi)
|
|
{
|
|
|
|
if (__isnan(__k) || __isnan(__phi))
|
|
return std::numeric_limits<_Tp>::quiet_NaN();
|
|
else if (std::abs(__k) > _Tp(1))
|
|
std::__throw_domain_error(__N("Bad argument in __ellint_1."));
|
|
else
|
|
{
|
|
// Reduce phi to -pi/2 < phi < +pi/2.
|
|
const int __n = std::floor(__phi / __numeric_constants<_Tp>::__pi()
|
|
+ _Tp(0.5L));
|
|
const _Tp __phi_red = __phi
|
|
- __n * __numeric_constants<_Tp>::__pi();
|
|
|
|
const _Tp __s = std::sin(__phi_red);
|
|
const _Tp __c = std::cos(__phi_red);
|
|
|
|
const _Tp __F = __s
|
|
* __ellint_rf(__c * __c,
|
|
_Tp(1) - __k * __k * __s * __s, _Tp(1));
|
|
|
|
if (__n == 0)
|
|
return __F;
|
|
else
|
|
return __F + _Tp(2) * __n * __comp_ellint_1(__k);
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* @brief Return the complete elliptic integral of the second kind
|
|
* @f$ E(k) @f$ by series expansion.
|
|
*
|
|
* The complete elliptic integral of the second kind is defined as
|
|
* @f[
|
|
* E(k,\pi/2) = \int_0^{\pi/2}\sqrt{1 - k^2 sin^2\theta}
|
|
* @f]
|
|
*
|
|
* This routine is not bad as long as |k| is somewhat smaller than 1
|
|
* but is not is good as the Carlson elliptic integral formulation.
|
|
*
|
|
* @param __k The argument of the complete elliptic function.
|
|
* @return The complete elliptic function of the second kind.
|
|
*/
|
|
template<typename _Tp>
|
|
_Tp
|
|
__comp_ellint_2_series(const _Tp __k)
|
|
{
|
|
|
|
const _Tp __kk = __k * __k;
|
|
|
|
_Tp __term = __kk;
|
|
_Tp __sum = __term;
|
|
|
|
const unsigned int __max_iter = 1000;
|
|
for (unsigned int __i = 2; __i < __max_iter; ++__i)
|
|
{
|
|
const _Tp __i2m = 2 * __i - 1;
|
|
const _Tp __i2 = 2 * __i;
|
|
__term *= __i2m * __i2m * __kk / (__i2 * __i2);
|
|
if (__term < std::numeric_limits<_Tp>::epsilon())
|
|
break;
|
|
__sum += __term / __i2m;
|
|
}
|
|
|
|
return __numeric_constants<_Tp>::__pi_2() * (_Tp(1) - __sum);
|
|
}
|
|
|
|
|
|
/**
|
|
* @brief Return the Carlson elliptic function of the second kind
|
|
* @f$ R_D(x,y,z) = R_J(x,y,z,z) @f$ where
|
|
* @f$ R_J(x,y,z,p) @f$ is the Carlson elliptic function
|
|
* of the third kind.
|
|
*
|
|
* The Carlson elliptic function of the second kind is defined by:
|
|
* @f[
|
|
* R_D(x,y,z) = \frac{3}{2} \int_0^\infty
|
|
* \frac{dt}{(t + x)^{1/2}(t + y)^{1/2}(t + z)^{3/2}}
|
|
* @f]
|
|
*
|
|
* Based on Carlson's algorithms:
|
|
* - B. C. Carlson Numer. Math. 33, 1 (1979)
|
|
* - B. C. Carlson, Special Functions of Applied Mathematics (1977)
|
|
* - Numerical Recipes in C, 2nd ed, pp. 261-269,
|
|
* by Press, Teukolsky, Vetterling, Flannery (1992)
|
|
*
|
|
* @param __x The first of two symmetric arguments.
|
|
* @param __y The second of two symmetric arguments.
|
|
* @param __z The third argument.
|
|
* @return The Carlson elliptic function of the second kind.
|
|
*/
|
|
template<typename _Tp>
|
|
_Tp
|
|
__ellint_rd(const _Tp __x, const _Tp __y, const _Tp __z)
|
|
{
|
|
const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
|
|
const _Tp __errtol = std::pow(__eps / _Tp(8), _Tp(1) / _Tp(6));
|
|
const _Tp __min = std::numeric_limits<_Tp>::min();
|
|
const _Tp __max = std::numeric_limits<_Tp>::max();
|
|
const _Tp __lolim = _Tp(2) / std::pow(__max, _Tp(2) / _Tp(3));
|
|
const _Tp __uplim = std::pow(_Tp(0.1L) * __errtol / __min, _Tp(2) / _Tp(3));
|
|
|
|
if (__x < _Tp(0) || __y < _Tp(0))
|
|
std::__throw_domain_error(__N("Argument less than zero "
|
|
"in __ellint_rd."));
|
|
else if (__x + __y < __lolim || __z < __lolim)
|
|
std::__throw_domain_error(__N("Argument too small "
|
|
"in __ellint_rd."));
|
|
else
|
|
{
|
|
const _Tp __c0 = _Tp(1) / _Tp(4);
|
|
const _Tp __c1 = _Tp(3) / _Tp(14);
|
|
const _Tp __c2 = _Tp(1) / _Tp(6);
|
|
const _Tp __c3 = _Tp(9) / _Tp(22);
|
|
const _Tp __c4 = _Tp(3) / _Tp(26);
|
|
|
|
_Tp __xn = __x;
|
|
_Tp __yn = __y;
|
|
_Tp __zn = __z;
|
|
_Tp __sigma = _Tp(0);
|
|
_Tp __power4 = _Tp(1);
|
|
|
|
_Tp __mu;
|
|
_Tp __xndev, __yndev, __zndev;
|
|
|
|
const unsigned int __max_iter = 100;
|
|
for (unsigned int __iter = 0; __iter < __max_iter; ++__iter)
|
|
{
|
|
__mu = (__xn + __yn + _Tp(3) * __zn) / _Tp(5);
|
|
__xndev = (__mu - __xn) / __mu;
|
|
__yndev = (__mu - __yn) / __mu;
|
|
__zndev = (__mu - __zn) / __mu;
|
|
_Tp __epsilon = std::max(std::abs(__xndev), std::abs(__yndev));
|
|
__epsilon = std::max(__epsilon, std::abs(__zndev));
|
|
if (__epsilon < __errtol)
|
|
break;
|
|
_Tp __xnroot = std::sqrt(__xn);
|
|
_Tp __ynroot = std::sqrt(__yn);
|
|
_Tp __znroot = std::sqrt(__zn);
|
|
_Tp __lambda = __xnroot * (__ynroot + __znroot)
|
|
+ __ynroot * __znroot;
|
|
__sigma += __power4 / (__znroot * (__zn + __lambda));
|
|
__power4 *= __c0;
|
|
__xn = __c0 * (__xn + __lambda);
|
|
__yn = __c0 * (__yn + __lambda);
|
|
__zn = __c0 * (__zn + __lambda);
|
|
}
|
|
|
|
// Note: __ea is an SPU badname.
|
|
_Tp __eaa = __xndev * __yndev;
|
|
_Tp __eb = __zndev * __zndev;
|
|
_Tp __ec = __eaa - __eb;
|
|
_Tp __ed = __eaa - _Tp(6) * __eb;
|
|
_Tp __ef = __ed + __ec + __ec;
|
|
_Tp __s1 = __ed * (-__c1 + __c3 * __ed
|
|
/ _Tp(3) - _Tp(3) * __c4 * __zndev * __ef
|
|
/ _Tp(2));
|
|
_Tp __s2 = __zndev
|
|
* (__c2 * __ef
|
|
+ __zndev * (-__c3 * __ec - __zndev * __c4 - __eaa));
|
|
|
|
return _Tp(3) * __sigma + __power4 * (_Tp(1) + __s1 + __s2)
|
|
/ (__mu * std::sqrt(__mu));
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* @brief Return the complete elliptic integral of the second kind
|
|
* @f$ E(k) @f$ using the Carlson formulation.
|
|
*
|
|
* The complete elliptic integral of the second kind is defined as
|
|
* @f[
|
|
* E(k,\pi/2) = \int_0^{\pi/2}\sqrt{1 - k^2 sin^2\theta}
|
|
* @f]
|
|
*
|
|
* @param __k The argument of the complete elliptic function.
|
|
* @return The complete elliptic function of the second kind.
|
|
*/
|
|
template<typename _Tp>
|
|
_Tp
|
|
__comp_ellint_2(const _Tp __k)
|
|
{
|
|
|
|
if (__isnan(__k))
|
|
return std::numeric_limits<_Tp>::quiet_NaN();
|
|
else if (std::abs(__k) == 1)
|
|
return _Tp(1);
|
|
else if (std::abs(__k) > _Tp(1))
|
|
std::__throw_domain_error(__N("Bad argument in __comp_ellint_2."));
|
|
else
|
|
{
|
|
const _Tp __kk = __k * __k;
|
|
|
|
return __ellint_rf(_Tp(0), _Tp(1) - __kk, _Tp(1))
|
|
- __kk * __ellint_rd(_Tp(0), _Tp(1) - __kk, _Tp(1)) / _Tp(3);
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* @brief Return the incomplete elliptic integral of the second kind
|
|
* @f$ E(k,\phi) @f$ using the Carlson formulation.
|
|
*
|
|
* The incomplete elliptic integral of the second kind is defined as
|
|
* @f[
|
|
* E(k,\phi) = \int_0^{\phi} \sqrt{1 - k^2 sin^2\theta}
|
|
* @f]
|
|
*
|
|
* @param __k The argument of the elliptic function.
|
|
* @param __phi The integral limit argument of the elliptic function.
|
|
* @return The elliptic function of the second kind.
|
|
*/
|
|
template<typename _Tp>
|
|
_Tp
|
|
__ellint_2(const _Tp __k, const _Tp __phi)
|
|
{
|
|
|
|
if (__isnan(__k) || __isnan(__phi))
|
|
return std::numeric_limits<_Tp>::quiet_NaN();
|
|
else if (std::abs(__k) > _Tp(1))
|
|
std::__throw_domain_error(__N("Bad argument in __ellint_2."));
|
|
else
|
|
{
|
|
// Reduce phi to -pi/2 < phi < +pi/2.
|
|
const int __n = std::floor(__phi / __numeric_constants<_Tp>::__pi()
|
|
+ _Tp(0.5L));
|
|
const _Tp __phi_red = __phi
|
|
- __n * __numeric_constants<_Tp>::__pi();
|
|
|
|
const _Tp __kk = __k * __k;
|
|
const _Tp __s = std::sin(__phi_red);
|
|
const _Tp __ss = __s * __s;
|
|
const _Tp __sss = __ss * __s;
|
|
const _Tp __c = std::cos(__phi_red);
|
|
const _Tp __cc = __c * __c;
|
|
|
|
const _Tp __E = __s
|
|
* __ellint_rf(__cc, _Tp(1) - __kk * __ss, _Tp(1))
|
|
- __kk * __sss
|
|
* __ellint_rd(__cc, _Tp(1) - __kk * __ss, _Tp(1))
|
|
/ _Tp(3);
|
|
|
|
if (__n == 0)
|
|
return __E;
|
|
else
|
|
return __E + _Tp(2) * __n * __comp_ellint_2(__k);
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* @brief Return the Carlson elliptic function
|
|
* @f$ R_C(x,y) = R_F(x,y,y) @f$ where @f$ R_F(x,y,z) @f$
|
|
* is the Carlson elliptic function of the first kind.
|
|
*
|
|
* The Carlson elliptic function is defined by:
|
|
* @f[
|
|
* R_C(x,y) = \frac{1}{2} \int_0^\infty
|
|
* \frac{dt}{(t + x)^{1/2}(t + y)}
|
|
* @f]
|
|
*
|
|
* Based on Carlson's algorithms:
|
|
* - B. C. Carlson Numer. Math. 33, 1 (1979)
|
|
* - B. C. Carlson, Special Functions of Applied Mathematics (1977)
|
|
* - Numerical Recipes in C, 2nd ed, pp. 261-269,
|
|
* by Press, Teukolsky, Vetterling, Flannery (1992)
|
|
*
|
|
* @param __x The first argument.
|
|
* @param __y The second argument.
|
|
* @return The Carlson elliptic function.
|
|
*/
|
|
template<typename _Tp>
|
|
_Tp
|
|
__ellint_rc(const _Tp __x, const _Tp __y)
|
|
{
|
|
const _Tp __min = std::numeric_limits<_Tp>::min();
|
|
const _Tp __max = std::numeric_limits<_Tp>::max();
|
|
const _Tp __lolim = _Tp(5) * __min;
|
|
const _Tp __uplim = __max / _Tp(5);
|
|
|
|
if (__x < _Tp(0) || __y < _Tp(0) || __x + __y < __lolim)
|
|
std::__throw_domain_error(__N("Argument less than zero "
|
|
"in __ellint_rc."));
|
|
else
|
|
{
|
|
const _Tp __c0 = _Tp(1) / _Tp(4);
|
|
const _Tp __c1 = _Tp(1) / _Tp(7);
|
|
const _Tp __c2 = _Tp(9) / _Tp(22);
|
|
const _Tp __c3 = _Tp(3) / _Tp(10);
|
|
const _Tp __c4 = _Tp(3) / _Tp(8);
|
|
|
|
_Tp __xn = __x;
|
|
_Tp __yn = __y;
|
|
|
|
const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
|
|
const _Tp __errtol = std::pow(__eps / _Tp(30), _Tp(1) / _Tp(6));
|
|
_Tp __mu;
|
|
_Tp __sn;
|
|
|
|
const unsigned int __max_iter = 100;
|
|
for (unsigned int __iter = 0; __iter < __max_iter; ++__iter)
|
|
{
|
|
__mu = (__xn + _Tp(2) * __yn) / _Tp(3);
|
|
__sn = (__yn + __mu) / __mu - _Tp(2);
|
|
if (std::abs(__sn) < __errtol)
|
|
break;
|
|
const _Tp __lambda = _Tp(2) * std::sqrt(__xn) * std::sqrt(__yn)
|
|
+ __yn;
|
|
__xn = __c0 * (__xn + __lambda);
|
|
__yn = __c0 * (__yn + __lambda);
|
|
}
|
|
|
|
_Tp __s = __sn * __sn
|
|
* (__c3 + __sn*(__c1 + __sn * (__c4 + __sn * __c2)));
|
|
|
|
return (_Tp(1) + __s) / std::sqrt(__mu);
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* @brief Return the Carlson elliptic function @f$ R_J(x,y,z,p) @f$
|
|
* of the third kind.
|
|
*
|
|
* The Carlson elliptic function of the third kind is defined by:
|
|
* @f[
|
|
* R_J(x,y,z,p) = \frac{3}{2} \int_0^\infty
|
|
* \frac{dt}{(t + x)^{1/2}(t + y)^{1/2}(t + z)^{1/2}(t + p)}
|
|
* @f]
|
|
*
|
|
* Based on Carlson's algorithms:
|
|
* - B. C. Carlson Numer. Math. 33, 1 (1979)
|
|
* - B. C. Carlson, Special Functions of Applied Mathematics (1977)
|
|
* - Numerical Recipes in C, 2nd ed, pp. 261-269,
|
|
* by Press, Teukolsky, Vetterling, Flannery (1992)
|
|
*
|
|
* @param __x The first of three symmetric arguments.
|
|
* @param __y The second of three symmetric arguments.
|
|
* @param __z The third of three symmetric arguments.
|
|
* @param __p The fourth argument.
|
|
* @return The Carlson elliptic function of the fourth kind.
|
|
*/
|
|
template<typename _Tp>
|
|
_Tp
|
|
__ellint_rj(const _Tp __x, const _Tp __y, const _Tp __z, const _Tp __p)
|
|
{
|
|
const _Tp __min = std::numeric_limits<_Tp>::min();
|
|
const _Tp __max = std::numeric_limits<_Tp>::max();
|
|
const _Tp __lolim = std::pow(_Tp(5) * __min, _Tp(1)/_Tp(3));
|
|
const _Tp __uplim = _Tp(0.3L)
|
|
* std::pow(_Tp(0.2L) * __max, _Tp(1)/_Tp(3));
|
|
|
|
if (__x < _Tp(0) || __y < _Tp(0) || __z < _Tp(0))
|
|
std::__throw_domain_error(__N("Argument less than zero "
|
|
"in __ellint_rj."));
|
|
else if (__x + __y < __lolim || __x + __z < __lolim
|
|
|| __y + __z < __lolim || __p < __lolim)
|
|
std::__throw_domain_error(__N("Argument too small "
|
|
"in __ellint_rj"));
|
|
else
|
|
{
|
|
const _Tp __c0 = _Tp(1) / _Tp(4);
|
|
const _Tp __c1 = _Tp(3) / _Tp(14);
|
|
const _Tp __c2 = _Tp(1) / _Tp(3);
|
|
const _Tp __c3 = _Tp(3) / _Tp(22);
|
|
const _Tp __c4 = _Tp(3) / _Tp(26);
|
|
|
|
_Tp __xn = __x;
|
|
_Tp __yn = __y;
|
|
_Tp __zn = __z;
|
|
_Tp __pn = __p;
|
|
_Tp __sigma = _Tp(0);
|
|
_Tp __power4 = _Tp(1);
|
|
|
|
const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
|
|
const _Tp __errtol = std::pow(__eps / _Tp(8), _Tp(1) / _Tp(6));
|
|
|
|
_Tp __lambda, __mu;
|
|
_Tp __xndev, __yndev, __zndev, __pndev;
|
|
|
|
const unsigned int __max_iter = 100;
|
|
for (unsigned int __iter = 0; __iter < __max_iter; ++__iter)
|
|
{
|
|
__mu = (__xn + __yn + __zn + _Tp(2) * __pn) / _Tp(5);
|
|
__xndev = (__mu - __xn) / __mu;
|
|
__yndev = (__mu - __yn) / __mu;
|
|
__zndev = (__mu - __zn) / __mu;
|
|
__pndev = (__mu - __pn) / __mu;
|
|
_Tp __epsilon = std::max(std::abs(__xndev), std::abs(__yndev));
|
|
__epsilon = std::max(__epsilon, std::abs(__zndev));
|
|
__epsilon = std::max(__epsilon, std::abs(__pndev));
|
|
if (__epsilon < __errtol)
|
|
break;
|
|
const _Tp __xnroot = std::sqrt(__xn);
|
|
const _Tp __ynroot = std::sqrt(__yn);
|
|
const _Tp __znroot = std::sqrt(__zn);
|
|
const _Tp __lambda = __xnroot * (__ynroot + __znroot)
|
|
+ __ynroot * __znroot;
|
|
const _Tp __alpha1 = __pn * (__xnroot + __ynroot + __znroot)
|
|
+ __xnroot * __ynroot * __znroot;
|
|
const _Tp __alpha2 = __alpha1 * __alpha1;
|
|
const _Tp __beta = __pn * (__pn + __lambda)
|
|
* (__pn + __lambda);
|
|
__sigma += __power4 * __ellint_rc(__alpha2, __beta);
|
|
__power4 *= __c0;
|
|
__xn = __c0 * (__xn + __lambda);
|
|
__yn = __c0 * (__yn + __lambda);
|
|
__zn = __c0 * (__zn + __lambda);
|
|
__pn = __c0 * (__pn + __lambda);
|
|
}
|
|
|
|
// Note: __ea is an SPU badname.
|
|
_Tp __eaa = __xndev * (__yndev + __zndev) + __yndev * __zndev;
|
|
_Tp __eb = __xndev * __yndev * __zndev;
|
|
_Tp __ec = __pndev * __pndev;
|
|
_Tp __e2 = __eaa - _Tp(3) * __ec;
|
|
_Tp __e3 = __eb + _Tp(2) * __pndev * (__eaa - __ec);
|
|
_Tp __s1 = _Tp(1) + __e2 * (-__c1 + _Tp(3) * __c3 * __e2 / _Tp(4)
|
|
- _Tp(3) * __c4 * __e3 / _Tp(2));
|
|
_Tp __s2 = __eb * (__c2 / _Tp(2)
|
|
+ __pndev * (-__c3 - __c3 + __pndev * __c4));
|
|
_Tp __s3 = __pndev * __eaa * (__c2 - __pndev * __c3)
|
|
- __c2 * __pndev * __ec;
|
|
|
|
return _Tp(3) * __sigma + __power4 * (__s1 + __s2 + __s3)
|
|
/ (__mu * std::sqrt(__mu));
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* @brief Return the complete elliptic integral of the third kind
|
|
* @f$ \Pi(k,\nu) = \Pi(k,\nu,\pi/2) @f$ using the
|
|
* Carlson formulation.
|
|
*
|
|
* The complete elliptic integral of the third kind is defined as
|
|
* @f[
|
|
* \Pi(k,\nu) = \int_0^{\pi/2}
|
|
* \frac{d\theta}
|
|
* {(1 - \nu \sin^2\theta)\sqrt{1 - k^2 \sin^2\theta}}
|
|
* @f]
|
|
*
|
|
* @param __k The argument of the elliptic function.
|
|
* @param __nu The second argument of the elliptic function.
|
|
* @return The complete elliptic function of the third kind.
|
|
*/
|
|
template<typename _Tp>
|
|
_Tp
|
|
__comp_ellint_3(const _Tp __k, const _Tp __nu)
|
|
{
|
|
|
|
if (__isnan(__k) || __isnan(__nu))
|
|
return std::numeric_limits<_Tp>::quiet_NaN();
|
|
else if (__nu == _Tp(1))
|
|
return std::numeric_limits<_Tp>::infinity();
|
|
else if (std::abs(__k) > _Tp(1))
|
|
std::__throw_domain_error(__N("Bad argument in __comp_ellint_3."));
|
|
else
|
|
{
|
|
const _Tp __kk = __k * __k;
|
|
|
|
return __ellint_rf(_Tp(0), _Tp(1) - __kk, _Tp(1))
|
|
- __nu
|
|
* __ellint_rj(_Tp(0), _Tp(1) - __kk, _Tp(1), _Tp(1) + __nu)
|
|
/ _Tp(3);
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* @brief Return the incomplete elliptic integral of the third kind
|
|
* @f$ \Pi(k,\nu,\phi) @f$ using the Carlson formulation.
|
|
*
|
|
* The incomplete elliptic integral of the third kind is defined as
|
|
* @f[
|
|
* \Pi(k,\nu,\phi) = \int_0^{\phi}
|
|
* \frac{d\theta}
|
|
* {(1 - \nu \sin^2\theta)
|
|
* \sqrt{1 - k^2 \sin^2\theta}}
|
|
* @f]
|
|
*
|
|
* @param __k The argument of the elliptic function.
|
|
* @param __nu The second argument of the elliptic function.
|
|
* @param __phi The integral limit argument of the elliptic function.
|
|
* @return The elliptic function of the third kind.
|
|
*/
|
|
template<typename _Tp>
|
|
_Tp
|
|
__ellint_3(const _Tp __k, const _Tp __nu, const _Tp __phi)
|
|
{
|
|
|
|
if (__isnan(__k) || __isnan(__nu) || __isnan(__phi))
|
|
return std::numeric_limits<_Tp>::quiet_NaN();
|
|
else if (std::abs(__k) > _Tp(1))
|
|
std::__throw_domain_error(__N("Bad argument in __ellint_3."));
|
|
else
|
|
{
|
|
// Reduce phi to -pi/2 < phi < +pi/2.
|
|
const int __n = std::floor(__phi / __numeric_constants<_Tp>::__pi()
|
|
+ _Tp(0.5L));
|
|
const _Tp __phi_red = __phi
|
|
- __n * __numeric_constants<_Tp>::__pi();
|
|
|
|
const _Tp __kk = __k * __k;
|
|
const _Tp __s = std::sin(__phi_red);
|
|
const _Tp __ss = __s * __s;
|
|
const _Tp __sss = __ss * __s;
|
|
const _Tp __c = std::cos(__phi_red);
|
|
const _Tp __cc = __c * __c;
|
|
|
|
const _Tp __Pi = __s
|
|
* __ellint_rf(__cc, _Tp(1) - __kk * __ss, _Tp(1))
|
|
- __nu * __sss
|
|
* __ellint_rj(__cc, _Tp(1) - __kk * __ss, _Tp(1),
|
|
_Tp(1) + __nu * __ss) / _Tp(3);
|
|
|
|
if (__n == 0)
|
|
return __Pi;
|
|
else
|
|
return __Pi + _Tp(2) * __n * __comp_ellint_3(__k, __nu);
|
|
}
|
|
}
|
|
|
|
} // namespace std::tr1::__detail
|
|
}
|
|
}
|
|
|
|
#endif // _GLIBCXX_TR1_ELL_INTEGRAL_TCC
|
|
|