gcc/libgo/go/runtime/signal_sigtramp.go
Ian Lance Taylor e0f69f36ea libgo: change build procedure to use build tags
Previously the libgo Makefile explicitly listed the set of files to
    compile for each package.  For packages that use build tags, this
    required a lot of awkward automake conditionals in the Makefile.
    
    This CL changes the build to look at the build tags in the files.
    The new shell script libgo/match.sh does the matching.  This required
    adjusting a lot of build tags, and removing some files that are never
    used.  I verified that the exact same sets of files are compiled on
    amd64 GNU/Linux.  I also tested the build on i386 Solaris.
    
    Writing match.sh revealed some bugs in the build tag handling that
    already exists, in a slightly different form, in the gotest shell
    script.  This CL fixes those problems as well.
    
    The old code used automake conditionals to handle systems that were
    missing strerror_r and wait4.  Rather than deal with those in Go, those
    functions are now implemented in runtime/go-nosys.c when necessary, so
    the Go code can simply assume that they exist.
    
    The os testsuite looked for dir_unix.go, which was never built for gccgo
    and has now been removed.  I changed the testsuite to look for dir.go
    instead.
    
    Reviewed-on: https://go-review.googlesource.com/25546

From-SVN: r239189
2016-08-06 00:36:33 +00:00

61 lines
1.7 KiB
Go

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build ignore
// +build dragonfly linux netbsd
package runtime
import "unsafe"
// Continuation of the (assembly) sigtramp() logic.
// This may be called with the world stopped.
//go:nosplit
//go:nowritebarrierrec
func sigtrampgo(sig uint32, info *siginfo, ctx unsafe.Pointer) {
if sigfwdgo(sig, info, ctx) {
return
}
g := getg()
if g == nil {
if sig == _SIGPROF {
// Ignore profiling signals that arrive on
// non-Go threads. On some systems they will
// be handled directly by the signal handler,
// by calling sigprofNonGo, in which case we won't
// get here anyhow.
return
}
badsignal(uintptr(sig), &sigctxt{info, ctx})
return
}
// If some non-Go code called sigaltstack, adjust.
sp := uintptr(unsafe.Pointer(&sig))
if sp < g.m.gsignal.stack.lo || sp >= g.m.gsignal.stack.hi {
var st sigaltstackt
sigaltstack(nil, &st)
if st.ss_flags&_SS_DISABLE != 0 {
setg(nil)
cgocallback(unsafe.Pointer(funcPC(noSignalStack)), noescape(unsafe.Pointer(&sig)), unsafe.Sizeof(sig), 0)
}
stsp := uintptr(unsafe.Pointer(st.ss_sp))
if sp < stsp || sp >= stsp+st.ss_size {
setg(nil)
cgocallback(unsafe.Pointer(funcPC(sigNotOnStack)), noescape(unsafe.Pointer(&sig)), unsafe.Sizeof(sig), 0)
}
g.m.gsignal.stack.lo = stsp
g.m.gsignal.stack.hi = stsp + st.ss_size
g.m.gsignal.stackguard0 = stsp + _StackGuard
g.m.gsignal.stackguard1 = stsp + _StackGuard
g.m.gsignal.stackAlloc = st.ss_size
g.m.gsignal.stktopsp = getcallersp(unsafe.Pointer(&sig))
}
setg(g.m.gsignal)
sighandler(sig, info, ctx, g)
setg(g)
}