f8bf925265
2008-09-02 Sebastian Pop <sebastian.pop@amd.com> Tobias Grosser <grosser@fim.uni-passau.de> Jan Sjodin <jan.sjodin@amd.com> Harsha Jagasia <harsha.jagasia@amd.com> Dwarakanath Rajagopal <dwarak.rajagopal@amd.com> Konrad Trifunovic <konrad.trifunovic@inria.fr> Adrien Eliche <aeliche@isty.uvsq.fr> Merge from graphite branch. * configure: Regenerate. * Makefile.in: Regenerate. * configure.ac (host_libs): Add ppl and cloog. Add checks for PPL and CLooG. * Makefile.def (ppl, cloog): Added modules and dependences. * Makefile.tpl (PPLLIBS, PPLINC, CLOOGLIBS, CLOOGINC): New. (HOST_PPLLIBS, HOST_PPLINC, HOST_CLOOGLIBS, HOST_CLOOGINC): New. gcc/ * graphite.c: New. * graphite.h: New. * tree-loop-linear.c (perfect_loop_nest_depth): Export. * doc/invoke.texi (-floop-block, -floop-interchange, -floop-strip-mine): Document new flags. * tree-into-ssa.c (gimple_vec): Moved... * tree-loop-distribution.c (rdg_component): Moved... * cfgloopmanip.c: Include tree-flow.h. (update_dominators_in_loop): New. (create_empty_if_region_on_edge): New. (create_empty_loop_on_edge): New. (loopify): Use update_dominators_in_loop. * tree-pass.h (pass_graphite_transforms): Declared. * configure: Regenerate. * tree-phinodes.c (make_phi_node): Export. (add_phi_node_to_bb): New, split from create_phi_node. * tree-chrec.c (for_each_scev_op): New. * tree-chrec.h (for_each_scev_op): Declared. * tree-ssa-loop-ivopts.c (get_phi_with_result): New. (remove_statement): Call get_phi_with_result. * config.in (HAVE_cloog): Undef. * gdbinit.in (pgg): New. * timevar.def (TV_GRAPHITE_TRANSFORMS): New. * tree-ssa-loop.c (graphite_transforms): New. (gate_graphite_transforms): New. (pass_graphite_transforms): New. * configure.ac (PPLLIBS, PPLINC, CLOOGLIBS, CLOOGINC, HAVE_cloog): Defined. * tree-vectorizer.c (rename_variables_in_bb): Export. * tree-data-ref.c (dr_may_alias_p): Export. (stmt_simple_memref_p): New. (find_data_references_in_stmt): Export. (find_data_references_in_loop): Export. (create_rdg_edge_for_ddr): Initialize RDGE_RELATION. (create_rdg_edges_for_scalar): Initialize RDGE_RELATION. (create_rdg_vertices): Export. (build_empty_rdg): New. (build_rdg): Call build_empty_rdg. Free dependence_relations. * tree-data-ref.h (rdg_component): ... here. (scop_p): New. (struct data_reference): Add a field scop. (DR_SCOP): New. (find_data_references_in_loop): Declared. (find_data_references_in_stmt): Declared. (create_rdg_vertices): Declared. (dr_may_alias_p): Declared. (stmt_simple_memref_p): Declared. (struct rdg_edge): Add a field ddr_p relation. (build_empty_rdg): Declared. * lambda.h (lambda_matrix): Declare a VEC of. (find_induction_var_from_exit_cond): Declared. (lambda_vector_compare): New. * common.opt (fgraphite, floop-strip-mine, floop-interchange, floop-block): New flags. * lambda-code.c (find_induction_var_from_exit_cond): Export. * cfgloop.c (is_loop_exit): New. * cfgloop.h (is_loop_exit): Declared. (create_empty_if_region_on_edge): Declared. (create_empty_loop_on_edge): Declared. * tree-flow.h (add_phi_node_to_bb): Declared. (make_phi_node): Declared. (rename_variables_in_bb): Declared. (perfect_loop_nest_depth): Declared. (graphite_transform_loops): Declared. * Makefile.in (cfgloopmanip.o): Depend on TREE_FLOW_H. (graphite.o-warn): Add -Wno-error. (PPLLIBS, PPLINC, CLOOGLIBS, CLOOGINC): Declared. (LIBS): Add GMPLIBS, CLOOGLIBS, PPLLIBS. (INCLUDES): Add PPLINC, CLOOGINC. (OBJS-common): Add graphite.o. (graphite.o): Add rule. * gimple.h (gimple_vec): ... here. * tree-cfg.c (print_loops): Start printing at ENTRY_BLOCK_PTR. * passes.c (init_optimization_passes): Schedule pass_graphite_transforms. testsuite/ * gcc.dg/graphite/scop-{0,1,2,3,4,5,6,7,8,9, 10,11,12,13,14,15,16,17,18}.c: New. * gcc.dg/graphite/graphite.exp: New. * gcc.dg/graphite/scop-matmult.c: New. * gcc.dg/graphite/block-0.c: New. * lib/target-supports.exp (check_effective_target_fgraphite): New. * gfortran.dg/graphite/block-1.f90: New. * gfortran.dg/graphite/scop-{1,2}.f: New. * gfortran.dg/graphite/block-{1,3,4}.f90: New. * gfortran.dg/graphite/graphite.exp: New. Co-Authored-By: Adrien Eliche <aeliche@isty.uvsq.fr> Co-Authored-By: Dwarakanath Rajagopal <dwarak.rajagopal@amd.com> Co-Authored-By: Harsha Jagasia <harsha.jagasia@amd.com> Co-Authored-By: Jan Sjodin <jan.sjodin@amd.com> Co-Authored-By: Konrad Trifunovic <konrad.trifunovic@inria.fr> Co-Authored-By: Tobias Grosser <grosser@fim.uni-passau.de> From-SVN: r139893
524 lines
16 KiB
C
524 lines
16 KiB
C
/* Lambda matrix and vector interface.
|
|
Copyright (C) 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
|
|
Contributed by Daniel Berlin <dberlin@dberlin.org>
|
|
|
|
This file is part of GCC.
|
|
|
|
GCC is free software; you can redistribute it and/or modify it under
|
|
the terms of the GNU General Public License as published by the Free
|
|
Software Foundation; either version 3, or (at your option) any later
|
|
version.
|
|
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GCC; see the file COPYING3. If not see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#ifndef LAMBDA_H
|
|
#define LAMBDA_H
|
|
|
|
#include "vec.h"
|
|
|
|
/* An integer vector. A vector formally consists of an element of a vector
|
|
space. A vector space is a set that is closed under vector addition
|
|
and scalar multiplication. In this vector space, an element is a list of
|
|
integers. */
|
|
typedef int *lambda_vector;
|
|
DEF_VEC_P(lambda_vector);
|
|
DEF_VEC_ALLOC_P(lambda_vector,heap);
|
|
|
|
typedef VEC(lambda_vector, heap) *lambda_vector_vec_p;
|
|
DEF_VEC_P (lambda_vector_vec_p);
|
|
DEF_VEC_ALLOC_P (lambda_vector_vec_p, heap);
|
|
|
|
/* An integer matrix. A matrix consists of m vectors of length n (IE
|
|
all vectors are the same length). */
|
|
typedef lambda_vector *lambda_matrix;
|
|
|
|
DEF_VEC_P (lambda_matrix);
|
|
DEF_VEC_ALLOC_P (lambda_matrix, heap);
|
|
|
|
/* A transformation matrix, which is a self-contained ROWSIZE x COLSIZE
|
|
matrix. Rather than use floats, we simply keep a single DENOMINATOR that
|
|
represents the denominator for every element in the matrix. */
|
|
typedef struct lambda_trans_matrix_s
|
|
{
|
|
lambda_matrix matrix;
|
|
int rowsize;
|
|
int colsize;
|
|
int denominator;
|
|
} *lambda_trans_matrix;
|
|
#define LTM_MATRIX(T) ((T)->matrix)
|
|
#define LTM_ROWSIZE(T) ((T)->rowsize)
|
|
#define LTM_COLSIZE(T) ((T)->colsize)
|
|
#define LTM_DENOMINATOR(T) ((T)->denominator)
|
|
|
|
/* A vector representing a statement in the body of a loop.
|
|
The COEFFICIENTS vector contains a coefficient for each induction variable
|
|
in the loop nest containing the statement.
|
|
The DENOMINATOR represents the denominator for each coefficient in the
|
|
COEFFICIENT vector.
|
|
|
|
This structure is used during code generation in order to rewrite the old
|
|
induction variable uses in a statement in terms of the newly created
|
|
induction variables. */
|
|
typedef struct lambda_body_vector_s
|
|
{
|
|
lambda_vector coefficients;
|
|
int size;
|
|
int denominator;
|
|
} *lambda_body_vector;
|
|
#define LBV_COEFFICIENTS(T) ((T)->coefficients)
|
|
#define LBV_SIZE(T) ((T)->size)
|
|
#define LBV_DENOMINATOR(T) ((T)->denominator)
|
|
|
|
/* Piecewise linear expression.
|
|
This structure represents a linear expression with terms for the invariants
|
|
and induction variables of a loop.
|
|
COEFFICIENTS is a vector of coefficients for the induction variables, one
|
|
per loop in the loop nest.
|
|
CONSTANT is the constant portion of the linear expression
|
|
INVARIANT_COEFFICIENTS is a vector of coefficients for the loop invariants,
|
|
one per invariant.
|
|
DENOMINATOR is the denominator for all of the coefficients and constants in
|
|
the expression.
|
|
The linear expressions can be linked together using the NEXT field, in
|
|
order to represent MAX or MIN of a group of linear expressions. */
|
|
typedef struct lambda_linear_expression_s
|
|
{
|
|
lambda_vector coefficients;
|
|
int constant;
|
|
lambda_vector invariant_coefficients;
|
|
int denominator;
|
|
struct lambda_linear_expression_s *next;
|
|
} *lambda_linear_expression;
|
|
|
|
#define LLE_COEFFICIENTS(T) ((T)->coefficients)
|
|
#define LLE_CONSTANT(T) ((T)->constant)
|
|
#define LLE_INVARIANT_COEFFICIENTS(T) ((T)->invariant_coefficients)
|
|
#define LLE_DENOMINATOR(T) ((T)->denominator)
|
|
#define LLE_NEXT(T) ((T)->next)
|
|
|
|
struct obstack;
|
|
|
|
lambda_linear_expression lambda_linear_expression_new (int, int,
|
|
struct obstack *);
|
|
void print_lambda_linear_expression (FILE *, lambda_linear_expression, int,
|
|
int, char);
|
|
|
|
/* Loop structure. Our loop structure consists of a constant representing the
|
|
STEP of the loop, a set of linear expressions representing the LOWER_BOUND
|
|
of the loop, a set of linear expressions representing the UPPER_BOUND of
|
|
the loop, and a set of linear expressions representing the LINEAR_OFFSET of
|
|
the loop. The linear offset is a set of linear expressions that are
|
|
applied to *both* the lower bound, and the upper bound. */
|
|
typedef struct lambda_loop_s
|
|
{
|
|
lambda_linear_expression lower_bound;
|
|
lambda_linear_expression upper_bound;
|
|
lambda_linear_expression linear_offset;
|
|
int step;
|
|
} *lambda_loop;
|
|
|
|
#define LL_LOWER_BOUND(T) ((T)->lower_bound)
|
|
#define LL_UPPER_BOUND(T) ((T)->upper_bound)
|
|
#define LL_LINEAR_OFFSET(T) ((T)->linear_offset)
|
|
#define LL_STEP(T) ((T)->step)
|
|
|
|
/* Loop nest structure.
|
|
The loop nest structure consists of a set of loop structures (defined
|
|
above) in LOOPS, along with an integer representing the DEPTH of the loop,
|
|
and an integer representing the number of INVARIANTS in the loop. Both of
|
|
these integers are used to size the associated coefficient vectors in the
|
|
linear expression structures. */
|
|
typedef struct lambda_loopnest_s
|
|
{
|
|
lambda_loop *loops;
|
|
int depth;
|
|
int invariants;
|
|
} *lambda_loopnest;
|
|
|
|
#define LN_LOOPS(T) ((T)->loops)
|
|
#define LN_DEPTH(T) ((T)->depth)
|
|
#define LN_INVARIANTS(T) ((T)->invariants)
|
|
|
|
lambda_loopnest lambda_loopnest_new (int, int, struct obstack *);
|
|
lambda_loopnest lambda_loopnest_transform (lambda_loopnest,
|
|
lambda_trans_matrix,
|
|
struct obstack *);
|
|
struct loop;
|
|
bool perfect_nest_p (struct loop *);
|
|
void print_lambda_loopnest (FILE *, lambda_loopnest, char);
|
|
|
|
#define lambda_loop_new() (lambda_loop) ggc_alloc_cleared (sizeof (struct lambda_loop_s))
|
|
|
|
void print_lambda_loop (FILE *, lambda_loop, int, int, char);
|
|
|
|
lambda_matrix lambda_matrix_new (int, int);
|
|
|
|
void lambda_matrix_id (lambda_matrix, int);
|
|
bool lambda_matrix_id_p (lambda_matrix, int);
|
|
void lambda_matrix_copy (lambda_matrix, lambda_matrix, int, int);
|
|
void lambda_matrix_negate (lambda_matrix, lambda_matrix, int, int);
|
|
void lambda_matrix_transpose (lambda_matrix, lambda_matrix, int, int);
|
|
void lambda_matrix_add (lambda_matrix, lambda_matrix, lambda_matrix, int,
|
|
int);
|
|
void lambda_matrix_add_mc (lambda_matrix, int, lambda_matrix, int,
|
|
lambda_matrix, int, int);
|
|
void lambda_matrix_mult (lambda_matrix, lambda_matrix, lambda_matrix,
|
|
int, int, int);
|
|
void lambda_matrix_delete_rows (lambda_matrix, int, int, int);
|
|
void lambda_matrix_row_exchange (lambda_matrix, int, int);
|
|
void lambda_matrix_row_add (lambda_matrix, int, int, int, int);
|
|
void lambda_matrix_row_negate (lambda_matrix mat, int, int);
|
|
void lambda_matrix_row_mc (lambda_matrix, int, int, int);
|
|
void lambda_matrix_col_exchange (lambda_matrix, int, int, int);
|
|
void lambda_matrix_col_add (lambda_matrix, int, int, int, int);
|
|
void lambda_matrix_col_negate (lambda_matrix, int, int);
|
|
void lambda_matrix_col_mc (lambda_matrix, int, int, int);
|
|
int lambda_matrix_inverse (lambda_matrix, lambda_matrix, int);
|
|
void lambda_matrix_hermite (lambda_matrix, int, lambda_matrix, lambda_matrix);
|
|
void lambda_matrix_left_hermite (lambda_matrix, int, int, lambda_matrix, lambda_matrix);
|
|
void lambda_matrix_right_hermite (lambda_matrix, int, int, lambda_matrix, lambda_matrix);
|
|
int lambda_matrix_first_nz_vec (lambda_matrix, int, int, int);
|
|
void lambda_matrix_project_to_null (lambda_matrix, int, int, int,
|
|
lambda_vector);
|
|
void print_lambda_matrix (FILE *, lambda_matrix, int, int);
|
|
|
|
lambda_trans_matrix lambda_trans_matrix_new (int, int);
|
|
bool lambda_trans_matrix_nonsingular_p (lambda_trans_matrix);
|
|
bool lambda_trans_matrix_fullrank_p (lambda_trans_matrix);
|
|
int lambda_trans_matrix_rank (lambda_trans_matrix);
|
|
lambda_trans_matrix lambda_trans_matrix_basis (lambda_trans_matrix);
|
|
lambda_trans_matrix lambda_trans_matrix_padding (lambda_trans_matrix);
|
|
lambda_trans_matrix lambda_trans_matrix_inverse (lambda_trans_matrix);
|
|
void print_lambda_trans_matrix (FILE *, lambda_trans_matrix);
|
|
void lambda_matrix_vector_mult (lambda_matrix, int, int, lambda_vector,
|
|
lambda_vector);
|
|
bool lambda_trans_matrix_id_p (lambda_trans_matrix);
|
|
|
|
lambda_body_vector lambda_body_vector_new (int, struct obstack *);
|
|
lambda_body_vector lambda_body_vector_compute_new (lambda_trans_matrix,
|
|
lambda_body_vector,
|
|
struct obstack *);
|
|
void print_lambda_body_vector (FILE *, lambda_body_vector);
|
|
lambda_loopnest gcc_loopnest_to_lambda_loopnest (struct loop *,
|
|
VEC(tree,heap) **,
|
|
VEC(tree,heap) **,
|
|
struct obstack *);
|
|
void lambda_loopnest_to_gcc_loopnest (struct loop *,
|
|
VEC(tree,heap) *, VEC(tree,heap) *,
|
|
VEC(gimple,heap) **,
|
|
lambda_loopnest, lambda_trans_matrix,
|
|
struct obstack *);
|
|
void remove_iv (gimple);
|
|
tree find_induction_var_from_exit_cond (struct loop *);
|
|
|
|
static inline void lambda_vector_negate (lambda_vector, lambda_vector, int);
|
|
static inline void lambda_vector_mult_const (lambda_vector, lambda_vector, int, int);
|
|
static inline void lambda_vector_add (lambda_vector, lambda_vector,
|
|
lambda_vector, int);
|
|
static inline void lambda_vector_add_mc (lambda_vector, int, lambda_vector, int,
|
|
lambda_vector, int);
|
|
static inline void lambda_vector_copy (lambda_vector, lambda_vector, int);
|
|
static inline bool lambda_vector_zerop (lambda_vector, int);
|
|
static inline void lambda_vector_clear (lambda_vector, int);
|
|
static inline bool lambda_vector_equal (lambda_vector, lambda_vector, int);
|
|
static inline int lambda_vector_min_nz (lambda_vector, int, int);
|
|
static inline int lambda_vector_first_nz (lambda_vector, int, int);
|
|
static inline void print_lambda_vector (FILE *, lambda_vector, int);
|
|
|
|
/* Allocate a new vector of given SIZE. */
|
|
|
|
static inline lambda_vector
|
|
lambda_vector_new (int size)
|
|
{
|
|
return GGC_CNEWVEC (int, size);
|
|
}
|
|
|
|
|
|
|
|
/* Multiply vector VEC1 of length SIZE by a constant CONST1,
|
|
and store the result in VEC2. */
|
|
|
|
static inline void
|
|
lambda_vector_mult_const (lambda_vector vec1, lambda_vector vec2,
|
|
int size, int const1)
|
|
{
|
|
int i;
|
|
|
|
if (const1 == 0)
|
|
lambda_vector_clear (vec2, size);
|
|
else
|
|
for (i = 0; i < size; i++)
|
|
vec2[i] = const1 * vec1[i];
|
|
}
|
|
|
|
/* Negate vector VEC1 with length SIZE and store it in VEC2. */
|
|
|
|
static inline void
|
|
lambda_vector_negate (lambda_vector vec1, lambda_vector vec2,
|
|
int size)
|
|
{
|
|
lambda_vector_mult_const (vec1, vec2, size, -1);
|
|
}
|
|
|
|
/* VEC3 = VEC1+VEC2, where all three the vectors are of length SIZE. */
|
|
|
|
static inline void
|
|
lambda_vector_add (lambda_vector vec1, lambda_vector vec2,
|
|
lambda_vector vec3, int size)
|
|
{
|
|
int i;
|
|
for (i = 0; i < size; i++)
|
|
vec3[i] = vec1[i] + vec2[i];
|
|
}
|
|
|
|
/* VEC3 = CONSTANT1*VEC1 + CONSTANT2*VEC2. All vectors have length SIZE. */
|
|
|
|
static inline void
|
|
lambda_vector_add_mc (lambda_vector vec1, int const1,
|
|
lambda_vector vec2, int const2,
|
|
lambda_vector vec3, int size)
|
|
{
|
|
int i;
|
|
for (i = 0; i < size; i++)
|
|
vec3[i] = const1 * vec1[i] + const2 * vec2[i];
|
|
}
|
|
|
|
/* Copy the elements of vector VEC1 with length SIZE to VEC2. */
|
|
|
|
static inline void
|
|
lambda_vector_copy (lambda_vector vec1, lambda_vector vec2,
|
|
int size)
|
|
{
|
|
memcpy (vec2, vec1, size * sizeof (*vec1));
|
|
}
|
|
|
|
/* Return true if vector VEC1 of length SIZE is the zero vector. */
|
|
|
|
static inline bool
|
|
lambda_vector_zerop (lambda_vector vec1, int size)
|
|
{
|
|
int i;
|
|
for (i = 0; i < size; i++)
|
|
if (vec1[i] != 0)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/* Clear out vector VEC1 of length SIZE. */
|
|
|
|
static inline void
|
|
lambda_vector_clear (lambda_vector vec1, int size)
|
|
{
|
|
memset (vec1, 0, size * sizeof (*vec1));
|
|
}
|
|
|
|
/* Return true if two vectors are equal. */
|
|
|
|
static inline bool
|
|
lambda_vector_equal (lambda_vector vec1, lambda_vector vec2, int size)
|
|
{
|
|
int i;
|
|
for (i = 0; i < size; i++)
|
|
if (vec1[i] != vec2[i])
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/* Return the minimum nonzero element in vector VEC1 between START and N.
|
|
We must have START <= N. */
|
|
|
|
static inline int
|
|
lambda_vector_min_nz (lambda_vector vec1, int n, int start)
|
|
{
|
|
int j;
|
|
int min = -1;
|
|
|
|
gcc_assert (start <= n);
|
|
for (j = start; j < n; j++)
|
|
{
|
|
if (vec1[j])
|
|
if (min < 0 || vec1[j] < vec1[min])
|
|
min = j;
|
|
}
|
|
gcc_assert (min >= 0);
|
|
|
|
return min;
|
|
}
|
|
|
|
/* Return the first nonzero element of vector VEC1 between START and N.
|
|
We must have START <= N. Returns N if VEC1 is the zero vector. */
|
|
|
|
static inline int
|
|
lambda_vector_first_nz (lambda_vector vec1, int n, int start)
|
|
{
|
|
int j = start;
|
|
while (j < n && vec1[j] == 0)
|
|
j++;
|
|
return j;
|
|
}
|
|
|
|
|
|
/* Multiply a vector by a matrix. */
|
|
|
|
static inline void
|
|
lambda_vector_matrix_mult (lambda_vector vect, int m, lambda_matrix mat,
|
|
int n, lambda_vector dest)
|
|
{
|
|
int i, j;
|
|
lambda_vector_clear (dest, n);
|
|
for (i = 0; i < n; i++)
|
|
for (j = 0; j < m; j++)
|
|
dest[i] += mat[j][i] * vect[j];
|
|
}
|
|
|
|
/* Compare two vectors returning an integer less than, equal to, or
|
|
greater than zero if the first argument is considered to be respectively
|
|
less than, equal to, or greater than the second.
|
|
We use the lexicographic order. */
|
|
|
|
static inline int
|
|
lambda_vector_compare (lambda_vector vec1, int length1, lambda_vector vec2,
|
|
int length2)
|
|
{
|
|
int min_length;
|
|
int i;
|
|
|
|
if (length1 < length2)
|
|
min_length = length1;
|
|
else
|
|
min_length = length2;
|
|
|
|
for (i = 0; i < min_length; i++)
|
|
if (vec1[i] < vec2[i])
|
|
return -1;
|
|
else if (vec1[i] > vec2[i])
|
|
return 1;
|
|
else
|
|
continue;
|
|
|
|
return length1 - length2;
|
|
}
|
|
|
|
/* Print out a vector VEC of length N to OUTFILE. */
|
|
|
|
static inline void
|
|
print_lambda_vector (FILE * outfile, lambda_vector vector, int n)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < n; i++)
|
|
fprintf (outfile, "%3d ", vector[i]);
|
|
fprintf (outfile, "\n");
|
|
}
|
|
|
|
/* Compute the greatest common divisor of two numbers using
|
|
Euclid's algorithm. */
|
|
|
|
static inline int
|
|
gcd (int a, int b)
|
|
{
|
|
int x, y, z;
|
|
|
|
x = abs (a);
|
|
y = abs (b);
|
|
|
|
while (x > 0)
|
|
{
|
|
z = y % x;
|
|
y = x;
|
|
x = z;
|
|
}
|
|
|
|
return y;
|
|
}
|
|
|
|
/* Compute the greatest common divisor of a VECTOR of SIZE numbers. */
|
|
|
|
static inline int
|
|
lambda_vector_gcd (lambda_vector vector, int size)
|
|
{
|
|
int i;
|
|
int gcd1 = 0;
|
|
|
|
if (size > 0)
|
|
{
|
|
gcd1 = vector[0];
|
|
for (i = 1; i < size; i++)
|
|
gcd1 = gcd (gcd1, vector[i]);
|
|
}
|
|
return gcd1;
|
|
}
|
|
|
|
/* Returns true when the vector V is lexicographically positive, in
|
|
other words, when the first nonzero element is positive. */
|
|
|
|
static inline bool
|
|
lambda_vector_lexico_pos (lambda_vector v,
|
|
unsigned n)
|
|
{
|
|
unsigned i;
|
|
for (i = 0; i < n; i++)
|
|
{
|
|
if (v[i] == 0)
|
|
continue;
|
|
if (v[i] < 0)
|
|
return false;
|
|
if (v[i] > 0)
|
|
return true;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/* Given a vector of induction variables IVS, and a vector of
|
|
coefficients COEFS, build a tree that is a linear combination of
|
|
the induction variables. */
|
|
|
|
static inline tree
|
|
build_linear_expr (tree type, lambda_vector coefs, VEC (tree, heap) *ivs)
|
|
{
|
|
unsigned i;
|
|
tree iv;
|
|
tree expr = fold_convert (type, integer_zero_node);
|
|
|
|
for (i = 0; VEC_iterate (tree, ivs, i, iv); i++)
|
|
{
|
|
int k = coefs[i];
|
|
|
|
if (k == 1)
|
|
expr = fold_build2 (PLUS_EXPR, type, expr, iv);
|
|
|
|
else if (k != 0)
|
|
expr = fold_build2 (PLUS_EXPR, type, expr,
|
|
fold_build2 (MULT_EXPR, type, iv,
|
|
build_int_cst (type, k)));
|
|
}
|
|
|
|
return expr;
|
|
}
|
|
|
|
/* Returns the dependence level for a vector DIST of size LENGTH.
|
|
LEVEL = 0 means a lexicographic dependence, i.e. a dependence due
|
|
to the sequence of statements, not carried by any loop. */
|
|
|
|
|
|
static inline unsigned
|
|
dependence_level (lambda_vector dist_vect, int length)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < length; i++)
|
|
if (dist_vect[i] != 0)
|
|
return i + 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
#endif /* LAMBDA_H */
|