cbe34bb5ed
From-SVN: r243994
4952 lines
138 KiB
C
4952 lines
138 KiB
C
/* Instruction scheduling pass. This file computes dependencies between
|
||
instructions.
|
||
Copyright (C) 1992-2017 Free Software Foundation, Inc.
|
||
Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
|
||
and currently maintained by, Jim Wilson (wilson@cygnus.com)
|
||
|
||
This file is part of GCC.
|
||
|
||
GCC is free software; you can redistribute it and/or modify it under
|
||
the terms of the GNU General Public License as published by the Free
|
||
Software Foundation; either version 3, or (at your option) any later
|
||
version.
|
||
|
||
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
||
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||
for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GCC; see the file COPYING3. If not see
|
||
<http://www.gnu.org/licenses/>. */
|
||
|
||
#include "config.h"
|
||
#include "system.h"
|
||
#include "coretypes.h"
|
||
#include "backend.h"
|
||
#include "target.h"
|
||
#include "rtl.h"
|
||
#include "tree.h"
|
||
#include "df.h"
|
||
#include "insn-config.h"
|
||
#include "regs.h"
|
||
#include "memmodel.h"
|
||
#include "ira.h"
|
||
#include "ira-int.h"
|
||
#include "insn-attr.h"
|
||
#include "cfgbuild.h"
|
||
#include "sched-int.h"
|
||
#include "params.h"
|
||
#include "cselib.h"
|
||
|
||
#ifdef INSN_SCHEDULING
|
||
|
||
/* Holds current parameters for the dependency analyzer. */
|
||
struct sched_deps_info_def *sched_deps_info;
|
||
|
||
/* The data is specific to the Haifa scheduler. */
|
||
vec<haifa_deps_insn_data_def>
|
||
h_d_i_d = vNULL;
|
||
|
||
/* Return the major type present in the DS. */
|
||
enum reg_note
|
||
ds_to_dk (ds_t ds)
|
||
{
|
||
if (ds & DEP_TRUE)
|
||
return REG_DEP_TRUE;
|
||
|
||
if (ds & DEP_OUTPUT)
|
||
return REG_DEP_OUTPUT;
|
||
|
||
if (ds & DEP_CONTROL)
|
||
return REG_DEP_CONTROL;
|
||
|
||
gcc_assert (ds & DEP_ANTI);
|
||
|
||
return REG_DEP_ANTI;
|
||
}
|
||
|
||
/* Return equivalent dep_status. */
|
||
ds_t
|
||
dk_to_ds (enum reg_note dk)
|
||
{
|
||
switch (dk)
|
||
{
|
||
case REG_DEP_TRUE:
|
||
return DEP_TRUE;
|
||
|
||
case REG_DEP_OUTPUT:
|
||
return DEP_OUTPUT;
|
||
|
||
case REG_DEP_CONTROL:
|
||
return DEP_CONTROL;
|
||
|
||
default:
|
||
gcc_assert (dk == REG_DEP_ANTI);
|
||
return DEP_ANTI;
|
||
}
|
||
}
|
||
|
||
/* Functions to operate with dependence information container - dep_t. */
|
||
|
||
/* Init DEP with the arguments. */
|
||
void
|
||
init_dep_1 (dep_t dep, rtx_insn *pro, rtx_insn *con, enum reg_note type, ds_t ds)
|
||
{
|
||
DEP_PRO (dep) = pro;
|
||
DEP_CON (dep) = con;
|
||
DEP_TYPE (dep) = type;
|
||
DEP_STATUS (dep) = ds;
|
||
DEP_COST (dep) = UNKNOWN_DEP_COST;
|
||
DEP_NONREG (dep) = 0;
|
||
DEP_MULTIPLE (dep) = 0;
|
||
DEP_REPLACE (dep) = NULL;
|
||
}
|
||
|
||
/* Init DEP with the arguments.
|
||
While most of the scheduler (including targets) only need the major type
|
||
of the dependency, it is convenient to hide full dep_status from them. */
|
||
void
|
||
init_dep (dep_t dep, rtx_insn *pro, rtx_insn *con, enum reg_note kind)
|
||
{
|
||
ds_t ds;
|
||
|
||
if ((current_sched_info->flags & USE_DEPS_LIST))
|
||
ds = dk_to_ds (kind);
|
||
else
|
||
ds = 0;
|
||
|
||
init_dep_1 (dep, pro, con, kind, ds);
|
||
}
|
||
|
||
/* Make a copy of FROM in TO. */
|
||
static void
|
||
copy_dep (dep_t to, dep_t from)
|
||
{
|
||
memcpy (to, from, sizeof (*to));
|
||
}
|
||
|
||
static void dump_ds (FILE *, ds_t);
|
||
|
||
/* Define flags for dump_dep (). */
|
||
|
||
/* Dump producer of the dependence. */
|
||
#define DUMP_DEP_PRO (2)
|
||
|
||
/* Dump consumer of the dependence. */
|
||
#define DUMP_DEP_CON (4)
|
||
|
||
/* Dump type of the dependence. */
|
||
#define DUMP_DEP_TYPE (8)
|
||
|
||
/* Dump status of the dependence. */
|
||
#define DUMP_DEP_STATUS (16)
|
||
|
||
/* Dump all information about the dependence. */
|
||
#define DUMP_DEP_ALL (DUMP_DEP_PRO | DUMP_DEP_CON | DUMP_DEP_TYPE \
|
||
|DUMP_DEP_STATUS)
|
||
|
||
/* Dump DEP to DUMP.
|
||
FLAGS is a bit mask specifying what information about DEP needs
|
||
to be printed.
|
||
If FLAGS has the very first bit set, then dump all information about DEP
|
||
and propagate this bit into the callee dump functions. */
|
||
static void
|
||
dump_dep (FILE *dump, dep_t dep, int flags)
|
||
{
|
||
if (flags & 1)
|
||
flags |= DUMP_DEP_ALL;
|
||
|
||
fprintf (dump, "<");
|
||
|
||
if (flags & DUMP_DEP_PRO)
|
||
fprintf (dump, "%d; ", INSN_UID (DEP_PRO (dep)));
|
||
|
||
if (flags & DUMP_DEP_CON)
|
||
fprintf (dump, "%d; ", INSN_UID (DEP_CON (dep)));
|
||
|
||
if (flags & DUMP_DEP_TYPE)
|
||
{
|
||
char t;
|
||
enum reg_note type = DEP_TYPE (dep);
|
||
|
||
switch (type)
|
||
{
|
||
case REG_DEP_TRUE:
|
||
t = 't';
|
||
break;
|
||
|
||
case REG_DEP_OUTPUT:
|
||
t = 'o';
|
||
break;
|
||
|
||
case REG_DEP_CONTROL:
|
||
t = 'c';
|
||
break;
|
||
|
||
case REG_DEP_ANTI:
|
||
t = 'a';
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
break;
|
||
}
|
||
|
||
fprintf (dump, "%c; ", t);
|
||
}
|
||
|
||
if (flags & DUMP_DEP_STATUS)
|
||
{
|
||
if (current_sched_info->flags & USE_DEPS_LIST)
|
||
dump_ds (dump, DEP_STATUS (dep));
|
||
}
|
||
|
||
fprintf (dump, ">");
|
||
}
|
||
|
||
/* Default flags for dump_dep (). */
|
||
static int dump_dep_flags = (DUMP_DEP_PRO | DUMP_DEP_CON);
|
||
|
||
/* Dump all fields of DEP to STDERR. */
|
||
void
|
||
sd_debug_dep (dep_t dep)
|
||
{
|
||
dump_dep (stderr, dep, 1);
|
||
fprintf (stderr, "\n");
|
||
}
|
||
|
||
/* Determine whether DEP is a dependency link of a non-debug insn on a
|
||
debug insn. */
|
||
|
||
static inline bool
|
||
depl_on_debug_p (dep_link_t dep)
|
||
{
|
||
return (DEBUG_INSN_P (DEP_LINK_PRO (dep))
|
||
&& !DEBUG_INSN_P (DEP_LINK_CON (dep)));
|
||
}
|
||
|
||
/* Functions to operate with a single link from the dependencies lists -
|
||
dep_link_t. */
|
||
|
||
/* Attach L to appear after link X whose &DEP_LINK_NEXT (X) is given by
|
||
PREV_NEXT_P. */
|
||
static void
|
||
attach_dep_link (dep_link_t l, dep_link_t *prev_nextp)
|
||
{
|
||
dep_link_t next = *prev_nextp;
|
||
|
||
gcc_assert (DEP_LINK_PREV_NEXTP (l) == NULL
|
||
&& DEP_LINK_NEXT (l) == NULL);
|
||
|
||
/* Init node being inserted. */
|
||
DEP_LINK_PREV_NEXTP (l) = prev_nextp;
|
||
DEP_LINK_NEXT (l) = next;
|
||
|
||
/* Fix next node. */
|
||
if (next != NULL)
|
||
{
|
||
gcc_assert (DEP_LINK_PREV_NEXTP (next) == prev_nextp);
|
||
|
||
DEP_LINK_PREV_NEXTP (next) = &DEP_LINK_NEXT (l);
|
||
}
|
||
|
||
/* Fix prev node. */
|
||
*prev_nextp = l;
|
||
}
|
||
|
||
/* Add dep_link LINK to deps_list L. */
|
||
static void
|
||
add_to_deps_list (dep_link_t link, deps_list_t l)
|
||
{
|
||
attach_dep_link (link, &DEPS_LIST_FIRST (l));
|
||
|
||
/* Don't count debug deps. */
|
||
if (!depl_on_debug_p (link))
|
||
++DEPS_LIST_N_LINKS (l);
|
||
}
|
||
|
||
/* Detach dep_link L from the list. */
|
||
static void
|
||
detach_dep_link (dep_link_t l)
|
||
{
|
||
dep_link_t *prev_nextp = DEP_LINK_PREV_NEXTP (l);
|
||
dep_link_t next = DEP_LINK_NEXT (l);
|
||
|
||
*prev_nextp = next;
|
||
|
||
if (next != NULL)
|
||
DEP_LINK_PREV_NEXTP (next) = prev_nextp;
|
||
|
||
DEP_LINK_PREV_NEXTP (l) = NULL;
|
||
DEP_LINK_NEXT (l) = NULL;
|
||
}
|
||
|
||
/* Remove link LINK from list LIST. */
|
||
static void
|
||
remove_from_deps_list (dep_link_t link, deps_list_t list)
|
||
{
|
||
detach_dep_link (link);
|
||
|
||
/* Don't count debug deps. */
|
||
if (!depl_on_debug_p (link))
|
||
--DEPS_LIST_N_LINKS (list);
|
||
}
|
||
|
||
/* Move link LINK from list FROM to list TO. */
|
||
static void
|
||
move_dep_link (dep_link_t link, deps_list_t from, deps_list_t to)
|
||
{
|
||
remove_from_deps_list (link, from);
|
||
add_to_deps_list (link, to);
|
||
}
|
||
|
||
/* Return true of LINK is not attached to any list. */
|
||
static bool
|
||
dep_link_is_detached_p (dep_link_t link)
|
||
{
|
||
return DEP_LINK_PREV_NEXTP (link) == NULL;
|
||
}
|
||
|
||
/* Pool to hold all dependency nodes (dep_node_t). */
|
||
static object_allocator<_dep_node> *dn_pool;
|
||
|
||
/* Number of dep_nodes out there. */
|
||
static int dn_pool_diff = 0;
|
||
|
||
/* Create a dep_node. */
|
||
static dep_node_t
|
||
create_dep_node (void)
|
||
{
|
||
dep_node_t n = dn_pool->allocate ();
|
||
dep_link_t back = DEP_NODE_BACK (n);
|
||
dep_link_t forw = DEP_NODE_FORW (n);
|
||
|
||
DEP_LINK_NODE (back) = n;
|
||
DEP_LINK_NEXT (back) = NULL;
|
||
DEP_LINK_PREV_NEXTP (back) = NULL;
|
||
|
||
DEP_LINK_NODE (forw) = n;
|
||
DEP_LINK_NEXT (forw) = NULL;
|
||
DEP_LINK_PREV_NEXTP (forw) = NULL;
|
||
|
||
++dn_pool_diff;
|
||
|
||
return n;
|
||
}
|
||
|
||
/* Delete dep_node N. N must not be connected to any deps_list. */
|
||
static void
|
||
delete_dep_node (dep_node_t n)
|
||
{
|
||
gcc_assert (dep_link_is_detached_p (DEP_NODE_BACK (n))
|
||
&& dep_link_is_detached_p (DEP_NODE_FORW (n)));
|
||
|
||
XDELETE (DEP_REPLACE (DEP_NODE_DEP (n)));
|
||
|
||
--dn_pool_diff;
|
||
|
||
dn_pool->remove (n);
|
||
}
|
||
|
||
/* Pool to hold dependencies lists (deps_list_t). */
|
||
static object_allocator<_deps_list> *dl_pool;
|
||
|
||
/* Number of deps_lists out there. */
|
||
static int dl_pool_diff = 0;
|
||
|
||
/* Functions to operate with dependences lists - deps_list_t. */
|
||
|
||
/* Return true if list L is empty. */
|
||
static bool
|
||
deps_list_empty_p (deps_list_t l)
|
||
{
|
||
return DEPS_LIST_N_LINKS (l) == 0;
|
||
}
|
||
|
||
/* Create a new deps_list. */
|
||
static deps_list_t
|
||
create_deps_list (void)
|
||
{
|
||
deps_list_t l = dl_pool->allocate ();
|
||
|
||
DEPS_LIST_FIRST (l) = NULL;
|
||
DEPS_LIST_N_LINKS (l) = 0;
|
||
|
||
++dl_pool_diff;
|
||
return l;
|
||
}
|
||
|
||
/* Free deps_list L. */
|
||
static void
|
||
free_deps_list (deps_list_t l)
|
||
{
|
||
gcc_assert (deps_list_empty_p (l));
|
||
|
||
--dl_pool_diff;
|
||
|
||
dl_pool->remove (l);
|
||
}
|
||
|
||
/* Return true if there is no dep_nodes and deps_lists out there.
|
||
After the region is scheduled all the dependency nodes and lists
|
||
should [generally] be returned to pool. */
|
||
bool
|
||
deps_pools_are_empty_p (void)
|
||
{
|
||
return dn_pool_diff == 0 && dl_pool_diff == 0;
|
||
}
|
||
|
||
/* Remove all elements from L. */
|
||
static void
|
||
clear_deps_list (deps_list_t l)
|
||
{
|
||
do
|
||
{
|
||
dep_link_t link = DEPS_LIST_FIRST (l);
|
||
|
||
if (link == NULL)
|
||
break;
|
||
|
||
remove_from_deps_list (link, l);
|
||
}
|
||
while (1);
|
||
}
|
||
|
||
/* Decide whether a dependency should be treated as a hard or a speculative
|
||
dependency. */
|
||
static bool
|
||
dep_spec_p (dep_t dep)
|
||
{
|
||
if (current_sched_info->flags & DO_SPECULATION)
|
||
{
|
||
if (DEP_STATUS (dep) & SPECULATIVE)
|
||
return true;
|
||
}
|
||
if (current_sched_info->flags & DO_PREDICATION)
|
||
{
|
||
if (DEP_TYPE (dep) == REG_DEP_CONTROL)
|
||
return true;
|
||
}
|
||
if (DEP_REPLACE (dep) != NULL)
|
||
return true;
|
||
return false;
|
||
}
|
||
|
||
static regset reg_pending_sets;
|
||
static regset reg_pending_clobbers;
|
||
static regset reg_pending_uses;
|
||
static regset reg_pending_control_uses;
|
||
static enum reg_pending_barrier_mode reg_pending_barrier;
|
||
|
||
/* Hard registers implicitly clobbered or used (or may be implicitly
|
||
clobbered or used) by the currently analyzed insn. For example,
|
||
insn in its constraint has one register class. Even if there is
|
||
currently no hard register in the insn, the particular hard
|
||
register will be in the insn after reload pass because the
|
||
constraint requires it. */
|
||
static HARD_REG_SET implicit_reg_pending_clobbers;
|
||
static HARD_REG_SET implicit_reg_pending_uses;
|
||
|
||
/* To speed up the test for duplicate dependency links we keep a
|
||
record of dependencies created by add_dependence when the average
|
||
number of instructions in a basic block is very large.
|
||
|
||
Studies have shown that there is typically around 5 instructions between
|
||
branches for typical C code. So we can make a guess that the average
|
||
basic block is approximately 5 instructions long; we will choose 100X
|
||
the average size as a very large basic block.
|
||
|
||
Each insn has associated bitmaps for its dependencies. Each bitmap
|
||
has enough entries to represent a dependency on any other insn in
|
||
the insn chain. All bitmap for true dependencies cache is
|
||
allocated then the rest two ones are also allocated. */
|
||
static bitmap_head *true_dependency_cache = NULL;
|
||
static bitmap_head *output_dependency_cache = NULL;
|
||
static bitmap_head *anti_dependency_cache = NULL;
|
||
static bitmap_head *control_dependency_cache = NULL;
|
||
static bitmap_head *spec_dependency_cache = NULL;
|
||
static int cache_size;
|
||
|
||
/* True if we should mark added dependencies as a non-register deps. */
|
||
static bool mark_as_hard;
|
||
|
||
static int deps_may_trap_p (const_rtx);
|
||
static void add_dependence_1 (rtx_insn *, rtx_insn *, enum reg_note);
|
||
static void add_dependence_list (rtx_insn *, rtx_insn_list *, int,
|
||
enum reg_note, bool);
|
||
static void add_dependence_list_and_free (struct deps_desc *, rtx_insn *,
|
||
rtx_insn_list **, int, enum reg_note,
|
||
bool);
|
||
static void delete_all_dependences (rtx_insn *);
|
||
static void chain_to_prev_insn (rtx_insn *);
|
||
|
||
static void flush_pending_lists (struct deps_desc *, rtx_insn *, int, int);
|
||
static void sched_analyze_1 (struct deps_desc *, rtx, rtx_insn *);
|
||
static void sched_analyze_2 (struct deps_desc *, rtx, rtx_insn *);
|
||
static void sched_analyze_insn (struct deps_desc *, rtx, rtx_insn *);
|
||
|
||
static bool sched_has_condition_p (const rtx_insn *);
|
||
static int conditions_mutex_p (const_rtx, const_rtx, bool, bool);
|
||
|
||
static enum DEPS_ADJUST_RESULT maybe_add_or_update_dep_1 (dep_t, bool,
|
||
rtx, rtx);
|
||
static enum DEPS_ADJUST_RESULT add_or_update_dep_1 (dep_t, bool, rtx, rtx);
|
||
|
||
static void check_dep (dep_t, bool);
|
||
|
||
|
||
/* Return nonzero if a load of the memory reference MEM can cause a trap. */
|
||
|
||
static int
|
||
deps_may_trap_p (const_rtx mem)
|
||
{
|
||
const_rtx addr = XEXP (mem, 0);
|
||
|
||
if (REG_P (addr) && REGNO (addr) >= FIRST_PSEUDO_REGISTER)
|
||
{
|
||
const_rtx t = get_reg_known_value (REGNO (addr));
|
||
if (t)
|
||
addr = t;
|
||
}
|
||
return rtx_addr_can_trap_p (addr);
|
||
}
|
||
|
||
|
||
/* Find the condition under which INSN is executed. If REV is not NULL,
|
||
it is set to TRUE when the returned comparison should be reversed
|
||
to get the actual condition. */
|
||
static rtx
|
||
sched_get_condition_with_rev_uncached (const rtx_insn *insn, bool *rev)
|
||
{
|
||
rtx pat = PATTERN (insn);
|
||
rtx src;
|
||
|
||
if (rev)
|
||
*rev = false;
|
||
|
||
if (GET_CODE (pat) == COND_EXEC)
|
||
return COND_EXEC_TEST (pat);
|
||
|
||
if (!any_condjump_p (insn) || !onlyjump_p (insn))
|
||
return 0;
|
||
|
||
src = SET_SRC (pc_set (insn));
|
||
|
||
if (XEXP (src, 2) == pc_rtx)
|
||
return XEXP (src, 0);
|
||
else if (XEXP (src, 1) == pc_rtx)
|
||
{
|
||
rtx cond = XEXP (src, 0);
|
||
enum rtx_code revcode = reversed_comparison_code (cond, insn);
|
||
|
||
if (revcode == UNKNOWN)
|
||
return 0;
|
||
|
||
if (rev)
|
||
*rev = true;
|
||
return cond;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Return the condition under which INSN does not execute (i.e. the
|
||
not-taken condition for a conditional branch), or NULL if we cannot
|
||
find such a condition. The caller should make a copy of the condition
|
||
before using it. */
|
||
rtx
|
||
sched_get_reverse_condition_uncached (const rtx_insn *insn)
|
||
{
|
||
bool rev;
|
||
rtx cond = sched_get_condition_with_rev_uncached (insn, &rev);
|
||
if (cond == NULL_RTX)
|
||
return cond;
|
||
if (!rev)
|
||
{
|
||
enum rtx_code revcode = reversed_comparison_code (cond, insn);
|
||
cond = gen_rtx_fmt_ee (revcode, GET_MODE (cond),
|
||
XEXP (cond, 0),
|
||
XEXP (cond, 1));
|
||
}
|
||
return cond;
|
||
}
|
||
|
||
/* Caching variant of sched_get_condition_with_rev_uncached.
|
||
We only do actual work the first time we come here for an insn; the
|
||
results are cached in INSN_CACHED_COND and INSN_REVERSE_COND. */
|
||
static rtx
|
||
sched_get_condition_with_rev (const rtx_insn *insn, bool *rev)
|
||
{
|
||
bool tmp;
|
||
|
||
if (INSN_LUID (insn) == 0)
|
||
return sched_get_condition_with_rev_uncached (insn, rev);
|
||
|
||
if (INSN_CACHED_COND (insn) == const_true_rtx)
|
||
return NULL_RTX;
|
||
|
||
if (INSN_CACHED_COND (insn) != NULL_RTX)
|
||
{
|
||
if (rev)
|
||
*rev = INSN_REVERSE_COND (insn);
|
||
return INSN_CACHED_COND (insn);
|
||
}
|
||
|
||
INSN_CACHED_COND (insn) = sched_get_condition_with_rev_uncached (insn, &tmp);
|
||
INSN_REVERSE_COND (insn) = tmp;
|
||
|
||
if (INSN_CACHED_COND (insn) == NULL_RTX)
|
||
{
|
||
INSN_CACHED_COND (insn) = const_true_rtx;
|
||
return NULL_RTX;
|
||
}
|
||
|
||
if (rev)
|
||
*rev = INSN_REVERSE_COND (insn);
|
||
return INSN_CACHED_COND (insn);
|
||
}
|
||
|
||
/* True when we can find a condition under which INSN is executed. */
|
||
static bool
|
||
sched_has_condition_p (const rtx_insn *insn)
|
||
{
|
||
return !! sched_get_condition_with_rev (insn, NULL);
|
||
}
|
||
|
||
|
||
|
||
/* Return nonzero if conditions COND1 and COND2 can never be both true. */
|
||
static int
|
||
conditions_mutex_p (const_rtx cond1, const_rtx cond2, bool rev1, bool rev2)
|
||
{
|
||
if (COMPARISON_P (cond1)
|
||
&& COMPARISON_P (cond2)
|
||
&& GET_CODE (cond1) ==
|
||
(rev1==rev2
|
||
? reversed_comparison_code (cond2, NULL)
|
||
: GET_CODE (cond2))
|
||
&& rtx_equal_p (XEXP (cond1, 0), XEXP (cond2, 0))
|
||
&& XEXP (cond1, 1) == XEXP (cond2, 1))
|
||
return 1;
|
||
return 0;
|
||
}
|
||
|
||
/* Return true if insn1 and insn2 can never depend on one another because
|
||
the conditions under which they are executed are mutually exclusive. */
|
||
bool
|
||
sched_insns_conditions_mutex_p (const rtx_insn *insn1, const rtx_insn *insn2)
|
||
{
|
||
rtx cond1, cond2;
|
||
bool rev1 = false, rev2 = false;
|
||
|
||
/* df doesn't handle conditional lifetimes entirely correctly;
|
||
calls mess up the conditional lifetimes. */
|
||
if (!CALL_P (insn1) && !CALL_P (insn2))
|
||
{
|
||
cond1 = sched_get_condition_with_rev (insn1, &rev1);
|
||
cond2 = sched_get_condition_with_rev (insn2, &rev2);
|
||
if (cond1 && cond2
|
||
&& conditions_mutex_p (cond1, cond2, rev1, rev2)
|
||
/* Make sure first instruction doesn't affect condition of second
|
||
instruction if switched. */
|
||
&& !modified_in_p (cond1, insn2)
|
||
/* Make sure second instruction doesn't affect condition of first
|
||
instruction if switched. */
|
||
&& !modified_in_p (cond2, insn1))
|
||
return true;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
|
||
/* Return true if INSN can potentially be speculated with type DS. */
|
||
bool
|
||
sched_insn_is_legitimate_for_speculation_p (const rtx_insn *insn, ds_t ds)
|
||
{
|
||
if (HAS_INTERNAL_DEP (insn))
|
||
return false;
|
||
|
||
if (!NONJUMP_INSN_P (insn))
|
||
return false;
|
||
|
||
if (SCHED_GROUP_P (insn))
|
||
return false;
|
||
|
||
if (IS_SPECULATION_CHECK_P (CONST_CAST_RTX_INSN (insn)))
|
||
return false;
|
||
|
||
if (side_effects_p (PATTERN (insn)))
|
||
return false;
|
||
|
||
if (ds & BE_IN_SPEC)
|
||
/* The following instructions, which depend on a speculatively scheduled
|
||
instruction, cannot be speculatively scheduled along. */
|
||
{
|
||
if (may_trap_or_fault_p (PATTERN (insn)))
|
||
/* If instruction might fault, it cannot be speculatively scheduled.
|
||
For control speculation it's obvious why and for data speculation
|
||
it's because the insn might get wrong input if speculation
|
||
wasn't successful. */
|
||
return false;
|
||
|
||
if ((ds & BE_IN_DATA)
|
||
&& sched_has_condition_p (insn))
|
||
/* If this is a predicated instruction, then it cannot be
|
||
speculatively scheduled. See PR35659. */
|
||
return false;
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Initialize LIST_PTR to point to one of the lists present in TYPES_PTR,
|
||
initialize RESOLVED_P_PTR with true if that list consists of resolved deps,
|
||
and remove the type of returned [through LIST_PTR] list from TYPES_PTR.
|
||
This function is used to switch sd_iterator to the next list.
|
||
!!! For internal use only. Might consider moving it to sched-int.h. */
|
||
void
|
||
sd_next_list (const_rtx insn, sd_list_types_def *types_ptr,
|
||
deps_list_t *list_ptr, bool *resolved_p_ptr)
|
||
{
|
||
sd_list_types_def types = *types_ptr;
|
||
|
||
if (types & SD_LIST_HARD_BACK)
|
||
{
|
||
*list_ptr = INSN_HARD_BACK_DEPS (insn);
|
||
*resolved_p_ptr = false;
|
||
*types_ptr = types & ~SD_LIST_HARD_BACK;
|
||
}
|
||
else if (types & SD_LIST_SPEC_BACK)
|
||
{
|
||
*list_ptr = INSN_SPEC_BACK_DEPS (insn);
|
||
*resolved_p_ptr = false;
|
||
*types_ptr = types & ~SD_LIST_SPEC_BACK;
|
||
}
|
||
else if (types & SD_LIST_FORW)
|
||
{
|
||
*list_ptr = INSN_FORW_DEPS (insn);
|
||
*resolved_p_ptr = false;
|
||
*types_ptr = types & ~SD_LIST_FORW;
|
||
}
|
||
else if (types & SD_LIST_RES_BACK)
|
||
{
|
||
*list_ptr = INSN_RESOLVED_BACK_DEPS (insn);
|
||
*resolved_p_ptr = true;
|
||
*types_ptr = types & ~SD_LIST_RES_BACK;
|
||
}
|
||
else if (types & SD_LIST_RES_FORW)
|
||
{
|
||
*list_ptr = INSN_RESOLVED_FORW_DEPS (insn);
|
||
*resolved_p_ptr = true;
|
||
*types_ptr = types & ~SD_LIST_RES_FORW;
|
||
}
|
||
else
|
||
{
|
||
*list_ptr = NULL;
|
||
*resolved_p_ptr = false;
|
||
*types_ptr = SD_LIST_NONE;
|
||
}
|
||
}
|
||
|
||
/* Return the summary size of INSN's lists defined by LIST_TYPES. */
|
||
int
|
||
sd_lists_size (const_rtx insn, sd_list_types_def list_types)
|
||
{
|
||
int size = 0;
|
||
|
||
while (list_types != SD_LIST_NONE)
|
||
{
|
||
deps_list_t list;
|
||
bool resolved_p;
|
||
|
||
sd_next_list (insn, &list_types, &list, &resolved_p);
|
||
if (list)
|
||
size += DEPS_LIST_N_LINKS (list);
|
||
}
|
||
|
||
return size;
|
||
}
|
||
|
||
/* Return true if INSN's lists defined by LIST_TYPES are all empty. */
|
||
|
||
bool
|
||
sd_lists_empty_p (const_rtx insn, sd_list_types_def list_types)
|
||
{
|
||
while (list_types != SD_LIST_NONE)
|
||
{
|
||
deps_list_t list;
|
||
bool resolved_p;
|
||
|
||
sd_next_list (insn, &list_types, &list, &resolved_p);
|
||
if (!deps_list_empty_p (list))
|
||
return false;
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Initialize data for INSN. */
|
||
void
|
||
sd_init_insn (rtx_insn *insn)
|
||
{
|
||
INSN_HARD_BACK_DEPS (insn) = create_deps_list ();
|
||
INSN_SPEC_BACK_DEPS (insn) = create_deps_list ();
|
||
INSN_RESOLVED_BACK_DEPS (insn) = create_deps_list ();
|
||
INSN_FORW_DEPS (insn) = create_deps_list ();
|
||
INSN_RESOLVED_FORW_DEPS (insn) = create_deps_list ();
|
||
|
||
/* ??? It would be nice to allocate dependency caches here. */
|
||
}
|
||
|
||
/* Free data for INSN. */
|
||
void
|
||
sd_finish_insn (rtx_insn *insn)
|
||
{
|
||
/* ??? It would be nice to deallocate dependency caches here. */
|
||
|
||
free_deps_list (INSN_HARD_BACK_DEPS (insn));
|
||
INSN_HARD_BACK_DEPS (insn) = NULL;
|
||
|
||
free_deps_list (INSN_SPEC_BACK_DEPS (insn));
|
||
INSN_SPEC_BACK_DEPS (insn) = NULL;
|
||
|
||
free_deps_list (INSN_RESOLVED_BACK_DEPS (insn));
|
||
INSN_RESOLVED_BACK_DEPS (insn) = NULL;
|
||
|
||
free_deps_list (INSN_FORW_DEPS (insn));
|
||
INSN_FORW_DEPS (insn) = NULL;
|
||
|
||
free_deps_list (INSN_RESOLVED_FORW_DEPS (insn));
|
||
INSN_RESOLVED_FORW_DEPS (insn) = NULL;
|
||
}
|
||
|
||
/* Find a dependency between producer PRO and consumer CON.
|
||
Search through resolved dependency lists if RESOLVED_P is true.
|
||
If no such dependency is found return NULL,
|
||
otherwise return the dependency and initialize SD_IT_PTR [if it is nonnull]
|
||
with an iterator pointing to it. */
|
||
static dep_t
|
||
sd_find_dep_between_no_cache (rtx pro, rtx con, bool resolved_p,
|
||
sd_iterator_def *sd_it_ptr)
|
||
{
|
||
sd_list_types_def pro_list_type;
|
||
sd_list_types_def con_list_type;
|
||
sd_iterator_def sd_it;
|
||
dep_t dep;
|
||
bool found_p = false;
|
||
|
||
if (resolved_p)
|
||
{
|
||
pro_list_type = SD_LIST_RES_FORW;
|
||
con_list_type = SD_LIST_RES_BACK;
|
||
}
|
||
else
|
||
{
|
||
pro_list_type = SD_LIST_FORW;
|
||
con_list_type = SD_LIST_BACK;
|
||
}
|
||
|
||
/* Walk through either back list of INSN or forw list of ELEM
|
||
depending on which one is shorter. */
|
||
if (sd_lists_size (con, con_list_type) < sd_lists_size (pro, pro_list_type))
|
||
{
|
||
/* Find the dep_link with producer PRO in consumer's back_deps. */
|
||
FOR_EACH_DEP (con, con_list_type, sd_it, dep)
|
||
if (DEP_PRO (dep) == pro)
|
||
{
|
||
found_p = true;
|
||
break;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* Find the dep_link with consumer CON in producer's forw_deps. */
|
||
FOR_EACH_DEP (pro, pro_list_type, sd_it, dep)
|
||
if (DEP_CON (dep) == con)
|
||
{
|
||
found_p = true;
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (found_p)
|
||
{
|
||
if (sd_it_ptr != NULL)
|
||
*sd_it_ptr = sd_it;
|
||
|
||
return dep;
|
||
}
|
||
|
||
return NULL;
|
||
}
|
||
|
||
/* Find a dependency between producer PRO and consumer CON.
|
||
Use dependency [if available] to check if dependency is present at all.
|
||
Search through resolved dependency lists if RESOLVED_P is true.
|
||
If the dependency or NULL if none found. */
|
||
dep_t
|
||
sd_find_dep_between (rtx pro, rtx con, bool resolved_p)
|
||
{
|
||
if (true_dependency_cache != NULL)
|
||
/* Avoiding the list walk below can cut compile times dramatically
|
||
for some code. */
|
||
{
|
||
int elem_luid = INSN_LUID (pro);
|
||
int insn_luid = INSN_LUID (con);
|
||
|
||
if (!bitmap_bit_p (&true_dependency_cache[insn_luid], elem_luid)
|
||
&& !bitmap_bit_p (&output_dependency_cache[insn_luid], elem_luid)
|
||
&& !bitmap_bit_p (&anti_dependency_cache[insn_luid], elem_luid)
|
||
&& !bitmap_bit_p (&control_dependency_cache[insn_luid], elem_luid))
|
||
return NULL;
|
||
}
|
||
|
||
return sd_find_dep_between_no_cache (pro, con, resolved_p, NULL);
|
||
}
|
||
|
||
/* Add or update a dependence described by DEP.
|
||
MEM1 and MEM2, if non-null, correspond to memory locations in case of
|
||
data speculation.
|
||
|
||
The function returns a value indicating if an old entry has been changed
|
||
or a new entry has been added to insn's backward deps.
|
||
|
||
This function merely checks if producer and consumer is the same insn
|
||
and doesn't create a dep in this case. Actual manipulation of
|
||
dependence data structures is performed in add_or_update_dep_1. */
|
||
static enum DEPS_ADJUST_RESULT
|
||
maybe_add_or_update_dep_1 (dep_t dep, bool resolved_p, rtx mem1, rtx mem2)
|
||
{
|
||
rtx_insn *elem = DEP_PRO (dep);
|
||
rtx_insn *insn = DEP_CON (dep);
|
||
|
||
gcc_assert (INSN_P (insn) && INSN_P (elem));
|
||
|
||
/* Don't depend an insn on itself. */
|
||
if (insn == elem)
|
||
{
|
||
if (sched_deps_info->generate_spec_deps)
|
||
/* INSN has an internal dependence, which we can't overcome. */
|
||
HAS_INTERNAL_DEP (insn) = 1;
|
||
|
||
return DEP_NODEP;
|
||
}
|
||
|
||
return add_or_update_dep_1 (dep, resolved_p, mem1, mem2);
|
||
}
|
||
|
||
/* Ask dependency caches what needs to be done for dependence DEP.
|
||
Return DEP_CREATED if new dependence should be created and there is no
|
||
need to try to find one searching the dependencies lists.
|
||
Return DEP_PRESENT if there already is a dependence described by DEP and
|
||
hence nothing is to be done.
|
||
Return DEP_CHANGED if there already is a dependence, but it should be
|
||
updated to incorporate additional information from DEP. */
|
||
static enum DEPS_ADJUST_RESULT
|
||
ask_dependency_caches (dep_t dep)
|
||
{
|
||
int elem_luid = INSN_LUID (DEP_PRO (dep));
|
||
int insn_luid = INSN_LUID (DEP_CON (dep));
|
||
|
||
gcc_assert (true_dependency_cache != NULL
|
||
&& output_dependency_cache != NULL
|
||
&& anti_dependency_cache != NULL
|
||
&& control_dependency_cache != NULL);
|
||
|
||
if (!(current_sched_info->flags & USE_DEPS_LIST))
|
||
{
|
||
enum reg_note present_dep_type;
|
||
|
||
if (bitmap_bit_p (&true_dependency_cache[insn_luid], elem_luid))
|
||
present_dep_type = REG_DEP_TRUE;
|
||
else if (bitmap_bit_p (&output_dependency_cache[insn_luid], elem_luid))
|
||
present_dep_type = REG_DEP_OUTPUT;
|
||
else if (bitmap_bit_p (&anti_dependency_cache[insn_luid], elem_luid))
|
||
present_dep_type = REG_DEP_ANTI;
|
||
else if (bitmap_bit_p (&control_dependency_cache[insn_luid], elem_luid))
|
||
present_dep_type = REG_DEP_CONTROL;
|
||
else
|
||
/* There is no existing dep so it should be created. */
|
||
return DEP_CREATED;
|
||
|
||
if ((int) DEP_TYPE (dep) >= (int) present_dep_type)
|
||
/* DEP does not add anything to the existing dependence. */
|
||
return DEP_PRESENT;
|
||
}
|
||
else
|
||
{
|
||
ds_t present_dep_types = 0;
|
||
|
||
if (bitmap_bit_p (&true_dependency_cache[insn_luid], elem_luid))
|
||
present_dep_types |= DEP_TRUE;
|
||
if (bitmap_bit_p (&output_dependency_cache[insn_luid], elem_luid))
|
||
present_dep_types |= DEP_OUTPUT;
|
||
if (bitmap_bit_p (&anti_dependency_cache[insn_luid], elem_luid))
|
||
present_dep_types |= DEP_ANTI;
|
||
if (bitmap_bit_p (&control_dependency_cache[insn_luid], elem_luid))
|
||
present_dep_types |= DEP_CONTROL;
|
||
|
||
if (present_dep_types == 0)
|
||
/* There is no existing dep so it should be created. */
|
||
return DEP_CREATED;
|
||
|
||
if (!(current_sched_info->flags & DO_SPECULATION)
|
||
|| !bitmap_bit_p (&spec_dependency_cache[insn_luid], elem_luid))
|
||
{
|
||
if ((present_dep_types | (DEP_STATUS (dep) & DEP_TYPES))
|
||
== present_dep_types)
|
||
/* DEP does not add anything to the existing dependence. */
|
||
return DEP_PRESENT;
|
||
}
|
||
else
|
||
{
|
||
/* Only true dependencies can be data speculative and
|
||
only anti dependencies can be control speculative. */
|
||
gcc_assert ((present_dep_types & (DEP_TRUE | DEP_ANTI))
|
||
== present_dep_types);
|
||
|
||
/* if (DEP is SPECULATIVE) then
|
||
..we should update DEP_STATUS
|
||
else
|
||
..we should reset existing dep to non-speculative. */
|
||
}
|
||
}
|
||
|
||
return DEP_CHANGED;
|
||
}
|
||
|
||
/* Set dependency caches according to DEP. */
|
||
static void
|
||
set_dependency_caches (dep_t dep)
|
||
{
|
||
int elem_luid = INSN_LUID (DEP_PRO (dep));
|
||
int insn_luid = INSN_LUID (DEP_CON (dep));
|
||
|
||
if (!(current_sched_info->flags & USE_DEPS_LIST))
|
||
{
|
||
switch (DEP_TYPE (dep))
|
||
{
|
||
case REG_DEP_TRUE:
|
||
bitmap_set_bit (&true_dependency_cache[insn_luid], elem_luid);
|
||
break;
|
||
|
||
case REG_DEP_OUTPUT:
|
||
bitmap_set_bit (&output_dependency_cache[insn_luid], elem_luid);
|
||
break;
|
||
|
||
case REG_DEP_ANTI:
|
||
bitmap_set_bit (&anti_dependency_cache[insn_luid], elem_luid);
|
||
break;
|
||
|
||
case REG_DEP_CONTROL:
|
||
bitmap_set_bit (&control_dependency_cache[insn_luid], elem_luid);
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
}
|
||
else
|
||
{
|
||
ds_t ds = DEP_STATUS (dep);
|
||
|
||
if (ds & DEP_TRUE)
|
||
bitmap_set_bit (&true_dependency_cache[insn_luid], elem_luid);
|
||
if (ds & DEP_OUTPUT)
|
||
bitmap_set_bit (&output_dependency_cache[insn_luid], elem_luid);
|
||
if (ds & DEP_ANTI)
|
||
bitmap_set_bit (&anti_dependency_cache[insn_luid], elem_luid);
|
||
if (ds & DEP_CONTROL)
|
||
bitmap_set_bit (&control_dependency_cache[insn_luid], elem_luid);
|
||
|
||
if (ds & SPECULATIVE)
|
||
{
|
||
gcc_assert (current_sched_info->flags & DO_SPECULATION);
|
||
bitmap_set_bit (&spec_dependency_cache[insn_luid], elem_luid);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Type of dependence DEP have changed from OLD_TYPE. Update dependency
|
||
caches accordingly. */
|
||
static void
|
||
update_dependency_caches (dep_t dep, enum reg_note old_type)
|
||
{
|
||
int elem_luid = INSN_LUID (DEP_PRO (dep));
|
||
int insn_luid = INSN_LUID (DEP_CON (dep));
|
||
|
||
/* Clear corresponding cache entry because type of the link
|
||
may have changed. Keep them if we use_deps_list. */
|
||
if (!(current_sched_info->flags & USE_DEPS_LIST))
|
||
{
|
||
switch (old_type)
|
||
{
|
||
case REG_DEP_OUTPUT:
|
||
bitmap_clear_bit (&output_dependency_cache[insn_luid], elem_luid);
|
||
break;
|
||
|
||
case REG_DEP_ANTI:
|
||
bitmap_clear_bit (&anti_dependency_cache[insn_luid], elem_luid);
|
||
break;
|
||
|
||
case REG_DEP_CONTROL:
|
||
bitmap_clear_bit (&control_dependency_cache[insn_luid], elem_luid);
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
}
|
||
|
||
set_dependency_caches (dep);
|
||
}
|
||
|
||
/* Convert a dependence pointed to by SD_IT to be non-speculative. */
|
||
static void
|
||
change_spec_dep_to_hard (sd_iterator_def sd_it)
|
||
{
|
||
dep_node_t node = DEP_LINK_NODE (*sd_it.linkp);
|
||
dep_link_t link = DEP_NODE_BACK (node);
|
||
dep_t dep = DEP_NODE_DEP (node);
|
||
rtx_insn *elem = DEP_PRO (dep);
|
||
rtx_insn *insn = DEP_CON (dep);
|
||
|
||
move_dep_link (link, INSN_SPEC_BACK_DEPS (insn), INSN_HARD_BACK_DEPS (insn));
|
||
|
||
DEP_STATUS (dep) &= ~SPECULATIVE;
|
||
|
||
if (true_dependency_cache != NULL)
|
||
/* Clear the cache entry. */
|
||
bitmap_clear_bit (&spec_dependency_cache[INSN_LUID (insn)],
|
||
INSN_LUID (elem));
|
||
}
|
||
|
||
/* Update DEP to incorporate information from NEW_DEP.
|
||
SD_IT points to DEP in case it should be moved to another list.
|
||
MEM1 and MEM2, if nonnull, correspond to memory locations in case if
|
||
data-speculative dependence should be updated. */
|
||
static enum DEPS_ADJUST_RESULT
|
||
update_dep (dep_t dep, dep_t new_dep,
|
||
sd_iterator_def sd_it ATTRIBUTE_UNUSED,
|
||
rtx mem1 ATTRIBUTE_UNUSED,
|
||
rtx mem2 ATTRIBUTE_UNUSED)
|
||
{
|
||
enum DEPS_ADJUST_RESULT res = DEP_PRESENT;
|
||
enum reg_note old_type = DEP_TYPE (dep);
|
||
bool was_spec = dep_spec_p (dep);
|
||
|
||
DEP_NONREG (dep) |= DEP_NONREG (new_dep);
|
||
DEP_MULTIPLE (dep) = 1;
|
||
|
||
/* If this is a more restrictive type of dependence than the
|
||
existing one, then change the existing dependence to this
|
||
type. */
|
||
if ((int) DEP_TYPE (new_dep) < (int) old_type)
|
||
{
|
||
DEP_TYPE (dep) = DEP_TYPE (new_dep);
|
||
res = DEP_CHANGED;
|
||
}
|
||
|
||
if (current_sched_info->flags & USE_DEPS_LIST)
|
||
/* Update DEP_STATUS. */
|
||
{
|
||
ds_t dep_status = DEP_STATUS (dep);
|
||
ds_t ds = DEP_STATUS (new_dep);
|
||
ds_t new_status = ds | dep_status;
|
||
|
||
if (new_status & SPECULATIVE)
|
||
{
|
||
/* Either existing dep or a dep we're adding or both are
|
||
speculative. */
|
||
if (!(ds & SPECULATIVE)
|
||
|| !(dep_status & SPECULATIVE))
|
||
/* The new dep can't be speculative. */
|
||
new_status &= ~SPECULATIVE;
|
||
else
|
||
{
|
||
/* Both are speculative. Merge probabilities. */
|
||
if (mem1 != NULL)
|
||
{
|
||
dw_t dw;
|
||
|
||
dw = estimate_dep_weak (mem1, mem2);
|
||
ds = set_dep_weak (ds, BEGIN_DATA, dw);
|
||
}
|
||
|
||
new_status = ds_merge (dep_status, ds);
|
||
}
|
||
}
|
||
|
||
ds = new_status;
|
||
|
||
if (dep_status != ds)
|
||
{
|
||
DEP_STATUS (dep) = ds;
|
||
res = DEP_CHANGED;
|
||
}
|
||
}
|
||
|
||
if (was_spec && !dep_spec_p (dep))
|
||
/* The old dep was speculative, but now it isn't. */
|
||
change_spec_dep_to_hard (sd_it);
|
||
|
||
if (true_dependency_cache != NULL
|
||
&& res == DEP_CHANGED)
|
||
update_dependency_caches (dep, old_type);
|
||
|
||
return res;
|
||
}
|
||
|
||
/* Add or update a dependence described by DEP.
|
||
MEM1 and MEM2, if non-null, correspond to memory locations in case of
|
||
data speculation.
|
||
|
||
The function returns a value indicating if an old entry has been changed
|
||
or a new entry has been added to insn's backward deps or nothing has
|
||
been updated at all. */
|
||
static enum DEPS_ADJUST_RESULT
|
||
add_or_update_dep_1 (dep_t new_dep, bool resolved_p,
|
||
rtx mem1 ATTRIBUTE_UNUSED, rtx mem2 ATTRIBUTE_UNUSED)
|
||
{
|
||
bool maybe_present_p = true;
|
||
bool present_p = false;
|
||
|
||
gcc_assert (INSN_P (DEP_PRO (new_dep)) && INSN_P (DEP_CON (new_dep))
|
||
&& DEP_PRO (new_dep) != DEP_CON (new_dep));
|
||
|
||
if (flag_checking)
|
||
check_dep (new_dep, mem1 != NULL);
|
||
|
||
if (true_dependency_cache != NULL)
|
||
{
|
||
switch (ask_dependency_caches (new_dep))
|
||
{
|
||
case DEP_PRESENT:
|
||
dep_t present_dep;
|
||
sd_iterator_def sd_it;
|
||
|
||
present_dep = sd_find_dep_between_no_cache (DEP_PRO (new_dep),
|
||
DEP_CON (new_dep),
|
||
resolved_p, &sd_it);
|
||
DEP_MULTIPLE (present_dep) = 1;
|
||
return DEP_PRESENT;
|
||
|
||
case DEP_CHANGED:
|
||
maybe_present_p = true;
|
||
present_p = true;
|
||
break;
|
||
|
||
case DEP_CREATED:
|
||
maybe_present_p = false;
|
||
present_p = false;
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Check that we don't already have this dependence. */
|
||
if (maybe_present_p)
|
||
{
|
||
dep_t present_dep;
|
||
sd_iterator_def sd_it;
|
||
|
||
gcc_assert (true_dependency_cache == NULL || present_p);
|
||
|
||
present_dep = sd_find_dep_between_no_cache (DEP_PRO (new_dep),
|
||
DEP_CON (new_dep),
|
||
resolved_p, &sd_it);
|
||
|
||
if (present_dep != NULL)
|
||
/* We found an existing dependency between ELEM and INSN. */
|
||
return update_dep (present_dep, new_dep, sd_it, mem1, mem2);
|
||
else
|
||
/* We didn't find a dep, it shouldn't present in the cache. */
|
||
gcc_assert (!present_p);
|
||
}
|
||
|
||
/* Might want to check one level of transitivity to save conses.
|
||
This check should be done in maybe_add_or_update_dep_1.
|
||
Since we made it to add_or_update_dep_1, we must create
|
||
(or update) a link. */
|
||
|
||
if (mem1 != NULL_RTX)
|
||
{
|
||
gcc_assert (sched_deps_info->generate_spec_deps);
|
||
DEP_STATUS (new_dep) = set_dep_weak (DEP_STATUS (new_dep), BEGIN_DATA,
|
||
estimate_dep_weak (mem1, mem2));
|
||
}
|
||
|
||
sd_add_dep (new_dep, resolved_p);
|
||
|
||
return DEP_CREATED;
|
||
}
|
||
|
||
/* Initialize BACK_LIST_PTR with consumer's backward list and
|
||
FORW_LIST_PTR with producer's forward list. If RESOLVED_P is true
|
||
initialize with lists that hold resolved deps. */
|
||
static void
|
||
get_back_and_forw_lists (dep_t dep, bool resolved_p,
|
||
deps_list_t *back_list_ptr,
|
||
deps_list_t *forw_list_ptr)
|
||
{
|
||
rtx_insn *con = DEP_CON (dep);
|
||
|
||
if (!resolved_p)
|
||
{
|
||
if (dep_spec_p (dep))
|
||
*back_list_ptr = INSN_SPEC_BACK_DEPS (con);
|
||
else
|
||
*back_list_ptr = INSN_HARD_BACK_DEPS (con);
|
||
|
||
*forw_list_ptr = INSN_FORW_DEPS (DEP_PRO (dep));
|
||
}
|
||
else
|
||
{
|
||
*back_list_ptr = INSN_RESOLVED_BACK_DEPS (con);
|
||
*forw_list_ptr = INSN_RESOLVED_FORW_DEPS (DEP_PRO (dep));
|
||
}
|
||
}
|
||
|
||
/* Add dependence described by DEP.
|
||
If RESOLVED_P is true treat the dependence as a resolved one. */
|
||
void
|
||
sd_add_dep (dep_t dep, bool resolved_p)
|
||
{
|
||
dep_node_t n = create_dep_node ();
|
||
deps_list_t con_back_deps;
|
||
deps_list_t pro_forw_deps;
|
||
rtx_insn *elem = DEP_PRO (dep);
|
||
rtx_insn *insn = DEP_CON (dep);
|
||
|
||
gcc_assert (INSN_P (insn) && INSN_P (elem) && insn != elem);
|
||
|
||
if ((current_sched_info->flags & DO_SPECULATION) == 0
|
||
|| !sched_insn_is_legitimate_for_speculation_p (insn, DEP_STATUS (dep)))
|
||
DEP_STATUS (dep) &= ~SPECULATIVE;
|
||
|
||
copy_dep (DEP_NODE_DEP (n), dep);
|
||
|
||
get_back_and_forw_lists (dep, resolved_p, &con_back_deps, &pro_forw_deps);
|
||
|
||
add_to_deps_list (DEP_NODE_BACK (n), con_back_deps);
|
||
|
||
if (flag_checking)
|
||
check_dep (dep, false);
|
||
|
||
add_to_deps_list (DEP_NODE_FORW (n), pro_forw_deps);
|
||
|
||
/* If we are adding a dependency to INSN's LOG_LINKs, then note that
|
||
in the bitmap caches of dependency information. */
|
||
if (true_dependency_cache != NULL)
|
||
set_dependency_caches (dep);
|
||
}
|
||
|
||
/* Add or update backward dependence between INSN and ELEM
|
||
with given type DEP_TYPE and dep_status DS.
|
||
This function is a convenience wrapper. */
|
||
enum DEPS_ADJUST_RESULT
|
||
sd_add_or_update_dep (dep_t dep, bool resolved_p)
|
||
{
|
||
return add_or_update_dep_1 (dep, resolved_p, NULL_RTX, NULL_RTX);
|
||
}
|
||
|
||
/* Resolved dependence pointed to by SD_IT.
|
||
SD_IT will advance to the next element. */
|
||
void
|
||
sd_resolve_dep (sd_iterator_def sd_it)
|
||
{
|
||
dep_node_t node = DEP_LINK_NODE (*sd_it.linkp);
|
||
dep_t dep = DEP_NODE_DEP (node);
|
||
rtx_insn *pro = DEP_PRO (dep);
|
||
rtx_insn *con = DEP_CON (dep);
|
||
|
||
if (dep_spec_p (dep))
|
||
move_dep_link (DEP_NODE_BACK (node), INSN_SPEC_BACK_DEPS (con),
|
||
INSN_RESOLVED_BACK_DEPS (con));
|
||
else
|
||
move_dep_link (DEP_NODE_BACK (node), INSN_HARD_BACK_DEPS (con),
|
||
INSN_RESOLVED_BACK_DEPS (con));
|
||
|
||
move_dep_link (DEP_NODE_FORW (node), INSN_FORW_DEPS (pro),
|
||
INSN_RESOLVED_FORW_DEPS (pro));
|
||
}
|
||
|
||
/* Perform the inverse operation of sd_resolve_dep. Restore the dependence
|
||
pointed to by SD_IT to unresolved state. */
|
||
void
|
||
sd_unresolve_dep (sd_iterator_def sd_it)
|
||
{
|
||
dep_node_t node = DEP_LINK_NODE (*sd_it.linkp);
|
||
dep_t dep = DEP_NODE_DEP (node);
|
||
rtx_insn *pro = DEP_PRO (dep);
|
||
rtx_insn *con = DEP_CON (dep);
|
||
|
||
if (dep_spec_p (dep))
|
||
move_dep_link (DEP_NODE_BACK (node), INSN_RESOLVED_BACK_DEPS (con),
|
||
INSN_SPEC_BACK_DEPS (con));
|
||
else
|
||
move_dep_link (DEP_NODE_BACK (node), INSN_RESOLVED_BACK_DEPS (con),
|
||
INSN_HARD_BACK_DEPS (con));
|
||
|
||
move_dep_link (DEP_NODE_FORW (node), INSN_RESOLVED_FORW_DEPS (pro),
|
||
INSN_FORW_DEPS (pro));
|
||
}
|
||
|
||
/* Make TO depend on all the FROM's producers.
|
||
If RESOLVED_P is true add dependencies to the resolved lists. */
|
||
void
|
||
sd_copy_back_deps (rtx_insn *to, rtx_insn *from, bool resolved_p)
|
||
{
|
||
sd_list_types_def list_type;
|
||
sd_iterator_def sd_it;
|
||
dep_t dep;
|
||
|
||
list_type = resolved_p ? SD_LIST_RES_BACK : SD_LIST_BACK;
|
||
|
||
FOR_EACH_DEP (from, list_type, sd_it, dep)
|
||
{
|
||
dep_def _new_dep, *new_dep = &_new_dep;
|
||
|
||
copy_dep (new_dep, dep);
|
||
DEP_CON (new_dep) = to;
|
||
sd_add_dep (new_dep, resolved_p);
|
||
}
|
||
}
|
||
|
||
/* Remove a dependency referred to by SD_IT.
|
||
SD_IT will point to the next dependence after removal. */
|
||
void
|
||
sd_delete_dep (sd_iterator_def sd_it)
|
||
{
|
||
dep_node_t n = DEP_LINK_NODE (*sd_it.linkp);
|
||
dep_t dep = DEP_NODE_DEP (n);
|
||
rtx_insn *pro = DEP_PRO (dep);
|
||
rtx_insn *con = DEP_CON (dep);
|
||
deps_list_t con_back_deps;
|
||
deps_list_t pro_forw_deps;
|
||
|
||
if (true_dependency_cache != NULL)
|
||
{
|
||
int elem_luid = INSN_LUID (pro);
|
||
int insn_luid = INSN_LUID (con);
|
||
|
||
bitmap_clear_bit (&true_dependency_cache[insn_luid], elem_luid);
|
||
bitmap_clear_bit (&anti_dependency_cache[insn_luid], elem_luid);
|
||
bitmap_clear_bit (&control_dependency_cache[insn_luid], elem_luid);
|
||
bitmap_clear_bit (&output_dependency_cache[insn_luid], elem_luid);
|
||
|
||
if (current_sched_info->flags & DO_SPECULATION)
|
||
bitmap_clear_bit (&spec_dependency_cache[insn_luid], elem_luid);
|
||
}
|
||
|
||
get_back_and_forw_lists (dep, sd_it.resolved_p,
|
||
&con_back_deps, &pro_forw_deps);
|
||
|
||
remove_from_deps_list (DEP_NODE_BACK (n), con_back_deps);
|
||
remove_from_deps_list (DEP_NODE_FORW (n), pro_forw_deps);
|
||
|
||
delete_dep_node (n);
|
||
}
|
||
|
||
/* Dump size of the lists. */
|
||
#define DUMP_LISTS_SIZE (2)
|
||
|
||
/* Dump dependencies of the lists. */
|
||
#define DUMP_LISTS_DEPS (4)
|
||
|
||
/* Dump all information about the lists. */
|
||
#define DUMP_LISTS_ALL (DUMP_LISTS_SIZE | DUMP_LISTS_DEPS)
|
||
|
||
/* Dump deps_lists of INSN specified by TYPES to DUMP.
|
||
FLAGS is a bit mask specifying what information about the lists needs
|
||
to be printed.
|
||
If FLAGS has the very first bit set, then dump all information about
|
||
the lists and propagate this bit into the callee dump functions. */
|
||
static void
|
||
dump_lists (FILE *dump, rtx insn, sd_list_types_def types, int flags)
|
||
{
|
||
sd_iterator_def sd_it;
|
||
dep_t dep;
|
||
int all;
|
||
|
||
all = (flags & 1);
|
||
|
||
if (all)
|
||
flags |= DUMP_LISTS_ALL;
|
||
|
||
fprintf (dump, "[");
|
||
|
||
if (flags & DUMP_LISTS_SIZE)
|
||
fprintf (dump, "%d; ", sd_lists_size (insn, types));
|
||
|
||
if (flags & DUMP_LISTS_DEPS)
|
||
{
|
||
FOR_EACH_DEP (insn, types, sd_it, dep)
|
||
{
|
||
dump_dep (dump, dep, dump_dep_flags | all);
|
||
fprintf (dump, " ");
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Dump all information about deps_lists of INSN specified by TYPES
|
||
to STDERR. */
|
||
void
|
||
sd_debug_lists (rtx insn, sd_list_types_def types)
|
||
{
|
||
dump_lists (stderr, insn, types, 1);
|
||
fprintf (stderr, "\n");
|
||
}
|
||
|
||
/* A wrapper around add_dependence_1, to add a dependence of CON on
|
||
PRO, with type DEP_TYPE. This function implements special handling
|
||
for REG_DEP_CONTROL dependencies. For these, we optionally promote
|
||
the type to REG_DEP_ANTI if we can determine that predication is
|
||
impossible; otherwise we add additional true dependencies on the
|
||
INSN_COND_DEPS list of the jump (which PRO must be). */
|
||
void
|
||
add_dependence (rtx_insn *con, rtx_insn *pro, enum reg_note dep_type)
|
||
{
|
||
if (dep_type == REG_DEP_CONTROL
|
||
&& !(current_sched_info->flags & DO_PREDICATION))
|
||
dep_type = REG_DEP_ANTI;
|
||
|
||
/* A REG_DEP_CONTROL dependence may be eliminated through predication,
|
||
so we must also make the insn dependent on the setter of the
|
||
condition. */
|
||
if (dep_type == REG_DEP_CONTROL)
|
||
{
|
||
rtx_insn *real_pro = pro;
|
||
rtx_insn *other = real_insn_for_shadow (real_pro);
|
||
rtx cond;
|
||
|
||
if (other != NULL_RTX)
|
||
real_pro = other;
|
||
cond = sched_get_reverse_condition_uncached (real_pro);
|
||
/* Verify that the insn does not use a different value in
|
||
the condition register than the one that was present at
|
||
the jump. */
|
||
if (cond == NULL_RTX)
|
||
dep_type = REG_DEP_ANTI;
|
||
else if (INSN_CACHED_COND (real_pro) == const_true_rtx)
|
||
{
|
||
HARD_REG_SET uses;
|
||
CLEAR_HARD_REG_SET (uses);
|
||
note_uses (&PATTERN (con), record_hard_reg_uses, &uses);
|
||
if (TEST_HARD_REG_BIT (uses, REGNO (XEXP (cond, 0))))
|
||
dep_type = REG_DEP_ANTI;
|
||
}
|
||
if (dep_type == REG_DEP_CONTROL)
|
||
{
|
||
if (sched_verbose >= 5)
|
||
fprintf (sched_dump, "making DEP_CONTROL for %d\n",
|
||
INSN_UID (real_pro));
|
||
add_dependence_list (con, INSN_COND_DEPS (real_pro), 0,
|
||
REG_DEP_TRUE, false);
|
||
}
|
||
}
|
||
|
||
add_dependence_1 (con, pro, dep_type);
|
||
}
|
||
|
||
/* A convenience wrapper to operate on an entire list. HARD should be
|
||
true if DEP_NONREG should be set on newly created dependencies. */
|
||
|
||
static void
|
||
add_dependence_list (rtx_insn *insn, rtx_insn_list *list, int uncond,
|
||
enum reg_note dep_type, bool hard)
|
||
{
|
||
mark_as_hard = hard;
|
||
for (; list; list = list->next ())
|
||
{
|
||
if (uncond || ! sched_insns_conditions_mutex_p (insn, list->insn ()))
|
||
add_dependence (insn, list->insn (), dep_type);
|
||
}
|
||
mark_as_hard = false;
|
||
}
|
||
|
||
/* Similar, but free *LISTP at the same time, when the context
|
||
is not readonly. HARD should be true if DEP_NONREG should be set on
|
||
newly created dependencies. */
|
||
|
||
static void
|
||
add_dependence_list_and_free (struct deps_desc *deps, rtx_insn *insn,
|
||
rtx_insn_list **listp,
|
||
int uncond, enum reg_note dep_type, bool hard)
|
||
{
|
||
add_dependence_list (insn, *listp, uncond, dep_type, hard);
|
||
|
||
/* We don't want to short-circuit dependencies involving debug
|
||
insns, because they may cause actual dependencies to be
|
||
disregarded. */
|
||
if (deps->readonly || DEBUG_INSN_P (insn))
|
||
return;
|
||
|
||
free_INSN_LIST_list (listp);
|
||
}
|
||
|
||
/* Remove all occurrences of INSN from LIST. Return the number of
|
||
occurrences removed. */
|
||
|
||
static int
|
||
remove_from_dependence_list (rtx_insn *insn, rtx_insn_list **listp)
|
||
{
|
||
int removed = 0;
|
||
|
||
while (*listp)
|
||
{
|
||
if ((*listp)->insn () == insn)
|
||
{
|
||
remove_free_INSN_LIST_node (listp);
|
||
removed++;
|
||
continue;
|
||
}
|
||
|
||
listp = (rtx_insn_list **)&XEXP (*listp, 1);
|
||
}
|
||
|
||
return removed;
|
||
}
|
||
|
||
/* Same as above, but process two lists at once. */
|
||
static int
|
||
remove_from_both_dependence_lists (rtx_insn *insn,
|
||
rtx_insn_list **listp,
|
||
rtx_expr_list **exprp)
|
||
{
|
||
int removed = 0;
|
||
|
||
while (*listp)
|
||
{
|
||
if (XEXP (*listp, 0) == insn)
|
||
{
|
||
remove_free_INSN_LIST_node (listp);
|
||
remove_free_EXPR_LIST_node (exprp);
|
||
removed++;
|
||
continue;
|
||
}
|
||
|
||
listp = (rtx_insn_list **)&XEXP (*listp, 1);
|
||
exprp = (rtx_expr_list **)&XEXP (*exprp, 1);
|
||
}
|
||
|
||
return removed;
|
||
}
|
||
|
||
/* Clear all dependencies for an insn. */
|
||
static void
|
||
delete_all_dependences (rtx_insn *insn)
|
||
{
|
||
sd_iterator_def sd_it;
|
||
dep_t dep;
|
||
|
||
/* The below cycle can be optimized to clear the caches and back_deps
|
||
in one call but that would provoke duplication of code from
|
||
delete_dep (). */
|
||
|
||
for (sd_it = sd_iterator_start (insn, SD_LIST_BACK);
|
||
sd_iterator_cond (&sd_it, &dep);)
|
||
sd_delete_dep (sd_it);
|
||
}
|
||
|
||
/* All insns in a scheduling group except the first should only have
|
||
dependencies on the previous insn in the group. So we find the
|
||
first instruction in the scheduling group by walking the dependence
|
||
chains backwards. Then we add the dependencies for the group to
|
||
the previous nonnote insn. */
|
||
|
||
static void
|
||
chain_to_prev_insn (rtx_insn *insn)
|
||
{
|
||
sd_iterator_def sd_it;
|
||
dep_t dep;
|
||
rtx_insn *prev_nonnote;
|
||
|
||
FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
|
||
{
|
||
rtx_insn *i = insn;
|
||
rtx_insn *pro = DEP_PRO (dep);
|
||
|
||
do
|
||
{
|
||
i = prev_nonnote_insn (i);
|
||
|
||
if (pro == i)
|
||
goto next_link;
|
||
} while (SCHED_GROUP_P (i) || DEBUG_INSN_P (i));
|
||
|
||
if (! sched_insns_conditions_mutex_p (i, pro))
|
||
add_dependence (i, pro, DEP_TYPE (dep));
|
||
next_link:;
|
||
}
|
||
|
||
delete_all_dependences (insn);
|
||
|
||
prev_nonnote = prev_nonnote_nondebug_insn (insn);
|
||
if (BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (prev_nonnote)
|
||
&& ! sched_insns_conditions_mutex_p (insn, prev_nonnote))
|
||
add_dependence (insn, prev_nonnote, REG_DEP_ANTI);
|
||
}
|
||
|
||
/* Process an insn's memory dependencies. There are four kinds of
|
||
dependencies:
|
||
|
||
(0) read dependence: read follows read
|
||
(1) true dependence: read follows write
|
||
(2) output dependence: write follows write
|
||
(3) anti dependence: write follows read
|
||
|
||
We are careful to build only dependencies which actually exist, and
|
||
use transitivity to avoid building too many links. */
|
||
|
||
/* Add an INSN and MEM reference pair to a pending INSN_LIST and MEM_LIST.
|
||
The MEM is a memory reference contained within INSN, which we are saving
|
||
so that we can do memory aliasing on it. */
|
||
|
||
static void
|
||
add_insn_mem_dependence (struct deps_desc *deps, bool read_p,
|
||
rtx_insn *insn, rtx mem)
|
||
{
|
||
rtx_insn_list **insn_list;
|
||
rtx_insn_list *insn_node;
|
||
rtx_expr_list **mem_list;
|
||
rtx_expr_list *mem_node;
|
||
|
||
gcc_assert (!deps->readonly);
|
||
if (read_p)
|
||
{
|
||
insn_list = &deps->pending_read_insns;
|
||
mem_list = &deps->pending_read_mems;
|
||
if (!DEBUG_INSN_P (insn))
|
||
deps->pending_read_list_length++;
|
||
}
|
||
else
|
||
{
|
||
insn_list = &deps->pending_write_insns;
|
||
mem_list = &deps->pending_write_mems;
|
||
deps->pending_write_list_length++;
|
||
}
|
||
|
||
insn_node = alloc_INSN_LIST (insn, *insn_list);
|
||
*insn_list = insn_node;
|
||
|
||
if (sched_deps_info->use_cselib)
|
||
{
|
||
mem = shallow_copy_rtx (mem);
|
||
XEXP (mem, 0) = cselib_subst_to_values_from_insn (XEXP (mem, 0),
|
||
GET_MODE (mem), insn);
|
||
}
|
||
mem_node = alloc_EXPR_LIST (VOIDmode, canon_rtx (mem), *mem_list);
|
||
*mem_list = mem_node;
|
||
}
|
||
|
||
/* Make a dependency between every memory reference on the pending lists
|
||
and INSN, thus flushing the pending lists. FOR_READ is true if emitting
|
||
dependencies for a read operation, similarly with FOR_WRITE. */
|
||
|
||
static void
|
||
flush_pending_lists (struct deps_desc *deps, rtx_insn *insn, int for_read,
|
||
int for_write)
|
||
{
|
||
if (for_write)
|
||
{
|
||
add_dependence_list_and_free (deps, insn, &deps->pending_read_insns,
|
||
1, REG_DEP_ANTI, true);
|
||
if (!deps->readonly)
|
||
{
|
||
free_EXPR_LIST_list (&deps->pending_read_mems);
|
||
deps->pending_read_list_length = 0;
|
||
}
|
||
}
|
||
|
||
add_dependence_list_and_free (deps, insn, &deps->pending_write_insns, 1,
|
||
for_read ? REG_DEP_ANTI : REG_DEP_OUTPUT,
|
||
true);
|
||
|
||
add_dependence_list_and_free (deps, insn,
|
||
&deps->last_pending_memory_flush, 1,
|
||
for_read ? REG_DEP_ANTI : REG_DEP_OUTPUT,
|
||
true);
|
||
|
||
add_dependence_list_and_free (deps, insn, &deps->pending_jump_insns, 1,
|
||
REG_DEP_ANTI, true);
|
||
|
||
if (DEBUG_INSN_P (insn))
|
||
{
|
||
if (for_write)
|
||
free_INSN_LIST_list (&deps->pending_read_insns);
|
||
free_INSN_LIST_list (&deps->pending_write_insns);
|
||
free_INSN_LIST_list (&deps->last_pending_memory_flush);
|
||
free_INSN_LIST_list (&deps->pending_jump_insns);
|
||
}
|
||
|
||
if (!deps->readonly)
|
||
{
|
||
free_EXPR_LIST_list (&deps->pending_write_mems);
|
||
deps->pending_write_list_length = 0;
|
||
|
||
deps->last_pending_memory_flush = alloc_INSN_LIST (insn, NULL_RTX);
|
||
deps->pending_flush_length = 1;
|
||
}
|
||
mark_as_hard = false;
|
||
}
|
||
|
||
/* Instruction which dependencies we are analyzing. */
|
||
static rtx_insn *cur_insn = NULL;
|
||
|
||
/* Implement hooks for haifa scheduler. */
|
||
|
||
static void
|
||
haifa_start_insn (rtx_insn *insn)
|
||
{
|
||
gcc_assert (insn && !cur_insn);
|
||
|
||
cur_insn = insn;
|
||
}
|
||
|
||
static void
|
||
haifa_finish_insn (void)
|
||
{
|
||
cur_insn = NULL;
|
||
}
|
||
|
||
void
|
||
haifa_note_reg_set (int regno)
|
||
{
|
||
SET_REGNO_REG_SET (reg_pending_sets, regno);
|
||
}
|
||
|
||
void
|
||
haifa_note_reg_clobber (int regno)
|
||
{
|
||
SET_REGNO_REG_SET (reg_pending_clobbers, regno);
|
||
}
|
||
|
||
void
|
||
haifa_note_reg_use (int regno)
|
||
{
|
||
SET_REGNO_REG_SET (reg_pending_uses, regno);
|
||
}
|
||
|
||
static void
|
||
haifa_note_mem_dep (rtx mem, rtx pending_mem, rtx_insn *pending_insn, ds_t ds)
|
||
{
|
||
if (!(ds & SPECULATIVE))
|
||
{
|
||
mem = NULL_RTX;
|
||
pending_mem = NULL_RTX;
|
||
}
|
||
else
|
||
gcc_assert (ds & BEGIN_DATA);
|
||
|
||
{
|
||
dep_def _dep, *dep = &_dep;
|
||
|
||
init_dep_1 (dep, pending_insn, cur_insn, ds_to_dt (ds),
|
||
current_sched_info->flags & USE_DEPS_LIST ? ds : 0);
|
||
DEP_NONREG (dep) = 1;
|
||
maybe_add_or_update_dep_1 (dep, false, pending_mem, mem);
|
||
}
|
||
|
||
}
|
||
|
||
static void
|
||
haifa_note_dep (rtx_insn *elem, ds_t ds)
|
||
{
|
||
dep_def _dep;
|
||
dep_t dep = &_dep;
|
||
|
||
init_dep (dep, elem, cur_insn, ds_to_dt (ds));
|
||
if (mark_as_hard)
|
||
DEP_NONREG (dep) = 1;
|
||
maybe_add_or_update_dep_1 (dep, false, NULL_RTX, NULL_RTX);
|
||
}
|
||
|
||
static void
|
||
note_reg_use (int r)
|
||
{
|
||
if (sched_deps_info->note_reg_use)
|
||
sched_deps_info->note_reg_use (r);
|
||
}
|
||
|
||
static void
|
||
note_reg_set (int r)
|
||
{
|
||
if (sched_deps_info->note_reg_set)
|
||
sched_deps_info->note_reg_set (r);
|
||
}
|
||
|
||
static void
|
||
note_reg_clobber (int r)
|
||
{
|
||
if (sched_deps_info->note_reg_clobber)
|
||
sched_deps_info->note_reg_clobber (r);
|
||
}
|
||
|
||
static void
|
||
note_mem_dep (rtx m1, rtx m2, rtx_insn *e, ds_t ds)
|
||
{
|
||
if (sched_deps_info->note_mem_dep)
|
||
sched_deps_info->note_mem_dep (m1, m2, e, ds);
|
||
}
|
||
|
||
static void
|
||
note_dep (rtx_insn *e, ds_t ds)
|
||
{
|
||
if (sched_deps_info->note_dep)
|
||
sched_deps_info->note_dep (e, ds);
|
||
}
|
||
|
||
/* Return corresponding to DS reg_note. */
|
||
enum reg_note
|
||
ds_to_dt (ds_t ds)
|
||
{
|
||
if (ds & DEP_TRUE)
|
||
return REG_DEP_TRUE;
|
||
else if (ds & DEP_OUTPUT)
|
||
return REG_DEP_OUTPUT;
|
||
else if (ds & DEP_ANTI)
|
||
return REG_DEP_ANTI;
|
||
else
|
||
{
|
||
gcc_assert (ds & DEP_CONTROL);
|
||
return REG_DEP_CONTROL;
|
||
}
|
||
}
|
||
|
||
|
||
|
||
/* Functions for computation of info needed for register pressure
|
||
sensitive insn scheduling. */
|
||
|
||
|
||
/* Allocate and return reg_use_data structure for REGNO and INSN. */
|
||
static struct reg_use_data *
|
||
create_insn_reg_use (int regno, rtx_insn *insn)
|
||
{
|
||
struct reg_use_data *use;
|
||
|
||
use = (struct reg_use_data *) xmalloc (sizeof (struct reg_use_data));
|
||
use->regno = regno;
|
||
use->insn = insn;
|
||
use->next_insn_use = INSN_REG_USE_LIST (insn);
|
||
INSN_REG_USE_LIST (insn) = use;
|
||
return use;
|
||
}
|
||
|
||
/* Allocate reg_set_data structure for REGNO and INSN. */
|
||
static void
|
||
create_insn_reg_set (int regno, rtx insn)
|
||
{
|
||
struct reg_set_data *set;
|
||
|
||
set = (struct reg_set_data *) xmalloc (sizeof (struct reg_set_data));
|
||
set->regno = regno;
|
||
set->insn = insn;
|
||
set->next_insn_set = INSN_REG_SET_LIST (insn);
|
||
INSN_REG_SET_LIST (insn) = set;
|
||
}
|
||
|
||
/* Set up insn register uses for INSN and dependency context DEPS. */
|
||
static void
|
||
setup_insn_reg_uses (struct deps_desc *deps, rtx_insn *insn)
|
||
{
|
||
unsigned i;
|
||
reg_set_iterator rsi;
|
||
struct reg_use_data *use, *use2, *next;
|
||
struct deps_reg *reg_last;
|
||
|
||
EXECUTE_IF_SET_IN_REG_SET (reg_pending_uses, 0, i, rsi)
|
||
{
|
||
if (i < FIRST_PSEUDO_REGISTER
|
||
&& TEST_HARD_REG_BIT (ira_no_alloc_regs, i))
|
||
continue;
|
||
|
||
if (find_regno_note (insn, REG_DEAD, i) == NULL_RTX
|
||
&& ! REGNO_REG_SET_P (reg_pending_sets, i)
|
||
&& ! REGNO_REG_SET_P (reg_pending_clobbers, i))
|
||
/* Ignore use which is not dying. */
|
||
continue;
|
||
|
||
use = create_insn_reg_use (i, insn);
|
||
use->next_regno_use = use;
|
||
reg_last = &deps->reg_last[i];
|
||
|
||
/* Create the cycle list of uses. */
|
||
for (rtx_insn_list *list = reg_last->uses; list; list = list->next ())
|
||
{
|
||
use2 = create_insn_reg_use (i, list->insn ());
|
||
next = use->next_regno_use;
|
||
use->next_regno_use = use2;
|
||
use2->next_regno_use = next;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Register pressure info for the currently processed insn. */
|
||
static struct reg_pressure_data reg_pressure_info[N_REG_CLASSES];
|
||
|
||
/* Return TRUE if INSN has the use structure for REGNO. */
|
||
static bool
|
||
insn_use_p (rtx insn, int regno)
|
||
{
|
||
struct reg_use_data *use;
|
||
|
||
for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
|
||
if (use->regno == regno)
|
||
return true;
|
||
return false;
|
||
}
|
||
|
||
/* Update the register pressure info after birth of pseudo register REGNO
|
||
in INSN. Arguments CLOBBER_P and UNUSED_P say correspondingly that
|
||
the register is in clobber or unused after the insn. */
|
||
static void
|
||
mark_insn_pseudo_birth (rtx insn, int regno, bool clobber_p, bool unused_p)
|
||
{
|
||
int incr, new_incr;
|
||
enum reg_class cl;
|
||
|
||
gcc_assert (regno >= FIRST_PSEUDO_REGISTER);
|
||
cl = sched_regno_pressure_class[regno];
|
||
if (cl != NO_REGS)
|
||
{
|
||
incr = ira_reg_class_max_nregs[cl][PSEUDO_REGNO_MODE (regno)];
|
||
if (clobber_p)
|
||
{
|
||
new_incr = reg_pressure_info[cl].clobber_increase + incr;
|
||
reg_pressure_info[cl].clobber_increase = new_incr;
|
||
}
|
||
else if (unused_p)
|
||
{
|
||
new_incr = reg_pressure_info[cl].unused_set_increase + incr;
|
||
reg_pressure_info[cl].unused_set_increase = new_incr;
|
||
}
|
||
else
|
||
{
|
||
new_incr = reg_pressure_info[cl].set_increase + incr;
|
||
reg_pressure_info[cl].set_increase = new_incr;
|
||
if (! insn_use_p (insn, regno))
|
||
reg_pressure_info[cl].change += incr;
|
||
create_insn_reg_set (regno, insn);
|
||
}
|
||
gcc_assert (new_incr < (1 << INCREASE_BITS));
|
||
}
|
||
}
|
||
|
||
/* Like mark_insn_pseudo_regno_birth except that NREGS saying how many
|
||
hard registers involved in the birth. */
|
||
static void
|
||
mark_insn_hard_regno_birth (rtx insn, int regno, int nregs,
|
||
bool clobber_p, bool unused_p)
|
||
{
|
||
enum reg_class cl;
|
||
int new_incr, last = regno + nregs;
|
||
|
||
while (regno < last)
|
||
{
|
||
gcc_assert (regno < FIRST_PSEUDO_REGISTER);
|
||
if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
|
||
{
|
||
cl = sched_regno_pressure_class[regno];
|
||
if (cl != NO_REGS)
|
||
{
|
||
if (clobber_p)
|
||
{
|
||
new_incr = reg_pressure_info[cl].clobber_increase + 1;
|
||
reg_pressure_info[cl].clobber_increase = new_incr;
|
||
}
|
||
else if (unused_p)
|
||
{
|
||
new_incr = reg_pressure_info[cl].unused_set_increase + 1;
|
||
reg_pressure_info[cl].unused_set_increase = new_incr;
|
||
}
|
||
else
|
||
{
|
||
new_incr = reg_pressure_info[cl].set_increase + 1;
|
||
reg_pressure_info[cl].set_increase = new_incr;
|
||
if (! insn_use_p (insn, regno))
|
||
reg_pressure_info[cl].change += 1;
|
||
create_insn_reg_set (regno, insn);
|
||
}
|
||
gcc_assert (new_incr < (1 << INCREASE_BITS));
|
||
}
|
||
}
|
||
regno++;
|
||
}
|
||
}
|
||
|
||
/* Update the register pressure info after birth of pseudo or hard
|
||
register REG in INSN. Arguments CLOBBER_P and UNUSED_P say
|
||
correspondingly that the register is in clobber or unused after the
|
||
insn. */
|
||
static void
|
||
mark_insn_reg_birth (rtx insn, rtx reg, bool clobber_p, bool unused_p)
|
||
{
|
||
int regno;
|
||
|
||
if (GET_CODE (reg) == SUBREG)
|
||
reg = SUBREG_REG (reg);
|
||
|
||
if (! REG_P (reg))
|
||
return;
|
||
|
||
regno = REGNO (reg);
|
||
if (regno < FIRST_PSEUDO_REGISTER)
|
||
mark_insn_hard_regno_birth (insn, regno, REG_NREGS (reg),
|
||
clobber_p, unused_p);
|
||
else
|
||
mark_insn_pseudo_birth (insn, regno, clobber_p, unused_p);
|
||
}
|
||
|
||
/* Update the register pressure info after death of pseudo register
|
||
REGNO. */
|
||
static void
|
||
mark_pseudo_death (int regno)
|
||
{
|
||
int incr;
|
||
enum reg_class cl;
|
||
|
||
gcc_assert (regno >= FIRST_PSEUDO_REGISTER);
|
||
cl = sched_regno_pressure_class[regno];
|
||
if (cl != NO_REGS)
|
||
{
|
||
incr = ira_reg_class_max_nregs[cl][PSEUDO_REGNO_MODE (regno)];
|
||
reg_pressure_info[cl].change -= incr;
|
||
}
|
||
}
|
||
|
||
/* Like mark_pseudo_death except that NREGS saying how many hard
|
||
registers involved in the death. */
|
||
static void
|
||
mark_hard_regno_death (int regno, int nregs)
|
||
{
|
||
enum reg_class cl;
|
||
int last = regno + nregs;
|
||
|
||
while (regno < last)
|
||
{
|
||
gcc_assert (regno < FIRST_PSEUDO_REGISTER);
|
||
if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
|
||
{
|
||
cl = sched_regno_pressure_class[regno];
|
||
if (cl != NO_REGS)
|
||
reg_pressure_info[cl].change -= 1;
|
||
}
|
||
regno++;
|
||
}
|
||
}
|
||
|
||
/* Update the register pressure info after death of pseudo or hard
|
||
register REG. */
|
||
static void
|
||
mark_reg_death (rtx reg)
|
||
{
|
||
int regno;
|
||
|
||
if (GET_CODE (reg) == SUBREG)
|
||
reg = SUBREG_REG (reg);
|
||
|
||
if (! REG_P (reg))
|
||
return;
|
||
|
||
regno = REGNO (reg);
|
||
if (regno < FIRST_PSEUDO_REGISTER)
|
||
mark_hard_regno_death (regno, REG_NREGS (reg));
|
||
else
|
||
mark_pseudo_death (regno);
|
||
}
|
||
|
||
/* Process SETTER of REG. DATA is an insn containing the setter. */
|
||
static void
|
||
mark_insn_reg_store (rtx reg, const_rtx setter, void *data)
|
||
{
|
||
if (setter != NULL_RTX && GET_CODE (setter) != SET)
|
||
return;
|
||
mark_insn_reg_birth
|
||
((rtx) data, reg, false,
|
||
find_reg_note ((const_rtx) data, REG_UNUSED, reg) != NULL_RTX);
|
||
}
|
||
|
||
/* Like mark_insn_reg_store except notice just CLOBBERs; ignore SETs. */
|
||
static void
|
||
mark_insn_reg_clobber (rtx reg, const_rtx setter, void *data)
|
||
{
|
||
if (GET_CODE (setter) == CLOBBER)
|
||
mark_insn_reg_birth ((rtx) data, reg, true, false);
|
||
}
|
||
|
||
/* Set up reg pressure info related to INSN. */
|
||
void
|
||
init_insn_reg_pressure_info (rtx_insn *insn)
|
||
{
|
||
int i, len;
|
||
enum reg_class cl;
|
||
static struct reg_pressure_data *pressure_info;
|
||
rtx link;
|
||
|
||
gcc_assert (sched_pressure != SCHED_PRESSURE_NONE);
|
||
|
||
if (! INSN_P (insn))
|
||
return;
|
||
|
||
for (i = 0; i < ira_pressure_classes_num; i++)
|
||
{
|
||
cl = ira_pressure_classes[i];
|
||
reg_pressure_info[cl].clobber_increase = 0;
|
||
reg_pressure_info[cl].set_increase = 0;
|
||
reg_pressure_info[cl].unused_set_increase = 0;
|
||
reg_pressure_info[cl].change = 0;
|
||
}
|
||
|
||
note_stores (PATTERN (insn), mark_insn_reg_clobber, insn);
|
||
|
||
note_stores (PATTERN (insn), mark_insn_reg_store, insn);
|
||
|
||
if (AUTO_INC_DEC)
|
||
for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
|
||
if (REG_NOTE_KIND (link) == REG_INC)
|
||
mark_insn_reg_store (XEXP (link, 0), NULL_RTX, insn);
|
||
|
||
for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
|
||
if (REG_NOTE_KIND (link) == REG_DEAD)
|
||
mark_reg_death (XEXP (link, 0));
|
||
|
||
len = sizeof (struct reg_pressure_data) * ira_pressure_classes_num;
|
||
pressure_info
|
||
= INSN_REG_PRESSURE (insn) = (struct reg_pressure_data *) xmalloc (len);
|
||
if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
|
||
INSN_MAX_REG_PRESSURE (insn) = (int *) xcalloc (ira_pressure_classes_num
|
||
* sizeof (int), 1);
|
||
for (i = 0; i < ira_pressure_classes_num; i++)
|
||
{
|
||
cl = ira_pressure_classes[i];
|
||
pressure_info[i].clobber_increase
|
||
= reg_pressure_info[cl].clobber_increase;
|
||
pressure_info[i].set_increase = reg_pressure_info[cl].set_increase;
|
||
pressure_info[i].unused_set_increase
|
||
= reg_pressure_info[cl].unused_set_increase;
|
||
pressure_info[i].change = reg_pressure_info[cl].change;
|
||
}
|
||
}
|
||
|
||
|
||
|
||
|
||
/* Internal variable for sched_analyze_[12] () functions.
|
||
If it is nonzero, this means that sched_analyze_[12] looks
|
||
at the most toplevel SET. */
|
||
static bool can_start_lhs_rhs_p;
|
||
|
||
/* Extend reg info for the deps context DEPS given that
|
||
we have just generated a register numbered REGNO. */
|
||
static void
|
||
extend_deps_reg_info (struct deps_desc *deps, int regno)
|
||
{
|
||
int max_regno = regno + 1;
|
||
|
||
gcc_assert (!reload_completed);
|
||
|
||
/* In a readonly context, it would not hurt to extend info,
|
||
but it should not be needed. */
|
||
if (reload_completed && deps->readonly)
|
||
{
|
||
deps->max_reg = max_regno;
|
||
return;
|
||
}
|
||
|
||
if (max_regno > deps->max_reg)
|
||
{
|
||
deps->reg_last = XRESIZEVEC (struct deps_reg, deps->reg_last,
|
||
max_regno);
|
||
memset (&deps->reg_last[deps->max_reg],
|
||
0, (max_regno - deps->max_reg)
|
||
* sizeof (struct deps_reg));
|
||
deps->max_reg = max_regno;
|
||
}
|
||
}
|
||
|
||
/* Extends REG_INFO_P if needed. */
|
||
void
|
||
maybe_extend_reg_info_p (void)
|
||
{
|
||
/* Extend REG_INFO_P, if needed. */
|
||
if ((unsigned int)max_regno - 1 >= reg_info_p_size)
|
||
{
|
||
size_t new_reg_info_p_size = max_regno + 128;
|
||
|
||
gcc_assert (!reload_completed && sel_sched_p ());
|
||
|
||
reg_info_p = (struct reg_info_t *) xrecalloc (reg_info_p,
|
||
new_reg_info_p_size,
|
||
reg_info_p_size,
|
||
sizeof (*reg_info_p));
|
||
reg_info_p_size = new_reg_info_p_size;
|
||
}
|
||
}
|
||
|
||
/* Analyze a single reference to register (reg:MODE REGNO) in INSN.
|
||
The type of the reference is specified by REF and can be SET,
|
||
CLOBBER, PRE_DEC, POST_DEC, PRE_INC, POST_INC or USE. */
|
||
|
||
static void
|
||
sched_analyze_reg (struct deps_desc *deps, int regno, machine_mode mode,
|
||
enum rtx_code ref, rtx_insn *insn)
|
||
{
|
||
/* We could emit new pseudos in renaming. Extend the reg structures. */
|
||
if (!reload_completed && sel_sched_p ()
|
||
&& (regno >= max_reg_num () - 1 || regno >= deps->max_reg))
|
||
extend_deps_reg_info (deps, regno);
|
||
|
||
maybe_extend_reg_info_p ();
|
||
|
||
/* A hard reg in a wide mode may really be multiple registers.
|
||
If so, mark all of them just like the first. */
|
||
if (regno < FIRST_PSEUDO_REGISTER)
|
||
{
|
||
int i = hard_regno_nregs[regno][mode];
|
||
if (ref == SET)
|
||
{
|
||
while (--i >= 0)
|
||
note_reg_set (regno + i);
|
||
}
|
||
else if (ref == USE)
|
||
{
|
||
while (--i >= 0)
|
||
note_reg_use (regno + i);
|
||
}
|
||
else
|
||
{
|
||
while (--i >= 0)
|
||
note_reg_clobber (regno + i);
|
||
}
|
||
}
|
||
|
||
/* ??? Reload sometimes emits USEs and CLOBBERs of pseudos that
|
||
it does not reload. Ignore these as they have served their
|
||
purpose already. */
|
||
else if (regno >= deps->max_reg)
|
||
{
|
||
enum rtx_code code = GET_CODE (PATTERN (insn));
|
||
gcc_assert (code == USE || code == CLOBBER);
|
||
}
|
||
|
||
else
|
||
{
|
||
if (ref == SET)
|
||
note_reg_set (regno);
|
||
else if (ref == USE)
|
||
note_reg_use (regno);
|
||
else
|
||
note_reg_clobber (regno);
|
||
|
||
/* Pseudos that are REG_EQUIV to something may be replaced
|
||
by that during reloading. We need only add dependencies for
|
||
the address in the REG_EQUIV note. */
|
||
if (!reload_completed && get_reg_known_equiv_p (regno))
|
||
{
|
||
rtx t = get_reg_known_value (regno);
|
||
if (MEM_P (t))
|
||
sched_analyze_2 (deps, XEXP (t, 0), insn);
|
||
}
|
||
|
||
/* Don't let it cross a call after scheduling if it doesn't
|
||
already cross one. */
|
||
if (REG_N_CALLS_CROSSED (regno) == 0)
|
||
{
|
||
if (!deps->readonly && ref == USE && !DEBUG_INSN_P (insn))
|
||
deps->sched_before_next_call
|
||
= alloc_INSN_LIST (insn, deps->sched_before_next_call);
|
||
else
|
||
add_dependence_list (insn, deps->last_function_call, 1,
|
||
REG_DEP_ANTI, false);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Analyze a single SET, CLOBBER, PRE_DEC, POST_DEC, PRE_INC or POST_INC
|
||
rtx, X, creating all dependencies generated by the write to the
|
||
destination of X, and reads of everything mentioned. */
|
||
|
||
static void
|
||
sched_analyze_1 (struct deps_desc *deps, rtx x, rtx_insn *insn)
|
||
{
|
||
rtx dest = XEXP (x, 0);
|
||
enum rtx_code code = GET_CODE (x);
|
||
bool cslr_p = can_start_lhs_rhs_p;
|
||
|
||
can_start_lhs_rhs_p = false;
|
||
|
||
gcc_assert (dest);
|
||
if (dest == 0)
|
||
return;
|
||
|
||
if (cslr_p && sched_deps_info->start_lhs)
|
||
sched_deps_info->start_lhs (dest);
|
||
|
||
if (GET_CODE (dest) == PARALLEL)
|
||
{
|
||
int i;
|
||
|
||
for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
|
||
if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
|
||
sched_analyze_1 (deps,
|
||
gen_rtx_CLOBBER (VOIDmode,
|
||
XEXP (XVECEXP (dest, 0, i), 0)),
|
||
insn);
|
||
|
||
if (cslr_p && sched_deps_info->finish_lhs)
|
||
sched_deps_info->finish_lhs ();
|
||
|
||
if (code == SET)
|
||
{
|
||
can_start_lhs_rhs_p = cslr_p;
|
||
|
||
sched_analyze_2 (deps, SET_SRC (x), insn);
|
||
|
||
can_start_lhs_rhs_p = false;
|
||
}
|
||
|
||
return;
|
||
}
|
||
|
||
while (GET_CODE (dest) == STRICT_LOW_PART || GET_CODE (dest) == SUBREG
|
||
|| GET_CODE (dest) == ZERO_EXTRACT)
|
||
{
|
||
if (GET_CODE (dest) == STRICT_LOW_PART
|
||
|| GET_CODE (dest) == ZERO_EXTRACT
|
||
|| df_read_modify_subreg_p (dest))
|
||
{
|
||
/* These both read and modify the result. We must handle
|
||
them as writes to get proper dependencies for following
|
||
instructions. We must handle them as reads to get proper
|
||
dependencies from this to previous instructions.
|
||
Thus we need to call sched_analyze_2. */
|
||
|
||
sched_analyze_2 (deps, XEXP (dest, 0), insn);
|
||
}
|
||
if (GET_CODE (dest) == ZERO_EXTRACT)
|
||
{
|
||
/* The second and third arguments are values read by this insn. */
|
||
sched_analyze_2 (deps, XEXP (dest, 1), insn);
|
||
sched_analyze_2 (deps, XEXP (dest, 2), insn);
|
||
}
|
||
dest = XEXP (dest, 0);
|
||
}
|
||
|
||
if (REG_P (dest))
|
||
{
|
||
int regno = REGNO (dest);
|
||
machine_mode mode = GET_MODE (dest);
|
||
|
||
sched_analyze_reg (deps, regno, mode, code, insn);
|
||
|
||
#ifdef STACK_REGS
|
||
/* Treat all writes to a stack register as modifying the TOS. */
|
||
if (regno >= FIRST_STACK_REG && regno <= LAST_STACK_REG)
|
||
{
|
||
/* Avoid analyzing the same register twice. */
|
||
if (regno != FIRST_STACK_REG)
|
||
sched_analyze_reg (deps, FIRST_STACK_REG, mode, code, insn);
|
||
|
||
add_to_hard_reg_set (&implicit_reg_pending_uses, mode,
|
||
FIRST_STACK_REG);
|
||
}
|
||
#endif
|
||
}
|
||
else if (MEM_P (dest))
|
||
{
|
||
/* Writing memory. */
|
||
rtx t = dest;
|
||
|
||
if (sched_deps_info->use_cselib)
|
||
{
|
||
machine_mode address_mode = get_address_mode (dest);
|
||
|
||
t = shallow_copy_rtx (dest);
|
||
cselib_lookup_from_insn (XEXP (t, 0), address_mode, 1,
|
||
GET_MODE (t), insn);
|
||
XEXP (t, 0)
|
||
= cselib_subst_to_values_from_insn (XEXP (t, 0), GET_MODE (t),
|
||
insn);
|
||
}
|
||
t = canon_rtx (t);
|
||
|
||
/* Pending lists can't get larger with a readonly context. */
|
||
if (!deps->readonly
|
||
&& ((deps->pending_read_list_length + deps->pending_write_list_length)
|
||
>= MAX_PENDING_LIST_LENGTH))
|
||
{
|
||
/* Flush all pending reads and writes to prevent the pending lists
|
||
from getting any larger. Insn scheduling runs too slowly when
|
||
these lists get long. When compiling GCC with itself,
|
||
this flush occurs 8 times for sparc, and 10 times for m88k using
|
||
the default value of 32. */
|
||
flush_pending_lists (deps, insn, false, true);
|
||
}
|
||
else
|
||
{
|
||
rtx_insn_list *pending;
|
||
rtx_expr_list *pending_mem;
|
||
|
||
pending = deps->pending_read_insns;
|
||
pending_mem = deps->pending_read_mems;
|
||
while (pending)
|
||
{
|
||
if (anti_dependence (pending_mem->element (), t)
|
||
&& ! sched_insns_conditions_mutex_p (insn, pending->insn ()))
|
||
note_mem_dep (t, pending_mem->element (), pending->insn (),
|
||
DEP_ANTI);
|
||
|
||
pending = pending->next ();
|
||
pending_mem = pending_mem->next ();
|
||
}
|
||
|
||
pending = deps->pending_write_insns;
|
||
pending_mem = deps->pending_write_mems;
|
||
while (pending)
|
||
{
|
||
if (output_dependence (pending_mem->element (), t)
|
||
&& ! sched_insns_conditions_mutex_p (insn, pending->insn ()))
|
||
note_mem_dep (t, pending_mem->element (),
|
||
pending->insn (),
|
||
DEP_OUTPUT);
|
||
|
||
pending = pending->next ();
|
||
pending_mem = pending_mem-> next ();
|
||
}
|
||
|
||
add_dependence_list (insn, deps->last_pending_memory_flush, 1,
|
||
REG_DEP_ANTI, true);
|
||
add_dependence_list (insn, deps->pending_jump_insns, 1,
|
||
REG_DEP_CONTROL, true);
|
||
|
||
if (!deps->readonly)
|
||
add_insn_mem_dependence (deps, false, insn, dest);
|
||
}
|
||
sched_analyze_2 (deps, XEXP (dest, 0), insn);
|
||
}
|
||
|
||
if (cslr_p && sched_deps_info->finish_lhs)
|
||
sched_deps_info->finish_lhs ();
|
||
|
||
/* Analyze reads. */
|
||
if (GET_CODE (x) == SET)
|
||
{
|
||
can_start_lhs_rhs_p = cslr_p;
|
||
|
||
sched_analyze_2 (deps, SET_SRC (x), insn);
|
||
|
||
can_start_lhs_rhs_p = false;
|
||
}
|
||
}
|
||
|
||
/* Analyze the uses of memory and registers in rtx X in INSN. */
|
||
static void
|
||
sched_analyze_2 (struct deps_desc *deps, rtx x, rtx_insn *insn)
|
||
{
|
||
int i;
|
||
int j;
|
||
enum rtx_code code;
|
||
const char *fmt;
|
||
bool cslr_p = can_start_lhs_rhs_p;
|
||
|
||
can_start_lhs_rhs_p = false;
|
||
|
||
gcc_assert (x);
|
||
if (x == 0)
|
||
return;
|
||
|
||
if (cslr_p && sched_deps_info->start_rhs)
|
||
sched_deps_info->start_rhs (x);
|
||
|
||
code = GET_CODE (x);
|
||
|
||
switch (code)
|
||
{
|
||
CASE_CONST_ANY:
|
||
case SYMBOL_REF:
|
||
case CONST:
|
||
case LABEL_REF:
|
||
/* Ignore constants. */
|
||
if (cslr_p && sched_deps_info->finish_rhs)
|
||
sched_deps_info->finish_rhs ();
|
||
|
||
return;
|
||
|
||
case CC0:
|
||
if (!HAVE_cc0)
|
||
gcc_unreachable ();
|
||
|
||
/* User of CC0 depends on immediately preceding insn. */
|
||
SCHED_GROUP_P (insn) = 1;
|
||
/* Don't move CC0 setter to another block (it can set up the
|
||
same flag for previous CC0 users which is safe). */
|
||
CANT_MOVE (prev_nonnote_insn (insn)) = 1;
|
||
|
||
if (cslr_p && sched_deps_info->finish_rhs)
|
||
sched_deps_info->finish_rhs ();
|
||
|
||
return;
|
||
|
||
case REG:
|
||
{
|
||
int regno = REGNO (x);
|
||
machine_mode mode = GET_MODE (x);
|
||
|
||
sched_analyze_reg (deps, regno, mode, USE, insn);
|
||
|
||
#ifdef STACK_REGS
|
||
/* Treat all reads of a stack register as modifying the TOS. */
|
||
if (regno >= FIRST_STACK_REG && regno <= LAST_STACK_REG)
|
||
{
|
||
/* Avoid analyzing the same register twice. */
|
||
if (regno != FIRST_STACK_REG)
|
||
sched_analyze_reg (deps, FIRST_STACK_REG, mode, USE, insn);
|
||
sched_analyze_reg (deps, FIRST_STACK_REG, mode, SET, insn);
|
||
}
|
||
#endif
|
||
|
||
if (cslr_p && sched_deps_info->finish_rhs)
|
||
sched_deps_info->finish_rhs ();
|
||
|
||
return;
|
||
}
|
||
|
||
case MEM:
|
||
{
|
||
/* Reading memory. */
|
||
rtx_insn_list *u;
|
||
rtx_insn_list *pending;
|
||
rtx_expr_list *pending_mem;
|
||
rtx t = x;
|
||
|
||
if (sched_deps_info->use_cselib)
|
||
{
|
||
machine_mode address_mode = get_address_mode (t);
|
||
|
||
t = shallow_copy_rtx (t);
|
||
cselib_lookup_from_insn (XEXP (t, 0), address_mode, 1,
|
||
GET_MODE (t), insn);
|
||
XEXP (t, 0)
|
||
= cselib_subst_to_values_from_insn (XEXP (t, 0), GET_MODE (t),
|
||
insn);
|
||
}
|
||
|
||
if (!DEBUG_INSN_P (insn))
|
||
{
|
||
t = canon_rtx (t);
|
||
pending = deps->pending_read_insns;
|
||
pending_mem = deps->pending_read_mems;
|
||
while (pending)
|
||
{
|
||
if (read_dependence (pending_mem->element (), t)
|
||
&& ! sched_insns_conditions_mutex_p (insn,
|
||
pending->insn ()))
|
||
note_mem_dep (t, pending_mem->element (),
|
||
pending->insn (),
|
||
DEP_ANTI);
|
||
|
||
pending = pending->next ();
|
||
pending_mem = pending_mem->next ();
|
||
}
|
||
|
||
pending = deps->pending_write_insns;
|
||
pending_mem = deps->pending_write_mems;
|
||
while (pending)
|
||
{
|
||
if (true_dependence (pending_mem->element (), VOIDmode, t)
|
||
&& ! sched_insns_conditions_mutex_p (insn,
|
||
pending->insn ()))
|
||
note_mem_dep (t, pending_mem->element (),
|
||
pending->insn (),
|
||
sched_deps_info->generate_spec_deps
|
||
? BEGIN_DATA | DEP_TRUE : DEP_TRUE);
|
||
|
||
pending = pending->next ();
|
||
pending_mem = pending_mem->next ();
|
||
}
|
||
|
||
for (u = deps->last_pending_memory_flush; u; u = u->next ())
|
||
add_dependence (insn, u->insn (), REG_DEP_ANTI);
|
||
|
||
for (u = deps->pending_jump_insns; u; u = u->next ())
|
||
if (deps_may_trap_p (x))
|
||
{
|
||
if ((sched_deps_info->generate_spec_deps)
|
||
&& sel_sched_p () && (spec_info->mask & BEGIN_CONTROL))
|
||
{
|
||
ds_t ds = set_dep_weak (DEP_ANTI, BEGIN_CONTROL,
|
||
MAX_DEP_WEAK);
|
||
|
||
note_dep (u->insn (), ds);
|
||
}
|
||
else
|
||
add_dependence (insn, u->insn (), REG_DEP_CONTROL);
|
||
}
|
||
}
|
||
|
||
/* Always add these dependencies to pending_reads, since
|
||
this insn may be followed by a write. */
|
||
if (!deps->readonly)
|
||
{
|
||
if ((deps->pending_read_list_length
|
||
+ deps->pending_write_list_length)
|
||
>= MAX_PENDING_LIST_LENGTH
|
||
&& !DEBUG_INSN_P (insn))
|
||
flush_pending_lists (deps, insn, true, true);
|
||
add_insn_mem_dependence (deps, true, insn, x);
|
||
}
|
||
|
||
sched_analyze_2 (deps, XEXP (x, 0), insn);
|
||
|
||
if (cslr_p && sched_deps_info->finish_rhs)
|
||
sched_deps_info->finish_rhs ();
|
||
|
||
return;
|
||
}
|
||
|
||
/* Force pending stores to memory in case a trap handler needs them.
|
||
Also force pending loads from memory; loads and stores can segfault
|
||
and the signal handler won't be triggered if the trap insn was moved
|
||
above load or store insn. */
|
||
case TRAP_IF:
|
||
flush_pending_lists (deps, insn, true, true);
|
||
break;
|
||
|
||
case PREFETCH:
|
||
if (PREFETCH_SCHEDULE_BARRIER_P (x))
|
||
reg_pending_barrier = TRUE_BARRIER;
|
||
/* Prefetch insn contains addresses only. So if the prefetch
|
||
address has no registers, there will be no dependencies on
|
||
the prefetch insn. This is wrong with result code
|
||
correctness point of view as such prefetch can be moved below
|
||
a jump insn which usually generates MOVE_BARRIER preventing
|
||
to move insns containing registers or memories through the
|
||
barrier. It is also wrong with generated code performance
|
||
point of view as prefetch withouth dependecies will have a
|
||
tendency to be issued later instead of earlier. It is hard
|
||
to generate accurate dependencies for prefetch insns as
|
||
prefetch has only the start address but it is better to have
|
||
something than nothing. */
|
||
if (!deps->readonly)
|
||
{
|
||
rtx x = gen_rtx_MEM (Pmode, XEXP (PATTERN (insn), 0));
|
||
if (sched_deps_info->use_cselib)
|
||
cselib_lookup_from_insn (x, Pmode, true, VOIDmode, insn);
|
||
add_insn_mem_dependence (deps, true, insn, x);
|
||
}
|
||
break;
|
||
|
||
case UNSPEC_VOLATILE:
|
||
flush_pending_lists (deps, insn, true, true);
|
||
/* FALLTHRU */
|
||
|
||
case ASM_OPERANDS:
|
||
case ASM_INPUT:
|
||
{
|
||
/* Traditional and volatile asm instructions must be considered to use
|
||
and clobber all hard registers, all pseudo-registers and all of
|
||
memory. So must TRAP_IF and UNSPEC_VOLATILE operations.
|
||
|
||
Consider for instance a volatile asm that changes the fpu rounding
|
||
mode. An insn should not be moved across this even if it only uses
|
||
pseudo-regs because it might give an incorrectly rounded result. */
|
||
if ((code != ASM_OPERANDS || MEM_VOLATILE_P (x))
|
||
&& !DEBUG_INSN_P (insn))
|
||
reg_pending_barrier = TRUE_BARRIER;
|
||
|
||
/* For all ASM_OPERANDS, we must traverse the vector of input operands.
|
||
We can not just fall through here since then we would be confused
|
||
by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
|
||
traditional asms unlike their normal usage. */
|
||
|
||
if (code == ASM_OPERANDS)
|
||
{
|
||
for (j = 0; j < ASM_OPERANDS_INPUT_LENGTH (x); j++)
|
||
sched_analyze_2 (deps, ASM_OPERANDS_INPUT (x, j), insn);
|
||
|
||
if (cslr_p && sched_deps_info->finish_rhs)
|
||
sched_deps_info->finish_rhs ();
|
||
|
||
return;
|
||
}
|
||
break;
|
||
}
|
||
|
||
case PRE_DEC:
|
||
case POST_DEC:
|
||
case PRE_INC:
|
||
case POST_INC:
|
||
/* These both read and modify the result. We must handle them as writes
|
||
to get proper dependencies for following instructions. We must handle
|
||
them as reads to get proper dependencies from this to previous
|
||
instructions. Thus we need to pass them to both sched_analyze_1
|
||
and sched_analyze_2. We must call sched_analyze_2 first in order
|
||
to get the proper antecedent for the read. */
|
||
sched_analyze_2 (deps, XEXP (x, 0), insn);
|
||
sched_analyze_1 (deps, x, insn);
|
||
|
||
if (cslr_p && sched_deps_info->finish_rhs)
|
||
sched_deps_info->finish_rhs ();
|
||
|
||
return;
|
||
|
||
case POST_MODIFY:
|
||
case PRE_MODIFY:
|
||
/* op0 = op0 + op1 */
|
||
sched_analyze_2 (deps, XEXP (x, 0), insn);
|
||
sched_analyze_2 (deps, XEXP (x, 1), insn);
|
||
sched_analyze_1 (deps, x, insn);
|
||
|
||
if (cslr_p && sched_deps_info->finish_rhs)
|
||
sched_deps_info->finish_rhs ();
|
||
|
||
return;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
/* Other cases: walk the insn. */
|
||
fmt = GET_RTX_FORMAT (code);
|
||
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
||
{
|
||
if (fmt[i] == 'e')
|
||
sched_analyze_2 (deps, XEXP (x, i), insn);
|
||
else if (fmt[i] == 'E')
|
||
for (j = 0; j < XVECLEN (x, i); j++)
|
||
sched_analyze_2 (deps, XVECEXP (x, i, j), insn);
|
||
}
|
||
|
||
if (cslr_p && sched_deps_info->finish_rhs)
|
||
sched_deps_info->finish_rhs ();
|
||
}
|
||
|
||
/* Try to group two fusible insns together to prevent scheduler
|
||
from scheduling them apart. */
|
||
|
||
static void
|
||
sched_macro_fuse_insns (rtx_insn *insn)
|
||
{
|
||
rtx_insn *prev;
|
||
|
||
if (any_condjump_p (insn))
|
||
{
|
||
unsigned int condreg1, condreg2;
|
||
rtx cc_reg_1;
|
||
targetm.fixed_condition_code_regs (&condreg1, &condreg2);
|
||
cc_reg_1 = gen_rtx_REG (CCmode, condreg1);
|
||
prev = prev_nonnote_nondebug_insn (insn);
|
||
if (!reg_referenced_p (cc_reg_1, PATTERN (insn))
|
||
|| !prev
|
||
|| !modified_in_p (cc_reg_1, prev))
|
||
return;
|
||
}
|
||
else
|
||
{
|
||
rtx insn_set = single_set (insn);
|
||
|
||
prev = prev_nonnote_nondebug_insn (insn);
|
||
if (!prev
|
||
|| !insn_set
|
||
|| !single_set (prev))
|
||
return;
|
||
|
||
}
|
||
|
||
if (targetm.sched.macro_fusion_pair_p (prev, insn))
|
||
SCHED_GROUP_P (insn) = 1;
|
||
|
||
}
|
||
|
||
/* Get the implicit reg pending clobbers for INSN and save them in TEMP. */
|
||
void
|
||
get_implicit_reg_pending_clobbers (HARD_REG_SET *temp, rtx_insn *insn)
|
||
{
|
||
extract_insn (insn);
|
||
preprocess_constraints (insn);
|
||
alternative_mask preferred = get_preferred_alternatives (insn);
|
||
ira_implicitly_set_insn_hard_regs (temp, preferred);
|
||
AND_COMPL_HARD_REG_SET (*temp, ira_no_alloc_regs);
|
||
}
|
||
|
||
/* Analyze an INSN with pattern X to find all dependencies. */
|
||
static void
|
||
sched_analyze_insn (struct deps_desc *deps, rtx x, rtx_insn *insn)
|
||
{
|
||
RTX_CODE code = GET_CODE (x);
|
||
rtx link;
|
||
unsigned i;
|
||
reg_set_iterator rsi;
|
||
|
||
if (! reload_completed)
|
||
{
|
||
HARD_REG_SET temp;
|
||
get_implicit_reg_pending_clobbers (&temp, insn);
|
||
IOR_HARD_REG_SET (implicit_reg_pending_clobbers, temp);
|
||
}
|
||
|
||
can_start_lhs_rhs_p = (NONJUMP_INSN_P (insn)
|
||
&& code == SET);
|
||
|
||
/* Group compare and branch insns for macro-fusion. */
|
||
if (targetm.sched.macro_fusion_p
|
||
&& targetm.sched.macro_fusion_p ())
|
||
sched_macro_fuse_insns (insn);
|
||
|
||
if (may_trap_p (x))
|
||
/* Avoid moving trapping instructions across function calls that might
|
||
not always return. */
|
||
add_dependence_list (insn, deps->last_function_call_may_noreturn,
|
||
1, REG_DEP_ANTI, true);
|
||
|
||
/* We must avoid creating a situation in which two successors of the
|
||
current block have different unwind info after scheduling. If at any
|
||
point the two paths re-join this leads to incorrect unwind info. */
|
||
/* ??? There are certain situations involving a forced frame pointer in
|
||
which, with extra effort, we could fix up the unwind info at a later
|
||
CFG join. However, it seems better to notice these cases earlier
|
||
during prologue generation and avoid marking the frame pointer setup
|
||
as frame-related at all. */
|
||
if (RTX_FRAME_RELATED_P (insn))
|
||
{
|
||
/* Make sure prologue insn is scheduled before next jump. */
|
||
deps->sched_before_next_jump
|
||
= alloc_INSN_LIST (insn, deps->sched_before_next_jump);
|
||
|
||
/* Make sure epilogue insn is scheduled after preceding jumps. */
|
||
add_dependence_list (insn, deps->pending_jump_insns, 1, REG_DEP_ANTI,
|
||
true);
|
||
}
|
||
|
||
if (code == COND_EXEC)
|
||
{
|
||
sched_analyze_2 (deps, COND_EXEC_TEST (x), insn);
|
||
|
||
/* ??? Should be recording conditions so we reduce the number of
|
||
false dependencies. */
|
||
x = COND_EXEC_CODE (x);
|
||
code = GET_CODE (x);
|
||
}
|
||
if (code == SET || code == CLOBBER)
|
||
{
|
||
sched_analyze_1 (deps, x, insn);
|
||
|
||
/* Bare clobber insns are used for letting life analysis, reg-stack
|
||
and others know that a value is dead. Depend on the last call
|
||
instruction so that reg-stack won't get confused. */
|
||
if (code == CLOBBER)
|
||
add_dependence_list (insn, deps->last_function_call, 1,
|
||
REG_DEP_OUTPUT, true);
|
||
}
|
||
else if (code == PARALLEL)
|
||
{
|
||
for (i = XVECLEN (x, 0); i--;)
|
||
{
|
||
rtx sub = XVECEXP (x, 0, i);
|
||
code = GET_CODE (sub);
|
||
|
||
if (code == COND_EXEC)
|
||
{
|
||
sched_analyze_2 (deps, COND_EXEC_TEST (sub), insn);
|
||
sub = COND_EXEC_CODE (sub);
|
||
code = GET_CODE (sub);
|
||
}
|
||
if (code == SET || code == CLOBBER)
|
||
sched_analyze_1 (deps, sub, insn);
|
||
else
|
||
sched_analyze_2 (deps, sub, insn);
|
||
}
|
||
}
|
||
else
|
||
sched_analyze_2 (deps, x, insn);
|
||
|
||
/* Mark registers CLOBBERED or used by called function. */
|
||
if (CALL_P (insn))
|
||
{
|
||
for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
|
||
{
|
||
if (GET_CODE (XEXP (link, 0)) == CLOBBER)
|
||
sched_analyze_1 (deps, XEXP (link, 0), insn);
|
||
else if (GET_CODE (XEXP (link, 0)) != SET)
|
||
sched_analyze_2 (deps, XEXP (link, 0), insn);
|
||
}
|
||
/* Don't schedule anything after a tail call, tail call needs
|
||
to use at least all call-saved registers. */
|
||
if (SIBLING_CALL_P (insn))
|
||
reg_pending_barrier = TRUE_BARRIER;
|
||
else if (find_reg_note (insn, REG_SETJMP, NULL))
|
||
reg_pending_barrier = MOVE_BARRIER;
|
||
}
|
||
|
||
if (JUMP_P (insn))
|
||
{
|
||
rtx_insn *next = next_nonnote_nondebug_insn (insn);
|
||
if (next && BARRIER_P (next))
|
||
reg_pending_barrier = MOVE_BARRIER;
|
||
else
|
||
{
|
||
rtx_insn_list *pending;
|
||
rtx_expr_list *pending_mem;
|
||
|
||
if (sched_deps_info->compute_jump_reg_dependencies)
|
||
{
|
||
(*sched_deps_info->compute_jump_reg_dependencies)
|
||
(insn, reg_pending_control_uses);
|
||
|
||
/* Make latency of jump equal to 0 by using anti-dependence. */
|
||
EXECUTE_IF_SET_IN_REG_SET (reg_pending_control_uses, 0, i, rsi)
|
||
{
|
||
struct deps_reg *reg_last = &deps->reg_last[i];
|
||
add_dependence_list (insn, reg_last->sets, 0, REG_DEP_ANTI,
|
||
false);
|
||
add_dependence_list (insn, reg_last->implicit_sets,
|
||
0, REG_DEP_ANTI, false);
|
||
add_dependence_list (insn, reg_last->clobbers, 0,
|
||
REG_DEP_ANTI, false);
|
||
}
|
||
}
|
||
|
||
/* All memory writes and volatile reads must happen before the
|
||
jump. Non-volatile reads must happen before the jump iff
|
||
the result is needed by the above register used mask. */
|
||
|
||
pending = deps->pending_write_insns;
|
||
pending_mem = deps->pending_write_mems;
|
||
while (pending)
|
||
{
|
||
if (! sched_insns_conditions_mutex_p (insn, pending->insn ()))
|
||
add_dependence (insn, pending->insn (),
|
||
REG_DEP_OUTPUT);
|
||
pending = pending->next ();
|
||
pending_mem = pending_mem->next ();
|
||
}
|
||
|
||
pending = deps->pending_read_insns;
|
||
pending_mem = deps->pending_read_mems;
|
||
while (pending)
|
||
{
|
||
if (MEM_VOLATILE_P (pending_mem->element ())
|
||
&& ! sched_insns_conditions_mutex_p (insn, pending->insn ()))
|
||
add_dependence (insn, pending->insn (),
|
||
REG_DEP_OUTPUT);
|
||
pending = pending->next ();
|
||
pending_mem = pending_mem->next ();
|
||
}
|
||
|
||
add_dependence_list (insn, deps->last_pending_memory_flush, 1,
|
||
REG_DEP_ANTI, true);
|
||
add_dependence_list (insn, deps->pending_jump_insns, 1,
|
||
REG_DEP_ANTI, true);
|
||
}
|
||
}
|
||
|
||
/* If this instruction can throw an exception, then moving it changes
|
||
where block boundaries fall. This is mighty confusing elsewhere.
|
||
Therefore, prevent such an instruction from being moved. Same for
|
||
non-jump instructions that define block boundaries.
|
||
??? Unclear whether this is still necessary in EBB mode. If not,
|
||
add_branch_dependences should be adjusted for RGN mode instead. */
|
||
if (((CALL_P (insn) || JUMP_P (insn)) && can_throw_internal (insn))
|
||
|| (NONJUMP_INSN_P (insn) && control_flow_insn_p (insn)))
|
||
reg_pending_barrier = MOVE_BARRIER;
|
||
|
||
if (sched_pressure != SCHED_PRESSURE_NONE)
|
||
{
|
||
setup_insn_reg_uses (deps, insn);
|
||
init_insn_reg_pressure_info (insn);
|
||
}
|
||
|
||
/* Add register dependencies for insn. */
|
||
if (DEBUG_INSN_P (insn))
|
||
{
|
||
rtx_insn *prev = deps->last_debug_insn;
|
||
rtx_insn_list *u;
|
||
|
||
if (!deps->readonly)
|
||
deps->last_debug_insn = insn;
|
||
|
||
if (prev)
|
||
add_dependence (insn, prev, REG_DEP_ANTI);
|
||
|
||
add_dependence_list (insn, deps->last_function_call, 1,
|
||
REG_DEP_ANTI, false);
|
||
|
||
if (!sel_sched_p ())
|
||
for (u = deps->last_pending_memory_flush; u; u = u->next ())
|
||
add_dependence (insn, u->insn (), REG_DEP_ANTI);
|
||
|
||
EXECUTE_IF_SET_IN_REG_SET (reg_pending_uses, 0, i, rsi)
|
||
{
|
||
struct deps_reg *reg_last = &deps->reg_last[i];
|
||
add_dependence_list (insn, reg_last->sets, 1, REG_DEP_ANTI, false);
|
||
/* There's no point in making REG_DEP_CONTROL dependencies for
|
||
debug insns. */
|
||
add_dependence_list (insn, reg_last->clobbers, 1, REG_DEP_ANTI,
|
||
false);
|
||
|
||
if (!deps->readonly)
|
||
reg_last->uses = alloc_INSN_LIST (insn, reg_last->uses);
|
||
}
|
||
CLEAR_REG_SET (reg_pending_uses);
|
||
|
||
/* Quite often, a debug insn will refer to stuff in the
|
||
previous instruction, but the reason we want this
|
||
dependency here is to make sure the scheduler doesn't
|
||
gratuitously move a debug insn ahead. This could dirty
|
||
DF flags and cause additional analysis that wouldn't have
|
||
occurred in compilation without debug insns, and such
|
||
additional analysis can modify the generated code. */
|
||
prev = PREV_INSN (insn);
|
||
|
||
if (prev && NONDEBUG_INSN_P (prev))
|
||
add_dependence (insn, prev, REG_DEP_ANTI);
|
||
}
|
||
else
|
||
{
|
||
regset_head set_or_clobbered;
|
||
|
||
EXECUTE_IF_SET_IN_REG_SET (reg_pending_uses, 0, i, rsi)
|
||
{
|
||
struct deps_reg *reg_last = &deps->reg_last[i];
|
||
add_dependence_list (insn, reg_last->sets, 0, REG_DEP_TRUE, false);
|
||
add_dependence_list (insn, reg_last->implicit_sets, 0, REG_DEP_ANTI,
|
||
false);
|
||
add_dependence_list (insn, reg_last->clobbers, 0, REG_DEP_TRUE,
|
||
false);
|
||
|
||
if (!deps->readonly)
|
||
{
|
||
reg_last->uses = alloc_INSN_LIST (insn, reg_last->uses);
|
||
reg_last->uses_length++;
|
||
}
|
||
}
|
||
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
if (TEST_HARD_REG_BIT (implicit_reg_pending_uses, i))
|
||
{
|
||
struct deps_reg *reg_last = &deps->reg_last[i];
|
||
add_dependence_list (insn, reg_last->sets, 0, REG_DEP_TRUE, false);
|
||
add_dependence_list (insn, reg_last->implicit_sets, 0,
|
||
REG_DEP_ANTI, false);
|
||
add_dependence_list (insn, reg_last->clobbers, 0, REG_DEP_TRUE,
|
||
false);
|
||
|
||
if (!deps->readonly)
|
||
{
|
||
reg_last->uses = alloc_INSN_LIST (insn, reg_last->uses);
|
||
reg_last->uses_length++;
|
||
}
|
||
}
|
||
|
||
if (targetm.sched.exposed_pipeline)
|
||
{
|
||
INIT_REG_SET (&set_or_clobbered);
|
||
bitmap_ior (&set_or_clobbered, reg_pending_clobbers,
|
||
reg_pending_sets);
|
||
EXECUTE_IF_SET_IN_REG_SET (&set_or_clobbered, 0, i, rsi)
|
||
{
|
||
struct deps_reg *reg_last = &deps->reg_last[i];
|
||
rtx list;
|
||
for (list = reg_last->uses; list; list = XEXP (list, 1))
|
||
{
|
||
rtx other = XEXP (list, 0);
|
||
if (INSN_CACHED_COND (other) != const_true_rtx
|
||
&& refers_to_regno_p (i, INSN_CACHED_COND (other)))
|
||
INSN_CACHED_COND (other) = const_true_rtx;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* If the current insn is conditional, we can't free any
|
||
of the lists. */
|
||
if (sched_has_condition_p (insn))
|
||
{
|
||
EXECUTE_IF_SET_IN_REG_SET (reg_pending_clobbers, 0, i, rsi)
|
||
{
|
||
struct deps_reg *reg_last = &deps->reg_last[i];
|
||
add_dependence_list (insn, reg_last->sets, 0, REG_DEP_OUTPUT,
|
||
false);
|
||
add_dependence_list (insn, reg_last->implicit_sets, 0,
|
||
REG_DEP_ANTI, false);
|
||
add_dependence_list (insn, reg_last->uses, 0, REG_DEP_ANTI,
|
||
false);
|
||
add_dependence_list (insn, reg_last->control_uses, 0,
|
||
REG_DEP_CONTROL, false);
|
||
|
||
if (!deps->readonly)
|
||
{
|
||
reg_last->clobbers
|
||
= alloc_INSN_LIST (insn, reg_last->clobbers);
|
||
reg_last->clobbers_length++;
|
||
}
|
||
}
|
||
EXECUTE_IF_SET_IN_REG_SET (reg_pending_sets, 0, i, rsi)
|
||
{
|
||
struct deps_reg *reg_last = &deps->reg_last[i];
|
||
add_dependence_list (insn, reg_last->sets, 0, REG_DEP_OUTPUT,
|
||
false);
|
||
add_dependence_list (insn, reg_last->implicit_sets, 0,
|
||
REG_DEP_ANTI, false);
|
||
add_dependence_list (insn, reg_last->clobbers, 0, REG_DEP_OUTPUT,
|
||
false);
|
||
add_dependence_list (insn, reg_last->uses, 0, REG_DEP_ANTI,
|
||
false);
|
||
add_dependence_list (insn, reg_last->control_uses, 0,
|
||
REG_DEP_CONTROL, false);
|
||
|
||
if (!deps->readonly)
|
||
reg_last->sets = alloc_INSN_LIST (insn, reg_last->sets);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
EXECUTE_IF_SET_IN_REG_SET (reg_pending_clobbers, 0, i, rsi)
|
||
{
|
||
struct deps_reg *reg_last = &deps->reg_last[i];
|
||
if (reg_last->uses_length >= MAX_PENDING_LIST_LENGTH
|
||
|| reg_last->clobbers_length >= MAX_PENDING_LIST_LENGTH)
|
||
{
|
||
add_dependence_list_and_free (deps, insn, ®_last->sets, 0,
|
||
REG_DEP_OUTPUT, false);
|
||
add_dependence_list_and_free (deps, insn,
|
||
®_last->implicit_sets, 0,
|
||
REG_DEP_ANTI, false);
|
||
add_dependence_list_and_free (deps, insn, ®_last->uses, 0,
|
||
REG_DEP_ANTI, false);
|
||
add_dependence_list_and_free (deps, insn,
|
||
®_last->control_uses, 0,
|
||
REG_DEP_ANTI, false);
|
||
add_dependence_list_and_free (deps, insn,
|
||
®_last->clobbers, 0,
|
||
REG_DEP_OUTPUT, false);
|
||
|
||
if (!deps->readonly)
|
||
{
|
||
reg_last->sets = alloc_INSN_LIST (insn, reg_last->sets);
|
||
reg_last->clobbers_length = 0;
|
||
reg_last->uses_length = 0;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
add_dependence_list (insn, reg_last->sets, 0, REG_DEP_OUTPUT,
|
||
false);
|
||
add_dependence_list (insn, reg_last->implicit_sets, 0,
|
||
REG_DEP_ANTI, false);
|
||
add_dependence_list (insn, reg_last->uses, 0, REG_DEP_ANTI,
|
||
false);
|
||
add_dependence_list (insn, reg_last->control_uses, 0,
|
||
REG_DEP_CONTROL, false);
|
||
}
|
||
|
||
if (!deps->readonly)
|
||
{
|
||
reg_last->clobbers_length++;
|
||
reg_last->clobbers
|
||
= alloc_INSN_LIST (insn, reg_last->clobbers);
|
||
}
|
||
}
|
||
EXECUTE_IF_SET_IN_REG_SET (reg_pending_sets, 0, i, rsi)
|
||
{
|
||
struct deps_reg *reg_last = &deps->reg_last[i];
|
||
|
||
add_dependence_list_and_free (deps, insn, ®_last->sets, 0,
|
||
REG_DEP_OUTPUT, false);
|
||
add_dependence_list_and_free (deps, insn,
|
||
®_last->implicit_sets,
|
||
0, REG_DEP_ANTI, false);
|
||
add_dependence_list_and_free (deps, insn, ®_last->clobbers, 0,
|
||
REG_DEP_OUTPUT, false);
|
||
add_dependence_list_and_free (deps, insn, ®_last->uses, 0,
|
||
REG_DEP_ANTI, false);
|
||
add_dependence_list (insn, reg_last->control_uses, 0,
|
||
REG_DEP_CONTROL, false);
|
||
|
||
if (!deps->readonly)
|
||
{
|
||
reg_last->sets = alloc_INSN_LIST (insn, reg_last->sets);
|
||
reg_last->uses_length = 0;
|
||
reg_last->clobbers_length = 0;
|
||
}
|
||
}
|
||
}
|
||
if (!deps->readonly)
|
||
{
|
||
EXECUTE_IF_SET_IN_REG_SET (reg_pending_control_uses, 0, i, rsi)
|
||
{
|
||
struct deps_reg *reg_last = &deps->reg_last[i];
|
||
reg_last->control_uses
|
||
= alloc_INSN_LIST (insn, reg_last->control_uses);
|
||
}
|
||
}
|
||
}
|
||
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
if (TEST_HARD_REG_BIT (implicit_reg_pending_clobbers, i))
|
||
{
|
||
struct deps_reg *reg_last = &deps->reg_last[i];
|
||
add_dependence_list (insn, reg_last->sets, 0, REG_DEP_ANTI, false);
|
||
add_dependence_list (insn, reg_last->clobbers, 0, REG_DEP_ANTI, false);
|
||
add_dependence_list (insn, reg_last->uses, 0, REG_DEP_ANTI, false);
|
||
add_dependence_list (insn, reg_last->control_uses, 0, REG_DEP_ANTI,
|
||
false);
|
||
|
||
if (!deps->readonly)
|
||
reg_last->implicit_sets
|
||
= alloc_INSN_LIST (insn, reg_last->implicit_sets);
|
||
}
|
||
|
||
if (!deps->readonly)
|
||
{
|
||
IOR_REG_SET (&deps->reg_last_in_use, reg_pending_uses);
|
||
IOR_REG_SET (&deps->reg_last_in_use, reg_pending_clobbers);
|
||
IOR_REG_SET (&deps->reg_last_in_use, reg_pending_sets);
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
if (TEST_HARD_REG_BIT (implicit_reg_pending_uses, i)
|
||
|| TEST_HARD_REG_BIT (implicit_reg_pending_clobbers, i))
|
||
SET_REGNO_REG_SET (&deps->reg_last_in_use, i);
|
||
|
||
/* Set up the pending barrier found. */
|
||
deps->last_reg_pending_barrier = reg_pending_barrier;
|
||
}
|
||
|
||
CLEAR_REG_SET (reg_pending_uses);
|
||
CLEAR_REG_SET (reg_pending_clobbers);
|
||
CLEAR_REG_SET (reg_pending_sets);
|
||
CLEAR_REG_SET (reg_pending_control_uses);
|
||
CLEAR_HARD_REG_SET (implicit_reg_pending_clobbers);
|
||
CLEAR_HARD_REG_SET (implicit_reg_pending_uses);
|
||
|
||
/* Add dependencies if a scheduling barrier was found. */
|
||
if (reg_pending_barrier)
|
||
{
|
||
/* In the case of barrier the most added dependencies are not
|
||
real, so we use anti-dependence here. */
|
||
if (sched_has_condition_p (insn))
|
||
{
|
||
EXECUTE_IF_SET_IN_REG_SET (&deps->reg_last_in_use, 0, i, rsi)
|
||
{
|
||
struct deps_reg *reg_last = &deps->reg_last[i];
|
||
add_dependence_list (insn, reg_last->uses, 0, REG_DEP_ANTI,
|
||
true);
|
||
add_dependence_list (insn, reg_last->sets, 0,
|
||
reg_pending_barrier == TRUE_BARRIER
|
||
? REG_DEP_TRUE : REG_DEP_ANTI, true);
|
||
add_dependence_list (insn, reg_last->implicit_sets, 0,
|
||
REG_DEP_ANTI, true);
|
||
add_dependence_list (insn, reg_last->clobbers, 0,
|
||
reg_pending_barrier == TRUE_BARRIER
|
||
? REG_DEP_TRUE : REG_DEP_ANTI, true);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
EXECUTE_IF_SET_IN_REG_SET (&deps->reg_last_in_use, 0, i, rsi)
|
||
{
|
||
struct deps_reg *reg_last = &deps->reg_last[i];
|
||
add_dependence_list_and_free (deps, insn, ®_last->uses, 0,
|
||
REG_DEP_ANTI, true);
|
||
add_dependence_list_and_free (deps, insn,
|
||
®_last->control_uses, 0,
|
||
REG_DEP_CONTROL, true);
|
||
add_dependence_list_and_free (deps, insn, ®_last->sets, 0,
|
||
reg_pending_barrier == TRUE_BARRIER
|
||
? REG_DEP_TRUE : REG_DEP_ANTI,
|
||
true);
|
||
add_dependence_list_and_free (deps, insn,
|
||
®_last->implicit_sets, 0,
|
||
REG_DEP_ANTI, true);
|
||
add_dependence_list_and_free (deps, insn, ®_last->clobbers, 0,
|
||
reg_pending_barrier == TRUE_BARRIER
|
||
? REG_DEP_TRUE : REG_DEP_ANTI,
|
||
true);
|
||
|
||
if (!deps->readonly)
|
||
{
|
||
reg_last->uses_length = 0;
|
||
reg_last->clobbers_length = 0;
|
||
}
|
||
}
|
||
}
|
||
|
||
if (!deps->readonly)
|
||
for (i = 0; i < (unsigned)deps->max_reg; i++)
|
||
{
|
||
struct deps_reg *reg_last = &deps->reg_last[i];
|
||
reg_last->sets = alloc_INSN_LIST (insn, reg_last->sets);
|
||
SET_REGNO_REG_SET (&deps->reg_last_in_use, i);
|
||
}
|
||
|
||
/* Don't flush pending lists on speculative checks for
|
||
selective scheduling. */
|
||
if (!sel_sched_p () || !sel_insn_is_speculation_check (insn))
|
||
flush_pending_lists (deps, insn, true, true);
|
||
|
||
reg_pending_barrier = NOT_A_BARRIER;
|
||
}
|
||
|
||
/* If a post-call group is still open, see if it should remain so.
|
||
This insn must be a simple move of a hard reg to a pseudo or
|
||
vice-versa.
|
||
|
||
We must avoid moving these insns for correctness on targets
|
||
with small register classes, and for special registers like
|
||
PIC_OFFSET_TABLE_REGNUM. For simplicity, extend this to all
|
||
hard regs for all targets. */
|
||
|
||
if (deps->in_post_call_group_p)
|
||
{
|
||
rtx tmp, set = single_set (insn);
|
||
int src_regno, dest_regno;
|
||
|
||
if (set == NULL)
|
||
{
|
||
if (DEBUG_INSN_P (insn))
|
||
/* We don't want to mark debug insns as part of the same
|
||
sched group. We know they really aren't, but if we use
|
||
debug insns to tell that a call group is over, we'll
|
||
get different code if debug insns are not there and
|
||
instructions that follow seem like they should be part
|
||
of the call group.
|
||
|
||
Also, if we did, chain_to_prev_insn would move the
|
||
deps of the debug insn to the call insn, modifying
|
||
non-debug post-dependency counts of the debug insn
|
||
dependencies and otherwise messing with the scheduling
|
||
order.
|
||
|
||
Instead, let such debug insns be scheduled freely, but
|
||
keep the call group open in case there are insns that
|
||
should be part of it afterwards. Since we grant debug
|
||
insns higher priority than even sched group insns, it
|
||
will all turn out all right. */
|
||
goto debug_dont_end_call_group;
|
||
else
|
||
goto end_call_group;
|
||
}
|
||
|
||
tmp = SET_DEST (set);
|
||
if (GET_CODE (tmp) == SUBREG)
|
||
tmp = SUBREG_REG (tmp);
|
||
if (REG_P (tmp))
|
||
dest_regno = REGNO (tmp);
|
||
else
|
||
goto end_call_group;
|
||
|
||
tmp = SET_SRC (set);
|
||
if (GET_CODE (tmp) == SUBREG)
|
||
tmp = SUBREG_REG (tmp);
|
||
if ((GET_CODE (tmp) == PLUS
|
||
|| GET_CODE (tmp) == MINUS)
|
||
&& REG_P (XEXP (tmp, 0))
|
||
&& REGNO (XEXP (tmp, 0)) == STACK_POINTER_REGNUM
|
||
&& dest_regno == STACK_POINTER_REGNUM)
|
||
src_regno = STACK_POINTER_REGNUM;
|
||
else if (REG_P (tmp))
|
||
src_regno = REGNO (tmp);
|
||
else
|
||
goto end_call_group;
|
||
|
||
if (src_regno < FIRST_PSEUDO_REGISTER
|
||
|| dest_regno < FIRST_PSEUDO_REGISTER)
|
||
{
|
||
if (!deps->readonly
|
||
&& deps->in_post_call_group_p == post_call_initial)
|
||
deps->in_post_call_group_p = post_call;
|
||
|
||
if (!sel_sched_p () || sched_emulate_haifa_p)
|
||
{
|
||
SCHED_GROUP_P (insn) = 1;
|
||
CANT_MOVE (insn) = 1;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
end_call_group:
|
||
if (!deps->readonly)
|
||
deps->in_post_call_group_p = not_post_call;
|
||
}
|
||
}
|
||
|
||
debug_dont_end_call_group:
|
||
if ((current_sched_info->flags & DO_SPECULATION)
|
||
&& !sched_insn_is_legitimate_for_speculation_p (insn, 0))
|
||
/* INSN has an internal dependency (e.g. r14 = [r14]) and thus cannot
|
||
be speculated. */
|
||
{
|
||
if (sel_sched_p ())
|
||
sel_mark_hard_insn (insn);
|
||
else
|
||
{
|
||
sd_iterator_def sd_it;
|
||
dep_t dep;
|
||
|
||
for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
|
||
sd_iterator_cond (&sd_it, &dep);)
|
||
change_spec_dep_to_hard (sd_it);
|
||
}
|
||
}
|
||
|
||
/* We do not yet have code to adjust REG_ARGS_SIZE, therefore we must
|
||
honor their original ordering. */
|
||
if (find_reg_note (insn, REG_ARGS_SIZE, NULL))
|
||
{
|
||
if (deps->last_args_size)
|
||
add_dependence (insn, deps->last_args_size, REG_DEP_OUTPUT);
|
||
if (!deps->readonly)
|
||
deps->last_args_size = insn;
|
||
}
|
||
|
||
/* We must not mix prologue and epilogue insns. See PR78029. */
|
||
if (prologue_contains (insn))
|
||
{
|
||
add_dependence_list (insn, deps->last_epilogue, true, REG_DEP_ANTI, true);
|
||
if (!deps->readonly)
|
||
{
|
||
if (deps->last_logue_was_epilogue)
|
||
free_INSN_LIST_list (&deps->last_prologue);
|
||
deps->last_prologue = alloc_INSN_LIST (insn, deps->last_prologue);
|
||
deps->last_logue_was_epilogue = false;
|
||
}
|
||
}
|
||
|
||
if (epilogue_contains (insn))
|
||
{
|
||
add_dependence_list (insn, deps->last_prologue, true, REG_DEP_ANTI, true);
|
||
if (!deps->readonly)
|
||
{
|
||
if (!deps->last_logue_was_epilogue)
|
||
free_INSN_LIST_list (&deps->last_epilogue);
|
||
deps->last_epilogue = alloc_INSN_LIST (insn, deps->last_epilogue);
|
||
deps->last_logue_was_epilogue = true;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Return TRUE if INSN might not always return normally (e.g. call exit,
|
||
longjmp, loop forever, ...). */
|
||
/* FIXME: Why can't this function just use flags_from_decl_or_type and
|
||
test for ECF_NORETURN? */
|
||
static bool
|
||
call_may_noreturn_p (rtx_insn *insn)
|
||
{
|
||
rtx call;
|
||
|
||
/* const or pure calls that aren't looping will always return. */
|
||
if (RTL_CONST_OR_PURE_CALL_P (insn)
|
||
&& !RTL_LOOPING_CONST_OR_PURE_CALL_P (insn))
|
||
return false;
|
||
|
||
call = get_call_rtx_from (insn);
|
||
if (call && GET_CODE (XEXP (XEXP (call, 0), 0)) == SYMBOL_REF)
|
||
{
|
||
rtx symbol = XEXP (XEXP (call, 0), 0);
|
||
if (SYMBOL_REF_DECL (symbol)
|
||
&& TREE_CODE (SYMBOL_REF_DECL (symbol)) == FUNCTION_DECL)
|
||
{
|
||
if (DECL_BUILT_IN_CLASS (SYMBOL_REF_DECL (symbol))
|
||
== BUILT_IN_NORMAL)
|
||
switch (DECL_FUNCTION_CODE (SYMBOL_REF_DECL (symbol)))
|
||
{
|
||
case BUILT_IN_BCMP:
|
||
case BUILT_IN_BCOPY:
|
||
case BUILT_IN_BZERO:
|
||
case BUILT_IN_INDEX:
|
||
case BUILT_IN_MEMCHR:
|
||
case BUILT_IN_MEMCMP:
|
||
case BUILT_IN_MEMCPY:
|
||
case BUILT_IN_MEMMOVE:
|
||
case BUILT_IN_MEMPCPY:
|
||
case BUILT_IN_MEMSET:
|
||
case BUILT_IN_RINDEX:
|
||
case BUILT_IN_STPCPY:
|
||
case BUILT_IN_STPNCPY:
|
||
case BUILT_IN_STRCAT:
|
||
case BUILT_IN_STRCHR:
|
||
case BUILT_IN_STRCMP:
|
||
case BUILT_IN_STRCPY:
|
||
case BUILT_IN_STRCSPN:
|
||
case BUILT_IN_STRLEN:
|
||
case BUILT_IN_STRNCAT:
|
||
case BUILT_IN_STRNCMP:
|
||
case BUILT_IN_STRNCPY:
|
||
case BUILT_IN_STRPBRK:
|
||
case BUILT_IN_STRRCHR:
|
||
case BUILT_IN_STRSPN:
|
||
case BUILT_IN_STRSTR:
|
||
/* Assume certain string/memory builtins always return. */
|
||
return false;
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* For all other calls assume that they might not always return. */
|
||
return true;
|
||
}
|
||
|
||
/* Return true if INSN should be made dependent on the previous instruction
|
||
group, and if all INSN's dependencies should be moved to the first
|
||
instruction of that group. */
|
||
|
||
static bool
|
||
chain_to_prev_insn_p (rtx_insn *insn)
|
||
{
|
||
/* INSN forms a group with the previous instruction. */
|
||
if (SCHED_GROUP_P (insn))
|
||
return true;
|
||
|
||
/* If the previous instruction clobbers a register R and this one sets
|
||
part of R, the clobber was added specifically to help us track the
|
||
liveness of R. There's no point scheduling the clobber and leaving
|
||
INSN behind, especially if we move the clobber to another block. */
|
||
rtx_insn *prev = prev_nonnote_nondebug_insn (insn);
|
||
if (prev
|
||
&& INSN_P (prev)
|
||
&& BLOCK_FOR_INSN (prev) == BLOCK_FOR_INSN (insn)
|
||
&& GET_CODE (PATTERN (prev)) == CLOBBER)
|
||
{
|
||
rtx x = XEXP (PATTERN (prev), 0);
|
||
if (set_of (x, insn))
|
||
return true;
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
/* Analyze INSN with DEPS as a context. */
|
||
void
|
||
deps_analyze_insn (struct deps_desc *deps, rtx_insn *insn)
|
||
{
|
||
if (sched_deps_info->start_insn)
|
||
sched_deps_info->start_insn (insn);
|
||
|
||
/* Record the condition for this insn. */
|
||
if (NONDEBUG_INSN_P (insn))
|
||
{
|
||
rtx t;
|
||
sched_get_condition_with_rev (insn, NULL);
|
||
t = INSN_CACHED_COND (insn);
|
||
INSN_COND_DEPS (insn) = NULL;
|
||
if (reload_completed
|
||
&& (current_sched_info->flags & DO_PREDICATION)
|
||
&& COMPARISON_P (t)
|
||
&& REG_P (XEXP (t, 0))
|
||
&& CONSTANT_P (XEXP (t, 1)))
|
||
{
|
||
unsigned int regno;
|
||
int nregs;
|
||
rtx_insn_list *cond_deps = NULL;
|
||
t = XEXP (t, 0);
|
||
regno = REGNO (t);
|
||
nregs = REG_NREGS (t);
|
||
while (nregs-- > 0)
|
||
{
|
||
struct deps_reg *reg_last = &deps->reg_last[regno + nregs];
|
||
cond_deps = concat_INSN_LIST (reg_last->sets, cond_deps);
|
||
cond_deps = concat_INSN_LIST (reg_last->clobbers, cond_deps);
|
||
cond_deps = concat_INSN_LIST (reg_last->implicit_sets, cond_deps);
|
||
}
|
||
INSN_COND_DEPS (insn) = cond_deps;
|
||
}
|
||
}
|
||
|
||
if (JUMP_P (insn))
|
||
{
|
||
/* Make each JUMP_INSN (but not a speculative check)
|
||
a scheduling barrier for memory references. */
|
||
if (!deps->readonly
|
||
&& !(sel_sched_p ()
|
||
&& sel_insn_is_speculation_check (insn)))
|
||
{
|
||
/* Keep the list a reasonable size. */
|
||
if (deps->pending_flush_length++ >= MAX_PENDING_LIST_LENGTH)
|
||
flush_pending_lists (deps, insn, true, true);
|
||
else
|
||
deps->pending_jump_insns
|
||
= alloc_INSN_LIST (insn, deps->pending_jump_insns);
|
||
}
|
||
|
||
/* For each insn which shouldn't cross a jump, add a dependence. */
|
||
add_dependence_list_and_free (deps, insn,
|
||
&deps->sched_before_next_jump, 1,
|
||
REG_DEP_ANTI, true);
|
||
|
||
sched_analyze_insn (deps, PATTERN (insn), insn);
|
||
}
|
||
else if (NONJUMP_INSN_P (insn) || DEBUG_INSN_P (insn))
|
||
{
|
||
sched_analyze_insn (deps, PATTERN (insn), insn);
|
||
}
|
||
else if (CALL_P (insn))
|
||
{
|
||
int i;
|
||
|
||
CANT_MOVE (insn) = 1;
|
||
|
||
if (find_reg_note (insn, REG_SETJMP, NULL))
|
||
{
|
||
/* This is setjmp. Assume that all registers, not just
|
||
hard registers, may be clobbered by this call. */
|
||
reg_pending_barrier = MOVE_BARRIER;
|
||
}
|
||
else
|
||
{
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
/* A call may read and modify global register variables. */
|
||
if (global_regs[i])
|
||
{
|
||
SET_REGNO_REG_SET (reg_pending_sets, i);
|
||
SET_HARD_REG_BIT (implicit_reg_pending_uses, i);
|
||
}
|
||
/* Other call-clobbered hard regs may be clobbered.
|
||
Since we only have a choice between 'might be clobbered'
|
||
and 'definitely not clobbered', we must include all
|
||
partly call-clobbered registers here. */
|
||
else if (HARD_REGNO_CALL_PART_CLOBBERED (i, reg_raw_mode[i])
|
||
|| TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
|
||
SET_REGNO_REG_SET (reg_pending_clobbers, i);
|
||
/* We don't know what set of fixed registers might be used
|
||
by the function, but it is certain that the stack pointer
|
||
is among them, but be conservative. */
|
||
else if (fixed_regs[i])
|
||
SET_HARD_REG_BIT (implicit_reg_pending_uses, i);
|
||
/* The frame pointer is normally not used by the function
|
||
itself, but by the debugger. */
|
||
/* ??? MIPS o32 is an exception. It uses the frame pointer
|
||
in the macro expansion of jal but does not represent this
|
||
fact in the call_insn rtl. */
|
||
else if (i == FRAME_POINTER_REGNUM
|
||
|| (i == HARD_FRAME_POINTER_REGNUM
|
||
&& (! reload_completed || frame_pointer_needed)))
|
||
SET_HARD_REG_BIT (implicit_reg_pending_uses, i);
|
||
}
|
||
|
||
/* For each insn which shouldn't cross a call, add a dependence
|
||
between that insn and this call insn. */
|
||
add_dependence_list_and_free (deps, insn,
|
||
&deps->sched_before_next_call, 1,
|
||
REG_DEP_ANTI, true);
|
||
|
||
sched_analyze_insn (deps, PATTERN (insn), insn);
|
||
|
||
/* If CALL would be in a sched group, then this will violate
|
||
convention that sched group insns have dependencies only on the
|
||
previous instruction.
|
||
|
||
Of course one can say: "Hey! What about head of the sched group?"
|
||
And I will answer: "Basic principles (one dep per insn) are always
|
||
the same." */
|
||
gcc_assert (!SCHED_GROUP_P (insn));
|
||
|
||
/* In the absence of interprocedural alias analysis, we must flush
|
||
all pending reads and writes, and start new dependencies starting
|
||
from here. But only flush writes for constant calls (which may
|
||
be passed a pointer to something we haven't written yet). */
|
||
flush_pending_lists (deps, insn, true, ! RTL_CONST_OR_PURE_CALL_P (insn));
|
||
|
||
if (!deps->readonly)
|
||
{
|
||
/* Remember the last function call for limiting lifetimes. */
|
||
free_INSN_LIST_list (&deps->last_function_call);
|
||
deps->last_function_call = alloc_INSN_LIST (insn, NULL_RTX);
|
||
|
||
if (call_may_noreturn_p (insn))
|
||
{
|
||
/* Remember the last function call that might not always return
|
||
normally for limiting moves of trapping insns. */
|
||
free_INSN_LIST_list (&deps->last_function_call_may_noreturn);
|
||
deps->last_function_call_may_noreturn
|
||
= alloc_INSN_LIST (insn, NULL_RTX);
|
||
}
|
||
|
||
/* Before reload, begin a post-call group, so as to keep the
|
||
lifetimes of hard registers correct. */
|
||
if (! reload_completed)
|
||
deps->in_post_call_group_p = post_call;
|
||
}
|
||
}
|
||
|
||
if (sched_deps_info->use_cselib)
|
||
cselib_process_insn (insn);
|
||
|
||
if (sched_deps_info->finish_insn)
|
||
sched_deps_info->finish_insn ();
|
||
|
||
/* Fixup the dependencies in the sched group. */
|
||
if ((NONJUMP_INSN_P (insn) || JUMP_P (insn))
|
||
&& chain_to_prev_insn_p (insn)
|
||
&& !sel_sched_p ())
|
||
chain_to_prev_insn (insn);
|
||
}
|
||
|
||
/* Initialize DEPS for the new block beginning with HEAD. */
|
||
void
|
||
deps_start_bb (struct deps_desc *deps, rtx_insn *head)
|
||
{
|
||
gcc_assert (!deps->readonly);
|
||
|
||
/* Before reload, if the previous block ended in a call, show that
|
||
we are inside a post-call group, so as to keep the lifetimes of
|
||
hard registers correct. */
|
||
if (! reload_completed && !LABEL_P (head))
|
||
{
|
||
rtx_insn *insn = prev_nonnote_nondebug_insn (head);
|
||
|
||
if (insn && CALL_P (insn))
|
||
deps->in_post_call_group_p = post_call_initial;
|
||
}
|
||
}
|
||
|
||
/* Analyze every insn between HEAD and TAIL inclusive, creating backward
|
||
dependencies for each insn. */
|
||
void
|
||
sched_analyze (struct deps_desc *deps, rtx_insn *head, rtx_insn *tail)
|
||
{
|
||
rtx_insn *insn;
|
||
|
||
if (sched_deps_info->use_cselib)
|
||
cselib_init (CSELIB_RECORD_MEMORY);
|
||
|
||
deps_start_bb (deps, head);
|
||
|
||
for (insn = head;; insn = NEXT_INSN (insn))
|
||
{
|
||
|
||
if (INSN_P (insn))
|
||
{
|
||
/* And initialize deps_lists. */
|
||
sd_init_insn (insn);
|
||
/* Clean up SCHED_GROUP_P which may be set by last
|
||
scheduler pass. */
|
||
if (SCHED_GROUP_P (insn))
|
||
SCHED_GROUP_P (insn) = 0;
|
||
}
|
||
|
||
deps_analyze_insn (deps, insn);
|
||
|
||
if (insn == tail)
|
||
{
|
||
if (sched_deps_info->use_cselib)
|
||
cselib_finish ();
|
||
return;
|
||
}
|
||
}
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
/* Helper for sched_free_deps ().
|
||
Delete INSN's (RESOLVED_P) backward dependencies. */
|
||
static void
|
||
delete_dep_nodes_in_back_deps (rtx_insn *insn, bool resolved_p)
|
||
{
|
||
sd_iterator_def sd_it;
|
||
dep_t dep;
|
||
sd_list_types_def types;
|
||
|
||
if (resolved_p)
|
||
types = SD_LIST_RES_BACK;
|
||
else
|
||
types = SD_LIST_BACK;
|
||
|
||
for (sd_it = sd_iterator_start (insn, types);
|
||
sd_iterator_cond (&sd_it, &dep);)
|
||
{
|
||
dep_link_t link = *sd_it.linkp;
|
||
dep_node_t node = DEP_LINK_NODE (link);
|
||
deps_list_t back_list;
|
||
deps_list_t forw_list;
|
||
|
||
get_back_and_forw_lists (dep, resolved_p, &back_list, &forw_list);
|
||
remove_from_deps_list (link, back_list);
|
||
delete_dep_node (node);
|
||
}
|
||
}
|
||
|
||
/* Delete (RESOLVED_P) dependencies between HEAD and TAIL together with
|
||
deps_lists. */
|
||
void
|
||
sched_free_deps (rtx_insn *head, rtx_insn *tail, bool resolved_p)
|
||
{
|
||
rtx_insn *insn;
|
||
rtx_insn *next_tail = NEXT_INSN (tail);
|
||
|
||
/* We make two passes since some insns may be scheduled before their
|
||
dependencies are resolved. */
|
||
for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
|
||
if (INSN_P (insn) && INSN_LUID (insn) > 0)
|
||
{
|
||
/* Clear forward deps and leave the dep_nodes to the
|
||
corresponding back_deps list. */
|
||
if (resolved_p)
|
||
clear_deps_list (INSN_RESOLVED_FORW_DEPS (insn));
|
||
else
|
||
clear_deps_list (INSN_FORW_DEPS (insn));
|
||
}
|
||
for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
|
||
if (INSN_P (insn) && INSN_LUID (insn) > 0)
|
||
{
|
||
/* Clear resolved back deps together with its dep_nodes. */
|
||
delete_dep_nodes_in_back_deps (insn, resolved_p);
|
||
|
||
sd_finish_insn (insn);
|
||
}
|
||
}
|
||
|
||
/* Initialize variables for region data dependence analysis.
|
||
When LAZY_REG_LAST is true, do not allocate reg_last array
|
||
of struct deps_desc immediately. */
|
||
|
||
void
|
||
init_deps (struct deps_desc *deps, bool lazy_reg_last)
|
||
{
|
||
int max_reg = (reload_completed ? FIRST_PSEUDO_REGISTER : max_reg_num ());
|
||
|
||
deps->max_reg = max_reg;
|
||
if (lazy_reg_last)
|
||
deps->reg_last = NULL;
|
||
else
|
||
deps->reg_last = XCNEWVEC (struct deps_reg, max_reg);
|
||
INIT_REG_SET (&deps->reg_last_in_use);
|
||
|
||
deps->pending_read_insns = 0;
|
||
deps->pending_read_mems = 0;
|
||
deps->pending_write_insns = 0;
|
||
deps->pending_write_mems = 0;
|
||
deps->pending_jump_insns = 0;
|
||
deps->pending_read_list_length = 0;
|
||
deps->pending_write_list_length = 0;
|
||
deps->pending_flush_length = 0;
|
||
deps->last_pending_memory_flush = 0;
|
||
deps->last_function_call = 0;
|
||
deps->last_function_call_may_noreturn = 0;
|
||
deps->sched_before_next_call = 0;
|
||
deps->sched_before_next_jump = 0;
|
||
deps->in_post_call_group_p = not_post_call;
|
||
deps->last_debug_insn = 0;
|
||
deps->last_args_size = 0;
|
||
deps->last_prologue = 0;
|
||
deps->last_epilogue = 0;
|
||
deps->last_logue_was_epilogue = false;
|
||
deps->last_reg_pending_barrier = NOT_A_BARRIER;
|
||
deps->readonly = 0;
|
||
}
|
||
|
||
/* Init only reg_last field of DEPS, which was not allocated before as
|
||
we inited DEPS lazily. */
|
||
void
|
||
init_deps_reg_last (struct deps_desc *deps)
|
||
{
|
||
gcc_assert (deps && deps->max_reg > 0);
|
||
gcc_assert (deps->reg_last == NULL);
|
||
|
||
deps->reg_last = XCNEWVEC (struct deps_reg, deps->max_reg);
|
||
}
|
||
|
||
|
||
/* Free insn lists found in DEPS. */
|
||
|
||
void
|
||
free_deps (struct deps_desc *deps)
|
||
{
|
||
unsigned i;
|
||
reg_set_iterator rsi;
|
||
|
||
/* We set max_reg to 0 when this context was already freed. */
|
||
if (deps->max_reg == 0)
|
||
{
|
||
gcc_assert (deps->reg_last == NULL);
|
||
return;
|
||
}
|
||
deps->max_reg = 0;
|
||
|
||
free_INSN_LIST_list (&deps->pending_read_insns);
|
||
free_EXPR_LIST_list (&deps->pending_read_mems);
|
||
free_INSN_LIST_list (&deps->pending_write_insns);
|
||
free_EXPR_LIST_list (&deps->pending_write_mems);
|
||
free_INSN_LIST_list (&deps->last_pending_memory_flush);
|
||
|
||
/* Without the EXECUTE_IF_SET, this loop is executed max_reg * nr_regions
|
||
times. For a testcase with 42000 regs and 8000 small basic blocks,
|
||
this loop accounted for nearly 60% (84 sec) of the total -O2 runtime. */
|
||
EXECUTE_IF_SET_IN_REG_SET (&deps->reg_last_in_use, 0, i, rsi)
|
||
{
|
||
struct deps_reg *reg_last = &deps->reg_last[i];
|
||
if (reg_last->uses)
|
||
free_INSN_LIST_list (®_last->uses);
|
||
if (reg_last->sets)
|
||
free_INSN_LIST_list (®_last->sets);
|
||
if (reg_last->implicit_sets)
|
||
free_INSN_LIST_list (®_last->implicit_sets);
|
||
if (reg_last->control_uses)
|
||
free_INSN_LIST_list (®_last->control_uses);
|
||
if (reg_last->clobbers)
|
||
free_INSN_LIST_list (®_last->clobbers);
|
||
}
|
||
CLEAR_REG_SET (&deps->reg_last_in_use);
|
||
|
||
/* As we initialize reg_last lazily, it is possible that we didn't allocate
|
||
it at all. */
|
||
free (deps->reg_last);
|
||
deps->reg_last = NULL;
|
||
|
||
deps = NULL;
|
||
}
|
||
|
||
/* Remove INSN from dependence contexts DEPS. */
|
||
void
|
||
remove_from_deps (struct deps_desc *deps, rtx_insn *insn)
|
||
{
|
||
int removed;
|
||
unsigned i;
|
||
reg_set_iterator rsi;
|
||
|
||
removed = remove_from_both_dependence_lists (insn, &deps->pending_read_insns,
|
||
&deps->pending_read_mems);
|
||
if (!DEBUG_INSN_P (insn))
|
||
deps->pending_read_list_length -= removed;
|
||
removed = remove_from_both_dependence_lists (insn, &deps->pending_write_insns,
|
||
&deps->pending_write_mems);
|
||
deps->pending_write_list_length -= removed;
|
||
|
||
removed = remove_from_dependence_list (insn, &deps->pending_jump_insns);
|
||
deps->pending_flush_length -= removed;
|
||
removed = remove_from_dependence_list (insn, &deps->last_pending_memory_flush);
|
||
deps->pending_flush_length -= removed;
|
||
|
||
unsigned to_clear = -1U;
|
||
EXECUTE_IF_SET_IN_REG_SET (&deps->reg_last_in_use, 0, i, rsi)
|
||
{
|
||
if (to_clear != -1U)
|
||
{
|
||
CLEAR_REGNO_REG_SET (&deps->reg_last_in_use, to_clear);
|
||
to_clear = -1U;
|
||
}
|
||
struct deps_reg *reg_last = &deps->reg_last[i];
|
||
if (reg_last->uses)
|
||
remove_from_dependence_list (insn, ®_last->uses);
|
||
if (reg_last->sets)
|
||
remove_from_dependence_list (insn, ®_last->sets);
|
||
if (reg_last->implicit_sets)
|
||
remove_from_dependence_list (insn, ®_last->implicit_sets);
|
||
if (reg_last->clobbers)
|
||
remove_from_dependence_list (insn, ®_last->clobbers);
|
||
if (!reg_last->uses && !reg_last->sets && !reg_last->implicit_sets
|
||
&& !reg_last->clobbers)
|
||
to_clear = i;
|
||
}
|
||
if (to_clear != -1U)
|
||
CLEAR_REGNO_REG_SET (&deps->reg_last_in_use, to_clear);
|
||
|
||
if (CALL_P (insn))
|
||
{
|
||
remove_from_dependence_list (insn, &deps->last_function_call);
|
||
remove_from_dependence_list (insn,
|
||
&deps->last_function_call_may_noreturn);
|
||
}
|
||
remove_from_dependence_list (insn, &deps->sched_before_next_call);
|
||
}
|
||
|
||
/* Init deps data vector. */
|
||
static void
|
||
init_deps_data_vector (void)
|
||
{
|
||
int reserve = (sched_max_luid + 1 - h_d_i_d.length ());
|
||
if (reserve > 0 && ! h_d_i_d.space (reserve))
|
||
h_d_i_d.safe_grow_cleared (3 * sched_max_luid / 2);
|
||
}
|
||
|
||
/* If it is profitable to use them, initialize or extend (depending on
|
||
GLOBAL_P) dependency data. */
|
||
void
|
||
sched_deps_init (bool global_p)
|
||
{
|
||
/* Average number of insns in the basic block.
|
||
'+ 1' is used to make it nonzero. */
|
||
int insns_in_block = sched_max_luid / n_basic_blocks_for_fn (cfun) + 1;
|
||
|
||
init_deps_data_vector ();
|
||
|
||
/* We use another caching mechanism for selective scheduling, so
|
||
we don't use this one. */
|
||
if (!sel_sched_p () && global_p && insns_in_block > 100 * 5)
|
||
{
|
||
/* ?!? We could save some memory by computing a per-region luid mapping
|
||
which could reduce both the number of vectors in the cache and the
|
||
size of each vector. Instead we just avoid the cache entirely unless
|
||
the average number of instructions in a basic block is very high. See
|
||
the comment before the declaration of true_dependency_cache for
|
||
what we consider "very high". */
|
||
cache_size = 0;
|
||
extend_dependency_caches (sched_max_luid, true);
|
||
}
|
||
|
||
if (global_p)
|
||
{
|
||
dl_pool = new object_allocator<_deps_list> ("deps_list");
|
||
/* Allocate lists for one block at a time. */
|
||
dn_pool = new object_allocator<_dep_node> ("dep_node");
|
||
/* Allocate nodes for one block at a time. */
|
||
}
|
||
}
|
||
|
||
|
||
/* Create or extend (depending on CREATE_P) dependency caches to
|
||
size N. */
|
||
void
|
||
extend_dependency_caches (int n, bool create_p)
|
||
{
|
||
if (create_p || true_dependency_cache)
|
||
{
|
||
int i, luid = cache_size + n;
|
||
|
||
true_dependency_cache = XRESIZEVEC (bitmap_head, true_dependency_cache,
|
||
luid);
|
||
output_dependency_cache = XRESIZEVEC (bitmap_head,
|
||
output_dependency_cache, luid);
|
||
anti_dependency_cache = XRESIZEVEC (bitmap_head, anti_dependency_cache,
|
||
luid);
|
||
control_dependency_cache = XRESIZEVEC (bitmap_head, control_dependency_cache,
|
||
luid);
|
||
|
||
if (current_sched_info->flags & DO_SPECULATION)
|
||
spec_dependency_cache = XRESIZEVEC (bitmap_head, spec_dependency_cache,
|
||
luid);
|
||
|
||
for (i = cache_size; i < luid; i++)
|
||
{
|
||
bitmap_initialize (&true_dependency_cache[i], 0);
|
||
bitmap_initialize (&output_dependency_cache[i], 0);
|
||
bitmap_initialize (&anti_dependency_cache[i], 0);
|
||
bitmap_initialize (&control_dependency_cache[i], 0);
|
||
|
||
if (current_sched_info->flags & DO_SPECULATION)
|
||
bitmap_initialize (&spec_dependency_cache[i], 0);
|
||
}
|
||
cache_size = luid;
|
||
}
|
||
}
|
||
|
||
/* Finalize dependency information for the whole function. */
|
||
void
|
||
sched_deps_finish (void)
|
||
{
|
||
gcc_assert (deps_pools_are_empty_p ());
|
||
delete dn_pool;
|
||
delete dl_pool;
|
||
dn_pool = NULL;
|
||
dl_pool = NULL;
|
||
|
||
h_d_i_d.release ();
|
||
cache_size = 0;
|
||
|
||
if (true_dependency_cache)
|
||
{
|
||
int i;
|
||
|
||
for (i = 0; i < cache_size; i++)
|
||
{
|
||
bitmap_clear (&true_dependency_cache[i]);
|
||
bitmap_clear (&output_dependency_cache[i]);
|
||
bitmap_clear (&anti_dependency_cache[i]);
|
||
bitmap_clear (&control_dependency_cache[i]);
|
||
|
||
if (sched_deps_info->generate_spec_deps)
|
||
bitmap_clear (&spec_dependency_cache[i]);
|
||
}
|
||
free (true_dependency_cache);
|
||
true_dependency_cache = NULL;
|
||
free (output_dependency_cache);
|
||
output_dependency_cache = NULL;
|
||
free (anti_dependency_cache);
|
||
anti_dependency_cache = NULL;
|
||
free (control_dependency_cache);
|
||
control_dependency_cache = NULL;
|
||
|
||
if (sched_deps_info->generate_spec_deps)
|
||
{
|
||
free (spec_dependency_cache);
|
||
spec_dependency_cache = NULL;
|
||
}
|
||
|
||
}
|
||
}
|
||
|
||
/* Initialize some global variables needed by the dependency analysis
|
||
code. */
|
||
|
||
void
|
||
init_deps_global (void)
|
||
{
|
||
CLEAR_HARD_REG_SET (implicit_reg_pending_clobbers);
|
||
CLEAR_HARD_REG_SET (implicit_reg_pending_uses);
|
||
reg_pending_sets = ALLOC_REG_SET (®_obstack);
|
||
reg_pending_clobbers = ALLOC_REG_SET (®_obstack);
|
||
reg_pending_uses = ALLOC_REG_SET (®_obstack);
|
||
reg_pending_control_uses = ALLOC_REG_SET (®_obstack);
|
||
reg_pending_barrier = NOT_A_BARRIER;
|
||
|
||
if (!sel_sched_p () || sched_emulate_haifa_p)
|
||
{
|
||
sched_deps_info->start_insn = haifa_start_insn;
|
||
sched_deps_info->finish_insn = haifa_finish_insn;
|
||
|
||
sched_deps_info->note_reg_set = haifa_note_reg_set;
|
||
sched_deps_info->note_reg_clobber = haifa_note_reg_clobber;
|
||
sched_deps_info->note_reg_use = haifa_note_reg_use;
|
||
|
||
sched_deps_info->note_mem_dep = haifa_note_mem_dep;
|
||
sched_deps_info->note_dep = haifa_note_dep;
|
||
}
|
||
}
|
||
|
||
/* Free everything used by the dependency analysis code. */
|
||
|
||
void
|
||
finish_deps_global (void)
|
||
{
|
||
FREE_REG_SET (reg_pending_sets);
|
||
FREE_REG_SET (reg_pending_clobbers);
|
||
FREE_REG_SET (reg_pending_uses);
|
||
FREE_REG_SET (reg_pending_control_uses);
|
||
}
|
||
|
||
/* Estimate the weakness of dependence between MEM1 and MEM2. */
|
||
dw_t
|
||
estimate_dep_weak (rtx mem1, rtx mem2)
|
||
{
|
||
if (mem1 == mem2)
|
||
/* MEMs are the same - don't speculate. */
|
||
return MIN_DEP_WEAK;
|
||
|
||
rtx r1 = XEXP (mem1, 0);
|
||
rtx r2 = XEXP (mem2, 0);
|
||
|
||
if (sched_deps_info->use_cselib)
|
||
{
|
||
/* We cannot call rtx_equal_for_cselib_p because the VALUEs might be
|
||
dangling at this point, since we never preserve them. Instead we
|
||
canonicalize manually to get stable VALUEs out of hashing. */
|
||
if (GET_CODE (r1) == VALUE && CSELIB_VAL_PTR (r1))
|
||
r1 = canonical_cselib_val (CSELIB_VAL_PTR (r1))->val_rtx;
|
||
if (GET_CODE (r2) == VALUE && CSELIB_VAL_PTR (r2))
|
||
r2 = canonical_cselib_val (CSELIB_VAL_PTR (r2))->val_rtx;
|
||
}
|
||
|
||
if (r1 == r2
|
||
|| (REG_P (r1) && REG_P (r2) && REGNO (r1) == REGNO (r2)))
|
||
/* Again, MEMs are the same. */
|
||
return MIN_DEP_WEAK;
|
||
else if ((REG_P (r1) && !REG_P (r2)) || (!REG_P (r1) && REG_P (r2)))
|
||
/* Different addressing modes - reason to be more speculative,
|
||
than usual. */
|
||
return NO_DEP_WEAK - (NO_DEP_WEAK - UNCERTAIN_DEP_WEAK) / 2;
|
||
else
|
||
/* We can't say anything about the dependence. */
|
||
return UNCERTAIN_DEP_WEAK;
|
||
}
|
||
|
||
/* Add or update backward dependence between INSN and ELEM with type DEP_TYPE.
|
||
This function can handle same INSN and ELEM (INSN == ELEM).
|
||
It is a convenience wrapper. */
|
||
static void
|
||
add_dependence_1 (rtx_insn *insn, rtx_insn *elem, enum reg_note dep_type)
|
||
{
|
||
ds_t ds;
|
||
bool internal;
|
||
|
||
if (dep_type == REG_DEP_TRUE)
|
||
ds = DEP_TRUE;
|
||
else if (dep_type == REG_DEP_OUTPUT)
|
||
ds = DEP_OUTPUT;
|
||
else if (dep_type == REG_DEP_CONTROL)
|
||
ds = DEP_CONTROL;
|
||
else
|
||
{
|
||
gcc_assert (dep_type == REG_DEP_ANTI);
|
||
ds = DEP_ANTI;
|
||
}
|
||
|
||
/* When add_dependence is called from inside sched-deps.c, we expect
|
||
cur_insn to be non-null. */
|
||
internal = cur_insn != NULL;
|
||
if (internal)
|
||
gcc_assert (insn == cur_insn);
|
||
else
|
||
cur_insn = insn;
|
||
|
||
note_dep (elem, ds);
|
||
if (!internal)
|
||
cur_insn = NULL;
|
||
}
|
||
|
||
/* Return weakness of speculative type TYPE in the dep_status DS,
|
||
without checking to prevent ICEs on malformed input. */
|
||
static dw_t
|
||
get_dep_weak_1 (ds_t ds, ds_t type)
|
||
{
|
||
ds = ds & type;
|
||
|
||
switch (type)
|
||
{
|
||
case BEGIN_DATA: ds >>= BEGIN_DATA_BITS_OFFSET; break;
|
||
case BE_IN_DATA: ds >>= BE_IN_DATA_BITS_OFFSET; break;
|
||
case BEGIN_CONTROL: ds >>= BEGIN_CONTROL_BITS_OFFSET; break;
|
||
case BE_IN_CONTROL: ds >>= BE_IN_CONTROL_BITS_OFFSET; break;
|
||
default: gcc_unreachable ();
|
||
}
|
||
|
||
return (dw_t) ds;
|
||
}
|
||
|
||
/* Return weakness of speculative type TYPE in the dep_status DS. */
|
||
dw_t
|
||
get_dep_weak (ds_t ds, ds_t type)
|
||
{
|
||
dw_t dw = get_dep_weak_1 (ds, type);
|
||
|
||
gcc_assert (MIN_DEP_WEAK <= dw && dw <= MAX_DEP_WEAK);
|
||
return dw;
|
||
}
|
||
|
||
/* Return the dep_status, which has the same parameters as DS, except for
|
||
speculative type TYPE, that will have weakness DW. */
|
||
ds_t
|
||
set_dep_weak (ds_t ds, ds_t type, dw_t dw)
|
||
{
|
||
gcc_assert (MIN_DEP_WEAK <= dw && dw <= MAX_DEP_WEAK);
|
||
|
||
ds &= ~type;
|
||
switch (type)
|
||
{
|
||
case BEGIN_DATA: ds |= ((ds_t) dw) << BEGIN_DATA_BITS_OFFSET; break;
|
||
case BE_IN_DATA: ds |= ((ds_t) dw) << BE_IN_DATA_BITS_OFFSET; break;
|
||
case BEGIN_CONTROL: ds |= ((ds_t) dw) << BEGIN_CONTROL_BITS_OFFSET; break;
|
||
case BE_IN_CONTROL: ds |= ((ds_t) dw) << BE_IN_CONTROL_BITS_OFFSET; break;
|
||
default: gcc_unreachable ();
|
||
}
|
||
return ds;
|
||
}
|
||
|
||
/* Return the join of two dep_statuses DS1 and DS2.
|
||
If MAX_P is true then choose the greater probability,
|
||
otherwise multiply probabilities.
|
||
This function assumes that both DS1 and DS2 contain speculative bits. */
|
||
static ds_t
|
||
ds_merge_1 (ds_t ds1, ds_t ds2, bool max_p)
|
||
{
|
||
ds_t ds, t;
|
||
|
||
gcc_assert ((ds1 & SPECULATIVE) && (ds2 & SPECULATIVE));
|
||
|
||
ds = (ds1 & DEP_TYPES) | (ds2 & DEP_TYPES);
|
||
|
||
t = FIRST_SPEC_TYPE;
|
||
do
|
||
{
|
||
if ((ds1 & t) && !(ds2 & t))
|
||
ds |= ds1 & t;
|
||
else if (!(ds1 & t) && (ds2 & t))
|
||
ds |= ds2 & t;
|
||
else if ((ds1 & t) && (ds2 & t))
|
||
{
|
||
dw_t dw1 = get_dep_weak (ds1, t);
|
||
dw_t dw2 = get_dep_weak (ds2, t);
|
||
ds_t dw;
|
||
|
||
if (!max_p)
|
||
{
|
||
dw = ((ds_t) dw1) * ((ds_t) dw2);
|
||
dw /= MAX_DEP_WEAK;
|
||
if (dw < MIN_DEP_WEAK)
|
||
dw = MIN_DEP_WEAK;
|
||
}
|
||
else
|
||
{
|
||
if (dw1 >= dw2)
|
||
dw = dw1;
|
||
else
|
||
dw = dw2;
|
||
}
|
||
|
||
ds = set_dep_weak (ds, t, (dw_t) dw);
|
||
}
|
||
|
||
if (t == LAST_SPEC_TYPE)
|
||
break;
|
||
t <<= SPEC_TYPE_SHIFT;
|
||
}
|
||
while (1);
|
||
|
||
return ds;
|
||
}
|
||
|
||
/* Return the join of two dep_statuses DS1 and DS2.
|
||
This function assumes that both DS1 and DS2 contain speculative bits. */
|
||
ds_t
|
||
ds_merge (ds_t ds1, ds_t ds2)
|
||
{
|
||
return ds_merge_1 (ds1, ds2, false);
|
||
}
|
||
|
||
/* Return the join of two dep_statuses DS1 and DS2. */
|
||
ds_t
|
||
ds_full_merge (ds_t ds, ds_t ds2, rtx mem1, rtx mem2)
|
||
{
|
||
ds_t new_status = ds | ds2;
|
||
|
||
if (new_status & SPECULATIVE)
|
||
{
|
||
if ((ds && !(ds & SPECULATIVE))
|
||
|| (ds2 && !(ds2 & SPECULATIVE)))
|
||
/* Then this dep can't be speculative. */
|
||
new_status &= ~SPECULATIVE;
|
||
else
|
||
{
|
||
/* Both are speculative. Merging probabilities. */
|
||
if (mem1)
|
||
{
|
||
dw_t dw;
|
||
|
||
dw = estimate_dep_weak (mem1, mem2);
|
||
ds = set_dep_weak (ds, BEGIN_DATA, dw);
|
||
}
|
||
|
||
if (!ds)
|
||
new_status = ds2;
|
||
else if (!ds2)
|
||
new_status = ds;
|
||
else
|
||
new_status = ds_merge (ds2, ds);
|
||
}
|
||
}
|
||
|
||
return new_status;
|
||
}
|
||
|
||
/* Return the join of DS1 and DS2. Use maximum instead of multiplying
|
||
probabilities. */
|
||
ds_t
|
||
ds_max_merge (ds_t ds1, ds_t ds2)
|
||
{
|
||
if (ds1 == 0 && ds2 == 0)
|
||
return 0;
|
||
|
||
if (ds1 == 0 && ds2 != 0)
|
||
return ds2;
|
||
|
||
if (ds1 != 0 && ds2 == 0)
|
||
return ds1;
|
||
|
||
return ds_merge_1 (ds1, ds2, true);
|
||
}
|
||
|
||
/* Return the probability of speculation success for the speculation
|
||
status DS. */
|
||
dw_t
|
||
ds_weak (ds_t ds)
|
||
{
|
||
ds_t res = 1, dt;
|
||
int n = 0;
|
||
|
||
dt = FIRST_SPEC_TYPE;
|
||
do
|
||
{
|
||
if (ds & dt)
|
||
{
|
||
res *= (ds_t) get_dep_weak (ds, dt);
|
||
n++;
|
||
}
|
||
|
||
if (dt == LAST_SPEC_TYPE)
|
||
break;
|
||
dt <<= SPEC_TYPE_SHIFT;
|
||
}
|
||
while (1);
|
||
|
||
gcc_assert (n);
|
||
while (--n)
|
||
res /= MAX_DEP_WEAK;
|
||
|
||
if (res < MIN_DEP_WEAK)
|
||
res = MIN_DEP_WEAK;
|
||
|
||
gcc_assert (res <= MAX_DEP_WEAK);
|
||
|
||
return (dw_t) res;
|
||
}
|
||
|
||
/* Return a dep status that contains all speculation types of DS. */
|
||
ds_t
|
||
ds_get_speculation_types (ds_t ds)
|
||
{
|
||
if (ds & BEGIN_DATA)
|
||
ds |= BEGIN_DATA;
|
||
if (ds & BE_IN_DATA)
|
||
ds |= BE_IN_DATA;
|
||
if (ds & BEGIN_CONTROL)
|
||
ds |= BEGIN_CONTROL;
|
||
if (ds & BE_IN_CONTROL)
|
||
ds |= BE_IN_CONTROL;
|
||
|
||
return ds & SPECULATIVE;
|
||
}
|
||
|
||
/* Return a dep status that contains maximal weakness for each speculation
|
||
type present in DS. */
|
||
ds_t
|
||
ds_get_max_dep_weak (ds_t ds)
|
||
{
|
||
if (ds & BEGIN_DATA)
|
||
ds = set_dep_weak (ds, BEGIN_DATA, MAX_DEP_WEAK);
|
||
if (ds & BE_IN_DATA)
|
||
ds = set_dep_weak (ds, BE_IN_DATA, MAX_DEP_WEAK);
|
||
if (ds & BEGIN_CONTROL)
|
||
ds = set_dep_weak (ds, BEGIN_CONTROL, MAX_DEP_WEAK);
|
||
if (ds & BE_IN_CONTROL)
|
||
ds = set_dep_weak (ds, BE_IN_CONTROL, MAX_DEP_WEAK);
|
||
|
||
return ds;
|
||
}
|
||
|
||
/* Dump information about the dependence status S. */
|
||
static void
|
||
dump_ds (FILE *f, ds_t s)
|
||
{
|
||
fprintf (f, "{");
|
||
|
||
if (s & BEGIN_DATA)
|
||
fprintf (f, "BEGIN_DATA: %d; ", get_dep_weak_1 (s, BEGIN_DATA));
|
||
if (s & BE_IN_DATA)
|
||
fprintf (f, "BE_IN_DATA: %d; ", get_dep_weak_1 (s, BE_IN_DATA));
|
||
if (s & BEGIN_CONTROL)
|
||
fprintf (f, "BEGIN_CONTROL: %d; ", get_dep_weak_1 (s, BEGIN_CONTROL));
|
||
if (s & BE_IN_CONTROL)
|
||
fprintf (f, "BE_IN_CONTROL: %d; ", get_dep_weak_1 (s, BE_IN_CONTROL));
|
||
|
||
if (s & HARD_DEP)
|
||
fprintf (f, "HARD_DEP; ");
|
||
|
||
if (s & DEP_TRUE)
|
||
fprintf (f, "DEP_TRUE; ");
|
||
if (s & DEP_OUTPUT)
|
||
fprintf (f, "DEP_OUTPUT; ");
|
||
if (s & DEP_ANTI)
|
||
fprintf (f, "DEP_ANTI; ");
|
||
if (s & DEP_CONTROL)
|
||
fprintf (f, "DEP_CONTROL; ");
|
||
|
||
fprintf (f, "}");
|
||
}
|
||
|
||
DEBUG_FUNCTION void
|
||
debug_ds (ds_t s)
|
||
{
|
||
dump_ds (stderr, s);
|
||
fprintf (stderr, "\n");
|
||
}
|
||
|
||
/* Verify that dependence type and status are consistent.
|
||
If RELAXED_P is true, then skip dep_weakness checks. */
|
||
static void
|
||
check_dep (dep_t dep, bool relaxed_p)
|
||
{
|
||
enum reg_note dt = DEP_TYPE (dep);
|
||
ds_t ds = DEP_STATUS (dep);
|
||
|
||
gcc_assert (DEP_PRO (dep) != DEP_CON (dep));
|
||
|
||
if (!(current_sched_info->flags & USE_DEPS_LIST))
|
||
{
|
||
gcc_assert (ds == 0);
|
||
return;
|
||
}
|
||
|
||
/* Check that dependence type contains the same bits as the status. */
|
||
if (dt == REG_DEP_TRUE)
|
||
gcc_assert (ds & DEP_TRUE);
|
||
else if (dt == REG_DEP_OUTPUT)
|
||
gcc_assert ((ds & DEP_OUTPUT)
|
||
&& !(ds & DEP_TRUE));
|
||
else if (dt == REG_DEP_ANTI)
|
||
gcc_assert ((ds & DEP_ANTI)
|
||
&& !(ds & (DEP_OUTPUT | DEP_TRUE)));
|
||
else
|
||
gcc_assert (dt == REG_DEP_CONTROL
|
||
&& (ds & DEP_CONTROL)
|
||
&& !(ds & (DEP_OUTPUT | DEP_ANTI | DEP_TRUE)));
|
||
|
||
/* HARD_DEP can not appear in dep_status of a link. */
|
||
gcc_assert (!(ds & HARD_DEP));
|
||
|
||
/* Check that dependence status is set correctly when speculation is not
|
||
supported. */
|
||
if (!sched_deps_info->generate_spec_deps)
|
||
gcc_assert (!(ds & SPECULATIVE));
|
||
else if (ds & SPECULATIVE)
|
||
{
|
||
if (!relaxed_p)
|
||
{
|
||
ds_t type = FIRST_SPEC_TYPE;
|
||
|
||
/* Check that dependence weakness is in proper range. */
|
||
do
|
||
{
|
||
if (ds & type)
|
||
get_dep_weak (ds, type);
|
||
|
||
if (type == LAST_SPEC_TYPE)
|
||
break;
|
||
type <<= SPEC_TYPE_SHIFT;
|
||
}
|
||
while (1);
|
||
}
|
||
|
||
if (ds & BEGIN_SPEC)
|
||
{
|
||
/* Only true dependence can be data speculative. */
|
||
if (ds & BEGIN_DATA)
|
||
gcc_assert (ds & DEP_TRUE);
|
||
|
||
/* Control dependencies in the insn scheduler are represented by
|
||
anti-dependencies, therefore only anti dependence can be
|
||
control speculative. */
|
||
if (ds & BEGIN_CONTROL)
|
||
gcc_assert (ds & DEP_ANTI);
|
||
}
|
||
else
|
||
{
|
||
/* Subsequent speculations should resolve true dependencies. */
|
||
gcc_assert ((ds & DEP_TYPES) == DEP_TRUE);
|
||
}
|
||
|
||
/* Check that true and anti dependencies can't have other speculative
|
||
statuses. */
|
||
if (ds & DEP_TRUE)
|
||
gcc_assert (ds & (BEGIN_DATA | BE_IN_SPEC));
|
||
/* An output dependence can't be speculative at all. */
|
||
gcc_assert (!(ds & DEP_OUTPUT));
|
||
if (ds & DEP_ANTI)
|
||
gcc_assert (ds & BEGIN_CONTROL);
|
||
}
|
||
}
|
||
|
||
/* The following code discovers opportunities to switch a memory reference
|
||
and an increment by modifying the address. We ensure that this is done
|
||
only for dependencies that are only used to show a single register
|
||
dependence (using DEP_NONREG and DEP_MULTIPLE), and so that every memory
|
||
instruction involved is subject to only one dep that can cause a pattern
|
||
change.
|
||
|
||
When we discover a suitable dependency, we fill in the dep_replacement
|
||
structure to show how to modify the memory reference. */
|
||
|
||
/* Holds information about a pair of memory reference and register increment
|
||
insns which depend on each other, but could possibly be interchanged. */
|
||
struct mem_inc_info
|
||
{
|
||
rtx_insn *inc_insn;
|
||
rtx_insn *mem_insn;
|
||
|
||
rtx *mem_loc;
|
||
/* A register occurring in the memory address for which we wish to break
|
||
the dependence. This must be identical to the destination register of
|
||
the increment. */
|
||
rtx mem_reg0;
|
||
/* Any kind of index that is added to that register. */
|
||
rtx mem_index;
|
||
/* The constant offset used in the memory address. */
|
||
HOST_WIDE_INT mem_constant;
|
||
/* The constant added in the increment insn. Negated if the increment is
|
||
after the memory address. */
|
||
HOST_WIDE_INT inc_constant;
|
||
/* The source register used in the increment. May be different from mem_reg0
|
||
if the increment occurs before the memory address. */
|
||
rtx inc_input;
|
||
};
|
||
|
||
/* Verify that the memory location described in MII can be replaced with
|
||
one using NEW_ADDR. Return the new memory reference or NULL_RTX. The
|
||
insn remains unchanged by this function. */
|
||
|
||
static rtx
|
||
attempt_change (struct mem_inc_info *mii, rtx new_addr)
|
||
{
|
||
rtx mem = *mii->mem_loc;
|
||
rtx new_mem;
|
||
|
||
/* Jump through a lot of hoops to keep the attributes up to date. We
|
||
do not want to call one of the change address variants that take
|
||
an offset even though we know the offset in many cases. These
|
||
assume you are changing where the address is pointing by the
|
||
offset. */
|
||
new_mem = replace_equiv_address_nv (mem, new_addr);
|
||
if (! validate_change (mii->mem_insn, mii->mem_loc, new_mem, 0))
|
||
{
|
||
if (sched_verbose >= 5)
|
||
fprintf (sched_dump, "validation failure\n");
|
||
return NULL_RTX;
|
||
}
|
||
|
||
/* Put back the old one. */
|
||
validate_change (mii->mem_insn, mii->mem_loc, mem, 0);
|
||
|
||
return new_mem;
|
||
}
|
||
|
||
/* Return true if INSN is of a form "a = b op c" where a and b are
|
||
regs. op is + if c is a reg and +|- if c is a const. Fill in
|
||
informantion in MII about what is found.
|
||
BEFORE_MEM indicates whether the increment is found before or after
|
||
a corresponding memory reference. */
|
||
|
||
static bool
|
||
parse_add_or_inc (struct mem_inc_info *mii, rtx_insn *insn, bool before_mem)
|
||
{
|
||
rtx pat = single_set (insn);
|
||
rtx src, cst;
|
||
bool regs_equal;
|
||
|
||
if (RTX_FRAME_RELATED_P (insn) || !pat)
|
||
return false;
|
||
|
||
/* Result must be single reg. */
|
||
if (!REG_P (SET_DEST (pat)))
|
||
return false;
|
||
|
||
if (GET_CODE (SET_SRC (pat)) != PLUS)
|
||
return false;
|
||
|
||
mii->inc_insn = insn;
|
||
src = SET_SRC (pat);
|
||
mii->inc_input = XEXP (src, 0);
|
||
|
||
if (!REG_P (XEXP (src, 0)))
|
||
return false;
|
||
|
||
if (!rtx_equal_p (SET_DEST (pat), mii->mem_reg0))
|
||
return false;
|
||
|
||
cst = XEXP (src, 1);
|
||
if (!CONST_INT_P (cst))
|
||
return false;
|
||
mii->inc_constant = INTVAL (cst);
|
||
|
||
regs_equal = rtx_equal_p (mii->inc_input, mii->mem_reg0);
|
||
|
||
if (!before_mem)
|
||
{
|
||
mii->inc_constant = -mii->inc_constant;
|
||
if (!regs_equal)
|
||
return false;
|
||
}
|
||
|
||
if (regs_equal && REGNO (SET_DEST (pat)) == STACK_POINTER_REGNUM)
|
||
{
|
||
/* Note that the sign has already been reversed for !before_mem. */
|
||
if (STACK_GROWS_DOWNWARD)
|
||
return mii->inc_constant > 0;
|
||
else
|
||
return mii->inc_constant < 0;
|
||
}
|
||
return true;
|
||
}
|
||
|
||
/* Once a suitable mem reference has been found and the corresponding data
|
||
in MII has been filled in, this function is called to find a suitable
|
||
add or inc insn involving the register we found in the memory
|
||
reference. */
|
||
|
||
static bool
|
||
find_inc (struct mem_inc_info *mii, bool backwards)
|
||
{
|
||
sd_iterator_def sd_it;
|
||
dep_t dep;
|
||
|
||
sd_it = sd_iterator_start (mii->mem_insn,
|
||
backwards ? SD_LIST_HARD_BACK : SD_LIST_FORW);
|
||
while (sd_iterator_cond (&sd_it, &dep))
|
||
{
|
||
dep_node_t node = DEP_LINK_NODE (*sd_it.linkp);
|
||
rtx_insn *pro = DEP_PRO (dep);
|
||
rtx_insn *con = DEP_CON (dep);
|
||
rtx_insn *inc_cand = backwards ? pro : con;
|
||
if (DEP_NONREG (dep) || DEP_MULTIPLE (dep))
|
||
goto next;
|
||
if (parse_add_or_inc (mii, inc_cand, backwards))
|
||
{
|
||
struct dep_replacement *desc;
|
||
df_ref def;
|
||
rtx newaddr, newmem;
|
||
|
||
if (sched_verbose >= 5)
|
||
fprintf (sched_dump, "candidate mem/inc pair: %d %d\n",
|
||
INSN_UID (mii->mem_insn), INSN_UID (inc_cand));
|
||
|
||
/* Need to assure that none of the operands of the inc
|
||
instruction are assigned to by the mem insn. */
|
||
FOR_EACH_INSN_DEF (def, mii->mem_insn)
|
||
if (reg_overlap_mentioned_p (DF_REF_REG (def), mii->inc_input)
|
||
|| reg_overlap_mentioned_p (DF_REF_REG (def), mii->mem_reg0))
|
||
{
|
||
if (sched_verbose >= 5)
|
||
fprintf (sched_dump,
|
||
"inc conflicts with store failure.\n");
|
||
goto next;
|
||
}
|
||
|
||
newaddr = mii->inc_input;
|
||
if (mii->mem_index != NULL_RTX)
|
||
newaddr = gen_rtx_PLUS (GET_MODE (newaddr), newaddr,
|
||
mii->mem_index);
|
||
newaddr = plus_constant (GET_MODE (newaddr), newaddr,
|
||
mii->mem_constant + mii->inc_constant);
|
||
newmem = attempt_change (mii, newaddr);
|
||
if (newmem == NULL_RTX)
|
||
goto next;
|
||
if (sched_verbose >= 5)
|
||
fprintf (sched_dump, "successful address replacement\n");
|
||
desc = XCNEW (struct dep_replacement);
|
||
DEP_REPLACE (dep) = desc;
|
||
desc->loc = mii->mem_loc;
|
||
desc->newval = newmem;
|
||
desc->orig = *desc->loc;
|
||
desc->insn = mii->mem_insn;
|
||
move_dep_link (DEP_NODE_BACK (node), INSN_HARD_BACK_DEPS (con),
|
||
INSN_SPEC_BACK_DEPS (con));
|
||
if (backwards)
|
||
{
|
||
FOR_EACH_DEP (mii->inc_insn, SD_LIST_BACK, sd_it, dep)
|
||
add_dependence_1 (mii->mem_insn, DEP_PRO (dep),
|
||
REG_DEP_TRUE);
|
||
}
|
||
else
|
||
{
|
||
FOR_EACH_DEP (mii->inc_insn, SD_LIST_FORW, sd_it, dep)
|
||
add_dependence_1 (DEP_CON (dep), mii->mem_insn,
|
||
REG_DEP_ANTI);
|
||
}
|
||
return true;
|
||
}
|
||
next:
|
||
sd_iterator_next (&sd_it);
|
||
}
|
||
return false;
|
||
}
|
||
|
||
/* A recursive function that walks ADDRESS_OF_X to find memory references
|
||
which could be modified during scheduling. We call find_inc for each
|
||
one we find that has a recognizable form. MII holds information about
|
||
the pair of memory/increment instructions.
|
||
We ensure that every instruction with a memory reference (which will be
|
||
the location of the replacement) is assigned at most one breakable
|
||
dependency. */
|
||
|
||
static bool
|
||
find_mem (struct mem_inc_info *mii, rtx *address_of_x)
|
||
{
|
||
rtx x = *address_of_x;
|
||
enum rtx_code code = GET_CODE (x);
|
||
const char *const fmt = GET_RTX_FORMAT (code);
|
||
int i;
|
||
|
||
if (code == MEM)
|
||
{
|
||
rtx reg0 = XEXP (x, 0);
|
||
|
||
mii->mem_loc = address_of_x;
|
||
mii->mem_index = NULL_RTX;
|
||
mii->mem_constant = 0;
|
||
if (GET_CODE (reg0) == PLUS && CONST_INT_P (XEXP (reg0, 1)))
|
||
{
|
||
mii->mem_constant = INTVAL (XEXP (reg0, 1));
|
||
reg0 = XEXP (reg0, 0);
|
||
}
|
||
if (GET_CODE (reg0) == PLUS)
|
||
{
|
||
mii->mem_index = XEXP (reg0, 1);
|
||
reg0 = XEXP (reg0, 0);
|
||
}
|
||
if (REG_P (reg0))
|
||
{
|
||
df_ref use;
|
||
int occurrences = 0;
|
||
|
||
/* Make sure this reg appears only once in this insn. Can't use
|
||
count_occurrences since that only works for pseudos. */
|
||
FOR_EACH_INSN_USE (use, mii->mem_insn)
|
||
if (reg_overlap_mentioned_p (reg0, DF_REF_REG (use)))
|
||
if (++occurrences > 1)
|
||
{
|
||
if (sched_verbose >= 5)
|
||
fprintf (sched_dump, "mem count failure\n");
|
||
return false;
|
||
}
|
||
|
||
mii->mem_reg0 = reg0;
|
||
return find_inc (mii, true) || find_inc (mii, false);
|
||
}
|
||
return false;
|
||
}
|
||
|
||
if (code == SIGN_EXTRACT || code == ZERO_EXTRACT)
|
||
{
|
||
/* If REG occurs inside a MEM used in a bit-field reference,
|
||
that is unacceptable. */
|
||
return false;
|
||
}
|
||
|
||
/* Time for some deep diving. */
|
||
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
||
{
|
||
if (fmt[i] == 'e')
|
||
{
|
||
if (find_mem (mii, &XEXP (x, i)))
|
||
return true;
|
||
}
|
||
else if (fmt[i] == 'E')
|
||
{
|
||
int j;
|
||
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
|
||
if (find_mem (mii, &XVECEXP (x, i, j)))
|
||
return true;
|
||
}
|
||
}
|
||
return false;
|
||
}
|
||
|
||
|
||
/* Examine the instructions between HEAD and TAIL and try to find
|
||
dependencies that can be broken by modifying one of the patterns. */
|
||
|
||
void
|
||
find_modifiable_mems (rtx_insn *head, rtx_insn *tail)
|
||
{
|
||
rtx_insn *insn, *next_tail = NEXT_INSN (tail);
|
||
int success_in_block = 0;
|
||
|
||
for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
|
||
{
|
||
struct mem_inc_info mii;
|
||
|
||
if (!NONDEBUG_INSN_P (insn) || RTX_FRAME_RELATED_P (insn))
|
||
continue;
|
||
|
||
mii.mem_insn = insn;
|
||
if (find_mem (&mii, &PATTERN (insn)))
|
||
success_in_block++;
|
||
}
|
||
if (success_in_block && sched_verbose >= 5)
|
||
fprintf (sched_dump, "%d candidates for address modification found.\n",
|
||
success_in_block);
|
||
}
|
||
|
||
#endif /* INSN_SCHEDULING */
|