gcc/libstdc++-v3/include/ext/slist
Paolo Carlini 14ba6d00aa slist: Trivial formatting fixes.
2004-06-14  Paolo Carlini  <pcarlini@suse.de>

	* include/ext/slist: Trivial formatting fixes.

From-SVN: r83098
2004-06-14 13:03:45 +00:00

1074 lines
29 KiB
C++

// Singly-linked list implementation -*- C++ -*-
// Copyright (C) 2001, 2002, 2004 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License along
// with this library; see the file COPYING. If not, write to the Free
// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
// USA.
// As a special exception, you may use this file as part of a free software
// library without restriction. Specifically, if other files instantiate
// templates or use macros or inline functions from this file, or you compile
// this file and link it with other files to produce an executable, this
// file does not by itself cause the resulting executable to be covered by
// the GNU General Public License. This exception does not however
// invalidate any other reasons why the executable file might be covered by
// the GNU General Public License.
/*
* Copyright (c) 1997
* Silicon Graphics Computer Systems, Inc.
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Silicon Graphics makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*
*/
/** @file ext/slist
* This file is a GNU extension to the Standard C++ Library (possibly
* containing extensions from the HP/SGI STL subset). You should only
* include this header if you are using GCC 3 or later.
*/
#ifndef _SLIST
#define _SLIST 1
#include <bits/stl_algobase.h>
#include <bits/allocator.h>
#include <bits/stl_construct.h>
#include <bits/stl_uninitialized.h>
#include <bits/concept_check.h>
namespace __gnu_cxx
{
using std::size_t;
using std::ptrdiff_t;
using std::_Construct;
using std::_Destroy;
using std::allocator;
struct _Slist_node_base
{
_Slist_node_base* _M_next;
};
inline _Slist_node_base*
__slist_make_link(_Slist_node_base* __prev_node,
_Slist_node_base* __new_node)
{
__new_node->_M_next = __prev_node->_M_next;
__prev_node->_M_next = __new_node;
return __new_node;
}
inline _Slist_node_base*
__slist_previous(_Slist_node_base* __head,
const _Slist_node_base* __node)
{
while (__head && __head->_M_next != __node)
__head = __head->_M_next;
return __head;
}
inline const _Slist_node_base*
__slist_previous(const _Slist_node_base* __head,
const _Slist_node_base* __node)
{
while (__head && __head->_M_next != __node)
__head = __head->_M_next;
return __head;
}
inline void
__slist_splice_after(_Slist_node_base* __pos,
_Slist_node_base* __before_first,
_Slist_node_base* __before_last)
{
if (__pos != __before_first && __pos != __before_last)
{
_Slist_node_base* __first = __before_first->_M_next;
_Slist_node_base* __after = __pos->_M_next;
__before_first->_M_next = __before_last->_M_next;
__pos->_M_next = __first;
__before_last->_M_next = __after;
}
}
inline void
__slist_splice_after(_Slist_node_base* __pos, _Slist_node_base* __head)
{
_Slist_node_base* __before_last = __slist_previous(__head, 0);
if (__before_last != __head)
{
_Slist_node_base* __after = __pos->_M_next;
__pos->_M_next = __head->_M_next;
__head->_M_next = 0;
__before_last->_M_next = __after;
}
}
inline _Slist_node_base*
__slist_reverse(_Slist_node_base* __node)
{
_Slist_node_base* __result = __node;
__node = __node->_M_next;
__result->_M_next = 0;
while(__node)
{
_Slist_node_base* __next = __node->_M_next;
__node->_M_next = __result;
__result = __node;
__node = __next;
}
return __result;
}
inline size_t
__slist_size(_Slist_node_base* __node)
{
size_t __result = 0;
for (; __node != 0; __node = __node->_M_next)
++__result;
return __result;
}
template <class _Tp>
struct _Slist_node : public _Slist_node_base
{
_Tp _M_data;
};
struct _Slist_iterator_base
{
typedef size_t size_type;
typedef ptrdiff_t difference_type;
typedef std::forward_iterator_tag iterator_category;
_Slist_node_base* _M_node;
_Slist_iterator_base(_Slist_node_base* __x)
: _M_node(__x) {}
void
_M_incr()
{ _M_node = _M_node->_M_next; }
bool
operator==(const _Slist_iterator_base& __x) const
{ return _M_node == __x._M_node; }
bool
operator!=(const _Slist_iterator_base& __x) const
{ return _M_node != __x._M_node; }
};
template <class _Tp, class _Ref, class _Ptr>
struct _Slist_iterator : public _Slist_iterator_base
{
typedef _Slist_iterator<_Tp, _Tp&, _Tp*> iterator;
typedef _Slist_iterator<_Tp, const _Tp&, const _Tp*> const_iterator;
typedef _Slist_iterator<_Tp, _Ref, _Ptr> _Self;
typedef _Tp value_type;
typedef _Ptr pointer;
typedef _Ref reference;
typedef _Slist_node<_Tp> _Node;
_Slist_iterator(_Node* __x)
: _Slist_iterator_base(__x) {}
_Slist_iterator()
: _Slist_iterator_base(0) {}
_Slist_iterator(const iterator& __x)
: _Slist_iterator_base(__x._M_node) {}
reference
operator*() const
{ return ((_Node*) _M_node)->_M_data; }
pointer
operator->() const
{ return &(operator*()); }
_Self&
operator++()
{
_M_incr();
return *this;
}
_Self
operator++(int)
{
_Self __tmp = *this;
_M_incr();
return __tmp;
}
};
template <class _Tp, class _Alloc>
struct _Slist_base
: public _Alloc::template rebind<_Slist_node<_Tp> >::other
{
typedef typename _Alloc::template rebind<_Slist_node<_Tp> >::other
_Node_alloc;
typedef _Alloc allocator_type;
allocator_type
get_allocator() const
{ return *static_cast<const _Node_alloc*>(this); }
_Slist_base(const allocator_type& __a)
: _Node_alloc(__a)
{ this->_M_head._M_next = 0; }
~_Slist_base()
{ _M_erase_after(&this->_M_head, 0); }
protected:
_Slist_node_base _M_head;
_Slist_node<_Tp>*
_M_get_node()
{ return _Node_alloc::allocate(1); }
void
_M_put_node(_Slist_node<_Tp>* __p)
{ _Node_alloc::deallocate(__p, 1); }
protected:
_Slist_node_base* _M_erase_after(_Slist_node_base* __pos)
{
_Slist_node<_Tp>* __next = (_Slist_node<_Tp>*) (__pos->_M_next);
_Slist_node_base* __next_next = __next->_M_next;
__pos->_M_next = __next_next;
_Destroy(&__next->_M_data);
_M_put_node(__next);
return __next_next;
}
_Slist_node_base* _M_erase_after(_Slist_node_base*, _Slist_node_base*);
};
template <class _Tp, class _Alloc>
_Slist_node_base*
_Slist_base<_Tp,_Alloc>::_M_erase_after(_Slist_node_base* __before_first,
_Slist_node_base* __last_node)
{
_Slist_node<_Tp>* __cur = (_Slist_node<_Tp>*) (__before_first->_M_next);
while (__cur != __last_node)
{
_Slist_node<_Tp>* __tmp = __cur;
__cur = (_Slist_node<_Tp>*) __cur->_M_next;
_Destroy(&__tmp->_M_data);
_M_put_node(__tmp);
}
__before_first->_M_next = __last_node;
return __last_node;
}
/**
* This is an SGI extension.
* @ingroup SGIextensions
* @doctodo
*/
template <class _Tp, class _Alloc = allocator<_Tp> >
class slist : private _Slist_base<_Tp,_Alloc>
{
// concept requirements
__glibcxx_class_requires(_Tp, _SGIAssignableConcept)
private:
typedef _Slist_base<_Tp,_Alloc> _Base;
public:
typedef _Tp value_type;
typedef value_type* pointer;
typedef const value_type* const_pointer;
typedef value_type& reference;
typedef const value_type& const_reference;
typedef size_t size_type;
typedef ptrdiff_t difference_type;
typedef _Slist_iterator<_Tp, _Tp&, _Tp*> iterator;
typedef _Slist_iterator<_Tp, const _Tp&, const _Tp*> const_iterator;
typedef typename _Base::allocator_type allocator_type;
allocator_type
get_allocator() const
{ return _Base::get_allocator(); }
private:
typedef _Slist_node<_Tp> _Node;
typedef _Slist_node_base _Node_base;
typedef _Slist_iterator_base _Iterator_base;
_Node*
_M_create_node(const value_type& __x)
{
_Node* __node = this->_M_get_node();
try
{
_Construct(&__node->_M_data, __x);
__node->_M_next = 0;
}
catch(...)
{
this->_M_put_node(__node);
__throw_exception_again;
}
return __node;
}
_Node*
_M_create_node()
{
_Node* __node = this->_M_get_node();
try
{
_Construct(&__node->_M_data);
__node->_M_next = 0;
}
catch(...)
{
this->_M_put_node(__node);
__throw_exception_again;
}
return __node;
}
public:
explicit
slist(const allocator_type& __a = allocator_type())
: _Base(__a) {}
slist(size_type __n, const value_type& __x,
const allocator_type& __a = allocator_type())
: _Base(__a)
{ _M_insert_after_fill(&this->_M_head, __n, __x); }
explicit
slist(size_type __n)
: _Base(allocator_type())
{ _M_insert_after_fill(&this->_M_head, __n, value_type()); }
// We don't need any dispatching tricks here, because
// _M_insert_after_range already does them.
template <class _InputIterator>
slist(_InputIterator __first, _InputIterator __last,
const allocator_type& __a = allocator_type())
: _Base(__a)
{ _M_insert_after_range(&this->_M_head, __first, __last); }
slist(const slist& __x)
: _Base(__x.get_allocator())
{ _M_insert_after_range(&this->_M_head, __x.begin(), __x.end()); }
slist&
operator= (const slist& __x);
~slist() {}
public:
// assign(), a generalized assignment member function. Two
// versions: one that takes a count, and one that takes a range.
// The range version is a member template, so we dispatch on whether
// or not the type is an integer.
void
assign(size_type __n, const _Tp& __val)
{ _M_fill_assign(__n, __val); }
void
_M_fill_assign(size_type __n, const _Tp& __val);
template <class _InputIterator>
void
assign(_InputIterator __first, _InputIterator __last)
{
typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
_M_assign_dispatch(__first, __last, _Integral());
}
template <class _Integer>
void
_M_assign_dispatch(_Integer __n, _Integer __val, __true_type)
{ _M_fill_assign((size_type) __n, (_Tp) __val); }
template <class _InputIterator>
void
_M_assign_dispatch(_InputIterator __first, _InputIterator __last,
__false_type);
public:
iterator
begin()
{ return iterator((_Node*)this->_M_head._M_next); }
const_iterator
begin() const
{ return const_iterator((_Node*)this->_M_head._M_next);}
iterator
end()
{ return iterator(0); }
const_iterator
end() const
{ return const_iterator(0); }
// Experimental new feature: before_begin() returns a
// non-dereferenceable iterator that, when incremented, yields
// begin(). This iterator may be used as the argument to
// insert_after, erase_after, etc. Note that even for an empty
// slist, before_begin() is not the same iterator as end(). It
// is always necessary to increment before_begin() at least once to
// obtain end().
iterator
before_begin()
{ return iterator((_Node*) &this->_M_head); }
const_iterator
before_begin() const
{ return const_iterator((_Node*) &this->_M_head); }
size_type
size() const
{ return __slist_size(this->_M_head._M_next); }
size_type
max_size() const
{ return size_type(-1); }
bool
empty() const
{ return this->_M_head._M_next == 0; }
void
swap(slist& __x)
{ std::swap(this->_M_head._M_next, __x._M_head._M_next); }
public:
reference
front()
{ return ((_Node*) this->_M_head._M_next)->_M_data; }
const_reference
front() const
{ return ((_Node*) this->_M_head._M_next)->_M_data; }
void
push_front(const value_type& __x)
{ __slist_make_link(&this->_M_head, _M_create_node(__x)); }
void
push_front()
{ __slist_make_link(&this->_M_head, _M_create_node()); }
void
pop_front()
{
_Node* __node = (_Node*) this->_M_head._M_next;
this->_M_head._M_next = __node->_M_next;
_Destroy(&__node->_M_data);
this->_M_put_node(__node);
}
iterator
previous(const_iterator __pos)
{ return iterator((_Node*) __slist_previous(&this->_M_head,
__pos._M_node)); }
const_iterator
previous(const_iterator __pos) const
{ return const_iterator((_Node*) __slist_previous(&this->_M_head,
__pos._M_node)); }
private:
_Node*
_M_insert_after(_Node_base* __pos, const value_type& __x)
{ return (_Node*) (__slist_make_link(__pos, _M_create_node(__x))); }
_Node*
_M_insert_after(_Node_base* __pos)
{ return (_Node*) (__slist_make_link(__pos, _M_create_node())); }
void
_M_insert_after_fill(_Node_base* __pos,
size_type __n, const value_type& __x)
{
for (size_type __i = 0; __i < __n; ++__i)
__pos = __slist_make_link(__pos, _M_create_node(__x));
}
// Check whether it's an integral type. If so, it's not an iterator.
template <class _InIterator>
void
_M_insert_after_range(_Node_base* __pos,
_InIterator __first, _InIterator __last)
{
typedef typename _Is_integer<_InIterator>::_Integral _Integral;
_M_insert_after_range(__pos, __first, __last, _Integral());
}
template <class _Integer>
void
_M_insert_after_range(_Node_base* __pos, _Integer __n, _Integer __x,
__true_type)
{ _M_insert_after_fill(__pos, __n, __x); }
template <class _InIterator>
void
_M_insert_after_range(_Node_base* __pos,
_InIterator __first, _InIterator __last,
__false_type)
{
while (__first != __last)
{
__pos = __slist_make_link(__pos, _M_create_node(*__first));
++__first;
}
}
public:
iterator
insert_after(iterator __pos, const value_type& __x)
{ return iterator(_M_insert_after(__pos._M_node, __x)); }
iterator
insert_after(iterator __pos)
{ return insert_after(__pos, value_type()); }
void
insert_after(iterator __pos, size_type __n, const value_type& __x)
{ _M_insert_after_fill(__pos._M_node, __n, __x); }
// We don't need any dispatching tricks here, because
// _M_insert_after_range already does them.
template <class _InIterator>
void
insert_after(iterator __pos, _InIterator __first, _InIterator __last)
{ _M_insert_after_range(__pos._M_node, __first, __last); }
iterator
insert(iterator __pos, const value_type& __x)
{ return iterator(_M_insert_after(__slist_previous(&this->_M_head,
__pos._M_node),
__x)); }
iterator
insert(iterator __pos)
{ return iterator(_M_insert_after(__slist_previous(&this->_M_head,
__pos._M_node),
value_type())); }
void
insert(iterator __pos, size_type __n, const value_type& __x)
{ _M_insert_after_fill(__slist_previous(&this->_M_head, __pos._M_node),
__n, __x); }
// We don't need any dispatching tricks here, because
// _M_insert_after_range already does them.
template <class _InIterator>
void
insert(iterator __pos, _InIterator __first, _InIterator __last)
{ _M_insert_after_range(__slist_previous(&this->_M_head, __pos._M_node),
__first, __last); }
public:
iterator
erase_after(iterator __pos)
{ return iterator((_Node*) this->_M_erase_after(__pos._M_node)); }
iterator
erase_after(iterator __before_first, iterator __last)
{ return iterator((_Node*) this->_M_erase_after(__before_first._M_node,
__last._M_node)); }
iterator
erase(iterator __pos)
{ return (_Node*) this->_M_erase_after(__slist_previous(&this->_M_head,
__pos._M_node)); }
iterator
erase(iterator __first, iterator __last)
{ return (_Node*) this->_M_erase_after(__slist_previous(&this->_M_head,
__first._M_node),
__last._M_node); }
void
resize(size_type new_size, const _Tp& __x);
void
resize(size_type new_size)
{ resize(new_size, _Tp()); }
void
clear()
{ this->_M_erase_after(&this->_M_head, 0); }
public:
// Moves the range [__before_first + 1, __before_last + 1) to *this,
// inserting it immediately after __pos. This is constant time.
void
splice_after(iterator __pos,
iterator __before_first, iterator __before_last)
{
if (__before_first != __before_last)
__slist_splice_after(__pos._M_node, __before_first._M_node,
__before_last._M_node);
}
// Moves the element that follows __prev to *this, inserting it
// immediately after __pos. This is constant time.
void
splice_after(iterator __pos, iterator __prev)
{ __slist_splice_after(__pos._M_node,
__prev._M_node, __prev._M_node->_M_next); }
// Removes all of the elements from the list __x to *this, inserting
// them immediately after __pos. __x must not be *this. Complexity:
// linear in __x.size().
void
splice_after(iterator __pos, slist& __x)
{ __slist_splice_after(__pos._M_node, &__x._M_head); }
// Linear in distance(begin(), __pos), and linear in __x.size().
void
splice(iterator __pos, slist& __x)
{
if (__x._M_head._M_next)
__slist_splice_after(__slist_previous(&this->_M_head, __pos._M_node),
&__x._M_head,
__slist_previous(&__x._M_head, 0)); }
// Linear in distance(begin(), __pos), and in distance(__x.begin(), __i).
void
splice(iterator __pos, slist& __x, iterator __i)
{ __slist_splice_after(__slist_previous(&this->_M_head, __pos._M_node),
__slist_previous(&__x._M_head, __i._M_node),
__i._M_node); }
// Linear in distance(begin(), __pos), in distance(__x.begin(), __first),
// and in distance(__first, __last).
void
splice(iterator __pos, slist& __x, iterator __first, iterator __last)
{
if (__first != __last)
__slist_splice_after(__slist_previous(&this->_M_head, __pos._M_node),
__slist_previous(&__x._M_head, __first._M_node),
__slist_previous(__first._M_node,
__last._M_node));
}
public:
void
reverse()
{
if (this->_M_head._M_next)
this->_M_head._M_next = __slist_reverse(this->_M_head._M_next);
}
void
remove(const _Tp& __val);
void
unique();
void
merge(slist& __x);
void
sort();
template <class _Predicate>
void
remove_if(_Predicate __pred);
template <class _BinaryPredicate>
void
unique(_BinaryPredicate __pred);
template <class _StrictWeakOrdering>
void
merge(slist&, _StrictWeakOrdering);
template <class _StrictWeakOrdering>
void
sort(_StrictWeakOrdering __comp);
};
template <class _Tp, class _Alloc>
slist<_Tp, _Alloc>&
slist<_Tp, _Alloc>::operator=(const slist<_Tp, _Alloc>& __x)
{
if (&__x != this)
{
_Node_base* __p1 = &this->_M_head;
_Node* __n1 = (_Node*) this->_M_head._M_next;
const _Node* __n2 = (const _Node*) __x._M_head._M_next;
while (__n1 && __n2)
{
__n1->_M_data = __n2->_M_data;
__p1 = __n1;
__n1 = (_Node*) __n1->_M_next;
__n2 = (const _Node*) __n2->_M_next;
}
if (__n2 == 0)
this->_M_erase_after(__p1, 0);
else
_M_insert_after_range(__p1, const_iterator((_Node*)__n2),
const_iterator(0));
}
return *this;
}
template <class _Tp, class _Alloc>
void
slist<_Tp, _Alloc>::_M_fill_assign(size_type __n, const _Tp& __val)
{
_Node_base* __prev = &this->_M_head;
_Node* __node = (_Node*) this->_M_head._M_next;
for (; __node != 0 && __n > 0; --__n)
{
__node->_M_data = __val;
__prev = __node;
__node = (_Node*) __node->_M_next;
}
if (__n > 0)
_M_insert_after_fill(__prev, __n, __val);
else
this->_M_erase_after(__prev, 0);
}
template <class _Tp, class _Alloc>
template <class _InputIterator>
void
slist<_Tp, _Alloc>::_M_assign_dispatch(_InputIterator __first,
_InputIterator __last,
__false_type)
{
_Node_base* __prev = &this->_M_head;
_Node* __node = (_Node*) this->_M_head._M_next;
while (__node != 0 && __first != __last)
{
__node->_M_data = *__first;
__prev = __node;
__node = (_Node*) __node->_M_next;
++__first;
}
if (__first != __last)
_M_insert_after_range(__prev, __first, __last);
else
this->_M_erase_after(__prev, 0);
}
template <class _Tp, class _Alloc>
inline bool
operator==(const slist<_Tp, _Alloc>& _SL1, const slist<_Tp, _Alloc>& _SL2)
{
typedef typename slist<_Tp,_Alloc>::const_iterator const_iterator;
const_iterator __end1 = _SL1.end();
const_iterator __end2 = _SL2.end();
const_iterator __i1 = _SL1.begin();
const_iterator __i2 = _SL2.begin();
while (__i1 != __end1 && __i2 != __end2 && *__i1 == *__i2)
{
++__i1;
++__i2;
}
return __i1 == __end1 && __i2 == __end2;
}
template <class _Tp, class _Alloc>
inline bool
operator<(const slist<_Tp, _Alloc>& _SL1, const slist<_Tp, _Alloc>& _SL2)
{ return std::lexicographical_compare(_SL1.begin(), _SL1.end(),
_SL2.begin(), _SL2.end()); }
template <class _Tp, class _Alloc>
inline bool
operator!=(const slist<_Tp, _Alloc>& _SL1, const slist<_Tp, _Alloc>& _SL2)
{ return !(_SL1 == _SL2); }
template <class _Tp, class _Alloc>
inline bool
operator>(const slist<_Tp, _Alloc>& _SL1, const slist<_Tp, _Alloc>& _SL2)
{ return _SL2 < _SL1; }
template <class _Tp, class _Alloc>
inline bool
operator<=(const slist<_Tp, _Alloc>& _SL1, const slist<_Tp, _Alloc>& _SL2)
{ return !(_SL2 < _SL1); }
template <class _Tp, class _Alloc>
inline bool
operator>=(const slist<_Tp, _Alloc>& _SL1, const slist<_Tp, _Alloc>& _SL2)
{ return !(_SL1 < _SL2); }
template <class _Tp, class _Alloc>
inline void
swap(slist<_Tp, _Alloc>& __x, slist<_Tp, _Alloc>& __y)
{ __x.swap(__y); }
template <class _Tp, class _Alloc>
void
slist<_Tp, _Alloc>::resize(size_type __len, const _Tp& __x)
{
_Node_base* __cur = &this->_M_head;
while (__cur->_M_next != 0 && __len > 0)
{
--__len;
__cur = __cur->_M_next;
}
if (__cur->_M_next)
this->_M_erase_after(__cur, 0);
else
_M_insert_after_fill(__cur, __len, __x);
}
template <class _Tp, class _Alloc>
void
slist<_Tp, _Alloc>::remove(const _Tp& __val)
{
_Node_base* __cur = &this->_M_head;
while (__cur && __cur->_M_next)
{
if (((_Node*) __cur->_M_next)->_M_data == __val)
this->_M_erase_after(__cur);
else
__cur = __cur->_M_next;
}
}
template <class _Tp, class _Alloc>
void
slist<_Tp, _Alloc>::unique()
{
_Node_base* __cur = this->_M_head._M_next;
if (__cur)
{
while (__cur->_M_next)
{
if (((_Node*)__cur)->_M_data
== ((_Node*)(__cur->_M_next))->_M_data)
this->_M_erase_after(__cur);
else
__cur = __cur->_M_next;
}
}
}
template <class _Tp, class _Alloc>
void
slist<_Tp, _Alloc>::merge(slist<_Tp, _Alloc>& __x)
{
_Node_base* __n1 = &this->_M_head;
while (__n1->_M_next && __x._M_head._M_next)
{
if (((_Node*) __x._M_head._M_next)->_M_data
< ((_Node*) __n1->_M_next)->_M_data)
__slist_splice_after(__n1, &__x._M_head, __x._M_head._M_next);
__n1 = __n1->_M_next;
}
if (__x._M_head._M_next)
{
__n1->_M_next = __x._M_head._M_next;
__x._M_head._M_next = 0;
}
}
template <class _Tp, class _Alloc>
void
slist<_Tp, _Alloc>::sort()
{
if (this->_M_head._M_next && this->_M_head._M_next->_M_next)
{
slist __carry;
slist __counter[64];
int __fill = 0;
while (!empty())
{
__slist_splice_after(&__carry._M_head,
&this->_M_head, this->_M_head._M_next);
int __i = 0;
while (__i < __fill && !__counter[__i].empty())
{
__counter[__i].merge(__carry);
__carry.swap(__counter[__i]);
++__i;
}
__carry.swap(__counter[__i]);
if (__i == __fill)
++__fill;
}
for (int __i = 1; __i < __fill; ++__i)
__counter[__i].merge(__counter[__i-1]);
this->swap(__counter[__fill-1]);
}
}
template <class _Tp, class _Alloc>
template <class _Predicate>
void slist<_Tp, _Alloc>::remove_if(_Predicate __pred)
{
_Node_base* __cur = &this->_M_head;
while (__cur->_M_next)
{
if (__pred(((_Node*) __cur->_M_next)->_M_data))
this->_M_erase_after(__cur);
else
__cur = __cur->_M_next;
}
}
template <class _Tp, class _Alloc>
template <class _BinaryPredicate>
void
slist<_Tp, _Alloc>::unique(_BinaryPredicate __pred)
{
_Node* __cur = (_Node*) this->_M_head._M_next;
if (__cur)
{
while (__cur->_M_next)
{
if (__pred(((_Node*)__cur)->_M_data,
((_Node*)(__cur->_M_next))->_M_data))
this->_M_erase_after(__cur);
else
__cur = (_Node*) __cur->_M_next;
}
}
}
template <class _Tp, class _Alloc>
template <class _StrictWeakOrdering>
void
slist<_Tp, _Alloc>::merge(slist<_Tp, _Alloc>& __x,
_StrictWeakOrdering __comp)
{
_Node_base* __n1 = &this->_M_head;
while (__n1->_M_next && __x._M_head._M_next)
{
if (__comp(((_Node*) __x._M_head._M_next)->_M_data,
((_Node*) __n1->_M_next)->_M_data))
__slist_splice_after(__n1, &__x._M_head, __x._M_head._M_next);
__n1 = __n1->_M_next;
}
if (__x._M_head._M_next)
{
__n1->_M_next = __x._M_head._M_next;
__x._M_head._M_next = 0;
}
}
template <class _Tp, class _Alloc>
template <class _StrictWeakOrdering>
void
slist<_Tp, _Alloc>::sort(_StrictWeakOrdering __comp)
{
if (this->_M_head._M_next && this->_M_head._M_next->_M_next)
{
slist __carry;
slist __counter[64];
int __fill = 0;
while (!empty())
{
__slist_splice_after(&__carry._M_head,
&this->_M_head, this->_M_head._M_next);
int __i = 0;
while (__i < __fill && !__counter[__i].empty())
{
__counter[__i].merge(__carry, __comp);
__carry.swap(__counter[__i]);
++__i;
}
__carry.swap(__counter[__i]);
if (__i == __fill)
++__fill;
}
for (int __i = 1; __i < __fill; ++__i)
__counter[__i].merge(__counter[__i-1], __comp);
this->swap(__counter[__fill-1]);
}
}
} // namespace __gnu_cxx
namespace std
{
// Specialization of insert_iterator so that insertions will be constant
// time rather than linear time.
template <class _Tp, class _Alloc>
class insert_iterator<__gnu_cxx::slist<_Tp, _Alloc> >
{
protected:
typedef __gnu_cxx::slist<_Tp, _Alloc> _Container;
_Container* container;
typename _Container::iterator iter;
public:
typedef _Container container_type;
typedef output_iterator_tag iterator_category;
typedef void value_type;
typedef void difference_type;
typedef void pointer;
typedef void reference;
insert_iterator(_Container& __x, typename _Container::iterator __i)
: container(&__x)
{
if (__i == __x.begin())
iter = __x.before_begin();
else
iter = __x.previous(__i);
}
insert_iterator<_Container>&
operator=(const typename _Container::value_type& __value)
{
iter = container->insert_after(iter, __value);
return *this;
}
insert_iterator<_Container>&
operator*()
{ return *this; }
insert_iterator<_Container>&
operator++()
{ return *this; }
insert_iterator<_Container>&
operator++(int)
{ return *this; }
};
} // namespace std
#endif