gcc/boehm-gc/misc.c
Anthony Green d0017c11ff gcconfig.h (DATASTART): Define as (&data_start) for PowerPC Linux.
* gcconfig.h (DATASTART): Define as (&data_start) for PowerPC
        Linux.
        (DYNAMIC_LOADING): Define for PowerPC Linux.
        * os_dep.c: Remove some special cases for PowerPC Linux.
        * misc.c (GC_init_inner): Don't call GC_init_linux_data_start
        for PowerPC Linux.

From-SVN: r30873
1999-12-12 18:06:08 +00:00

850 lines
23 KiB
C

/*
* Copyright 1988, 1989 Hans-J. Boehm, Alan J. Demers
* Copyright (c) 1991-1994 by Xerox Corporation. All rights reserved.
*
* THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED
* OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
*
* Permission is hereby granted to use or copy this program
* for any purpose, provided the above notices are retained on all copies.
* Permission to modify the code and to distribute modified code is granted,
* provided the above notices are retained, and a notice that the code was
* modified is included with the above copyright notice.
*/
/* Boehm, July 31, 1995 5:02 pm PDT */
#include <stdio.h>
#include <signal.h>
#define I_HIDE_POINTERS /* To make GC_call_with_alloc_lock visible */
#include "gc_priv.h"
#ifdef SOLARIS_THREADS
# include <sys/syscall.h>
#endif
#ifdef MSWIN32
# include <windows.h>
#endif
# ifdef THREADS
# ifdef PCR
# include "il/PCR_IL.h"
PCR_Th_ML GC_allocate_ml;
# else
# ifdef SRC_M3
/* Critical section counter is defined in the M3 runtime */
/* That's all we use. */
# else
# ifdef SOLARIS_THREADS
mutex_t GC_allocate_ml; /* Implicitly initialized. */
# else
# ifdef WIN32_THREADS
GC_API CRITICAL_SECTION GC_allocate_ml;
# else
# if defined(IRIX_THREADS) || defined(LINUX_THREADS) \
|| defined(IRIX_JDK_THREADS)
pthread_t GC_lock_holder = NO_THREAD;
# else
# if defined(HPUX_THREADS)
pthread_mutex_t GC_allocate_ml = PTHREAD_MUTEX_INITIALIZER;
# else
--> declare allocator lock here
# endif
# endif
# endif
# endif
# endif
# endif
# endif
#ifdef ECOS
#undef STACKBASE
#endif
GC_FAR struct _GC_arrays GC_arrays /* = { 0 } */;
GC_bool GC_debugging_started = FALSE;
/* defined here so we don't have to load debug_malloc.o */
void (*GC_check_heap)() = (void (*)())0;
void (*GC_start_call_back)() = (void (*)())0;
ptr_t GC_stackbottom = 0;
GC_bool GC_dont_gc = 0;
GC_bool GC_quiet = 0;
#ifdef FIND_LEAK
int GC_find_leak = 1;
#else
int GC_find_leak = 0;
#endif
/*ARGSUSED*/
GC_PTR GC_default_oom_fn GC_PROTO((size_t bytes_requested))
{
return(0);
}
GC_PTR (*GC_oom_fn) GC_PROTO((size_t bytes_requested)) = GC_default_oom_fn;
extern signed_word GC_mem_found;
# ifdef MERGE_SIZES
/* Set things up so that GC_size_map[i] >= words(i), */
/* but not too much bigger */
/* and so that size_map contains relatively few distinct entries */
/* This is stolen from Russ Atkinson's Cedar quantization */
/* alogrithm (but we precompute it). */
void GC_init_size_map()
{
register unsigned i;
/* Map size 0 to 1. This avoids problems at lower levels. */
GC_size_map[0] = 1;
/* One word objects don't have to be 2 word aligned. */
for (i = 1; i < sizeof(word); i++) {
GC_size_map[i] = 1;
}
GC_size_map[sizeof(word)] = ROUNDED_UP_WORDS(sizeof(word));
for (i = sizeof(word) + 1; i <= 8 * sizeof(word); i++) {
# ifdef ALIGN_DOUBLE
GC_size_map[i] = (ROUNDED_UP_WORDS(i) + 1) & (~1);
# else
GC_size_map[i] = ROUNDED_UP_WORDS(i);
# endif
}
for (i = 8*sizeof(word) + 1; i <= 16 * sizeof(word); i++) {
GC_size_map[i] = (ROUNDED_UP_WORDS(i) + 1) & (~1);
}
/* We leave the rest of the array to be filled in on demand. */
}
/* Fill in additional entries in GC_size_map, including the ith one */
/* We assume the ith entry is currently 0. */
/* Note that a filled in section of the array ending at n always */
/* has length at least n/4. */
void GC_extend_size_map(i)
word i;
{
word orig_word_sz = ROUNDED_UP_WORDS(i);
word word_sz = orig_word_sz;
register word byte_sz = WORDS_TO_BYTES(word_sz);
/* The size we try to preserve. */
/* Close to to i, unless this would */
/* introduce too many distinct sizes. */
word smaller_than_i = byte_sz - (byte_sz >> 3);
word much_smaller_than_i = byte_sz - (byte_sz >> 2);
register word low_limit; /* The lowest indexed entry we */
/* initialize. */
register word j;
if (GC_size_map[smaller_than_i] == 0) {
low_limit = much_smaller_than_i;
while (GC_size_map[low_limit] != 0) low_limit++;
} else {
low_limit = smaller_than_i + 1;
while (GC_size_map[low_limit] != 0) low_limit++;
word_sz = ROUNDED_UP_WORDS(low_limit);
word_sz += word_sz >> 3;
if (word_sz < orig_word_sz) word_sz = orig_word_sz;
}
# ifdef ALIGN_DOUBLE
word_sz += 1;
word_sz &= ~1;
# endif
if (word_sz > MAXOBJSZ) {
word_sz = MAXOBJSZ;
}
/* If we can fit the same number of larger objects in a block, */
/* do so. */
{
size_t number_of_objs = BODY_SZ/word_sz;
word_sz = BODY_SZ/number_of_objs;
# ifdef ALIGN_DOUBLE
word_sz &= ~1;
# endif
}
byte_sz = WORDS_TO_BYTES(word_sz);
# ifdef ADD_BYTE_AT_END
/* We need one extra byte; don't fill in GC_size_map[byte_sz] */
byte_sz--;
# endif
for (j = low_limit; j <= byte_sz; j++) GC_size_map[j] = word_sz;
}
# endif
/*
* The following is a gross hack to deal with a problem that can occur
* on machines that are sloppy about stack frame sizes, notably SPARC.
* Bogus pointers may be written to the stack and not cleared for
* a LONG time, because they always fall into holes in stack frames
* that are not written. We partially address this by clearing
* sections of the stack whenever we get control.
*/
word GC_stack_last_cleared = 0; /* GC_no when we last did this */
# ifdef THREADS
# define CLEAR_SIZE 2048
# else
# define CLEAR_SIZE 213
# endif
# define DEGRADE_RATE 50
word GC_min_sp; /* Coolest stack pointer value from which we've */
/* already cleared the stack. */
# ifdef STACK_GROWS_DOWN
# define COOLER_THAN >
# define HOTTER_THAN <
# define MAKE_COOLER(x,y) if ((word)(x)+(y) > (word)(x)) {(x) += (y);} \
else {(x) = (word)ONES;}
# define MAKE_HOTTER(x,y) (x) -= (y)
# else
# define COOLER_THAN <
# define HOTTER_THAN >
# define MAKE_COOLER(x,y) if ((word)(x)-(y) < (word)(x)) {(x) -= (y);} else {(x) = 0;}
# define MAKE_HOTTER(x,y) (x) += (y)
# endif
word GC_high_water;
/* "hottest" stack pointer value we have seen */
/* recently. Degrades over time. */
word GC_words_allocd_at_reset;
#if defined(ASM_CLEAR_CODE) && !defined(THREADS)
extern ptr_t GC_clear_stack_inner();
#endif
#if !defined(ASM_CLEAR_CODE) && !defined(THREADS)
/* Clear the stack up to about limit. Return arg. */
/*ARGSUSED*/
ptr_t GC_clear_stack_inner(arg, limit)
ptr_t arg;
word limit;
{
word dummy[CLEAR_SIZE];
BZERO(dummy, CLEAR_SIZE*sizeof(word));
if ((word)(dummy) COOLER_THAN limit) {
(void) GC_clear_stack_inner(arg, limit);
}
/* Make sure the recursive call is not a tail call, and the bzero */
/* call is not recognized as dead code. */
GC_noop1((word)dummy);
return(arg);
}
#endif
/* Clear some of the inaccessible part of the stack. Returns its */
/* argument, so it can be used in a tail call position, hence clearing */
/* another frame. */
ptr_t GC_clear_stack(arg)
ptr_t arg;
{
register word sp = (word)GC_approx_sp(); /* Hotter than actual sp */
# ifdef THREADS
word dummy[CLEAR_SIZE];
# else
register word limit;
# endif
# define SLOP 400
/* Extra bytes we clear every time. This clears our own */
/* activation record, and should cause more frequent */
/* clearing near the cold end of the stack, a good thing. */
# define GC_SLOP 4000
/* We make GC_high_water this much hotter than we really saw */
/* saw it, to cover for GC noise etc. above our current frame. */
# define CLEAR_THRESHOLD 100000
/* We restart the clearing process after this many bytes of */
/* allocation. Otherwise very heavily recursive programs */
/* with sparse stacks may result in heaps that grow almost */
/* without bounds. As the heap gets larger, collection */
/* frequency decreases, thus clearing frequency would decrease, */
/* thus more junk remains accessible, thus the heap gets */
/* larger ... */
# ifdef THREADS
BZERO(dummy, CLEAR_SIZE*sizeof(word));
# else
if (GC_gc_no > GC_stack_last_cleared) {
/* Start things over, so we clear the entire stack again */
if (GC_stack_last_cleared == 0) GC_high_water = (word) GC_stackbottom;
GC_min_sp = GC_high_water;
GC_stack_last_cleared = GC_gc_no;
GC_words_allocd_at_reset = GC_words_allocd;
}
/* Adjust GC_high_water */
MAKE_COOLER(GC_high_water, WORDS_TO_BYTES(DEGRADE_RATE) + GC_SLOP);
if (sp HOTTER_THAN GC_high_water) {
GC_high_water = sp;
}
MAKE_HOTTER(GC_high_water, GC_SLOP);
limit = GC_min_sp;
MAKE_HOTTER(limit, SLOP);
if (sp COOLER_THAN limit) {
limit &= ~0xf; /* Make it sufficiently aligned for assembly */
/* implementations of GC_clear_stack_inner. */
GC_min_sp = sp;
return(GC_clear_stack_inner(arg, limit));
} else if (WORDS_TO_BYTES(GC_words_allocd - GC_words_allocd_at_reset)
> CLEAR_THRESHOLD) {
/* Restart clearing process, but limit how much clearing we do. */
GC_min_sp = sp;
MAKE_HOTTER(GC_min_sp, CLEAR_THRESHOLD/4);
if (GC_min_sp HOTTER_THAN GC_high_water) GC_min_sp = GC_high_water;
GC_words_allocd_at_reset = GC_words_allocd;
}
# endif
return(arg);
}
/* Return a pointer to the base address of p, given a pointer to a */
/* an address within an object. Return 0 o.w. */
# ifdef __STDC__
GC_PTR GC_base(GC_PTR p)
# else
GC_PTR GC_base(p)
GC_PTR p;
# endif
{
register word r;
register struct hblk *h;
register bottom_index *bi;
register hdr *candidate_hdr;
register word limit;
r = (word)p;
if (!GC_is_initialized) return 0;
h = HBLKPTR(r);
GET_BI(r, bi);
candidate_hdr = HDR_FROM_BI(bi, r);
if (candidate_hdr == 0) return(0);
/* If it's a pointer to the middle of a large object, move it */
/* to the beginning. */
while (IS_FORWARDING_ADDR_OR_NIL(candidate_hdr)) {
h = FORWARDED_ADDR(h,candidate_hdr);
r = (word)h + HDR_BYTES;
candidate_hdr = HDR(h);
}
if (candidate_hdr -> hb_map == GC_invalid_map) return(0);
/* Make sure r points to the beginning of the object */
r &= ~(WORDS_TO_BYTES(1) - 1);
{
register int offset = (char *)r - (char *)(HBLKPTR(r));
register signed_word sz = candidate_hdr -> hb_sz;
# ifdef ALL_INTERIOR_POINTERS
register map_entry_type map_entry;
map_entry = MAP_ENTRY((candidate_hdr -> hb_map), offset);
if (map_entry == OBJ_INVALID) {
return(0);
}
r -= WORDS_TO_BYTES(map_entry);
limit = r + WORDS_TO_BYTES(sz);
# else
register int correction;
offset = BYTES_TO_WORDS(offset - HDR_BYTES);
correction = offset % sz;
r -= (WORDS_TO_BYTES(correction));
limit = r + WORDS_TO_BYTES(sz);
if (limit > (word)(h + 1)
&& sz <= BYTES_TO_WORDS(HBLKSIZE) - HDR_WORDS) {
return(0);
}
# endif
if ((word)p >= limit) return(0);
}
return((GC_PTR)r);
}
/* Return the size of an object, given a pointer to its base. */
/* (For small obects this also happens to work from interior pointers, */
/* but that shouldn't be relied upon.) */
# ifdef __STDC__
size_t GC_size(GC_PTR p)
# else
size_t GC_size(p)
GC_PTR p;
# endif
{
register int sz;
register hdr * hhdr = HDR(p);
sz = WORDS_TO_BYTES(hhdr -> hb_sz);
if (sz < 0) {
return(-sz);
} else {
return(sz);
}
}
size_t GC_get_heap_size GC_PROTO(())
{
return ((size_t) GC_heapsize);
}
size_t GC_get_free_bytes GC_PROTO(())
{
return ((size_t) GC_large_free_bytes);
}
size_t GC_get_bytes_since_gc GC_PROTO(())
{
return ((size_t) WORDS_TO_BYTES(GC_words_allocd));
}
GC_bool GC_is_initialized = FALSE;
void GC_init()
{
DCL_LOCK_STATE;
DISABLE_SIGNALS();
LOCK();
GC_init_inner();
UNLOCK();
ENABLE_SIGNALS();
}
#ifdef MSWIN32
extern void GC_init_win32();
#endif
extern void GC_setpagesize();
void GC_init_inner()
{
# ifndef THREADS
word dummy;
# endif
if (GC_is_initialized) return;
GC_setpagesize();
GC_exclude_static_roots(beginGC_arrays, end_gc_area);
# ifdef PRINTSTATS
if ((ptr_t)endGC_arrays != (ptr_t)(&GC_obj_kinds)) {
GC_printf0("Reordering linker, didn't exclude obj_kinds\n");
}
# endif
# ifdef MSWIN32
GC_init_win32();
# endif
# if defined(LINUX) && \
(defined(ALPHA) || defined(SPARC) || defined(IA64))
GC_init_linux_data_start();
# endif
# ifdef SOLARIS_THREADS
GC_thr_init();
/* We need dirty bits in order to find live stack sections. */
GC_dirty_init();
# endif
# if defined(IRIX_THREADS) || defined(LINUX_THREADS) \
|| defined(IRIX_JDK_THREADS) || defined(HPUX_THREADS)
GC_thr_init();
# endif
# if !defined(THREADS) || defined(SOLARIS_THREADS) || defined(WIN32_THREADS) \
|| defined(IRIX_THREADS) || defined(LINUX_THREADS) \
|| defined(HPUX_THREADS)
if (GC_stackbottom == 0) {
GC_stackbottom = GC_get_stack_base();
}
# endif
if (sizeof (ptr_t) != sizeof(word)) {
ABORT("sizeof (ptr_t) != sizeof(word)\n");
}
if (sizeof (signed_word) != sizeof(word)) {
ABORT("sizeof (signed_word) != sizeof(word)\n");
}
if (sizeof (struct hblk) != HBLKSIZE) {
ABORT("sizeof (struct hblk) != HBLKSIZE\n");
}
# ifndef THREADS
# if defined(STACK_GROWS_UP) && defined(STACK_GROWS_DOWN)
ABORT(
"Only one of STACK_GROWS_UP and STACK_GROWS_DOWN should be defd\n");
# endif
# if !defined(STACK_GROWS_UP) && !defined(STACK_GROWS_DOWN)
ABORT(
"One of STACK_GROWS_UP and STACK_GROWS_DOWN should be defd\n");
# endif
# ifdef STACK_GROWS_DOWN
if ((word)(&dummy) > (word)GC_stackbottom) {
GC_err_printf0(
"STACK_GROWS_DOWN is defd, but stack appears to grow up\n");
# ifndef UTS4 /* Compiler bug workaround */
GC_err_printf2("sp = 0x%lx, GC_stackbottom = 0x%lx\n",
(unsigned long) (&dummy),
(unsigned long) GC_stackbottom);
# endif
ABORT("stack direction 3\n");
}
# else
if ((word)(&dummy) < (word)GC_stackbottom) {
GC_err_printf0(
"STACK_GROWS_UP is defd, but stack appears to grow down\n");
GC_err_printf2("sp = 0x%lx, GC_stackbottom = 0x%lx\n",
(unsigned long) (&dummy),
(unsigned long) GC_stackbottom);
ABORT("stack direction 4");
}
# endif
# endif
# if !defined(_AUX_SOURCE) || defined(__GNUC__)
if ((word)(-1) < (word)0) {
GC_err_printf0("The type word should be an unsigned integer type\n");
GC_err_printf0("It appears to be signed\n");
ABORT("word");
}
# endif
if ((signed_word)(-1) >= (signed_word)0) {
GC_err_printf0(
"The type signed_word should be a signed integer type\n");
GC_err_printf0("It appears to be unsigned\n");
ABORT("signed_word");
}
/* Add initial guess of root sets. Do this first, since sbrk(0) */
/* might be used. */
GC_register_data_segments();
GC_init_headers();
GC_bl_init();
GC_mark_init();
if (!GC_expand_hp_inner((word)MINHINCR)) {
GC_err_printf0("Can't start up: not enough memory\n");
EXIT();
}
/* Preallocate large object map. It's otherwise inconvenient to */
/* deal with failure. */
if (!GC_add_map_entry((word)0)) {
GC_err_printf0("Can't start up: not enough memory\n");
EXIT();
}
GC_register_displacement_inner(0L);
# ifdef MERGE_SIZES
GC_init_size_map();
# endif
# ifdef PCR
if (PCR_IL_Lock(PCR_Bool_false, PCR_allSigsBlocked, PCR_waitForever)
!= PCR_ERes_okay) {
ABORT("Can't lock load state\n");
} else if (PCR_IL_Unlock() != PCR_ERes_okay) {
ABORT("Can't unlock load state\n");
}
PCR_IL_Unlock();
GC_pcr_install();
# endif
/* Get black list set up */
GC_gcollect_inner();
# ifdef STUBBORN_ALLOC
GC_stubborn_init();
# endif
GC_is_initialized = TRUE;
/* Convince lint that some things are used */
# ifdef LINT
{
extern char * GC_copyright[];
extern int GC_read();
extern void GC_register_finalizer_no_order();
GC_noop(GC_copyright, GC_find_header,
GC_push_one, GC_call_with_alloc_lock, GC_read,
GC_dont_expand,
# ifndef NO_DEBUGGING
GC_dump,
# endif
GC_register_finalizer_no_order);
}
# endif
}
void GC_enable_incremental GC_PROTO(())
{
# if !defined(SMALL_CONFIG)
if (!GC_find_leak) {
DCL_LOCK_STATE;
DISABLE_SIGNALS();
LOCK();
if (GC_incremental) goto out;
GC_setpagesize();
# ifdef MSWIN32
{
extern GC_bool GC_is_win32s();
/* VirtualProtect is not functional under win32s. */
if (GC_is_win32s()) goto out;
}
# endif /* MSWIN32 */
# ifndef SOLARIS_THREADS
GC_dirty_init();
# endif
if (!GC_is_initialized) {
GC_init_inner();
}
if (GC_dont_gc) {
/* Can't easily do it. */
UNLOCK();
ENABLE_SIGNALS();
return;
}
if (GC_words_allocd > 0) {
/* There may be unmarked reachable objects */
GC_gcollect_inner();
} /* else we're OK in assuming everything's */
/* clean since nothing can point to an */
/* unmarked object. */
GC_read_dirty();
GC_incremental = TRUE;
out:
UNLOCK();
ENABLE_SIGNALS();
}
# endif
}
#ifdef MSWIN32
# define LOG_FILE "gc.log"
HANDLE GC_stdout = 0, GC_stderr;
int GC_tmp;
DWORD GC_junk;
void GC_set_files()
{
if (!GC_stdout) {
GC_stdout = CreateFile(LOG_FILE, GENERIC_WRITE,
FILE_SHARE_READ | FILE_SHARE_WRITE,
NULL, CREATE_ALWAYS, FILE_FLAG_WRITE_THROUGH,
NULL);
if (INVALID_HANDLE_VALUE == GC_stdout) ABORT("Open of log file failed");
}
if (GC_stderr == 0) {
GC_stderr = GC_stdout;
}
}
#endif
#if defined(OS2) || defined(MACOS)
FILE * GC_stdout = NULL;
FILE * GC_stderr = NULL;
int GC_tmp; /* Should really be local ... */
void GC_set_files()
{
if (GC_stdout == NULL) {
GC_stdout = stdout;
}
if (GC_stderr == NULL) {
GC_stderr = stderr;
}
}
#endif
#if !defined(OS2) && !defined(MACOS) && !defined(MSWIN32)
int GC_stdout = 1;
int GC_stderr = 2;
# if !defined(AMIGA)
# include <unistd.h>
# endif
#endif
#if !defined(MSWIN32) && !defined(OS2) && !defined(MACOS) && !defined(ECOS)
int GC_write(fd, buf, len)
int fd;
char *buf;
size_t len;
{
register int bytes_written = 0;
register int result;
while (bytes_written < len) {
# ifdef SOLARIS_THREADS
result = syscall(SYS_write, fd, buf + bytes_written,
len - bytes_written);
# else
result = write(fd, buf + bytes_written, len - bytes_written);
# endif
if (-1 == result) return(result);
bytes_written += result;
}
return(bytes_written);
}
#endif /* UN*X */
#if defined(ECOS)
int GC_write(fd, buf, len)
{
_Jv_diag_write (buf, len);
return len;
}
#endif
#ifdef MSWIN32
# define WRITE(f, buf, len) (GC_set_files(), \
GC_tmp = WriteFile((f), (buf), \
(len), &GC_junk, NULL),\
(GC_tmp? 1 : -1))
#else
# if defined(OS2) || defined(MACOS)
# define WRITE(f, buf, len) (GC_set_files(), \
GC_tmp = fwrite((buf), 1, (len), (f)), \
fflush(f), GC_tmp)
# else
# define WRITE(f, buf, len) GC_write((f), (buf), (len))
# endif
#endif
/* A version of printf that is unlikely to call malloc, and is thus safer */
/* to call from the collector in case malloc has been bound to GC_malloc. */
/* Assumes that no more than 1023 characters are written at once. */
/* Assumes that all arguments have been converted to something of the */
/* same size as long, and that the format conversions expect something */
/* of that size. */
void GC_printf(format, a, b, c, d, e, f)
char * format;
long a, b, c, d, e, f;
{
char buf[1025];
if (GC_quiet) return;
buf[1024] = 0x15;
(void) sprintf(buf, format, a, b, c, d, e, f);
if (buf[1024] != 0x15) ABORT("GC_printf clobbered stack");
if (WRITE(GC_stdout, buf, strlen(buf)) < 0) ABORT("write to stdout failed");
}
void GC_err_printf(format, a, b, c, d, e, f)
char * format;
long a, b, c, d, e, f;
{
char buf[1025];
buf[1024] = 0x15;
(void) sprintf(buf, format, a, b, c, d, e, f);
if (buf[1024] != 0x15) ABORT("GC_err_printf clobbered stack");
if (WRITE(GC_stderr, buf, strlen(buf)) < 0) ABORT("write to stderr failed");
}
void GC_err_puts(s)
char *s;
{
if (WRITE(GC_stderr, s, strlen(s)) < 0) ABORT("write to stderr failed");
}
# if defined(__STDC__) || defined(__cplusplus)
void GC_default_warn_proc(char *msg, GC_word arg)
# else
void GC_default_warn_proc(msg, arg)
char *msg;
GC_word arg;
# endif
{
GC_err_printf1(msg, (unsigned long)arg);
}
GC_warn_proc GC_current_warn_proc = GC_default_warn_proc;
# if defined(__STDC__) || defined(__cplusplus)
GC_warn_proc GC_set_warn_proc(GC_warn_proc p)
# else
GC_warn_proc GC_set_warn_proc(p)
GC_warn_proc p;
# endif
{
GC_warn_proc result;
LOCK();
result = GC_current_warn_proc;
GC_current_warn_proc = p;
UNLOCK();
return(result);
}
#ifndef PCR
void GC_abort(msg)
char * msg;
{
GC_err_printf1("%s\n", msg);
(void) abort();
}
#endif
#ifdef NEED_CALLINFO
void GC_print_callers (info)
struct callinfo info[NFRAMES];
{
register int i;
# if NFRAMES == 1
GC_err_printf0("\tCaller at allocation:\n");
# else
GC_err_printf0("\tCall chain at allocation:\n");
# endif
for (i = 0; i < NFRAMES; i++) {
if (info[i].ci_pc == 0) break;
# if NARGS > 0
{
int j;
GC_err_printf0("\t\targs: ");
for (j = 0; j < NARGS; j++) {
if (j != 0) GC_err_printf0(", ");
GC_err_printf2("%d (0x%X)", ~(info[i].ci_arg[j]),
~(info[i].ci_arg[j]));
}
GC_err_printf0("\n");
}
# endif
GC_err_printf1("\t\t##PC##= 0x%X\n", info[i].ci_pc);
}
}
#endif /* SAVE_CALL_CHAIN */
# ifdef SRC_M3
void GC_enable()
{
GC_dont_gc--;
}
void GC_disable()
{
GC_dont_gc++;
}
# endif
#if !defined(NO_DEBUGGING)
void GC_dump()
{
GC_printf0("***Static roots:\n");
GC_print_static_roots();
GC_printf0("\n***Heap sections:\n");
GC_print_heap_sects();
GC_printf0("\n***Free blocks:\n");
GC_print_hblkfreelist();
GC_printf0("\n***Blocks in use:\n");
GC_print_block_list();
}
# endif /* NO_DEBUGGING */