gcc/libgfortran/m4/matmul.m4

342 lines
9.8 KiB
Plaintext

`/* Implementation of the MATMUL intrinsic
Copyright 2002, 2005, 2006 Free Software Foundation, Inc.
Contributed by Paul Brook <paul@nowt.org>
This file is part of the GNU Fortran 95 runtime library (libgfortran).
Libgfortran is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.
In addition to the permissions in the GNU General Public License, the
Free Software Foundation gives you unlimited permission to link the
compiled version of this file into combinations with other programs,
and to distribute those combinations without any restriction coming
from the use of this file. (The General Public License restrictions
do apply in other respects; for example, they cover modification of
the file, and distribution when not linked into a combine
executable.)
Libgfortran is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public
License along with libgfortran; see the file COPYING. If not,
write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301, USA. */
#include "config.h"
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include "libgfortran.h"'
include(iparm.m4)dnl
`#if defined (HAVE_'rtype_name`)
/* Prototype for the BLAS ?gemm subroutine, a pointer to which can be
passed to us by the front-end, in which case we''`ll call it for large
matrices. */
typedef void (*blas_call)(const char *, const char *, const int *, const int *,
const int *, const 'rtype_name` *, const 'rtype_name` *,
const int *, const 'rtype_name` *, const int *,
const 'rtype_name` *, 'rtype_name` *, const int *,
int, int);
/* The order of loops is different in the case of plain matrix
multiplication C=MATMUL(A,B), and in the frequent special case where
the argument A is the temporary result of a TRANSPOSE intrinsic:
C=MATMUL(TRANSPOSE(A),B). Transposed temporaries are detected by
looking at their strides.
The equivalent Fortran pseudo-code is:
DIMENSION A(M,COUNT), B(COUNT,N), C(M,N)
IF (.NOT.IS_TRANSPOSED(A)) THEN
C = 0
DO J=1,N
DO K=1,COUNT
DO I=1,M
C(I,J) = C(I,J)+A(I,K)*B(K,J)
ELSE
DO J=1,N
DO I=1,M
S = 0
DO K=1,COUNT
S = S+A(I,K)*B(K,J)
C(I,J) = S
ENDIF
*/
/* If try_blas is set to a nonzero value, then the matmul function will
see if there is a way to perform the matrix multiplication by a call
to the BLAS gemm function. */
extern void matmul_'rtype_code` ('rtype` * const restrict retarray,
'rtype` * const restrict a, 'rtype` * const restrict b, int try_blas,
int blas_limit, blas_call gemm);
export_proto(matmul_'rtype_code`);
void
matmul_'rtype_code` ('rtype` * const restrict retarray,
'rtype` * const restrict a, 'rtype` * const restrict b, int try_blas,
int blas_limit, blas_call gemm)
{
const 'rtype_name` * restrict abase;
const 'rtype_name` * restrict bbase;
'rtype_name` * restrict dest;
index_type rxstride, rystride, axstride, aystride, bxstride, bystride;
index_type x, y, n, count, xcount, ycount;
assert (GFC_DESCRIPTOR_RANK (a) == 2
|| GFC_DESCRIPTOR_RANK (b) == 2);
/* C[xcount,ycount] = A[xcount, count] * B[count,ycount]
Either A or B (but not both) can be rank 1:
o One-dimensional argument A is implicitly treated as a row matrix
dimensioned [1,count], so xcount=1.
o One-dimensional argument B is implicitly treated as a column matrix
dimensioned [count, 1], so ycount=1.
*/
if (retarray->data == NULL)
{
if (GFC_DESCRIPTOR_RANK (a) == 1)
{
retarray->dim[0].lbound = 0;
retarray->dim[0].ubound = b->dim[1].ubound - b->dim[1].lbound;
retarray->dim[0].stride = 1;
}
else if (GFC_DESCRIPTOR_RANK (b) == 1)
{
retarray->dim[0].lbound = 0;
retarray->dim[0].ubound = a->dim[0].ubound - a->dim[0].lbound;
retarray->dim[0].stride = 1;
}
else
{
retarray->dim[0].lbound = 0;
retarray->dim[0].ubound = a->dim[0].ubound - a->dim[0].lbound;
retarray->dim[0].stride = 1;
retarray->dim[1].lbound = 0;
retarray->dim[1].ubound = b->dim[1].ubound - b->dim[1].lbound;
retarray->dim[1].stride = retarray->dim[0].ubound+1;
}
retarray->data
= internal_malloc_size (sizeof ('rtype_name`) * size0 ((array_t *) retarray));
retarray->offset = 0;
}
'
sinclude(`matmul_asm_'rtype_code`.m4')dnl
`
if (GFC_DESCRIPTOR_RANK (retarray) == 1)
{
/* One-dimensional result may be addressed in the code below
either as a row or a column matrix. We want both cases to
work. */
rxstride = rystride = retarray->dim[0].stride;
}
else
{
rxstride = retarray->dim[0].stride;
rystride = retarray->dim[1].stride;
}
if (GFC_DESCRIPTOR_RANK (a) == 1)
{
/* Treat it as a a row matrix A[1,count]. */
axstride = a->dim[0].stride;
aystride = 1;
xcount = 1;
count = a->dim[0].ubound + 1 - a->dim[0].lbound;
}
else
{
axstride = a->dim[0].stride;
aystride = a->dim[1].stride;
count = a->dim[1].ubound + 1 - a->dim[1].lbound;
xcount = a->dim[0].ubound + 1 - a->dim[0].lbound;
}
assert(count == b->dim[0].ubound + 1 - b->dim[0].lbound);
if (GFC_DESCRIPTOR_RANK (b) == 1)
{
/* Treat it as a column matrix B[count,1] */
bxstride = b->dim[0].stride;
/* bystride should never be used for 1-dimensional b.
in case it is we want it to cause a segfault, rather than
an incorrect result. */
bystride = 0xDEADBEEF;
ycount = 1;
}
else
{
bxstride = b->dim[0].stride;
bystride = b->dim[1].stride;
ycount = b->dim[1].ubound + 1 - b->dim[1].lbound;
}
abase = a->data;
bbase = b->data;
dest = retarray->data;
/* Now that everything is set up, we''`re performing the multiplication
itself. */
#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
&& (bxstride == 1 || bystride == 1)
&& (((float) xcount) * ((float) ycount) * ((float) count)
> POW3(blas_limit)))
{
const int m = xcount, n = ycount, k = count, ldc = rystride;
const 'rtype_name` one = 1, zero = 0;
const int lda = (axstride == 1) ? aystride : axstride,
ldb = (bxstride == 1) ? bystride : bxstride;
if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
{
assert (gemm != NULL);
gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m, &n, &k,
&one, abase, &lda, bbase, &ldb, &zero, dest, &ldc, 1, 1);
return;
}
}
if (rxstride == 1 && axstride == 1 && bxstride == 1)
{
const 'rtype_name` * restrict bbase_y;
'rtype_name` * restrict dest_y;
const 'rtype_name` * restrict abase_n;
'rtype_name` bbase_yn;
if (rystride == xcount)
memset (dest, 0, (sizeof ('rtype_name`) * xcount * ycount));
else
{
for (y = 0; y < ycount; y++)
for (x = 0; x < xcount; x++)
dest[x + y*rystride] = ('rtype_name`)0;
}
for (y = 0; y < ycount; y++)
{
bbase_y = bbase + y*bystride;
dest_y = dest + y*rystride;
for (n = 0; n < count; n++)
{
abase_n = abase + n*aystride;
bbase_yn = bbase_y[n];
for (x = 0; x < xcount; x++)
{
dest_y[x] += abase_n[x] * bbase_yn;
}
}
}
}
else if (rxstride == 1 && aystride == 1 && bxstride == 1)
{
if (GFC_DESCRIPTOR_RANK (a) != 1)
{
const 'rtype_name` *restrict abase_x;
const 'rtype_name` *restrict bbase_y;
'rtype_name` *restrict dest_y;
'rtype_name` s;
for (y = 0; y < ycount; y++)
{
bbase_y = &bbase[y*bystride];
dest_y = &dest[y*rystride];
for (x = 0; x < xcount; x++)
{
abase_x = &abase[x*axstride];
s = ('rtype_name`) 0;
for (n = 0; n < count; n++)
s += abase_x[n] * bbase_y[n];
dest_y[x] = s;
}
}
}
else
{
const 'rtype_name` *restrict bbase_y;
'rtype_name` s;
for (y = 0; y < ycount; y++)
{
bbase_y = &bbase[y*bystride];
s = ('rtype_name`) 0;
for (n = 0; n < count; n++)
s += abase[n*axstride] * bbase_y[n];
dest[y*rystride] = s;
}
}
}
else if (axstride < aystride)
{
for (y = 0; y < ycount; y++)
for (x = 0; x < xcount; x++)
dest[x*rxstride + y*rystride] = ('rtype_name`)0;
for (y = 0; y < ycount; y++)
for (n = 0; n < count; n++)
for (x = 0; x < xcount; x++)
/* dest[x,y] += a[x,n] * b[n,y] */
dest[x*rxstride + y*rystride] += abase[x*axstride + n*aystride] * bbase[n*bxstride + y*bystride];
}
else if (GFC_DESCRIPTOR_RANK (a) == 1)
{
const 'rtype_name` *restrict bbase_y;
'rtype_name` s;
for (y = 0; y < ycount; y++)
{
bbase_y = &bbase[y*bystride];
s = ('rtype_name`) 0;
for (n = 0; n < count; n++)
s += abase[n*axstride] * bbase_y[n*bxstride];
dest[y*rxstride] = s;
}
}
else
{
const 'rtype_name` *restrict abase_x;
const 'rtype_name` *restrict bbase_y;
'rtype_name` *restrict dest_y;
'rtype_name` s;
for (y = 0; y < ycount; y++)
{
bbase_y = &bbase[y*bystride];
dest_y = &dest[y*rystride];
for (x = 0; x < xcount; x++)
{
abase_x = &abase[x*axstride];
s = ('rtype_name`) 0;
for (n = 0; n < count; n++)
s += abase_x[n*aystride] * bbase_y[n*bxstride];
dest_y[x*rxstride] = s;
}
}
}
}
#endif'