296 lines
7.0 KiB
C
296 lines
7.0 KiB
C
/* Memory management routines.
|
|
Copyright 2002, 2005, 2006 Free Software Foundation, Inc.
|
|
Contributed by Paul Brook <paul@nowt.org>
|
|
|
|
This file is part of the GNU Fortran 95 runtime library (libgfortran).
|
|
|
|
Libgfortran is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2 of the License, or (at your option) any later version.
|
|
|
|
In addition to the permissions in the GNU General Public License, the
|
|
Free Software Foundation gives you unlimited permission to link the
|
|
compiled version of this file into combinations with other programs,
|
|
and to distribute those combinations without any restriction coming
|
|
from the use of this file. (The General Public License restrictions
|
|
do apply in other respects; for example, they cover modification of
|
|
the file, and distribution when not linked into a combine
|
|
executable.)
|
|
|
|
Libgfortran is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public
|
|
License along with libgfortran; see the file COPYING. If not,
|
|
write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
|
|
Boston, MA 02110-1301, USA. */
|
|
|
|
#include "config.h"
|
|
#include <stdlib.h>
|
|
#include "libgfortran.h"
|
|
|
|
/* If GFC_CLEAR_MEMORY is defined, the memory allocation routines will
|
|
return memory that is guaranteed to be set to zero. This can have
|
|
a severe efficiency penalty, so it should never be set if good
|
|
performance is desired, but it can help when you're debugging code. */
|
|
/* #define GFC_CLEAR_MEMORY */
|
|
|
|
/* If GFC_CHECK_MEMORY is defined, we do some sanity checks at runtime.
|
|
This causes small overhead, but again, it also helps debugging. */
|
|
#define GFC_CHECK_MEMORY
|
|
|
|
void *
|
|
get_mem (size_t n)
|
|
{
|
|
void *p;
|
|
|
|
#ifdef GFC_CLEAR_MEMORY
|
|
p = (void *) calloc (1, n);
|
|
#else
|
|
p = (void *) malloc (n);
|
|
#endif
|
|
if (p == NULL)
|
|
os_error ("Memory allocation failed");
|
|
|
|
return p;
|
|
}
|
|
|
|
|
|
void
|
|
free_mem (void *p)
|
|
{
|
|
free (p);
|
|
}
|
|
|
|
|
|
/* Allocate memory for internal (compiler generated) use. */
|
|
|
|
void *
|
|
internal_malloc_size (size_t size)
|
|
{
|
|
if (size == 0)
|
|
return NULL;
|
|
|
|
return get_mem (size);
|
|
}
|
|
|
|
extern void *internal_malloc (GFC_INTEGER_4);
|
|
export_proto(internal_malloc);
|
|
|
|
void *
|
|
internal_malloc (GFC_INTEGER_4 size)
|
|
{
|
|
#ifdef GFC_CHECK_MEMORY
|
|
/* Under normal circumstances, this is _never_ going to happen! */
|
|
if (size < 0)
|
|
runtime_error ("Attempt to allocate a negative amount of memory.");
|
|
|
|
#endif
|
|
return internal_malloc_size ((size_t) size);
|
|
}
|
|
|
|
extern void *internal_malloc64 (GFC_INTEGER_8);
|
|
export_proto(internal_malloc64);
|
|
|
|
void *
|
|
internal_malloc64 (GFC_INTEGER_8 size)
|
|
{
|
|
#ifdef GFC_CHECK_MEMORY
|
|
/* Under normal circumstances, this is _never_ going to happen! */
|
|
if (size < 0)
|
|
runtime_error ("Attempt to allocate a negative amount of memory.");
|
|
#endif
|
|
return internal_malloc_size ((size_t) size);
|
|
}
|
|
|
|
|
|
/* Free internally allocated memory. Pointer is NULLified. Also used to
|
|
free user allocated memory. */
|
|
|
|
void
|
|
internal_free (void *mem)
|
|
{
|
|
if (mem != NULL)
|
|
free (mem);
|
|
}
|
|
iexport(internal_free);
|
|
|
|
/* Reallocate internal memory MEM so it has SIZE bytes of data.
|
|
Allocate a new block if MEM is zero, and free the block if
|
|
SIZE is 0. */
|
|
|
|
static void *
|
|
internal_realloc_size (void *mem, size_t size)
|
|
{
|
|
if (size == 0)
|
|
{
|
|
if (mem)
|
|
free (mem);
|
|
return NULL;
|
|
}
|
|
|
|
if (mem == 0)
|
|
return get_mem (size);
|
|
|
|
mem = realloc (mem, size);
|
|
if (!mem)
|
|
os_error ("Out of memory.");
|
|
|
|
return mem;
|
|
}
|
|
|
|
extern void *internal_realloc (void *, GFC_INTEGER_4);
|
|
export_proto(internal_realloc);
|
|
|
|
void *
|
|
internal_realloc (void *mem, GFC_INTEGER_4 size)
|
|
{
|
|
#ifdef GFC_CHECK_MEMORY
|
|
/* Under normal circumstances, this is _never_ going to happen! */
|
|
if (size < 0)
|
|
runtime_error ("Attempt to allocate a negative amount of memory.");
|
|
#endif
|
|
return internal_realloc_size (mem, (size_t) size);
|
|
}
|
|
|
|
extern void *internal_realloc64 (void *, GFC_INTEGER_8);
|
|
export_proto(internal_realloc64);
|
|
|
|
void *
|
|
internal_realloc64 (void *mem, GFC_INTEGER_8 size)
|
|
{
|
|
#ifdef GFC_CHECK_MEMORY
|
|
/* Under normal circumstances, this is _never_ going to happen! */
|
|
if (size < 0)
|
|
runtime_error ("Attempt to allocate a negative amount of memory.");
|
|
#endif
|
|
return internal_realloc_size (mem, (size_t) size);
|
|
}
|
|
|
|
|
|
/* User-allocate, one call for each member of the alloc-list of an
|
|
ALLOCATE statement. */
|
|
|
|
static void *
|
|
allocate_size (size_t size, GFC_INTEGER_4 * stat)
|
|
{
|
|
void *newmem;
|
|
|
|
newmem = malloc (size ? size : 1);
|
|
if (!newmem)
|
|
{
|
|
if (stat)
|
|
{
|
|
*stat = 1;
|
|
return newmem;
|
|
}
|
|
else
|
|
runtime_error ("ALLOCATE: Out of memory.");
|
|
}
|
|
|
|
if (stat)
|
|
*stat = 0;
|
|
|
|
return newmem;
|
|
}
|
|
|
|
extern void *allocate (GFC_INTEGER_4, GFC_INTEGER_4 *);
|
|
export_proto(allocate);
|
|
|
|
void *
|
|
allocate (GFC_INTEGER_4 size, GFC_INTEGER_4 * stat)
|
|
{
|
|
if (size < 0)
|
|
runtime_error ("Attempt to allocate negative amount of memory. "
|
|
"Possible integer overflow");
|
|
|
|
return allocate_size ((size_t) size, stat);
|
|
}
|
|
|
|
extern void *allocate64 (GFC_INTEGER_8, GFC_INTEGER_4 *);
|
|
export_proto(allocate64);
|
|
|
|
void *
|
|
allocate64 (GFC_INTEGER_8 size, GFC_INTEGER_4 * stat)
|
|
{
|
|
if (size < 0)
|
|
runtime_error ("ALLOCATE64: Attempt to allocate negative amount of "
|
|
"memory. Possible integer overflow");
|
|
|
|
return allocate_size ((size_t) size, stat);
|
|
}
|
|
|
|
/* Function to call in an ALLOCATE statement when the argument is an
|
|
allocatable array. If the array is currently allocated, it is
|
|
an error to allocate it again. 32-bit version. */
|
|
|
|
extern void *allocate_array (void *, GFC_INTEGER_4, GFC_INTEGER_4 *);
|
|
export_proto(allocate_array);
|
|
|
|
void *
|
|
allocate_array (void *mem, GFC_INTEGER_4 size, GFC_INTEGER_4 * stat)
|
|
{
|
|
if (mem == NULL)
|
|
return allocate (size, stat);
|
|
if (stat)
|
|
{
|
|
free (mem);
|
|
mem = allocate (size, stat);
|
|
*stat = ERROR_ALLOCATION;
|
|
return mem;
|
|
}
|
|
|
|
runtime_error ("Attempting to allocate already allocated array.");
|
|
}
|
|
|
|
/* Function to call in an ALLOCATE statement when the argument is an
|
|
allocatable array. If the array is currently allocated, it is
|
|
an error to allocate it again. 64-bit version. */
|
|
|
|
extern void *allocate64_array (void *, GFC_INTEGER_8, GFC_INTEGER_4 *);
|
|
export_proto(allocate64_array);
|
|
|
|
void *
|
|
allocate64_array (void *mem, GFC_INTEGER_8 size, GFC_INTEGER_4 * stat)
|
|
{
|
|
if (mem == NULL)
|
|
return allocate64 (size, stat);
|
|
if (stat)
|
|
{
|
|
free (mem);
|
|
mem = allocate (size, stat);
|
|
*stat = ERROR_ALLOCATION;
|
|
return mem;
|
|
}
|
|
|
|
runtime_error ("Attempting to allocate already allocated array.");
|
|
}
|
|
|
|
/* User-deallocate; pointer is then NULLified by the front-end. */
|
|
|
|
extern void deallocate (void *, GFC_INTEGER_4 *);
|
|
export_proto(deallocate);
|
|
|
|
void
|
|
deallocate (void *mem, GFC_INTEGER_4 * stat)
|
|
{
|
|
if (!mem)
|
|
{
|
|
if (stat)
|
|
{
|
|
*stat = 1;
|
|
return;
|
|
}
|
|
else
|
|
runtime_error ("Internal: Attempt to DEALLOCATE unallocated memory.");
|
|
}
|
|
|
|
free (mem);
|
|
|
|
if (stat)
|
|
*stat = 0;
|
|
}
|