gcc/libgfortran/intrinsics/c99_functions.c
Francois-Xavier Coudert b65d72ab86 re PR libfortran/26253 (fallback scalbn doesn't handle denormals correctly)
PR libfortran/26253
	* intrinsics/c99_functions.c (scalbn): Use ldexp if appopriate.

From-SVN: r128648
2007-09-21 10:54:20 +00:00

1417 lines
26 KiB
C

/* Implementation of various C99 functions
Copyright (C) 2004 Free Software Foundation, Inc.
This file is part of the GNU Fortran 95 runtime library (libgfortran).
Libgfortran is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.
In addition to the permissions in the GNU General Public License, the
Free Software Foundation gives you unlimited permission to link the
compiled version of this file into combinations with other programs,
and to distribute those combinations without any restriction coming
from the use of this file. (The General Public License restrictions
do apply in other respects; for example, they cover modification of
the file, and distribution when not linked into a combine
executable.)
Libgfortran is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public
License along with libgfortran; see the file COPYING. If not,
write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301, USA. */
#include "config.h"
#define C99_PROTOS_H WE_DONT_WANT_PROTOS_NOW
#include "libgfortran.h"
/* IRIX's <math.h> declares a non-C99 compliant implementation of cabs,
which takes two floating point arguments instead of a single complex.
If <complex.h> is missing this prevents building of c99_functions.c.
To work around this we redirect cabs{,f,l} calls to __gfc_cabs{,f,l}. */
#if defined(__sgi__) && !defined(HAVE_COMPLEX_H)
#undef HAVE_CABS
#undef HAVE_CABSF
#undef HAVE_CABSL
#define cabs __gfc_cabs
#define cabsf __gfc_cabsf
#define cabsl __gfc_cabsl
#endif
/* Tru64's <math.h> declares a non-C99 compliant implementation of cabs,
which takes two floating point arguments instead of a single complex.
To work around this we redirect cabs{,f,l} calls to __gfc_cabs{,f,l}. */
#ifdef __osf__
#undef HAVE_CABS
#undef HAVE_CABSF
#undef HAVE_CABSL
#define cabs __gfc_cabs
#define cabsf __gfc_cabsf
#define cabsl __gfc_cabsl
#endif
/* Prototypes to silence -Wstrict-prototypes -Wmissing-prototypes. */
float cabsf(float complex);
double cabs(double complex);
long double cabsl(long double complex);
float cargf(float complex);
double carg(double complex);
long double cargl(long double complex);
float complex clog10f(float complex);
double complex clog10(double complex);
long double complex clog10l(long double complex);
/* Wrappers for systems without the various C99 single precision Bessel
functions. */
#if defined(HAVE_J0) && ! defined(HAVE_J0F)
#define HAVE_J0F 1
extern float j0f (float);
float
j0f (float x)
{
return (float) j0 ((double) x);
}
#endif
#if defined(HAVE_J1) && !defined(HAVE_J1F)
#define HAVE_J1F 1
extern float j1f (float);
float j1f (float x)
{
return (float) j1 ((double) x);
}
#endif
#if defined(HAVE_JN) && !defined(HAVE_JNF)
#define HAVE_JNF 1
extern float jnf (int, float);
float
jnf (int n, float x)
{
return (float) jn (n, (double) x);
}
#endif
#if defined(HAVE_Y0) && !defined(HAVE_Y0F)
#define HAVE_Y0F 1
extern float y0f (float);
float
y0f (float x)
{
return (float) y0 ((double) x);
}
#endif
#if defined(HAVE_Y1) && !defined(HAVE_Y1F)
#define HAVE_Y1F 1
extern float y1f (float);
float
y1f (float x)
{
return (float) y1 ((double) x);
}
#endif
#if defined(HAVE_YN) && !defined(HAVE_YNF)
#define HAVE_YNF 1
extern float ynf (int, float);
float
ynf (int n, float x)
{
return (float) yn (n, (double) x);
}
#endif
/* Wrappers for systems without the C99 erff() and erfcf() functions. */
#if defined(HAVE_ERF) && !defined(HAVE_ERFF)
#define HAVE_ERFF 1
extern float erff (float);
float
erff (float x)
{
return (float) erf ((double) x);
}
#endif
#if defined(HAVE_ERFC) && !defined(HAVE_ERFCF)
#define HAVE_ERFCF 1
extern float erfcf (float);
float
erfcf (float x)
{
return (float) erfc ((double) x);
}
#endif
#ifndef HAVE_ACOSF
#define HAVE_ACOSF 1
float
acosf(float x)
{
return (float) acos(x);
}
#endif
#if HAVE_ACOSH && !HAVE_ACOSHF
float
acoshf (float x)
{
return (float) acosh ((double) x);
}
#endif
#ifndef HAVE_ASINF
#define HAVE_ASINF 1
float
asinf(float x)
{
return (float) asin(x);
}
#endif
#if HAVE_ASINH && !HAVE_ASINHF
float
asinhf (float x)
{
return (float) asinh ((double) x);
}
#endif
#ifndef HAVE_ATAN2F
#define HAVE_ATAN2F 1
float
atan2f(float y, float x)
{
return (float) atan2(y, x);
}
#endif
#ifndef HAVE_ATANF
#define HAVE_ATANF 1
float
atanf(float x)
{
return (float) atan(x);
}
#endif
#if HAVE_ATANH && !HAVE_ATANHF
float
atanhf (float x)
{
return (float) atanh ((double) x);
}
#endif
#ifndef HAVE_CEILF
#define HAVE_CEILF 1
float
ceilf(float x)
{
return (float) ceil(x);
}
#endif
#ifndef HAVE_COPYSIGNF
#define HAVE_COPYSIGNF 1
float
copysignf(float x, float y)
{
return (float) copysign(x, y);
}
#endif
#ifndef HAVE_COSF
#define HAVE_COSF 1
float
cosf(float x)
{
return (float) cos(x);
}
#endif
#ifndef HAVE_COSHF
#define HAVE_COSHF 1
float
coshf(float x)
{
return (float) cosh(x);
}
#endif
#ifndef HAVE_EXPF
#define HAVE_EXPF 1
float
expf(float x)
{
return (float) exp(x);
}
#endif
#ifndef HAVE_FABSF
#define HAVE_FABSF 1
float
fabsf(float x)
{
return (float) fabs(x);
}
#endif
#ifndef HAVE_FLOORF
#define HAVE_FLOORF 1
float
floorf(float x)
{
return (float) floor(x);
}
#endif
#ifndef HAVE_FMODF
#define HAVE_FMODF 1
float
fmodf (float x, float y)
{
return (float) fmod (x, y);
}
#endif
#ifndef HAVE_FREXPF
#define HAVE_FREXPF 1
float
frexpf(float x, int *exp)
{
return (float) frexp(x, exp);
}
#endif
#ifndef HAVE_HYPOTF
#define HAVE_HYPOTF 1
float
hypotf(float x, float y)
{
return (float) hypot(x, y);
}
#endif
#ifndef HAVE_LOGF
#define HAVE_LOGF 1
float
logf(float x)
{
return (float) log(x);
}
#endif
#ifndef HAVE_LOG10F
#define HAVE_LOG10F 1
float
log10f(float x)
{
return (float) log10(x);
}
#endif
#ifndef HAVE_SCALBN
#define HAVE_SCALBN 1
double
scalbn(double x, int y)
{
#if (FLT_RADIX == 2) && defined(HAVE_LDEXP)
return ldexp (x, y);
#else
return x * pow(FLT_RADIX, y);
#endif
}
#endif
#ifndef HAVE_SCALBNF
#define HAVE_SCALBNF 1
float
scalbnf(float x, int y)
{
return (float) scalbn(x, y);
}
#endif
#ifndef HAVE_SINF
#define HAVE_SINF 1
float
sinf(float x)
{
return (float) sin(x);
}
#endif
#ifndef HAVE_SINHF
#define HAVE_SINHF 1
float
sinhf(float x)
{
return (float) sinh(x);
}
#endif
#ifndef HAVE_SQRTF
#define HAVE_SQRTF 1
float
sqrtf(float x)
{
return (float) sqrt(x);
}
#endif
#ifndef HAVE_TANF
#define HAVE_TANF 1
float
tanf(float x)
{
return (float) tan(x);
}
#endif
#ifndef HAVE_TANHF
#define HAVE_TANHF 1
float
tanhf(float x)
{
return (float) tanh(x);
}
#endif
#ifndef HAVE_TRUNC
#define HAVE_TRUNC 1
double
trunc(double x)
{
if (!isfinite (x))
return x;
if (x < 0.0)
return - floor (-x);
else
return floor (x);
}
#endif
#ifndef HAVE_TRUNCF
#define HAVE_TRUNCF 1
float
truncf(float x)
{
return (float) trunc (x);
}
#endif
#ifndef HAVE_NEXTAFTERF
#define HAVE_NEXTAFTERF 1
/* This is a portable implementation of nextafterf that is intended to be
independent of the floating point format or its in memory representation.
This implementation works correctly with denormalized values. */
float
nextafterf(float x, float y)
{
/* This variable is marked volatile to avoid excess precision problems
on some platforms, including IA-32. */
volatile float delta;
float absx, denorm_min;
if (isnan(x) || isnan(y))
return x + y;
if (x == y)
return x;
if (!isfinite (x))
return x > 0 ? __FLT_MAX__ : - __FLT_MAX__;
/* absx = fabsf (x); */
absx = (x < 0.0) ? -x : x;
/* __FLT_DENORM_MIN__ is non-zero iff the target supports denormals. */
if (__FLT_DENORM_MIN__ == 0.0f)
denorm_min = __FLT_MIN__;
else
denorm_min = __FLT_DENORM_MIN__;
if (absx < __FLT_MIN__)
delta = denorm_min;
else
{
float frac;
int exp;
/* Discard the fraction from x. */
frac = frexpf (absx, &exp);
delta = scalbnf (0.5f, exp);
/* Scale x by the epsilon of the representation. By rights we should
have been able to combine this with scalbnf, but some targets don't
get that correct with denormals. */
delta *= __FLT_EPSILON__;
/* If we're going to be reducing the absolute value of X, and doing so
would reduce the exponent of X, then the delta to be applied is
one exponent smaller. */
if (frac == 0.5f && (y < x) == (x > 0))
delta *= 0.5f;
/* If that underflows to zero, then we're back to the minimum. */
if (delta == 0.0f)
delta = denorm_min;
}
if (y < x)
delta = -delta;
return x + delta;
}
#endif
#ifndef HAVE_POWF
#define HAVE_POWF 1
float
powf(float x, float y)
{
return (float) pow(x, y);
}
#endif
/* Note that if fpclassify is not defined, then NaN is not handled */
/* Algorithm by Steven G. Kargl. */
#if !defined(HAVE_ROUNDL)
#define HAVE_ROUNDL 1
#if defined(HAVE_CEILL)
/* Round to nearest integral value. If the argument is halfway between two
integral values then round away from zero. */
long double
roundl(long double x)
{
long double t;
if (!isfinite (x))
return (x);
if (x >= 0.0)
{
t = ceill(x);
if (t - x > 0.5)
t -= 1.0;
return (t);
}
else
{
t = ceill(-x);
if (t + x > 0.5)
t -= 1.0;
return (-t);
}
}
#else
/* Poor version of roundl for system that don't have ceill. */
long double
roundl(long double x)
{
if (x > DBL_MAX || x < -DBL_MAX)
{
#ifdef HAVE_NEXTAFTERL
static long double prechalf = nexafterl (0.5L, LDBL_MAX);
#else
static long double prechalf = 0.5L;
#endif
return (GFC_INTEGER_LARGEST) (x + (x > 0 ? prechalf : -prechalf));
}
else
/* Use round(). */
return round((double) x);
}
#endif
#endif
#ifndef HAVE_ROUND
#define HAVE_ROUND 1
/* Round to nearest integral value. If the argument is halfway between two
integral values then round away from zero. */
double
round(double x)
{
double t;
if (!isfinite (x))
return (x);
if (x >= 0.0)
{
t = ceil(x);
if (t - x > 0.5)
t -= 1.0;
return (t);
}
else
{
t = ceil(-x);
if (t + x > 0.5)
t -= 1.0;
return (-t);
}
}
#endif
#ifndef HAVE_ROUNDF
#define HAVE_ROUNDF 1
/* Round to nearest integral value. If the argument is halfway between two
integral values then round away from zero. */
float
roundf(float x)
{
float t;
if (!isfinite (x))
return (x);
if (x >= 0.0)
{
t = ceilf(x);
if (t - x > 0.5)
t -= 1.0;
return (t);
}
else
{
t = ceilf(-x);
if (t + x > 0.5)
t -= 1.0;
return (-t);
}
}
#endif
/* lround{f,,l} and llround{f,,l} functions. */
#if !defined(HAVE_LROUNDF) && defined(HAVE_ROUNDF)
#define HAVE_LROUNDF 1
long int
lroundf (float x)
{
return (long int) roundf (x);
}
#endif
#if !defined(HAVE_LROUND) && defined(HAVE_ROUND)
#define HAVE_LROUND 1
long int
lround (double x)
{
return (long int) round (x);
}
#endif
#if !defined(HAVE_LROUNDL) && defined(HAVE_ROUNDL)
#define HAVE_LROUNDL 1
long int
lroundl (long double x)
{
return (long long int) roundl (x);
}
#endif
#if !defined(HAVE_LLROUNDF) && defined(HAVE_ROUNDF)
#define HAVE_LLROUNDF 1
long long int
llroundf (float x)
{
return (long long int) roundf (x);
}
#endif
#if !defined(HAVE_LLROUND) && defined(HAVE_ROUND)
#define HAVE_LLROUND 1
long long int
llround (double x)
{
return (long long int) round (x);
}
#endif
#if !defined(HAVE_LLROUNDL) && defined(HAVE_ROUNDL)
#define HAVE_LLROUNDL 1
long long int
llroundl (long double x)
{
return (long long int) roundl (x);
}
#endif
#ifndef HAVE_LOG10L
#define HAVE_LOG10L 1
/* log10 function for long double variables. The version provided here
reduces the argument until it fits into a double, then use log10. */
long double
log10l(long double x)
{
#if LDBL_MAX_EXP > DBL_MAX_EXP
if (x > DBL_MAX)
{
double val;
int p2_result = 0;
if (x > 0x1p16383L) { p2_result += 16383; x /= 0x1p16383L; }
if (x > 0x1p8191L) { p2_result += 8191; x /= 0x1p8191L; }
if (x > 0x1p4095L) { p2_result += 4095; x /= 0x1p4095L; }
if (x > 0x1p2047L) { p2_result += 2047; x /= 0x1p2047L; }
if (x > 0x1p1023L) { p2_result += 1023; x /= 0x1p1023L; }
val = log10 ((double) x);
return (val + p2_result * .30102999566398119521373889472449302L);
}
#endif
#if LDBL_MIN_EXP < DBL_MIN_EXP
if (x < DBL_MIN)
{
double val;
int p2_result = 0;
if (x < 0x1p-16380L) { p2_result += 16380; x /= 0x1p-16380L; }
if (x < 0x1p-8189L) { p2_result += 8189; x /= 0x1p-8189L; }
if (x < 0x1p-4093L) { p2_result += 4093; x /= 0x1p-4093L; }
if (x < 0x1p-2045L) { p2_result += 2045; x /= 0x1p-2045L; }
if (x < 0x1p-1021L) { p2_result += 1021; x /= 0x1p-1021L; }
val = fabs(log10 ((double) x));
return (- val - p2_result * .30102999566398119521373889472449302L);
}
#endif
return log10 (x);
}
#endif
#ifndef HAVE_FLOORL
#define HAVE_FLOORL 1
long double
floorl (long double x)
{
/* Zero, possibly signed. */
if (x == 0)
return x;
/* Large magnitude. */
if (x > DBL_MAX || x < (-DBL_MAX))
return x;
/* Small positive values. */
if (x >= 0 && x < DBL_MIN)
return 0;
/* Small negative values. */
if (x < 0 && x > (-DBL_MIN))
return -1;
return floor (x);
}
#endif
#ifndef HAVE_FMODL
#define HAVE_FMODL 1
long double
fmodl (long double x, long double y)
{
if (y == 0.0L)
return 0.0L;
/* Need to check that the result has the same sign as x and magnitude
less than the magnitude of y. */
return x - floorl (x / y) * y;
}
#endif
#if !defined(HAVE_CABSF)
#define HAVE_CABSF 1
float
cabsf (float complex z)
{
return hypotf (REALPART (z), IMAGPART (z));
}
#endif
#if !defined(HAVE_CABS)
#define HAVE_CABS 1
double
cabs (double complex z)
{
return hypot (REALPART (z), IMAGPART (z));
}
#endif
#if !defined(HAVE_CABSL) && defined(HAVE_HYPOTL)
#define HAVE_CABSL 1
long double
cabsl (long double complex z)
{
return hypotl (REALPART (z), IMAGPART (z));
}
#endif
#if !defined(HAVE_CARGF)
#define HAVE_CARGF 1
float
cargf (float complex z)
{
return atan2f (IMAGPART (z), REALPART (z));
}
#endif
#if !defined(HAVE_CARG)
#define HAVE_CARG 1
double
carg (double complex z)
{
return atan2 (IMAGPART (z), REALPART (z));
}
#endif
#if !defined(HAVE_CARGL) && defined(HAVE_ATAN2L)
#define HAVE_CARGL 1
long double
cargl (long double complex z)
{
return atan2l (IMAGPART (z), REALPART (z));
}
#endif
/* exp(z) = exp(a)*(cos(b) + i sin(b)) */
#if !defined(HAVE_CEXPF)
#define HAVE_CEXPF 1
float complex
cexpf (float complex z)
{
float a, b;
float complex v;
a = REALPART (z);
b = IMAGPART (z);
COMPLEX_ASSIGN (v, cosf (b), sinf (b));
return expf (a) * v;
}
#endif
#if !defined(HAVE_CEXP)
#define HAVE_CEXP 1
double complex
cexp (double complex z)
{
double a, b;
double complex v;
a = REALPART (z);
b = IMAGPART (z);
COMPLEX_ASSIGN (v, cos (b), sin (b));
return exp (a) * v;
}
#endif
#if !defined(HAVE_CEXPL) && defined(HAVE_COSL) && defined(HAVE_SINL) && defined(EXPL)
#define HAVE_CEXPL 1
long double complex
cexpl (long double complex z)
{
long double a, b;
long double complex v;
a = REALPART (z);
b = IMAGPART (z);
COMPLEX_ASSIGN (v, cosl (b), sinl (b));
return expl (a) * v;
}
#endif
/* log(z) = log (cabs(z)) + i*carg(z) */
#if !defined(HAVE_CLOGF)
#define HAVE_CLOGF 1
float complex
clogf (float complex z)
{
float complex v;
COMPLEX_ASSIGN (v, logf (cabsf (z)), cargf (z));
return v;
}
#endif
#if !defined(HAVE_CLOG)
#define HAVE_CLOG 1
double complex
clog (double complex z)
{
double complex v;
COMPLEX_ASSIGN (v, log (cabs (z)), carg (z));
return v;
}
#endif
#if !defined(HAVE_CLOGL) && defined(HAVE_LOGL) && defined(HAVE_CABSL) && defined(HAVE_CARGL)
#define HAVE_CLOGL 1
long double complex
clogl (long double complex z)
{
long double complex v;
COMPLEX_ASSIGN (v, logl (cabsl (z)), cargl (z));
return v;
}
#endif
/* log10(z) = log10 (cabs(z)) + i*carg(z) */
#if !defined(HAVE_CLOG10F)
#define HAVE_CLOG10F 1
float complex
clog10f (float complex z)
{
float complex v;
COMPLEX_ASSIGN (v, log10f (cabsf (z)), cargf (z));
return v;
}
#endif
#if !defined(HAVE_CLOG10)
#define HAVE_CLOG10 1
double complex
clog10 (double complex z)
{
double complex v;
COMPLEX_ASSIGN (v, log10 (cabs (z)), carg (z));
return v;
}
#endif
#if !defined(HAVE_CLOG10L) && defined(HAVE_LOG10L) && defined(HAVE_CABSL) && defined(HAVE_CARGL)
#define HAVE_CLOG10L 1
long double complex
clog10l (long double complex z)
{
long double complex v;
COMPLEX_ASSIGN (v, log10l (cabsl (z)), cargl (z));
return v;
}
#endif
/* pow(base, power) = cexp (power * clog (base)) */
#if !defined(HAVE_CPOWF)
#define HAVE_CPOWF 1
float complex
cpowf (float complex base, float complex power)
{
return cexpf (power * clogf (base));
}
#endif
#if !defined(HAVE_CPOW)
#define HAVE_CPOW 1
double complex
cpow (double complex base, double complex power)
{
return cexp (power * clog (base));
}
#endif
#if !defined(HAVE_CPOWL) && defined(HAVE_CEXPL) && defined(HAVE_CLOGL)
#define HAVE_CPOWL 1
long double complex
cpowl (long double complex base, long double complex power)
{
return cexpl (power * clogl (base));
}
#endif
/* sqrt(z). Algorithm pulled from glibc. */
#if !defined(HAVE_CSQRTF)
#define HAVE_CSQRTF 1
float complex
csqrtf (float complex z)
{
float re, im;
float complex v;
re = REALPART (z);
im = IMAGPART (z);
if (im == 0)
{
if (re < 0)
{
COMPLEX_ASSIGN (v, 0, copysignf (sqrtf (-re), im));
}
else
{
COMPLEX_ASSIGN (v, fabsf (sqrtf (re)), copysignf (0, im));
}
}
else if (re == 0)
{
float r;
r = sqrtf (0.5 * fabsf (im));
COMPLEX_ASSIGN (v, r, copysignf (r, im));
}
else
{
float d, r, s;
d = hypotf (re, im);
/* Use the identity 2 Re res Im res = Im x
to avoid cancellation error in d +/- Re x. */
if (re > 0)
{
r = sqrtf (0.5 * d + 0.5 * re);
s = (0.5 * im) / r;
}
else
{
s = sqrtf (0.5 * d - 0.5 * re);
r = fabsf ((0.5 * im) / s);
}
COMPLEX_ASSIGN (v, r, copysignf (s, im));
}
return v;
}
#endif
#if !defined(HAVE_CSQRT)
#define HAVE_CSQRT 1
double complex
csqrt (double complex z)
{
double re, im;
double complex v;
re = REALPART (z);
im = IMAGPART (z);
if (im == 0)
{
if (re < 0)
{
COMPLEX_ASSIGN (v, 0, copysign (sqrt (-re), im));
}
else
{
COMPLEX_ASSIGN (v, fabs (sqrt (re)), copysign (0, im));
}
}
else if (re == 0)
{
double r;
r = sqrt (0.5 * fabs (im));
COMPLEX_ASSIGN (v, r, copysign (r, im));
}
else
{
double d, r, s;
d = hypot (re, im);
/* Use the identity 2 Re res Im res = Im x
to avoid cancellation error in d +/- Re x. */
if (re > 0)
{
r = sqrt (0.5 * d + 0.5 * re);
s = (0.5 * im) / r;
}
else
{
s = sqrt (0.5 * d - 0.5 * re);
r = fabs ((0.5 * im) / s);
}
COMPLEX_ASSIGN (v, r, copysign (s, im));
}
return v;
}
#endif
#if !defined(HAVE_CSQRTL) && defined(HAVE_COPYSIGNL) && defined(HAVE_SQRTL) && defined(HAVE_FABSL) && defined(HAVE_HYPOTL)
#define HAVE_CSQRTL 1
long double complex
csqrtl (long double complex z)
{
long double re, im;
long double complex v;
re = REALPART (z);
im = IMAGPART (z);
if (im == 0)
{
if (re < 0)
{
COMPLEX_ASSIGN (v, 0, copysignl (sqrtl (-re), im));
}
else
{
COMPLEX_ASSIGN (v, fabsl (sqrtl (re)), copysignl (0, im));
}
}
else if (re == 0)
{
long double r;
r = sqrtl (0.5 * fabsl (im));
COMPLEX_ASSIGN (v, copysignl (r, im), r);
}
else
{
long double d, r, s;
d = hypotl (re, im);
/* Use the identity 2 Re res Im res = Im x
to avoid cancellation error in d +/- Re x. */
if (re > 0)
{
r = sqrtl (0.5 * d + 0.5 * re);
s = (0.5 * im) / r;
}
else
{
s = sqrtl (0.5 * d - 0.5 * re);
r = fabsl ((0.5 * im) / s);
}
COMPLEX_ASSIGN (v, r, copysignl (s, im));
}
return v;
}
#endif
/* sinh(a + i b) = sinh(a) cos(b) + i cosh(a) sin(b) */
#if !defined(HAVE_CSINHF)
#define HAVE_CSINHF 1
float complex
csinhf (float complex a)
{
float r, i;
float complex v;
r = REALPART (a);
i = IMAGPART (a);
COMPLEX_ASSIGN (v, sinhf (r) * cosf (i), coshf (r) * sinf (i));
return v;
}
#endif
#if !defined(HAVE_CSINH)
#define HAVE_CSINH 1
double complex
csinh (double complex a)
{
double r, i;
double complex v;
r = REALPART (a);
i = IMAGPART (a);
COMPLEX_ASSIGN (v, sinh (r) * cos (i), cosh (r) * sin (i));
return v;
}
#endif
#if !defined(HAVE_CSINHL) && defined(HAVE_COSL) && defined(HAVE_COSHL) && defined(HAVE_SINL) && defined(HAVE_SINHL)
#define HAVE_CSINHL 1
long double complex
csinhl (long double complex a)
{
long double r, i;
long double complex v;
r = REALPART (a);
i = IMAGPART (a);
COMPLEX_ASSIGN (v, sinhl (r) * cosl (i), coshl (r) * sinl (i));
return v;
}
#endif
/* cosh(a + i b) = cosh(a) cos(b) - i sinh(a) sin(b) */
#if !defined(HAVE_CCOSHF)
#define HAVE_CCOSHF 1
float complex
ccoshf (float complex a)
{
float r, i;
float complex v;
r = REALPART (a);
i = IMAGPART (a);
COMPLEX_ASSIGN (v, coshf (r) * cosf (i), - (sinhf (r) * sinf (i)));
return v;
}
#endif
#if !defined(HAVE_CCOSH)
#define HAVE_CCOSH 1
double complex
ccosh (double complex a)
{
double r, i;
double complex v;
r = REALPART (a);
i = IMAGPART (a);
COMPLEX_ASSIGN (v, cosh (r) * cos (i), - (sinh (r) * sin (i)));
return v;
}
#endif
#if !defined(HAVE_CCOSHL) && defined(HAVE_COSL) && defined(HAVE_COSHL) && defined(HAVE_SINL) && defined(HAVE_SINHL)
#define HAVE_CCOSHL 1
long double complex
ccoshl (long double complex a)
{
long double r, i;
long double complex v;
r = REALPART (a);
i = IMAGPART (a);
COMPLEX_ASSIGN (v, coshl (r) * cosl (i), - (sinhl (r) * sinl (i)));
return v;
}
#endif
/* tanh(a + i b) = (tanh(a) + i tan(b)) / (1 - i tanh(a) tan(b)) */
#if !defined(HAVE_CTANHF)
#define HAVE_CTANHF 1
float complex
ctanhf (float complex a)
{
float rt, it;
float complex n, d;
rt = tanhf (REALPART (a));
it = tanf (IMAGPART (a));
COMPLEX_ASSIGN (n, rt, it);
COMPLEX_ASSIGN (d, 1, - (rt * it));
return n / d;
}
#endif
#if !defined(HAVE_CTANH)
#define HAVE_CTANH 1
double complex
ctanh (double complex a)
{
double rt, it;
double complex n, d;
rt = tanh (REALPART (a));
it = tan (IMAGPART (a));
COMPLEX_ASSIGN (n, rt, it);
COMPLEX_ASSIGN (d, 1, - (rt * it));
return n / d;
}
#endif
#if !defined(HAVE_CTANHL) && defined(HAVE_TANL) && defined(HAVE_TANHL)
#define HAVE_CTANHL 1
long double complex
ctanhl (long double complex a)
{
long double rt, it;
long double complex n, d;
rt = tanhl (REALPART (a));
it = tanl (IMAGPART (a));
COMPLEX_ASSIGN (n, rt, it);
COMPLEX_ASSIGN (d, 1, - (rt * it));
return n / d;
}
#endif
/* sin(a + i b) = sin(a) cosh(b) + i cos(a) sinh(b) */
#if !defined(HAVE_CSINF)
#define HAVE_CSINF 1
float complex
csinf (float complex a)
{
float r, i;
float complex v;
r = REALPART (a);
i = IMAGPART (a);
COMPLEX_ASSIGN (v, sinf (r) * coshf (i), cosf (r) * sinhf (i));
return v;
}
#endif
#if !defined(HAVE_CSIN)
#define HAVE_CSIN 1
double complex
csin (double complex a)
{
double r, i;
double complex v;
r = REALPART (a);
i = IMAGPART (a);
COMPLEX_ASSIGN (v, sin (r) * cosh (i), cos (r) * sinh (i));
return v;
}
#endif
#if !defined(HAVE_CSINL) && defined(HAVE_COSL) && defined(HAVE_COSHL) && defined(HAVE_SINL) && defined(HAVE_SINHL)
#define HAVE_CSINL 1
long double complex
csinl (long double complex a)
{
long double r, i;
long double complex v;
r = REALPART (a);
i = IMAGPART (a);
COMPLEX_ASSIGN (v, sinl (r) * coshl (i), cosl (r) * sinhl (i));
return v;
}
#endif
/* cos(a + i b) = cos(a) cosh(b) - i sin(a) sinh(b) */
#if !defined(HAVE_CCOSF)
#define HAVE_CCOSF 1
float complex
ccosf (float complex a)
{
float r, i;
float complex v;
r = REALPART (a);
i = IMAGPART (a);
COMPLEX_ASSIGN (v, cosf (r) * coshf (i), - (sinf (r) * sinhf (i)));
return v;
}
#endif
#if !defined(HAVE_CCOS)
#define HAVE_CCOS 1
double complex
ccos (double complex a)
{
double r, i;
double complex v;
r = REALPART (a);
i = IMAGPART (a);
COMPLEX_ASSIGN (v, cos (r) * cosh (i), - (sin (r) * sinh (i)));
return v;
}
#endif
#if !defined(HAVE_CCOSL) && defined(HAVE_COSL) && defined(HAVE_COSHL) && defined(HAVE_SINL) && defined(HAVE_SINHL)
#define HAVE_CCOSL 1
long double complex
ccosl (long double complex a)
{
long double r, i;
long double complex v;
r = REALPART (a);
i = IMAGPART (a);
COMPLEX_ASSIGN (v, cosl (r) * coshl (i), - (sinl (r) * sinhl (i)));
return v;
}
#endif
/* tan(a + i b) = (tan(a) + i tanh(b)) / (1 - i tan(a) tanh(b)) */
#if !defined(HAVE_CTANF)
#define HAVE_CTANF 1
float complex
ctanf (float complex a)
{
float rt, it;
float complex n, d;
rt = tanf (REALPART (a));
it = tanhf (IMAGPART (a));
COMPLEX_ASSIGN (n, rt, it);
COMPLEX_ASSIGN (d, 1, - (rt * it));
return n / d;
}
#endif
#if !defined(HAVE_CTAN)
#define HAVE_CTAN 1
double complex
ctan (double complex a)
{
double rt, it;
double complex n, d;
rt = tan (REALPART (a));
it = tanh (IMAGPART (a));
COMPLEX_ASSIGN (n, rt, it);
COMPLEX_ASSIGN (d, 1, - (rt * it));
return n / d;
}
#endif
#if !defined(HAVE_CTANL) && defined(HAVE_TANL) && defined(HAVE_TANHL)
#define HAVE_CTANL 1
long double complex
ctanl (long double complex a)
{
long double rt, it;
long double complex n, d;
rt = tanl (REALPART (a));
it = tanhl (IMAGPART (a));
COMPLEX_ASSIGN (n, rt, it);
COMPLEX_ASSIGN (d, 1, - (rt * it));
return n / d;
}
#endif