gcc/libsanitizer/asan/asan_report.cc
Kostya Serebryany a040845458 [libsanitizer] merge from upstream r169371
From-SVN: r194221
2012-12-05 13:19:55 +00:00

498 lines
18 KiB
C++

//===-- asan_report.cc ----------------------------------------------------===//
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is a part of AddressSanitizer, an address sanity checker.
//
// This file contains error reporting code.
//===----------------------------------------------------------------------===//
#include "asan_flags.h"
#include "asan_internal.h"
#include "asan_mapping.h"
#include "asan_report.h"
#include "asan_stack.h"
#include "asan_thread.h"
#include "asan_thread_registry.h"
namespace __asan {
// -------------------- User-specified callbacks ----------------- {{{1
static void (*error_report_callback)(const char*);
static char *error_message_buffer = 0;
static uptr error_message_buffer_pos = 0;
static uptr error_message_buffer_size = 0;
void AppendToErrorMessageBuffer(const char *buffer) {
if (error_message_buffer) {
uptr length = internal_strlen(buffer);
CHECK_GE(error_message_buffer_size, error_message_buffer_pos);
uptr remaining = error_message_buffer_size - error_message_buffer_pos;
internal_strncpy(error_message_buffer + error_message_buffer_pos,
buffer, remaining);
error_message_buffer[error_message_buffer_size - 1] = '\0';
// FIXME: reallocate the buffer instead of truncating the message.
error_message_buffer_pos += remaining > length ? length : remaining;
}
}
// ---------------------- Helper functions ----------------------- {{{1
static void PrintBytes(const char *before, uptr *a) {
u8 *bytes = (u8*)a;
uptr byte_num = (SANITIZER_WORDSIZE) / 8;
Printf("%s%p:", before, (void*)a);
for (uptr i = 0; i < byte_num; i++) {
Printf(" %x%x", bytes[i] >> 4, bytes[i] & 15);
}
Printf("\n");
}
static void PrintShadowMemoryForAddress(uptr addr) {
if (!AddrIsInMem(addr))
return;
uptr shadow_addr = MemToShadow(addr);
Printf("Shadow byte and word:\n");
Printf(" %p: %x\n", (void*)shadow_addr, *(unsigned char*)shadow_addr);
uptr aligned_shadow = shadow_addr & ~(kWordSize - 1);
PrintBytes(" ", (uptr*)(aligned_shadow));
Printf("More shadow bytes:\n");
for (int i = -4; i <= 4; i++) {
const char *prefix = (i == 0) ? "=>" : " ";
PrintBytes(prefix, (uptr*)(aligned_shadow + i * kWordSize));
}
}
static void PrintZoneForPointer(uptr ptr, uptr zone_ptr,
const char *zone_name) {
if (zone_ptr) {
if (zone_name) {
Printf("malloc_zone_from_ptr(%p) = %p, which is %s\n",
ptr, zone_ptr, zone_name);
} else {
Printf("malloc_zone_from_ptr(%p) = %p, which doesn't have a name\n",
ptr, zone_ptr);
}
} else {
Printf("malloc_zone_from_ptr(%p) = 0\n", ptr);
}
}
// ---------------------- Address Descriptions ------------------- {{{1
static bool IsASCII(unsigned char c) {
return /*0x00 <= c &&*/ c <= 0x7F;
}
// Check if the global is a zero-terminated ASCII string. If so, print it.
static void PrintGlobalNameIfASCII(const __asan_global &g) {
for (uptr p = g.beg; p < g.beg + g.size - 1; p++) {
if (!IsASCII(*(unsigned char*)p)) return;
}
if (*(char*)(g.beg + g.size - 1) != 0) return;
Printf(" '%s' is ascii string '%s'\n", g.name, (char*)g.beg);
}
bool DescribeAddressRelativeToGlobal(uptr addr, const __asan_global &g) {
if (addr < g.beg - kGlobalAndStackRedzone) return false;
if (addr >= g.beg + g.size_with_redzone) return false;
Printf("%p is located ", (void*)addr);
if (addr < g.beg) {
Printf("%zd bytes to the left", g.beg - addr);
} else if (addr >= g.beg + g.size) {
Printf("%zd bytes to the right", addr - (g.beg + g.size));
} else {
Printf("%zd bytes inside", addr - g.beg); // Can it happen?
}
Printf(" of global variable '%s' (0x%zx) of size %zu\n",
g.name, g.beg, g.size);
PrintGlobalNameIfASCII(g);
return true;
}
bool DescribeAddressIfShadow(uptr addr) {
if (AddrIsInMem(addr))
return false;
static const char kAddrInShadowReport[] =
"Address %p is located in the %s.\n";
if (AddrIsInShadowGap(addr)) {
Printf(kAddrInShadowReport, addr, "shadow gap area");
return true;
}
if (AddrIsInHighShadow(addr)) {
Printf(kAddrInShadowReport, addr, "high shadow area");
return true;
}
if (AddrIsInLowShadow(addr)) {
Printf(kAddrInShadowReport, addr, "low shadow area");
return true;
}
CHECK(0 && "Address is not in memory and not in shadow?");
return false;
}
bool DescribeAddressIfStack(uptr addr, uptr access_size) {
AsanThread *t = asanThreadRegistry().FindThreadByStackAddress(addr);
if (!t) return false;
const sptr kBufSize = 4095;
char buf[kBufSize];
uptr offset = 0;
const char *frame_descr = t->GetFrameNameByAddr(addr, &offset);
// This string is created by the compiler and has the following form:
// "FunctioName n alloc_1 alloc_2 ... alloc_n"
// where alloc_i looks like "offset size len ObjectName ".
CHECK(frame_descr);
// Report the function name and the offset.
const char *name_end = internal_strchr(frame_descr, ' ');
CHECK(name_end);
buf[0] = 0;
internal_strncat(buf, frame_descr,
Min(kBufSize,
static_cast<sptr>(name_end - frame_descr)));
Printf("Address %p is located at offset %zu "
"in frame <%s> of T%d's stack:\n",
(void*)addr, offset, buf, t->tid());
// Report the number of stack objects.
char *p;
uptr n_objects = internal_simple_strtoll(name_end, &p, 10);
CHECK(n_objects > 0);
Printf(" This frame has %zu object(s):\n", n_objects);
// Report all objects in this frame.
for (uptr i = 0; i < n_objects; i++) {
uptr beg, size;
sptr len;
beg = internal_simple_strtoll(p, &p, 10);
size = internal_simple_strtoll(p, &p, 10);
len = internal_simple_strtoll(p, &p, 10);
if (beg <= 0 || size <= 0 || len < 0 || *p != ' ') {
Printf("AddressSanitizer can't parse the stack frame "
"descriptor: |%s|\n", frame_descr);
break;
}
p++;
buf[0] = 0;
internal_strncat(buf, p, Min(kBufSize, len));
p += len;
Printf(" [%zu, %zu) '%s'\n", beg, beg + size, buf);
}
Printf("HINT: this may be a false positive if your program uses "
"some custom stack unwind mechanism or swapcontext\n"
" (longjmp and C++ exceptions *are* supported)\n");
DescribeThread(t->summary());
return true;
}
static void DescribeAccessToHeapChunk(AsanChunkView chunk, uptr addr,
uptr access_size) {
uptr offset;
Printf("%p is located ", (void*)addr);
if (chunk.AddrIsInside(addr, access_size, &offset)) {
Printf("%zu bytes inside of", offset);
} else if (chunk.AddrIsAtLeft(addr, access_size, &offset)) {
Printf("%zu bytes to the left of", offset);
} else if (chunk.AddrIsAtRight(addr, access_size, &offset)) {
Printf("%zu bytes to the right of", offset);
} else {
Printf(" somewhere around (this is AddressSanitizer bug!)");
}
Printf(" %zu-byte region [%p,%p)\n", chunk.UsedSize(),
(void*)(chunk.Beg()), (void*)(chunk.End()));
}
void DescribeHeapAddress(uptr addr, uptr access_size) {
AsanChunkView chunk = FindHeapChunkByAddress(addr);
if (!chunk.IsValid()) return;
DescribeAccessToHeapChunk(chunk, addr, access_size);
CHECK(chunk.AllocTid() != kInvalidTid);
AsanThreadSummary *alloc_thread =
asanThreadRegistry().FindByTid(chunk.AllocTid());
StackTrace alloc_stack;
chunk.GetAllocStack(&alloc_stack);
AsanThread *t = asanThreadRegistry().GetCurrent();
CHECK(t);
if (chunk.FreeTid() != kInvalidTid) {
AsanThreadSummary *free_thread =
asanThreadRegistry().FindByTid(chunk.FreeTid());
Printf("freed by thread T%d here:\n", free_thread->tid());
StackTrace free_stack;
chunk.GetFreeStack(&free_stack);
PrintStack(&free_stack);
Printf("previously allocated by thread T%d here:\n", alloc_thread->tid());
PrintStack(&alloc_stack);
DescribeThread(t->summary());
DescribeThread(free_thread);
DescribeThread(alloc_thread);
} else {
Printf("allocated by thread T%d here:\n", alloc_thread->tid());
PrintStack(&alloc_stack);
DescribeThread(t->summary());
DescribeThread(alloc_thread);
}
}
void DescribeAddress(uptr addr, uptr access_size) {
// Check if this is shadow or shadow gap.
if (DescribeAddressIfShadow(addr))
return;
CHECK(AddrIsInMem(addr));
if (DescribeAddressIfGlobal(addr))
return;
if (DescribeAddressIfStack(addr, access_size))
return;
// Assume it is a heap address.
DescribeHeapAddress(addr, access_size);
}
// ------------------- Thread description -------------------- {{{1
void DescribeThread(AsanThreadSummary *summary) {
CHECK(summary);
// No need to announce the main thread.
if (summary->tid() == 0 || summary->announced()) {
return;
}
summary->set_announced(true);
Printf("Thread T%d created by T%d here:\n",
summary->tid(), summary->parent_tid());
PrintStack(summary->stack());
// Recursively described parent thread if needed.
if (flags()->print_full_thread_history) {
AsanThreadSummary *parent_summary =
asanThreadRegistry().FindByTid(summary->parent_tid());
DescribeThread(parent_summary);
}
}
// -------------------- Different kinds of reports ----------------- {{{1
// Use ScopedInErrorReport to run common actions just before and
// immediately after printing error report.
class ScopedInErrorReport {
public:
ScopedInErrorReport() {
static atomic_uint32_t num_calls;
static u32 reporting_thread_tid;
if (atomic_fetch_add(&num_calls, 1, memory_order_relaxed) != 0) {
// Do not print more than one report, otherwise they will mix up.
// Error reporting functions shouldn't return at this situation, as
// they are defined as no-return.
Report("AddressSanitizer: while reporting a bug found another one."
"Ignoring.\n");
u32 current_tid = asanThreadRegistry().GetCurrentTidOrInvalid();
if (current_tid != reporting_thread_tid) {
// ASan found two bugs in different threads simultaneously. Sleep
// long enough to make sure that the thread which started to print
// an error report will finish doing it.
SleepForSeconds(Max(100, flags()->sleep_before_dying + 1));
}
// If we're still not dead for some reason, use raw Exit() instead of
// Die() to bypass any additional checks.
Exit(flags()->exitcode);
}
__asan_on_error();
reporting_thread_tid = asanThreadRegistry().GetCurrentTidOrInvalid();
Printf("===================================================="
"=============\n");
if (reporting_thread_tid != kInvalidTid) {
// We started reporting an error message. Stop using the fake stack
// in case we call an instrumented function from a symbolizer.
AsanThread *curr_thread = asanThreadRegistry().GetCurrent();
CHECK(curr_thread);
curr_thread->fake_stack().StopUsingFakeStack();
}
}
// Destructor is NORETURN, as functions that report errors are.
NORETURN ~ScopedInErrorReport() {
// Make sure the current thread is announced.
AsanThread *curr_thread = asanThreadRegistry().GetCurrent();
if (curr_thread) {
DescribeThread(curr_thread->summary());
}
// Print memory stats.
__asan_print_accumulated_stats();
if (error_report_callback) {
error_report_callback(error_message_buffer);
}
Report("ABORTING\n");
Die();
}
};
void ReportSIGSEGV(uptr pc, uptr sp, uptr bp, uptr addr) {
ScopedInErrorReport in_report;
Report("ERROR: AddressSanitizer: SEGV on unknown address %p"
" (pc %p sp %p bp %p T%d)\n",
(void*)addr, (void*)pc, (void*)sp, (void*)bp,
asanThreadRegistry().GetCurrentTidOrInvalid());
Printf("AddressSanitizer can not provide additional info.\n");
GET_STACK_TRACE_WITH_PC_AND_BP(kStackTraceMax, pc, bp);
PrintStack(&stack);
}
void ReportDoubleFree(uptr addr, StackTrace *stack) {
ScopedInErrorReport in_report;
Report("ERROR: AddressSanitizer: attempting double-free on %p:\n", addr);
PrintStack(stack);
DescribeHeapAddress(addr, 1);
}
void ReportFreeNotMalloced(uptr addr, StackTrace *stack) {
ScopedInErrorReport in_report;
Report("ERROR: AddressSanitizer: attempting free on address "
"which was not malloc()-ed: %p\n", addr);
PrintStack(stack);
DescribeHeapAddress(addr, 1);
}
void ReportMallocUsableSizeNotOwned(uptr addr, StackTrace *stack) {
ScopedInErrorReport in_report;
Report("ERROR: AddressSanitizer: attempting to call "
"malloc_usable_size() for pointer which is "
"not owned: %p\n", addr);
PrintStack(stack);
DescribeHeapAddress(addr, 1);
}
void ReportAsanGetAllocatedSizeNotOwned(uptr addr, StackTrace *stack) {
ScopedInErrorReport in_report;
Report("ERROR: AddressSanitizer: attempting to call "
"__asan_get_allocated_size() for pointer which is "
"not owned: %p\n", addr);
PrintStack(stack);
DescribeHeapAddress(addr, 1);
}
void ReportStringFunctionMemoryRangesOverlap(
const char *function, const char *offset1, uptr length1,
const char *offset2, uptr length2, StackTrace *stack) {
ScopedInErrorReport in_report;
Report("ERROR: AddressSanitizer: %s-param-overlap: "
"memory ranges [%p,%p) and [%p, %p) overlap\n", \
function, offset1, offset1 + length1, offset2, offset2 + length2);
PrintStack(stack);
DescribeAddress((uptr)offset1, length1);
DescribeAddress((uptr)offset2, length2);
}
// ----------------------- Mac-specific reports ----------------- {{{1
void WarnMacFreeUnallocated(
uptr addr, uptr zone_ptr, const char *zone_name, StackTrace *stack) {
// Just print a warning here.
Printf("free_common(%p) -- attempting to free unallocated memory.\n"
"AddressSanitizer is ignoring this error on Mac OS now.\n",
addr);
PrintZoneForPointer(addr, zone_ptr, zone_name);
PrintStack(stack);
DescribeHeapAddress(addr, 1);
}
void ReportMacMzReallocUnknown(
uptr addr, uptr zone_ptr, const char *zone_name, StackTrace *stack) {
ScopedInErrorReport in_report;
Printf("mz_realloc(%p) -- attempting to realloc unallocated memory.\n"
"This is an unrecoverable problem, exiting now.\n",
addr);
PrintZoneForPointer(addr, zone_ptr, zone_name);
PrintStack(stack);
DescribeHeapAddress(addr, 1);
}
void ReportMacCfReallocUnknown(
uptr addr, uptr zone_ptr, const char *zone_name, StackTrace *stack) {
ScopedInErrorReport in_report;
Printf("cf_realloc(%p) -- attempting to realloc unallocated memory.\n"
"This is an unrecoverable problem, exiting now.\n",
addr);
PrintZoneForPointer(addr, zone_ptr, zone_name);
PrintStack(stack);
DescribeHeapAddress(addr, 1);
}
} // namespace __asan
// --------------------------- Interface --------------------- {{{1
using namespace __asan; // NOLINT
void __asan_report_error(uptr pc, uptr bp, uptr sp,
uptr addr, bool is_write, uptr access_size) {
ScopedInErrorReport in_report;
// Determine the error type.
const char *bug_descr = "unknown-crash";
if (AddrIsInMem(addr)) {
u8 *shadow_addr = (u8*)MemToShadow(addr);
// If we are accessing 16 bytes, look at the second shadow byte.
if (*shadow_addr == 0 && access_size > SHADOW_GRANULARITY)
shadow_addr++;
// If we are in the partial right redzone, look at the next shadow byte.
if (*shadow_addr > 0 && *shadow_addr < 128)
shadow_addr++;
switch (*shadow_addr) {
case kAsanHeapLeftRedzoneMagic:
case kAsanHeapRightRedzoneMagic:
bug_descr = "heap-buffer-overflow";
break;
case kAsanHeapFreeMagic:
bug_descr = "heap-use-after-free";
break;
case kAsanStackLeftRedzoneMagic:
bug_descr = "stack-buffer-underflow";
break;
case kAsanInitializationOrderMagic:
bug_descr = "initialization-order-fiasco";
break;
case kAsanStackMidRedzoneMagic:
case kAsanStackRightRedzoneMagic:
case kAsanStackPartialRedzoneMagic:
bug_descr = "stack-buffer-overflow";
break;
case kAsanStackAfterReturnMagic:
bug_descr = "stack-use-after-return";
break;
case kAsanUserPoisonedMemoryMagic:
bug_descr = "use-after-poison";
break;
case kAsanStackUseAfterScopeMagic:
bug_descr = "stack-use-after-scope";
break;
case kAsanGlobalRedzoneMagic:
bug_descr = "global-buffer-overflow";
break;
}
}
Report("ERROR: AddressSanitizer: %s on address "
"%p at pc 0x%zx bp 0x%zx sp 0x%zx\n",
bug_descr, (void*)addr, pc, bp, sp);
u32 curr_tid = asanThreadRegistry().GetCurrentTidOrInvalid();
Printf("%s of size %zu at %p thread T%d\n",
access_size ? (is_write ? "WRITE" : "READ") : "ACCESS",
access_size, (void*)addr, curr_tid);
GET_STACK_TRACE_WITH_PC_AND_BP(kStackTraceMax, pc, bp);
PrintStack(&stack);
DescribeAddress(addr, access_size);
PrintShadowMemoryForAddress(addr);
}
void NOINLINE __asan_set_error_report_callback(void (*callback)(const char*)) {
error_report_callback = callback;
if (callback) {
error_message_buffer_size = 1 << 16;
error_message_buffer =
(char*)MmapOrDie(error_message_buffer_size, __FUNCTION__);
error_message_buffer_pos = 0;
}
}
// Provide default implementation of __asan_on_error that does nothing
// and may be overriden by user.
SANITIZER_WEAK_ATTRIBUTE SANITIZER_INTERFACE_ATTRIBUTE NOINLINE
void __asan_on_error() {}