79ab8c4321
On Tue, Feb 04, 2020 at 11:16:06AM +0100, Uros Bizjak wrote: > I guess that Comment #9 patch form the PR should be trivially correct, > but althouhg it looks obvious, I don't want to propose the patch since > I have no means of testing it. I don't have means of testing it either. https://docs.microsoft.com/en-us/cpp/build/x64-calling-convention?view=vs-2019 is quite explicit that [xyz]mm16-31 are call clobbered and only xmm6-15 (low 128-bits only) are call preserved. We are talking e.g. about /* { dg-options "-O2 -mabi=ms -mavx512vl" } */ typedef double V __attribute__((vector_size (16))); void foo (void); V bar (void); void baz (V); void qux (void) { V c; { register V a __asm ("xmm18"); V b = bar (); asm ("" : "=x" (a) : "0" (b)); c = a; } foo (); { register V d __asm ("xmm18"); V e; d = c; asm ("" : "=x" (e) : "0" (d)); baz (e); } } where according to the MSDN doc gcc incorrectly holds the c value in xmm18 register across the foo call; if foo is compiled by some Microsoft compiler (or LLVM), then it could clobber %xmm18. If all xmm18 occurrences are changed to say xmm15, then it is valid to hold the 128-bit value across the foo call (though, surprisingly, LLVM saves it into stack anyway). The other parts are I guess mainly about SEH. Consider e.g. void foo (void) { register double x __asm ("xmm14"); register double y __asm ("xmm18"); asm ("" : "=x" (x)); asm ("" : "=v" (y)); x += y; y += x; asm ("" : : "x" (x)); asm ("" : : "v" (y)); } looking at cross-compiler output, with -O2 -mavx512f this emits .file "abcdeq.c" .text .align 16 .globl foo .def foo; .scl 2; .type 32; .endef .seh_proc foo foo: subq $40, %rsp .seh_stackalloc 40 vmovaps %xmm14, (%rsp) .seh_savexmm %xmm14, 0 vmovaps %xmm18, 16(%rsp) .seh_savexmm %xmm18, 16 .seh_endprologue vaddsd %xmm18, %xmm14, %xmm14 vaddsd %xmm18, %xmm14, %xmm18 vmovaps (%rsp), %xmm14 vmovaps 16(%rsp), %xmm18 addq $40, %rsp ret .seh_endproc .ident "GCC: (GNU) 10.0.1 20200207 (experimental)" Does whatever assembler mingw64 uses even assemble this (I mean the .seh_savexmm %xmm16, 16 could be problematic)? I can find e.g. https://stackoverflow.com/questions/43152633/invalid-register-for-seh-savexmm-in-cygwin/43210527 which then links to https://gcc.gnu.org/PR65782 2020-02-08 Uroš Bizjak <ubizjak@gmail.com> Jakub Jelinek <jakub@redhat.com> PR target/65782 * config/i386/i386.h (CALL_USED_REGISTERS): Make xmm16-xmm31 call-used even in 64-bit ms-abi. * gcc.target/i386/pr65782.c: New test. Co-authored-by: Uroš Bizjak <ubizjak@gmail.com> |
||
---|---|---|
config | ||
contrib | ||
fixincludes | ||
gcc | ||
gnattools | ||
gotools | ||
include | ||
INSTALL | ||
intl | ||
libada | ||
libatomic | ||
libbacktrace | ||
libcc1 | ||
libcpp | ||
libdecnumber | ||
libffi | ||
libgcc | ||
libgfortran | ||
libgo | ||
libgomp | ||
libhsail-rt | ||
libiberty | ||
libitm | ||
libobjc | ||
liboffloadmic | ||
libphobos | ||
libquadmath | ||
libsanitizer | ||
libssp | ||
libstdc++-v3 | ||
libvtv | ||
lto-plugin | ||
maintainer-scripts | ||
zlib | ||
.dir-locals.el | ||
.gitattributes | ||
.gitignore | ||
ABOUT-NLS | ||
ar-lib | ||
ChangeLog | ||
ChangeLog.jit | ||
ChangeLog.tree-ssa | ||
compile | ||
config-ml.in | ||
config.guess | ||
config.rpath | ||
config.sub | ||
configure | ||
configure.ac | ||
COPYING | ||
COPYING3 | ||
COPYING3.LIB | ||
COPYING.LIB | ||
COPYING.RUNTIME | ||
depcomp | ||
install-sh | ||
libtool-ldflags | ||
libtool.m4 | ||
lt~obsolete.m4 | ||
ltgcc.m4 | ||
ltmain.sh | ||
ltoptions.m4 | ||
ltsugar.m4 | ||
ltversion.m4 | ||
MAINTAINERS | ||
Makefile.def | ||
Makefile.in | ||
Makefile.tpl | ||
missing | ||
mkdep | ||
mkinstalldirs | ||
move-if-change | ||
multilib.am | ||
README | ||
symlink-tree | ||
test-driver | ||
ylwrap |
This directory contains the GNU Compiler Collection (GCC). The GNU Compiler Collection is free software. See the files whose names start with COPYING for copying permission. The manuals, and some of the runtime libraries, are under different terms; see the individual source files for details. The directory INSTALL contains copies of the installation information as HTML and plain text. The source of this information is gcc/doc/install.texi. The installation information includes details of what is included in the GCC sources and what files GCC installs. See the file gcc/doc/gcc.texi (together with other files that it includes) for usage and porting information. An online readable version of the manual is in the files gcc/doc/gcc.info*. See http://gcc.gnu.org/bugs/ for how to report bugs usefully. Copyright years on GCC source files may be listed using range notation, e.g., 1987-2012, indicating that every year in the range, inclusive, is a copyrightable year that could otherwise be listed individually.