1eba086706
PR libquadmath/65757 * quadmath-imp.h (math_opt_barrier, math_force_eval, math_narrow_eval, math_check_force_underflow, math_check_force_underflow_nonneg): Define. * math/ceilq.c: Backport changes from upstream glibc between 2012-11-01 and 2017-07-13. * math/remquoq.c: Likewise. * math/expq.c: Likewise. * math/llroundq.c: Likewise. * math/logq.c: Likewise. * math/atanq.c: Likewise. * math/nearbyintq.c: Likewise. * math/scalblnq.c: Likewise. * math/finiteq.c: Likewise. * math/atanhq.c: Likewise. * math/expm1q.c: Likewise. * math/sinhq.c: Likewise. * math/log10q.c: Likewise. * math/rintq.c: Likewise. * math/roundq.c: Likewise. * math/fmaq.c: Likewise. * math/erfq.c: Likewise. * math/log2q.c: Likewise. * math/lroundq.c: Likewise. * math/j1q.c: Likewise. * math/scalbnq.c: Likewise. * math/truncq.c: Likewise. * math/frexpq.c: Likewise. * math/sincosq.c: Likewise. * math/tanhq.c: Likewise. * math/asinq.c: Likewise. * math/coshq.c: Likewise. * math/j0q.c: Likewise. * math/asinhq.c: Likewise. * math/floorq.c: Likewise. * math/sinq_kernel.c: Likewise. * math/powq.c: Likewise. * math/hypotq.c: Likewise. * math/sincos_table.c: Likewise. * math/rem_pio2q.c: Likewise. * math/nextafterq.c: Likewise. * math/log1pq.c: Likewise. * math/sincosq_kernel.c: Likewise. * math/tanq.c: Likewise. * math/acosq.c: Likewise. * math/lrintq.c: Likewise. * math/llrintq.c: Likewise. From-SVN: r250343
58 lines
1.9 KiB
C
58 lines
1.9 KiB
C
/* scalblnq.c -- __float128 version of s_scalbn.c.
|
|
* Conversion to IEEE quad long double by Jakub Jelinek, jj@ultra.linux.cz.
|
|
*/
|
|
|
|
/*
|
|
* ====================================================
|
|
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
|
*
|
|
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
|
* Permission to use, copy, modify, and distribute this
|
|
* software is freely granted, provided that this notice
|
|
* is preserved.
|
|
* ====================================================
|
|
*/
|
|
|
|
/*
|
|
* scalblnq (_float128 x, long int n)
|
|
* scalblnq(x,n) returns x* 2**n computed by exponent
|
|
* manipulation rather than by actually performing an
|
|
* exponentiation or a multiplication.
|
|
*/
|
|
|
|
#include "quadmath-imp.h"
|
|
|
|
static const __float128
|
|
two114 = 2.0769187434139310514121985316880384E+34Q, /* 0x4071000000000000, 0 */
|
|
twom114 = 4.8148248609680896326399448564623183E-35Q, /* 0x3F8D000000000000, 0 */
|
|
huge = 1.0E+4900Q,
|
|
tiny = 1.0E-4900Q;
|
|
|
|
__float128
|
|
scalblnq (__float128 x, long int n)
|
|
{
|
|
int64_t k,hx,lx;
|
|
GET_FLT128_WORDS64(hx,lx,x);
|
|
k = (hx>>48)&0x7fff; /* extract exponent */
|
|
if (k==0) { /* 0 or subnormal x */
|
|
if ((lx|(hx&0x7fffffffffffffffULL))==0) return x; /* +-0 */
|
|
x *= two114;
|
|
GET_FLT128_MSW64(hx,x);
|
|
k = ((hx>>48)&0x7fff) - 114;
|
|
}
|
|
if (k==0x7fff) return x+x; /* NaN or Inf */
|
|
if (n< -50000) return tiny*copysignq(tiny,x); /*underflow*/
|
|
if (n> 50000 || k+n > 0x7ffe)
|
|
return huge*copysignq(huge,x); /* overflow */
|
|
/* Now k and n are bounded we know that k = k+n does not
|
|
overflow. */
|
|
k = k+n;
|
|
if (k > 0) /* normal result */
|
|
{SET_FLT128_MSW64(x,(hx&0x8000ffffffffffffULL)|(k<<48)); return x;}
|
|
if (k <= -114)
|
|
return tiny*copysignq(tiny,x); /*underflow*/
|
|
k += 114; /* subnormal result */
|
|
SET_FLT128_MSW64(x,(hx&0x8000ffffffffffffULL)|(k<<48));
|
|
return x*twom114;
|
|
}
|