f0286f9573
2011-10-11 Bill Schmidt <wschmidt@linux.vnet.ibm.com> * tree.h (copy_ref_info): Expose existing function. * tree-ssa-loop-ivopts.c (copy_ref_info): Move function to... * tree-ssa-address.c (copy_ref_info): ...here, and remove static token. From-SVN: r179818
6754 lines
178 KiB
C
6754 lines
178 KiB
C
/* Induction variable optimizations.
|
|
Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
|
|
Free Software Foundation, Inc.
|
|
|
|
This file is part of GCC.
|
|
|
|
GCC is free software; you can redistribute it and/or modify it
|
|
under the terms of the GNU General Public License as published by the
|
|
Free Software Foundation; either version 3, or (at your option) any
|
|
later version.
|
|
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GCC; see the file COPYING3. If not see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
/* This pass tries to find the optimal set of induction variables for the loop.
|
|
It optimizes just the basic linear induction variables (although adding
|
|
support for other types should not be too hard). It includes the
|
|
optimizations commonly known as strength reduction, induction variable
|
|
coalescing and induction variable elimination. It does it in the
|
|
following steps:
|
|
|
|
1) The interesting uses of induction variables are found. This includes
|
|
|
|
-- uses of induction variables in non-linear expressions
|
|
-- addresses of arrays
|
|
-- comparisons of induction variables
|
|
|
|
2) Candidates for the induction variables are found. This includes
|
|
|
|
-- old induction variables
|
|
-- the variables defined by expressions derived from the "interesting
|
|
uses" above
|
|
|
|
3) The optimal (w.r. to a cost function) set of variables is chosen. The
|
|
cost function assigns a cost to sets of induction variables and consists
|
|
of three parts:
|
|
|
|
-- The use costs. Each of the interesting uses chooses the best induction
|
|
variable in the set and adds its cost to the sum. The cost reflects
|
|
the time spent on modifying the induction variables value to be usable
|
|
for the given purpose (adding base and offset for arrays, etc.).
|
|
-- The variable costs. Each of the variables has a cost assigned that
|
|
reflects the costs associated with incrementing the value of the
|
|
variable. The original variables are somewhat preferred.
|
|
-- The set cost. Depending on the size of the set, extra cost may be
|
|
added to reflect register pressure.
|
|
|
|
All the costs are defined in a machine-specific way, using the target
|
|
hooks and machine descriptions to determine them.
|
|
|
|
4) The trees are transformed to use the new variables, the dead code is
|
|
removed.
|
|
|
|
All of this is done loop by loop. Doing it globally is theoretically
|
|
possible, it might give a better performance and it might enable us
|
|
to decide costs more precisely, but getting all the interactions right
|
|
would be complicated. */
|
|
|
|
#include "config.h"
|
|
#include "system.h"
|
|
#include "coretypes.h"
|
|
#include "tm.h"
|
|
#include "tree.h"
|
|
#include "tm_p.h"
|
|
#include "basic-block.h"
|
|
#include "output.h"
|
|
#include "tree-pretty-print.h"
|
|
#include "gimple-pretty-print.h"
|
|
#include "tree-flow.h"
|
|
#include "tree-dump.h"
|
|
#include "timevar.h"
|
|
#include "cfgloop.h"
|
|
#include "tree-pass.h"
|
|
#include "ggc.h"
|
|
#include "insn-config.h"
|
|
#include "recog.h"
|
|
#include "pointer-set.h"
|
|
#include "hashtab.h"
|
|
#include "tree-chrec.h"
|
|
#include "tree-scalar-evolution.h"
|
|
#include "cfgloop.h"
|
|
#include "params.h"
|
|
#include "langhooks.h"
|
|
#include "tree-affine.h"
|
|
#include "target.h"
|
|
#include "tree-inline.h"
|
|
#include "tree-ssa-propagate.h"
|
|
|
|
/* FIXME: add_cost and zero_cost defined in exprmed.h conflict with local uses.
|
|
*/
|
|
#include "expmed.h"
|
|
#undef add_cost
|
|
#undef zero_cost
|
|
|
|
/* FIXME: Expressions are expanded to RTL in this pass to determine the
|
|
cost of different addressing modes. This should be moved to a TBD
|
|
interface between the GIMPLE and RTL worlds. */
|
|
#include "expr.h"
|
|
|
|
/* The infinite cost. */
|
|
#define INFTY 10000000
|
|
|
|
#define AVG_LOOP_NITER(LOOP) 5
|
|
|
|
/* Returns the expected number of loop iterations for LOOP.
|
|
The average trip count is computed from profile data if it
|
|
exists. */
|
|
|
|
static inline HOST_WIDE_INT
|
|
avg_loop_niter (struct loop *loop)
|
|
{
|
|
HOST_WIDE_INT niter = max_stmt_executions_int (loop, false);
|
|
if (niter == -1)
|
|
return AVG_LOOP_NITER (loop);
|
|
|
|
return niter;
|
|
}
|
|
|
|
/* Representation of the induction variable. */
|
|
struct iv
|
|
{
|
|
tree base; /* Initial value of the iv. */
|
|
tree base_object; /* A memory object to that the induction variable points. */
|
|
tree step; /* Step of the iv (constant only). */
|
|
tree ssa_name; /* The ssa name with the value. */
|
|
bool biv_p; /* Is it a biv? */
|
|
bool have_use_for; /* Do we already have a use for it? */
|
|
unsigned use_id; /* The identifier in the use if it is the case. */
|
|
};
|
|
|
|
/* Per-ssa version information (induction variable descriptions, etc.). */
|
|
struct version_info
|
|
{
|
|
tree name; /* The ssa name. */
|
|
struct iv *iv; /* Induction variable description. */
|
|
bool has_nonlin_use; /* For a loop-level invariant, whether it is used in
|
|
an expression that is not an induction variable. */
|
|
bool preserve_biv; /* For the original biv, whether to preserve it. */
|
|
unsigned inv_id; /* Id of an invariant. */
|
|
};
|
|
|
|
/* Types of uses. */
|
|
enum use_type
|
|
{
|
|
USE_NONLINEAR_EXPR, /* Use in a nonlinear expression. */
|
|
USE_ADDRESS, /* Use in an address. */
|
|
USE_COMPARE /* Use is a compare. */
|
|
};
|
|
|
|
/* Cost of a computation. */
|
|
typedef struct
|
|
{
|
|
int cost; /* The runtime cost. */
|
|
unsigned complexity; /* The estimate of the complexity of the code for
|
|
the computation (in no concrete units --
|
|
complexity field should be larger for more
|
|
complex expressions and addressing modes). */
|
|
} comp_cost;
|
|
|
|
static const comp_cost zero_cost = {0, 0};
|
|
static const comp_cost infinite_cost = {INFTY, INFTY};
|
|
|
|
/* The candidate - cost pair. */
|
|
struct cost_pair
|
|
{
|
|
struct iv_cand *cand; /* The candidate. */
|
|
comp_cost cost; /* The cost. */
|
|
bitmap depends_on; /* The list of invariants that have to be
|
|
preserved. */
|
|
tree value; /* For final value elimination, the expression for
|
|
the final value of the iv. For iv elimination,
|
|
the new bound to compare with. */
|
|
enum tree_code comp; /* For iv elimination, the comparison. */
|
|
int inv_expr_id; /* Loop invariant expression id. */
|
|
};
|
|
|
|
/* Use. */
|
|
struct iv_use
|
|
{
|
|
unsigned id; /* The id of the use. */
|
|
enum use_type type; /* Type of the use. */
|
|
struct iv *iv; /* The induction variable it is based on. */
|
|
gimple stmt; /* Statement in that it occurs. */
|
|
tree *op_p; /* The place where it occurs. */
|
|
bitmap related_cands; /* The set of "related" iv candidates, plus the common
|
|
important ones. */
|
|
|
|
unsigned n_map_members; /* Number of candidates in the cost_map list. */
|
|
struct cost_pair *cost_map;
|
|
/* The costs wrto the iv candidates. */
|
|
|
|
struct iv_cand *selected;
|
|
/* The selected candidate. */
|
|
};
|
|
|
|
/* The position where the iv is computed. */
|
|
enum iv_position
|
|
{
|
|
IP_NORMAL, /* At the end, just before the exit condition. */
|
|
IP_END, /* At the end of the latch block. */
|
|
IP_BEFORE_USE, /* Immediately before a specific use. */
|
|
IP_AFTER_USE, /* Immediately after a specific use. */
|
|
IP_ORIGINAL /* The original biv. */
|
|
};
|
|
|
|
/* The induction variable candidate. */
|
|
struct iv_cand
|
|
{
|
|
unsigned id; /* The number of the candidate. */
|
|
bool important; /* Whether this is an "important" candidate, i.e. such
|
|
that it should be considered by all uses. */
|
|
ENUM_BITFIELD(iv_position) pos : 8; /* Where it is computed. */
|
|
gimple incremented_at;/* For original biv, the statement where it is
|
|
incremented. */
|
|
tree var_before; /* The variable used for it before increment. */
|
|
tree var_after; /* The variable used for it after increment. */
|
|
struct iv *iv; /* The value of the candidate. NULL for
|
|
"pseudocandidate" used to indicate the possibility
|
|
to replace the final value of an iv by direct
|
|
computation of the value. */
|
|
unsigned cost; /* Cost of the candidate. */
|
|
unsigned cost_step; /* Cost of the candidate's increment operation. */
|
|
struct iv_use *ainc_use; /* For IP_{BEFORE,AFTER}_USE candidates, the place
|
|
where it is incremented. */
|
|
bitmap depends_on; /* The list of invariants that are used in step of the
|
|
biv. */
|
|
};
|
|
|
|
/* Loop invariant expression hashtable entry. */
|
|
struct iv_inv_expr_ent
|
|
{
|
|
tree expr;
|
|
int id;
|
|
hashval_t hash;
|
|
};
|
|
|
|
/* The data used by the induction variable optimizations. */
|
|
|
|
typedef struct iv_use *iv_use_p;
|
|
DEF_VEC_P(iv_use_p);
|
|
DEF_VEC_ALLOC_P(iv_use_p,heap);
|
|
|
|
typedef struct iv_cand *iv_cand_p;
|
|
DEF_VEC_P(iv_cand_p);
|
|
DEF_VEC_ALLOC_P(iv_cand_p,heap);
|
|
|
|
struct ivopts_data
|
|
{
|
|
/* The currently optimized loop. */
|
|
struct loop *current_loop;
|
|
|
|
/* Numbers of iterations for all exits of the current loop. */
|
|
struct pointer_map_t *niters;
|
|
|
|
/* Number of registers used in it. */
|
|
unsigned regs_used;
|
|
|
|
/* The size of version_info array allocated. */
|
|
unsigned version_info_size;
|
|
|
|
/* The array of information for the ssa names. */
|
|
struct version_info *version_info;
|
|
|
|
/* The hashtable of loop invariant expressions created
|
|
by ivopt. */
|
|
htab_t inv_expr_tab;
|
|
|
|
/* Loop invariant expression id. */
|
|
int inv_expr_id;
|
|
|
|
/* The bitmap of indices in version_info whose value was changed. */
|
|
bitmap relevant;
|
|
|
|
/* The uses of induction variables. */
|
|
VEC(iv_use_p,heap) *iv_uses;
|
|
|
|
/* The candidates. */
|
|
VEC(iv_cand_p,heap) *iv_candidates;
|
|
|
|
/* A bitmap of important candidates. */
|
|
bitmap important_candidates;
|
|
|
|
/* The maximum invariant id. */
|
|
unsigned max_inv_id;
|
|
|
|
/* Whether to consider just related and important candidates when replacing a
|
|
use. */
|
|
bool consider_all_candidates;
|
|
|
|
/* Are we optimizing for speed? */
|
|
bool speed;
|
|
|
|
/* Whether the loop body includes any function calls. */
|
|
bool body_includes_call;
|
|
|
|
/* Whether the loop body can only be exited via single exit. */
|
|
bool loop_single_exit_p;
|
|
};
|
|
|
|
/* An assignment of iv candidates to uses. */
|
|
|
|
struct iv_ca
|
|
{
|
|
/* The number of uses covered by the assignment. */
|
|
unsigned upto;
|
|
|
|
/* Number of uses that cannot be expressed by the candidates in the set. */
|
|
unsigned bad_uses;
|
|
|
|
/* Candidate assigned to a use, together with the related costs. */
|
|
struct cost_pair **cand_for_use;
|
|
|
|
/* Number of times each candidate is used. */
|
|
unsigned *n_cand_uses;
|
|
|
|
/* The candidates used. */
|
|
bitmap cands;
|
|
|
|
/* The number of candidates in the set. */
|
|
unsigned n_cands;
|
|
|
|
/* Total number of registers needed. */
|
|
unsigned n_regs;
|
|
|
|
/* Total cost of expressing uses. */
|
|
comp_cost cand_use_cost;
|
|
|
|
/* Total cost of candidates. */
|
|
unsigned cand_cost;
|
|
|
|
/* Number of times each invariant is used. */
|
|
unsigned *n_invariant_uses;
|
|
|
|
/* The array holding the number of uses of each loop
|
|
invariant expressions created by ivopt. */
|
|
unsigned *used_inv_expr;
|
|
|
|
/* The number of created loop invariants. */
|
|
unsigned num_used_inv_expr;
|
|
|
|
/* Total cost of the assignment. */
|
|
comp_cost cost;
|
|
};
|
|
|
|
/* Difference of two iv candidate assignments. */
|
|
|
|
struct iv_ca_delta
|
|
{
|
|
/* Changed use. */
|
|
struct iv_use *use;
|
|
|
|
/* An old assignment (for rollback purposes). */
|
|
struct cost_pair *old_cp;
|
|
|
|
/* A new assignment. */
|
|
struct cost_pair *new_cp;
|
|
|
|
/* Next change in the list. */
|
|
struct iv_ca_delta *next_change;
|
|
};
|
|
|
|
/* Bound on number of candidates below that all candidates are considered. */
|
|
|
|
#define CONSIDER_ALL_CANDIDATES_BOUND \
|
|
((unsigned) PARAM_VALUE (PARAM_IV_CONSIDER_ALL_CANDIDATES_BOUND))
|
|
|
|
/* If there are more iv occurrences, we just give up (it is quite unlikely that
|
|
optimizing such a loop would help, and it would take ages). */
|
|
|
|
#define MAX_CONSIDERED_USES \
|
|
((unsigned) PARAM_VALUE (PARAM_IV_MAX_CONSIDERED_USES))
|
|
|
|
/* If there are at most this number of ivs in the set, try removing unnecessary
|
|
ivs from the set always. */
|
|
|
|
#define ALWAYS_PRUNE_CAND_SET_BOUND \
|
|
((unsigned) PARAM_VALUE (PARAM_IV_ALWAYS_PRUNE_CAND_SET_BOUND))
|
|
|
|
/* The list of trees for that the decl_rtl field must be reset is stored
|
|
here. */
|
|
|
|
static VEC(tree,heap) *decl_rtl_to_reset;
|
|
|
|
static comp_cost force_expr_to_var_cost (tree, bool);
|
|
|
|
/* Number of uses recorded in DATA. */
|
|
|
|
static inline unsigned
|
|
n_iv_uses (struct ivopts_data *data)
|
|
{
|
|
return VEC_length (iv_use_p, data->iv_uses);
|
|
}
|
|
|
|
/* Ith use recorded in DATA. */
|
|
|
|
static inline struct iv_use *
|
|
iv_use (struct ivopts_data *data, unsigned i)
|
|
{
|
|
return VEC_index (iv_use_p, data->iv_uses, i);
|
|
}
|
|
|
|
/* Number of candidates recorded in DATA. */
|
|
|
|
static inline unsigned
|
|
n_iv_cands (struct ivopts_data *data)
|
|
{
|
|
return VEC_length (iv_cand_p, data->iv_candidates);
|
|
}
|
|
|
|
/* Ith candidate recorded in DATA. */
|
|
|
|
static inline struct iv_cand *
|
|
iv_cand (struct ivopts_data *data, unsigned i)
|
|
{
|
|
return VEC_index (iv_cand_p, data->iv_candidates, i);
|
|
}
|
|
|
|
/* The single loop exit if it dominates the latch, NULL otherwise. */
|
|
|
|
edge
|
|
single_dom_exit (struct loop *loop)
|
|
{
|
|
edge exit = single_exit (loop);
|
|
|
|
if (!exit)
|
|
return NULL;
|
|
|
|
if (!just_once_each_iteration_p (loop, exit->src))
|
|
return NULL;
|
|
|
|
return exit;
|
|
}
|
|
|
|
/* Dumps information about the induction variable IV to FILE. */
|
|
|
|
extern void dump_iv (FILE *, struct iv *);
|
|
void
|
|
dump_iv (FILE *file, struct iv *iv)
|
|
{
|
|
if (iv->ssa_name)
|
|
{
|
|
fprintf (file, "ssa name ");
|
|
print_generic_expr (file, iv->ssa_name, TDF_SLIM);
|
|
fprintf (file, "\n");
|
|
}
|
|
|
|
fprintf (file, " type ");
|
|
print_generic_expr (file, TREE_TYPE (iv->base), TDF_SLIM);
|
|
fprintf (file, "\n");
|
|
|
|
if (iv->step)
|
|
{
|
|
fprintf (file, " base ");
|
|
print_generic_expr (file, iv->base, TDF_SLIM);
|
|
fprintf (file, "\n");
|
|
|
|
fprintf (file, " step ");
|
|
print_generic_expr (file, iv->step, TDF_SLIM);
|
|
fprintf (file, "\n");
|
|
}
|
|
else
|
|
{
|
|
fprintf (file, " invariant ");
|
|
print_generic_expr (file, iv->base, TDF_SLIM);
|
|
fprintf (file, "\n");
|
|
}
|
|
|
|
if (iv->base_object)
|
|
{
|
|
fprintf (file, " base object ");
|
|
print_generic_expr (file, iv->base_object, TDF_SLIM);
|
|
fprintf (file, "\n");
|
|
}
|
|
|
|
if (iv->biv_p)
|
|
fprintf (file, " is a biv\n");
|
|
}
|
|
|
|
/* Dumps information about the USE to FILE. */
|
|
|
|
extern void dump_use (FILE *, struct iv_use *);
|
|
void
|
|
dump_use (FILE *file, struct iv_use *use)
|
|
{
|
|
fprintf (file, "use %d\n", use->id);
|
|
|
|
switch (use->type)
|
|
{
|
|
case USE_NONLINEAR_EXPR:
|
|
fprintf (file, " generic\n");
|
|
break;
|
|
|
|
case USE_ADDRESS:
|
|
fprintf (file, " address\n");
|
|
break;
|
|
|
|
case USE_COMPARE:
|
|
fprintf (file, " compare\n");
|
|
break;
|
|
|
|
default:
|
|
gcc_unreachable ();
|
|
}
|
|
|
|
fprintf (file, " in statement ");
|
|
print_gimple_stmt (file, use->stmt, 0, 0);
|
|
fprintf (file, "\n");
|
|
|
|
fprintf (file, " at position ");
|
|
if (use->op_p)
|
|
print_generic_expr (file, *use->op_p, TDF_SLIM);
|
|
fprintf (file, "\n");
|
|
|
|
dump_iv (file, use->iv);
|
|
|
|
if (use->related_cands)
|
|
{
|
|
fprintf (file, " related candidates ");
|
|
dump_bitmap (file, use->related_cands);
|
|
}
|
|
}
|
|
|
|
/* Dumps information about the uses to FILE. */
|
|
|
|
extern void dump_uses (FILE *, struct ivopts_data *);
|
|
void
|
|
dump_uses (FILE *file, struct ivopts_data *data)
|
|
{
|
|
unsigned i;
|
|
struct iv_use *use;
|
|
|
|
for (i = 0; i < n_iv_uses (data); i++)
|
|
{
|
|
use = iv_use (data, i);
|
|
|
|
dump_use (file, use);
|
|
fprintf (file, "\n");
|
|
}
|
|
}
|
|
|
|
/* Dumps information about induction variable candidate CAND to FILE. */
|
|
|
|
extern void dump_cand (FILE *, struct iv_cand *);
|
|
void
|
|
dump_cand (FILE *file, struct iv_cand *cand)
|
|
{
|
|
struct iv *iv = cand->iv;
|
|
|
|
fprintf (file, "candidate %d%s\n",
|
|
cand->id, cand->important ? " (important)" : "");
|
|
|
|
if (cand->depends_on)
|
|
{
|
|
fprintf (file, " depends on ");
|
|
dump_bitmap (file, cand->depends_on);
|
|
}
|
|
|
|
if (!iv)
|
|
{
|
|
fprintf (file, " final value replacement\n");
|
|
return;
|
|
}
|
|
|
|
if (cand->var_before)
|
|
{
|
|
fprintf (file, " var_before ");
|
|
print_generic_expr (file, cand->var_before, TDF_SLIM);
|
|
fprintf (file, "\n");
|
|
}
|
|
if (cand->var_after)
|
|
{
|
|
fprintf (file, " var_after ");
|
|
print_generic_expr (file, cand->var_after, TDF_SLIM);
|
|
fprintf (file, "\n");
|
|
}
|
|
|
|
switch (cand->pos)
|
|
{
|
|
case IP_NORMAL:
|
|
fprintf (file, " incremented before exit test\n");
|
|
break;
|
|
|
|
case IP_BEFORE_USE:
|
|
fprintf (file, " incremented before use %d\n", cand->ainc_use->id);
|
|
break;
|
|
|
|
case IP_AFTER_USE:
|
|
fprintf (file, " incremented after use %d\n", cand->ainc_use->id);
|
|
break;
|
|
|
|
case IP_END:
|
|
fprintf (file, " incremented at end\n");
|
|
break;
|
|
|
|
case IP_ORIGINAL:
|
|
fprintf (file, " original biv\n");
|
|
break;
|
|
}
|
|
|
|
dump_iv (file, iv);
|
|
}
|
|
|
|
/* Returns the info for ssa version VER. */
|
|
|
|
static inline struct version_info *
|
|
ver_info (struct ivopts_data *data, unsigned ver)
|
|
{
|
|
return data->version_info + ver;
|
|
}
|
|
|
|
/* Returns the info for ssa name NAME. */
|
|
|
|
static inline struct version_info *
|
|
name_info (struct ivopts_data *data, tree name)
|
|
{
|
|
return ver_info (data, SSA_NAME_VERSION (name));
|
|
}
|
|
|
|
/* Returns true if STMT is after the place where the IP_NORMAL ivs will be
|
|
emitted in LOOP. */
|
|
|
|
static bool
|
|
stmt_after_ip_normal_pos (struct loop *loop, gimple stmt)
|
|
{
|
|
basic_block bb = ip_normal_pos (loop), sbb = gimple_bb (stmt);
|
|
|
|
gcc_assert (bb);
|
|
|
|
if (sbb == loop->latch)
|
|
return true;
|
|
|
|
if (sbb != bb)
|
|
return false;
|
|
|
|
return stmt == last_stmt (bb);
|
|
}
|
|
|
|
/* Returns true if STMT if after the place where the original induction
|
|
variable CAND is incremented. If TRUE_IF_EQUAL is set, we return true
|
|
if the positions are identical. */
|
|
|
|
static bool
|
|
stmt_after_inc_pos (struct iv_cand *cand, gimple stmt, bool true_if_equal)
|
|
{
|
|
basic_block cand_bb = gimple_bb (cand->incremented_at);
|
|
basic_block stmt_bb = gimple_bb (stmt);
|
|
|
|
if (!dominated_by_p (CDI_DOMINATORS, stmt_bb, cand_bb))
|
|
return false;
|
|
|
|
if (stmt_bb != cand_bb)
|
|
return true;
|
|
|
|
if (true_if_equal
|
|
&& gimple_uid (stmt) == gimple_uid (cand->incremented_at))
|
|
return true;
|
|
return gimple_uid (stmt) > gimple_uid (cand->incremented_at);
|
|
}
|
|
|
|
/* Returns true if STMT if after the place where the induction variable
|
|
CAND is incremented in LOOP. */
|
|
|
|
static bool
|
|
stmt_after_increment (struct loop *loop, struct iv_cand *cand, gimple stmt)
|
|
{
|
|
switch (cand->pos)
|
|
{
|
|
case IP_END:
|
|
return false;
|
|
|
|
case IP_NORMAL:
|
|
return stmt_after_ip_normal_pos (loop, stmt);
|
|
|
|
case IP_ORIGINAL:
|
|
case IP_AFTER_USE:
|
|
return stmt_after_inc_pos (cand, stmt, false);
|
|
|
|
case IP_BEFORE_USE:
|
|
return stmt_after_inc_pos (cand, stmt, true);
|
|
|
|
default:
|
|
gcc_unreachable ();
|
|
}
|
|
}
|
|
|
|
/* Returns true if EXP is a ssa name that occurs in an abnormal phi node. */
|
|
|
|
static bool
|
|
abnormal_ssa_name_p (tree exp)
|
|
{
|
|
if (!exp)
|
|
return false;
|
|
|
|
if (TREE_CODE (exp) != SSA_NAME)
|
|
return false;
|
|
|
|
return SSA_NAME_OCCURS_IN_ABNORMAL_PHI (exp) != 0;
|
|
}
|
|
|
|
/* Returns false if BASE or INDEX contains a ssa name that occurs in an
|
|
abnormal phi node. Callback for for_each_index. */
|
|
|
|
static bool
|
|
idx_contains_abnormal_ssa_name_p (tree base, tree *index,
|
|
void *data ATTRIBUTE_UNUSED)
|
|
{
|
|
if (TREE_CODE (base) == ARRAY_REF || TREE_CODE (base) == ARRAY_RANGE_REF)
|
|
{
|
|
if (abnormal_ssa_name_p (TREE_OPERAND (base, 2)))
|
|
return false;
|
|
if (abnormal_ssa_name_p (TREE_OPERAND (base, 3)))
|
|
return false;
|
|
}
|
|
|
|
return !abnormal_ssa_name_p (*index);
|
|
}
|
|
|
|
/* Returns true if EXPR contains a ssa name that occurs in an
|
|
abnormal phi node. */
|
|
|
|
bool
|
|
contains_abnormal_ssa_name_p (tree expr)
|
|
{
|
|
enum tree_code code;
|
|
enum tree_code_class codeclass;
|
|
|
|
if (!expr)
|
|
return false;
|
|
|
|
code = TREE_CODE (expr);
|
|
codeclass = TREE_CODE_CLASS (code);
|
|
|
|
if (code == SSA_NAME)
|
|
return SSA_NAME_OCCURS_IN_ABNORMAL_PHI (expr) != 0;
|
|
|
|
if (code == INTEGER_CST
|
|
|| is_gimple_min_invariant (expr))
|
|
return false;
|
|
|
|
if (code == ADDR_EXPR)
|
|
return !for_each_index (&TREE_OPERAND (expr, 0),
|
|
idx_contains_abnormal_ssa_name_p,
|
|
NULL);
|
|
|
|
if (code == COND_EXPR)
|
|
return contains_abnormal_ssa_name_p (TREE_OPERAND (expr, 0))
|
|
|| contains_abnormal_ssa_name_p (TREE_OPERAND (expr, 1))
|
|
|| contains_abnormal_ssa_name_p (TREE_OPERAND (expr, 2));
|
|
|
|
switch (codeclass)
|
|
{
|
|
case tcc_binary:
|
|
case tcc_comparison:
|
|
if (contains_abnormal_ssa_name_p (TREE_OPERAND (expr, 1)))
|
|
return true;
|
|
|
|
/* Fallthru. */
|
|
case tcc_unary:
|
|
if (contains_abnormal_ssa_name_p (TREE_OPERAND (expr, 0)))
|
|
return true;
|
|
|
|
break;
|
|
|
|
default:
|
|
gcc_unreachable ();
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/* Returns the structure describing number of iterations determined from
|
|
EXIT of DATA->current_loop, or NULL if something goes wrong. */
|
|
|
|
static struct tree_niter_desc *
|
|
niter_for_exit (struct ivopts_data *data, edge exit)
|
|
{
|
|
struct tree_niter_desc *desc;
|
|
void **slot;
|
|
|
|
if (!data->niters)
|
|
{
|
|
data->niters = pointer_map_create ();
|
|
slot = NULL;
|
|
}
|
|
else
|
|
slot = pointer_map_contains (data->niters, exit);
|
|
|
|
if (!slot)
|
|
{
|
|
/* Try to determine number of iterations. We cannot safely work with ssa
|
|
names that appear in phi nodes on abnormal edges, so that we do not
|
|
create overlapping life ranges for them (PR 27283). */
|
|
desc = XNEW (struct tree_niter_desc);
|
|
if (!number_of_iterations_exit (data->current_loop,
|
|
exit, desc, true)
|
|
|| contains_abnormal_ssa_name_p (desc->niter))
|
|
{
|
|
XDELETE (desc);
|
|
desc = NULL;
|
|
}
|
|
slot = pointer_map_insert (data->niters, exit);
|
|
*slot = desc;
|
|
}
|
|
else
|
|
desc = (struct tree_niter_desc *) *slot;
|
|
|
|
return desc;
|
|
}
|
|
|
|
/* Returns the structure describing number of iterations determined from
|
|
single dominating exit of DATA->current_loop, or NULL if something
|
|
goes wrong. */
|
|
|
|
static struct tree_niter_desc *
|
|
niter_for_single_dom_exit (struct ivopts_data *data)
|
|
{
|
|
edge exit = single_dom_exit (data->current_loop);
|
|
|
|
if (!exit)
|
|
return NULL;
|
|
|
|
return niter_for_exit (data, exit);
|
|
}
|
|
|
|
/* Hash table equality function for expressions. */
|
|
|
|
static int
|
|
htab_inv_expr_eq (const void *ent1, const void *ent2)
|
|
{
|
|
const struct iv_inv_expr_ent *expr1 =
|
|
(const struct iv_inv_expr_ent *)ent1;
|
|
const struct iv_inv_expr_ent *expr2 =
|
|
(const struct iv_inv_expr_ent *)ent2;
|
|
|
|
return expr1->hash == expr2->hash
|
|
&& operand_equal_p (expr1->expr, expr2->expr, 0);
|
|
}
|
|
|
|
/* Hash function for loop invariant expressions. */
|
|
|
|
static hashval_t
|
|
htab_inv_expr_hash (const void *ent)
|
|
{
|
|
const struct iv_inv_expr_ent *expr =
|
|
(const struct iv_inv_expr_ent *)ent;
|
|
return expr->hash;
|
|
}
|
|
|
|
/* Initializes data structures used by the iv optimization pass, stored
|
|
in DATA. */
|
|
|
|
static void
|
|
tree_ssa_iv_optimize_init (struct ivopts_data *data)
|
|
{
|
|
data->version_info_size = 2 * num_ssa_names;
|
|
data->version_info = XCNEWVEC (struct version_info, data->version_info_size);
|
|
data->relevant = BITMAP_ALLOC (NULL);
|
|
data->important_candidates = BITMAP_ALLOC (NULL);
|
|
data->max_inv_id = 0;
|
|
data->niters = NULL;
|
|
data->iv_uses = VEC_alloc (iv_use_p, heap, 20);
|
|
data->iv_candidates = VEC_alloc (iv_cand_p, heap, 20);
|
|
data->inv_expr_tab = htab_create (10, htab_inv_expr_hash,
|
|
htab_inv_expr_eq, free);
|
|
data->inv_expr_id = 0;
|
|
decl_rtl_to_reset = VEC_alloc (tree, heap, 20);
|
|
}
|
|
|
|
/* Returns a memory object to that EXPR points. In case we are able to
|
|
determine that it does not point to any such object, NULL is returned. */
|
|
|
|
static tree
|
|
determine_base_object (tree expr)
|
|
{
|
|
enum tree_code code = TREE_CODE (expr);
|
|
tree base, obj;
|
|
|
|
/* If this is a pointer casted to any type, we need to determine
|
|
the base object for the pointer; so handle conversions before
|
|
throwing away non-pointer expressions. */
|
|
if (CONVERT_EXPR_P (expr))
|
|
return determine_base_object (TREE_OPERAND (expr, 0));
|
|
|
|
if (!POINTER_TYPE_P (TREE_TYPE (expr)))
|
|
return NULL_TREE;
|
|
|
|
switch (code)
|
|
{
|
|
case INTEGER_CST:
|
|
return NULL_TREE;
|
|
|
|
case ADDR_EXPR:
|
|
obj = TREE_OPERAND (expr, 0);
|
|
base = get_base_address (obj);
|
|
|
|
if (!base)
|
|
return expr;
|
|
|
|
if (TREE_CODE (base) == MEM_REF)
|
|
return determine_base_object (TREE_OPERAND (base, 0));
|
|
|
|
return fold_convert (ptr_type_node,
|
|
build_fold_addr_expr (base));
|
|
|
|
case POINTER_PLUS_EXPR:
|
|
return determine_base_object (TREE_OPERAND (expr, 0));
|
|
|
|
case PLUS_EXPR:
|
|
case MINUS_EXPR:
|
|
/* Pointer addition is done solely using POINTER_PLUS_EXPR. */
|
|
gcc_unreachable ();
|
|
|
|
default:
|
|
return fold_convert (ptr_type_node, expr);
|
|
}
|
|
}
|
|
|
|
/* Allocates an induction variable with given initial value BASE and step STEP
|
|
for loop LOOP. */
|
|
|
|
static struct iv *
|
|
alloc_iv (tree base, tree step)
|
|
{
|
|
struct iv *iv = XCNEW (struct iv);
|
|
gcc_assert (step != NULL_TREE);
|
|
|
|
iv->base = base;
|
|
iv->base_object = determine_base_object (base);
|
|
iv->step = step;
|
|
iv->biv_p = false;
|
|
iv->have_use_for = false;
|
|
iv->use_id = 0;
|
|
iv->ssa_name = NULL_TREE;
|
|
|
|
return iv;
|
|
}
|
|
|
|
/* Sets STEP and BASE for induction variable IV. */
|
|
|
|
static void
|
|
set_iv (struct ivopts_data *data, tree iv, tree base, tree step)
|
|
{
|
|
struct version_info *info = name_info (data, iv);
|
|
|
|
gcc_assert (!info->iv);
|
|
|
|
bitmap_set_bit (data->relevant, SSA_NAME_VERSION (iv));
|
|
info->iv = alloc_iv (base, step);
|
|
info->iv->ssa_name = iv;
|
|
}
|
|
|
|
/* Finds induction variable declaration for VAR. */
|
|
|
|
static struct iv *
|
|
get_iv (struct ivopts_data *data, tree var)
|
|
{
|
|
basic_block bb;
|
|
tree type = TREE_TYPE (var);
|
|
|
|
if (!POINTER_TYPE_P (type)
|
|
&& !INTEGRAL_TYPE_P (type))
|
|
return NULL;
|
|
|
|
if (!name_info (data, var)->iv)
|
|
{
|
|
bb = gimple_bb (SSA_NAME_DEF_STMT (var));
|
|
|
|
if (!bb
|
|
|| !flow_bb_inside_loop_p (data->current_loop, bb))
|
|
set_iv (data, var, var, build_int_cst (type, 0));
|
|
}
|
|
|
|
return name_info (data, var)->iv;
|
|
}
|
|
|
|
/* Determines the step of a biv defined in PHI. Returns NULL if PHI does
|
|
not define a simple affine biv with nonzero step. */
|
|
|
|
static tree
|
|
determine_biv_step (gimple phi)
|
|
{
|
|
struct loop *loop = gimple_bb (phi)->loop_father;
|
|
tree name = PHI_RESULT (phi);
|
|
affine_iv iv;
|
|
|
|
if (!is_gimple_reg (name))
|
|
return NULL_TREE;
|
|
|
|
if (!simple_iv (loop, loop, name, &iv, true))
|
|
return NULL_TREE;
|
|
|
|
return integer_zerop (iv.step) ? NULL_TREE : iv.step;
|
|
}
|
|
|
|
/* Finds basic ivs. */
|
|
|
|
static bool
|
|
find_bivs (struct ivopts_data *data)
|
|
{
|
|
gimple phi;
|
|
tree step, type, base;
|
|
bool found = false;
|
|
struct loop *loop = data->current_loop;
|
|
gimple_stmt_iterator psi;
|
|
|
|
for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
|
|
{
|
|
phi = gsi_stmt (psi);
|
|
|
|
if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (PHI_RESULT (phi)))
|
|
continue;
|
|
|
|
step = determine_biv_step (phi);
|
|
if (!step)
|
|
continue;
|
|
|
|
base = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
|
|
base = expand_simple_operations (base);
|
|
if (contains_abnormal_ssa_name_p (base)
|
|
|| contains_abnormal_ssa_name_p (step))
|
|
continue;
|
|
|
|
type = TREE_TYPE (PHI_RESULT (phi));
|
|
base = fold_convert (type, base);
|
|
if (step)
|
|
{
|
|
if (POINTER_TYPE_P (type))
|
|
step = convert_to_ptrofftype (step);
|
|
else
|
|
step = fold_convert (type, step);
|
|
}
|
|
|
|
set_iv (data, PHI_RESULT (phi), base, step);
|
|
found = true;
|
|
}
|
|
|
|
return found;
|
|
}
|
|
|
|
/* Marks basic ivs. */
|
|
|
|
static void
|
|
mark_bivs (struct ivopts_data *data)
|
|
{
|
|
gimple phi;
|
|
tree var;
|
|
struct iv *iv, *incr_iv;
|
|
struct loop *loop = data->current_loop;
|
|
basic_block incr_bb;
|
|
gimple_stmt_iterator psi;
|
|
|
|
for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
|
|
{
|
|
phi = gsi_stmt (psi);
|
|
|
|
iv = get_iv (data, PHI_RESULT (phi));
|
|
if (!iv)
|
|
continue;
|
|
|
|
var = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop));
|
|
incr_iv = get_iv (data, var);
|
|
if (!incr_iv)
|
|
continue;
|
|
|
|
/* If the increment is in the subloop, ignore it. */
|
|
incr_bb = gimple_bb (SSA_NAME_DEF_STMT (var));
|
|
if (incr_bb->loop_father != data->current_loop
|
|
|| (incr_bb->flags & BB_IRREDUCIBLE_LOOP))
|
|
continue;
|
|
|
|
iv->biv_p = true;
|
|
incr_iv->biv_p = true;
|
|
}
|
|
}
|
|
|
|
/* Checks whether STMT defines a linear induction variable and stores its
|
|
parameters to IV. */
|
|
|
|
static bool
|
|
find_givs_in_stmt_scev (struct ivopts_data *data, gimple stmt, affine_iv *iv)
|
|
{
|
|
tree lhs;
|
|
struct loop *loop = data->current_loop;
|
|
|
|
iv->base = NULL_TREE;
|
|
iv->step = NULL_TREE;
|
|
|
|
if (gimple_code (stmt) != GIMPLE_ASSIGN)
|
|
return false;
|
|
|
|
lhs = gimple_assign_lhs (stmt);
|
|
if (TREE_CODE (lhs) != SSA_NAME)
|
|
return false;
|
|
|
|
if (!simple_iv (loop, loop_containing_stmt (stmt), lhs, iv, true))
|
|
return false;
|
|
iv->base = expand_simple_operations (iv->base);
|
|
|
|
if (contains_abnormal_ssa_name_p (iv->base)
|
|
|| contains_abnormal_ssa_name_p (iv->step))
|
|
return false;
|
|
|
|
/* If STMT could throw, then do not consider STMT as defining a GIV.
|
|
While this will suppress optimizations, we can not safely delete this
|
|
GIV and associated statements, even if it appears it is not used. */
|
|
if (stmt_could_throw_p (stmt))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Finds general ivs in statement STMT. */
|
|
|
|
static void
|
|
find_givs_in_stmt (struct ivopts_data *data, gimple stmt)
|
|
{
|
|
affine_iv iv;
|
|
|
|
if (!find_givs_in_stmt_scev (data, stmt, &iv))
|
|
return;
|
|
|
|
set_iv (data, gimple_assign_lhs (stmt), iv.base, iv.step);
|
|
}
|
|
|
|
/* Finds general ivs in basic block BB. */
|
|
|
|
static void
|
|
find_givs_in_bb (struct ivopts_data *data, basic_block bb)
|
|
{
|
|
gimple_stmt_iterator bsi;
|
|
|
|
for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
|
|
find_givs_in_stmt (data, gsi_stmt (bsi));
|
|
}
|
|
|
|
/* Finds general ivs. */
|
|
|
|
static void
|
|
find_givs (struct ivopts_data *data)
|
|
{
|
|
struct loop *loop = data->current_loop;
|
|
basic_block *body = get_loop_body_in_dom_order (loop);
|
|
unsigned i;
|
|
|
|
for (i = 0; i < loop->num_nodes; i++)
|
|
find_givs_in_bb (data, body[i]);
|
|
free (body);
|
|
}
|
|
|
|
/* For each ssa name defined in LOOP determines whether it is an induction
|
|
variable and if so, its initial value and step. */
|
|
|
|
static bool
|
|
find_induction_variables (struct ivopts_data *data)
|
|
{
|
|
unsigned i;
|
|
bitmap_iterator bi;
|
|
|
|
if (!find_bivs (data))
|
|
return false;
|
|
|
|
find_givs (data);
|
|
mark_bivs (data);
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
struct tree_niter_desc *niter = niter_for_single_dom_exit (data);
|
|
|
|
if (niter)
|
|
{
|
|
fprintf (dump_file, " number of iterations ");
|
|
print_generic_expr (dump_file, niter->niter, TDF_SLIM);
|
|
if (!integer_zerop (niter->may_be_zero))
|
|
{
|
|
fprintf (dump_file, "; zero if ");
|
|
print_generic_expr (dump_file, niter->may_be_zero, TDF_SLIM);
|
|
}
|
|
fprintf (dump_file, "\n\n");
|
|
};
|
|
|
|
fprintf (dump_file, "Induction variables:\n\n");
|
|
|
|
EXECUTE_IF_SET_IN_BITMAP (data->relevant, 0, i, bi)
|
|
{
|
|
if (ver_info (data, i)->iv)
|
|
dump_iv (dump_file, ver_info (data, i)->iv);
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Records a use of type USE_TYPE at *USE_P in STMT whose value is IV. */
|
|
|
|
static struct iv_use *
|
|
record_use (struct ivopts_data *data, tree *use_p, struct iv *iv,
|
|
gimple stmt, enum use_type use_type)
|
|
{
|
|
struct iv_use *use = XCNEW (struct iv_use);
|
|
|
|
use->id = n_iv_uses (data);
|
|
use->type = use_type;
|
|
use->iv = iv;
|
|
use->stmt = stmt;
|
|
use->op_p = use_p;
|
|
use->related_cands = BITMAP_ALLOC (NULL);
|
|
|
|
/* To avoid showing ssa name in the dumps, if it was not reset by the
|
|
caller. */
|
|
iv->ssa_name = NULL_TREE;
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
dump_use (dump_file, use);
|
|
|
|
VEC_safe_push (iv_use_p, heap, data->iv_uses, use);
|
|
|
|
return use;
|
|
}
|
|
|
|
/* Checks whether OP is a loop-level invariant and if so, records it.
|
|
NONLINEAR_USE is true if the invariant is used in a way we do not
|
|
handle specially. */
|
|
|
|
static void
|
|
record_invariant (struct ivopts_data *data, tree op, bool nonlinear_use)
|
|
{
|
|
basic_block bb;
|
|
struct version_info *info;
|
|
|
|
if (TREE_CODE (op) != SSA_NAME
|
|
|| !is_gimple_reg (op))
|
|
return;
|
|
|
|
bb = gimple_bb (SSA_NAME_DEF_STMT (op));
|
|
if (bb
|
|
&& flow_bb_inside_loop_p (data->current_loop, bb))
|
|
return;
|
|
|
|
info = name_info (data, op);
|
|
info->name = op;
|
|
info->has_nonlin_use |= nonlinear_use;
|
|
if (!info->inv_id)
|
|
info->inv_id = ++data->max_inv_id;
|
|
bitmap_set_bit (data->relevant, SSA_NAME_VERSION (op));
|
|
}
|
|
|
|
/* Checks whether the use OP is interesting and if so, records it. */
|
|
|
|
static struct iv_use *
|
|
find_interesting_uses_op (struct ivopts_data *data, tree op)
|
|
{
|
|
struct iv *iv;
|
|
struct iv *civ;
|
|
gimple stmt;
|
|
struct iv_use *use;
|
|
|
|
if (TREE_CODE (op) != SSA_NAME)
|
|
return NULL;
|
|
|
|
iv = get_iv (data, op);
|
|
if (!iv)
|
|
return NULL;
|
|
|
|
if (iv->have_use_for)
|
|
{
|
|
use = iv_use (data, iv->use_id);
|
|
|
|
gcc_assert (use->type == USE_NONLINEAR_EXPR);
|
|
return use;
|
|
}
|
|
|
|
if (integer_zerop (iv->step))
|
|
{
|
|
record_invariant (data, op, true);
|
|
return NULL;
|
|
}
|
|
iv->have_use_for = true;
|
|
|
|
civ = XNEW (struct iv);
|
|
*civ = *iv;
|
|
|
|
stmt = SSA_NAME_DEF_STMT (op);
|
|
gcc_assert (gimple_code (stmt) == GIMPLE_PHI
|
|
|| is_gimple_assign (stmt));
|
|
|
|
use = record_use (data, NULL, civ, stmt, USE_NONLINEAR_EXPR);
|
|
iv->use_id = use->id;
|
|
|
|
return use;
|
|
}
|
|
|
|
/* Given a condition in statement STMT, checks whether it is a compare
|
|
of an induction variable and an invariant. If this is the case,
|
|
CONTROL_VAR is set to location of the iv, BOUND to the location of
|
|
the invariant, IV_VAR and IV_BOUND are set to the corresponding
|
|
induction variable descriptions, and true is returned. If this is not
|
|
the case, CONTROL_VAR and BOUND are set to the arguments of the
|
|
condition and false is returned. */
|
|
|
|
static bool
|
|
extract_cond_operands (struct ivopts_data *data, gimple stmt,
|
|
tree **control_var, tree **bound,
|
|
struct iv **iv_var, struct iv **iv_bound)
|
|
{
|
|
/* The objects returned when COND has constant operands. */
|
|
static struct iv const_iv;
|
|
static tree zero;
|
|
tree *op0 = &zero, *op1 = &zero, *tmp_op;
|
|
struct iv *iv0 = &const_iv, *iv1 = &const_iv, *tmp_iv;
|
|
bool ret = false;
|
|
|
|
if (gimple_code (stmt) == GIMPLE_COND)
|
|
{
|
|
op0 = gimple_cond_lhs_ptr (stmt);
|
|
op1 = gimple_cond_rhs_ptr (stmt);
|
|
}
|
|
else
|
|
{
|
|
op0 = gimple_assign_rhs1_ptr (stmt);
|
|
op1 = gimple_assign_rhs2_ptr (stmt);
|
|
}
|
|
|
|
zero = integer_zero_node;
|
|
const_iv.step = integer_zero_node;
|
|
|
|
if (TREE_CODE (*op0) == SSA_NAME)
|
|
iv0 = get_iv (data, *op0);
|
|
if (TREE_CODE (*op1) == SSA_NAME)
|
|
iv1 = get_iv (data, *op1);
|
|
|
|
/* Exactly one of the compared values must be an iv, and the other one must
|
|
be an invariant. */
|
|
if (!iv0 || !iv1)
|
|
goto end;
|
|
|
|
if (integer_zerop (iv0->step))
|
|
{
|
|
/* Control variable may be on the other side. */
|
|
tmp_op = op0; op0 = op1; op1 = tmp_op;
|
|
tmp_iv = iv0; iv0 = iv1; iv1 = tmp_iv;
|
|
}
|
|
ret = !integer_zerop (iv0->step) && integer_zerop (iv1->step);
|
|
|
|
end:
|
|
if (control_var)
|
|
*control_var = op0;;
|
|
if (iv_var)
|
|
*iv_var = iv0;;
|
|
if (bound)
|
|
*bound = op1;
|
|
if (iv_bound)
|
|
*iv_bound = iv1;
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Checks whether the condition in STMT is interesting and if so,
|
|
records it. */
|
|
|
|
static void
|
|
find_interesting_uses_cond (struct ivopts_data *data, gimple stmt)
|
|
{
|
|
tree *var_p, *bound_p;
|
|
struct iv *var_iv, *civ;
|
|
|
|
if (!extract_cond_operands (data, stmt, &var_p, &bound_p, &var_iv, NULL))
|
|
{
|
|
find_interesting_uses_op (data, *var_p);
|
|
find_interesting_uses_op (data, *bound_p);
|
|
return;
|
|
}
|
|
|
|
civ = XNEW (struct iv);
|
|
*civ = *var_iv;
|
|
record_use (data, NULL, civ, stmt, USE_COMPARE);
|
|
}
|
|
|
|
/* Returns true if expression EXPR is obviously invariant in LOOP,
|
|
i.e. if all its operands are defined outside of the LOOP. LOOP
|
|
should not be the function body. */
|
|
|
|
bool
|
|
expr_invariant_in_loop_p (struct loop *loop, tree expr)
|
|
{
|
|
basic_block def_bb;
|
|
unsigned i, len;
|
|
|
|
gcc_assert (loop_depth (loop) > 0);
|
|
|
|
if (is_gimple_min_invariant (expr))
|
|
return true;
|
|
|
|
if (TREE_CODE (expr) == SSA_NAME)
|
|
{
|
|
def_bb = gimple_bb (SSA_NAME_DEF_STMT (expr));
|
|
if (def_bb
|
|
&& flow_bb_inside_loop_p (loop, def_bb))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
if (!EXPR_P (expr))
|
|
return false;
|
|
|
|
len = TREE_OPERAND_LENGTH (expr);
|
|
for (i = 0; i < len; i++)
|
|
if (!expr_invariant_in_loop_p (loop, TREE_OPERAND (expr, i)))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Returns true if statement STMT is obviously invariant in LOOP,
|
|
i.e. if all its operands on the RHS are defined outside of the LOOP.
|
|
LOOP should not be the function body. */
|
|
|
|
bool
|
|
stmt_invariant_in_loop_p (struct loop *loop, gimple stmt)
|
|
{
|
|
unsigned i;
|
|
tree lhs;
|
|
|
|
gcc_assert (loop_depth (loop) > 0);
|
|
|
|
lhs = gimple_get_lhs (stmt);
|
|
for (i = 0; i < gimple_num_ops (stmt); i++)
|
|
{
|
|
tree op = gimple_op (stmt, i);
|
|
if (op != lhs && !expr_invariant_in_loop_p (loop, op))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Cumulates the steps of indices into DATA and replaces their values with the
|
|
initial ones. Returns false when the value of the index cannot be determined.
|
|
Callback for for_each_index. */
|
|
|
|
struct ifs_ivopts_data
|
|
{
|
|
struct ivopts_data *ivopts_data;
|
|
gimple stmt;
|
|
tree step;
|
|
};
|
|
|
|
static bool
|
|
idx_find_step (tree base, tree *idx, void *data)
|
|
{
|
|
struct ifs_ivopts_data *dta = (struct ifs_ivopts_data *) data;
|
|
struct iv *iv;
|
|
tree step, iv_base, iv_step, lbound, off;
|
|
struct loop *loop = dta->ivopts_data->current_loop;
|
|
|
|
/* If base is a component ref, require that the offset of the reference
|
|
be invariant. */
|
|
if (TREE_CODE (base) == COMPONENT_REF)
|
|
{
|
|
off = component_ref_field_offset (base);
|
|
return expr_invariant_in_loop_p (loop, off);
|
|
}
|
|
|
|
/* If base is array, first check whether we will be able to move the
|
|
reference out of the loop (in order to take its address in strength
|
|
reduction). In order for this to work we need both lower bound
|
|
and step to be loop invariants. */
|
|
if (TREE_CODE (base) == ARRAY_REF || TREE_CODE (base) == ARRAY_RANGE_REF)
|
|
{
|
|
/* Moreover, for a range, the size needs to be invariant as well. */
|
|
if (TREE_CODE (base) == ARRAY_RANGE_REF
|
|
&& !expr_invariant_in_loop_p (loop, TYPE_SIZE (TREE_TYPE (base))))
|
|
return false;
|
|
|
|
step = array_ref_element_size (base);
|
|
lbound = array_ref_low_bound (base);
|
|
|
|
if (!expr_invariant_in_loop_p (loop, step)
|
|
|| !expr_invariant_in_loop_p (loop, lbound))
|
|
return false;
|
|
}
|
|
|
|
if (TREE_CODE (*idx) != SSA_NAME)
|
|
return true;
|
|
|
|
iv = get_iv (dta->ivopts_data, *idx);
|
|
if (!iv)
|
|
return false;
|
|
|
|
/* XXX We produce for a base of *D42 with iv->base being &x[0]
|
|
*&x[0], which is not folded and does not trigger the
|
|
ARRAY_REF path below. */
|
|
*idx = iv->base;
|
|
|
|
if (integer_zerop (iv->step))
|
|
return true;
|
|
|
|
if (TREE_CODE (base) == ARRAY_REF || TREE_CODE (base) == ARRAY_RANGE_REF)
|
|
{
|
|
step = array_ref_element_size (base);
|
|
|
|
/* We only handle addresses whose step is an integer constant. */
|
|
if (TREE_CODE (step) != INTEGER_CST)
|
|
return false;
|
|
}
|
|
else
|
|
/* The step for pointer arithmetics already is 1 byte. */
|
|
step = size_one_node;
|
|
|
|
iv_base = iv->base;
|
|
iv_step = iv->step;
|
|
if (!convert_affine_scev (dta->ivopts_data->current_loop,
|
|
sizetype, &iv_base, &iv_step, dta->stmt,
|
|
false))
|
|
{
|
|
/* The index might wrap. */
|
|
return false;
|
|
}
|
|
|
|
step = fold_build2 (MULT_EXPR, sizetype, step, iv_step);
|
|
dta->step = fold_build2 (PLUS_EXPR, sizetype, dta->step, step);
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Records use in index IDX. Callback for for_each_index. Ivopts data
|
|
object is passed to it in DATA. */
|
|
|
|
static bool
|
|
idx_record_use (tree base, tree *idx,
|
|
void *vdata)
|
|
{
|
|
struct ivopts_data *data = (struct ivopts_data *) vdata;
|
|
find_interesting_uses_op (data, *idx);
|
|
if (TREE_CODE (base) == ARRAY_REF || TREE_CODE (base) == ARRAY_RANGE_REF)
|
|
{
|
|
find_interesting_uses_op (data, array_ref_element_size (base));
|
|
find_interesting_uses_op (data, array_ref_low_bound (base));
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/* If we can prove that TOP = cst * BOT for some constant cst,
|
|
store cst to MUL and return true. Otherwise return false.
|
|
The returned value is always sign-extended, regardless of the
|
|
signedness of TOP and BOT. */
|
|
|
|
static bool
|
|
constant_multiple_of (tree top, tree bot, double_int *mul)
|
|
{
|
|
tree mby;
|
|
enum tree_code code;
|
|
double_int res, p0, p1;
|
|
unsigned precision = TYPE_PRECISION (TREE_TYPE (top));
|
|
|
|
STRIP_NOPS (top);
|
|
STRIP_NOPS (bot);
|
|
|
|
if (operand_equal_p (top, bot, 0))
|
|
{
|
|
*mul = double_int_one;
|
|
return true;
|
|
}
|
|
|
|
code = TREE_CODE (top);
|
|
switch (code)
|
|
{
|
|
case MULT_EXPR:
|
|
mby = TREE_OPERAND (top, 1);
|
|
if (TREE_CODE (mby) != INTEGER_CST)
|
|
return false;
|
|
|
|
if (!constant_multiple_of (TREE_OPERAND (top, 0), bot, &res))
|
|
return false;
|
|
|
|
*mul = double_int_sext (double_int_mul (res, tree_to_double_int (mby)),
|
|
precision);
|
|
return true;
|
|
|
|
case PLUS_EXPR:
|
|
case MINUS_EXPR:
|
|
if (!constant_multiple_of (TREE_OPERAND (top, 0), bot, &p0)
|
|
|| !constant_multiple_of (TREE_OPERAND (top, 1), bot, &p1))
|
|
return false;
|
|
|
|
if (code == MINUS_EXPR)
|
|
p1 = double_int_neg (p1);
|
|
*mul = double_int_sext (double_int_add (p0, p1), precision);
|
|
return true;
|
|
|
|
case INTEGER_CST:
|
|
if (TREE_CODE (bot) != INTEGER_CST)
|
|
return false;
|
|
|
|
p0 = double_int_sext (tree_to_double_int (top), precision);
|
|
p1 = double_int_sext (tree_to_double_int (bot), precision);
|
|
if (double_int_zero_p (p1))
|
|
return false;
|
|
*mul = double_int_sext (double_int_sdivmod (p0, p1, FLOOR_DIV_EXPR, &res),
|
|
precision);
|
|
return double_int_zero_p (res);
|
|
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/* Returns true if memory reference REF with step STEP may be unaligned. */
|
|
|
|
static bool
|
|
may_be_unaligned_p (tree ref, tree step)
|
|
{
|
|
tree base;
|
|
tree base_type;
|
|
HOST_WIDE_INT bitsize;
|
|
HOST_WIDE_INT bitpos;
|
|
tree toffset;
|
|
enum machine_mode mode;
|
|
int unsignedp, volatilep;
|
|
unsigned base_align;
|
|
|
|
/* TARGET_MEM_REFs are translated directly to valid MEMs on the target,
|
|
thus they are not misaligned. */
|
|
if (TREE_CODE (ref) == TARGET_MEM_REF)
|
|
return false;
|
|
|
|
/* The test below is basically copy of what expr.c:normal_inner_ref
|
|
does to check whether the object must be loaded by parts when
|
|
STRICT_ALIGNMENT is true. */
|
|
base = get_inner_reference (ref, &bitsize, &bitpos, &toffset, &mode,
|
|
&unsignedp, &volatilep, true);
|
|
base_type = TREE_TYPE (base);
|
|
base_align = get_object_alignment (base);
|
|
base_align = MAX (base_align, TYPE_ALIGN (base_type));
|
|
|
|
if (mode != BLKmode)
|
|
{
|
|
unsigned mode_align = GET_MODE_ALIGNMENT (mode);
|
|
|
|
if (base_align < mode_align
|
|
|| (bitpos % mode_align) != 0
|
|
|| (bitpos % BITS_PER_UNIT) != 0)
|
|
return true;
|
|
|
|
if (toffset
|
|
&& (highest_pow2_factor (toffset) * BITS_PER_UNIT) < mode_align)
|
|
return true;
|
|
|
|
if ((highest_pow2_factor (step) * BITS_PER_UNIT) < mode_align)
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/* Return true if EXPR may be non-addressable. */
|
|
|
|
bool
|
|
may_be_nonaddressable_p (tree expr)
|
|
{
|
|
switch (TREE_CODE (expr))
|
|
{
|
|
case TARGET_MEM_REF:
|
|
/* TARGET_MEM_REFs are translated directly to valid MEMs on the
|
|
target, thus they are always addressable. */
|
|
return false;
|
|
|
|
case COMPONENT_REF:
|
|
return DECL_NONADDRESSABLE_P (TREE_OPERAND (expr, 1))
|
|
|| may_be_nonaddressable_p (TREE_OPERAND (expr, 0));
|
|
|
|
case VIEW_CONVERT_EXPR:
|
|
/* This kind of view-conversions may wrap non-addressable objects
|
|
and make them look addressable. After some processing the
|
|
non-addressability may be uncovered again, causing ADDR_EXPRs
|
|
of inappropriate objects to be built. */
|
|
if (is_gimple_reg (TREE_OPERAND (expr, 0))
|
|
|| !is_gimple_addressable (TREE_OPERAND (expr, 0)))
|
|
return true;
|
|
|
|
/* ... fall through ... */
|
|
|
|
case ARRAY_REF:
|
|
case ARRAY_RANGE_REF:
|
|
return may_be_nonaddressable_p (TREE_OPERAND (expr, 0));
|
|
|
|
CASE_CONVERT:
|
|
return true;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/* Finds addresses in *OP_P inside STMT. */
|
|
|
|
static void
|
|
find_interesting_uses_address (struct ivopts_data *data, gimple stmt, tree *op_p)
|
|
{
|
|
tree base = *op_p, step = size_zero_node;
|
|
struct iv *civ;
|
|
struct ifs_ivopts_data ifs_ivopts_data;
|
|
|
|
/* Do not play with volatile memory references. A bit too conservative,
|
|
perhaps, but safe. */
|
|
if (gimple_has_volatile_ops (stmt))
|
|
goto fail;
|
|
|
|
/* Ignore bitfields for now. Not really something terribly complicated
|
|
to handle. TODO. */
|
|
if (TREE_CODE (base) == BIT_FIELD_REF)
|
|
goto fail;
|
|
|
|
base = unshare_expr (base);
|
|
|
|
if (TREE_CODE (base) == TARGET_MEM_REF)
|
|
{
|
|
tree type = build_pointer_type (TREE_TYPE (base));
|
|
tree astep;
|
|
|
|
if (TMR_BASE (base)
|
|
&& TREE_CODE (TMR_BASE (base)) == SSA_NAME)
|
|
{
|
|
civ = get_iv (data, TMR_BASE (base));
|
|
if (!civ)
|
|
goto fail;
|
|
|
|
TMR_BASE (base) = civ->base;
|
|
step = civ->step;
|
|
}
|
|
if (TMR_INDEX2 (base)
|
|
&& TREE_CODE (TMR_INDEX2 (base)) == SSA_NAME)
|
|
{
|
|
civ = get_iv (data, TMR_INDEX2 (base));
|
|
if (!civ)
|
|
goto fail;
|
|
|
|
TMR_INDEX2 (base) = civ->base;
|
|
step = civ->step;
|
|
}
|
|
if (TMR_INDEX (base)
|
|
&& TREE_CODE (TMR_INDEX (base)) == SSA_NAME)
|
|
{
|
|
civ = get_iv (data, TMR_INDEX (base));
|
|
if (!civ)
|
|
goto fail;
|
|
|
|
TMR_INDEX (base) = civ->base;
|
|
astep = civ->step;
|
|
|
|
if (astep)
|
|
{
|
|
if (TMR_STEP (base))
|
|
astep = fold_build2 (MULT_EXPR, type, TMR_STEP (base), astep);
|
|
|
|
step = fold_build2 (PLUS_EXPR, type, step, astep);
|
|
}
|
|
}
|
|
|
|
if (integer_zerop (step))
|
|
goto fail;
|
|
base = tree_mem_ref_addr (type, base);
|
|
}
|
|
else
|
|
{
|
|
ifs_ivopts_data.ivopts_data = data;
|
|
ifs_ivopts_data.stmt = stmt;
|
|
ifs_ivopts_data.step = size_zero_node;
|
|
if (!for_each_index (&base, idx_find_step, &ifs_ivopts_data)
|
|
|| integer_zerop (ifs_ivopts_data.step))
|
|
goto fail;
|
|
step = ifs_ivopts_data.step;
|
|
|
|
/* Check that the base expression is addressable. This needs
|
|
to be done after substituting bases of IVs into it. */
|
|
if (may_be_nonaddressable_p (base))
|
|
goto fail;
|
|
|
|
/* Moreover, on strict alignment platforms, check that it is
|
|
sufficiently aligned. */
|
|
if (STRICT_ALIGNMENT && may_be_unaligned_p (base, step))
|
|
goto fail;
|
|
|
|
base = build_fold_addr_expr (base);
|
|
|
|
/* Substituting bases of IVs into the base expression might
|
|
have caused folding opportunities. */
|
|
if (TREE_CODE (base) == ADDR_EXPR)
|
|
{
|
|
tree *ref = &TREE_OPERAND (base, 0);
|
|
while (handled_component_p (*ref))
|
|
ref = &TREE_OPERAND (*ref, 0);
|
|
if (TREE_CODE (*ref) == MEM_REF)
|
|
{
|
|
tree tem = fold_binary (MEM_REF, TREE_TYPE (*ref),
|
|
TREE_OPERAND (*ref, 0),
|
|
TREE_OPERAND (*ref, 1));
|
|
if (tem)
|
|
*ref = tem;
|
|
}
|
|
}
|
|
}
|
|
|
|
civ = alloc_iv (base, step);
|
|
record_use (data, op_p, civ, stmt, USE_ADDRESS);
|
|
return;
|
|
|
|
fail:
|
|
for_each_index (op_p, idx_record_use, data);
|
|
}
|
|
|
|
/* Finds and records invariants used in STMT. */
|
|
|
|
static void
|
|
find_invariants_stmt (struct ivopts_data *data, gimple stmt)
|
|
{
|
|
ssa_op_iter iter;
|
|
use_operand_p use_p;
|
|
tree op;
|
|
|
|
FOR_EACH_PHI_OR_STMT_USE (use_p, stmt, iter, SSA_OP_USE)
|
|
{
|
|
op = USE_FROM_PTR (use_p);
|
|
record_invariant (data, op, false);
|
|
}
|
|
}
|
|
|
|
/* Finds interesting uses of induction variables in the statement STMT. */
|
|
|
|
static void
|
|
find_interesting_uses_stmt (struct ivopts_data *data, gimple stmt)
|
|
{
|
|
struct iv *iv;
|
|
tree op, *lhs, *rhs;
|
|
ssa_op_iter iter;
|
|
use_operand_p use_p;
|
|
enum tree_code code;
|
|
|
|
find_invariants_stmt (data, stmt);
|
|
|
|
if (gimple_code (stmt) == GIMPLE_COND)
|
|
{
|
|
find_interesting_uses_cond (data, stmt);
|
|
return;
|
|
}
|
|
|
|
if (is_gimple_assign (stmt))
|
|
{
|
|
lhs = gimple_assign_lhs_ptr (stmt);
|
|
rhs = gimple_assign_rhs1_ptr (stmt);
|
|
|
|
if (TREE_CODE (*lhs) == SSA_NAME)
|
|
{
|
|
/* If the statement defines an induction variable, the uses are not
|
|
interesting by themselves. */
|
|
|
|
iv = get_iv (data, *lhs);
|
|
|
|
if (iv && !integer_zerop (iv->step))
|
|
return;
|
|
}
|
|
|
|
code = gimple_assign_rhs_code (stmt);
|
|
if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS
|
|
&& (REFERENCE_CLASS_P (*rhs)
|
|
|| is_gimple_val (*rhs)))
|
|
{
|
|
if (REFERENCE_CLASS_P (*rhs))
|
|
find_interesting_uses_address (data, stmt, rhs);
|
|
else
|
|
find_interesting_uses_op (data, *rhs);
|
|
|
|
if (REFERENCE_CLASS_P (*lhs))
|
|
find_interesting_uses_address (data, stmt, lhs);
|
|
return;
|
|
}
|
|
else if (TREE_CODE_CLASS (code) == tcc_comparison)
|
|
{
|
|
find_interesting_uses_cond (data, stmt);
|
|
return;
|
|
}
|
|
|
|
/* TODO -- we should also handle address uses of type
|
|
|
|
memory = call (whatever);
|
|
|
|
and
|
|
|
|
call (memory). */
|
|
}
|
|
|
|
if (gimple_code (stmt) == GIMPLE_PHI
|
|
&& gimple_bb (stmt) == data->current_loop->header)
|
|
{
|
|
iv = get_iv (data, PHI_RESULT (stmt));
|
|
|
|
if (iv && !integer_zerop (iv->step))
|
|
return;
|
|
}
|
|
|
|
FOR_EACH_PHI_OR_STMT_USE (use_p, stmt, iter, SSA_OP_USE)
|
|
{
|
|
op = USE_FROM_PTR (use_p);
|
|
|
|
if (TREE_CODE (op) != SSA_NAME)
|
|
continue;
|
|
|
|
iv = get_iv (data, op);
|
|
if (!iv)
|
|
continue;
|
|
|
|
find_interesting_uses_op (data, op);
|
|
}
|
|
}
|
|
|
|
/* Finds interesting uses of induction variables outside of loops
|
|
on loop exit edge EXIT. */
|
|
|
|
static void
|
|
find_interesting_uses_outside (struct ivopts_data *data, edge exit)
|
|
{
|
|
gimple phi;
|
|
gimple_stmt_iterator psi;
|
|
tree def;
|
|
|
|
for (psi = gsi_start_phis (exit->dest); !gsi_end_p (psi); gsi_next (&psi))
|
|
{
|
|
phi = gsi_stmt (psi);
|
|
def = PHI_ARG_DEF_FROM_EDGE (phi, exit);
|
|
if (is_gimple_reg (def))
|
|
find_interesting_uses_op (data, def);
|
|
}
|
|
}
|
|
|
|
/* Finds uses of the induction variables that are interesting. */
|
|
|
|
static void
|
|
find_interesting_uses (struct ivopts_data *data)
|
|
{
|
|
basic_block bb;
|
|
gimple_stmt_iterator bsi;
|
|
basic_block *body = get_loop_body (data->current_loop);
|
|
unsigned i;
|
|
struct version_info *info;
|
|
edge e;
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file, "Uses:\n\n");
|
|
|
|
for (i = 0; i < data->current_loop->num_nodes; i++)
|
|
{
|
|
edge_iterator ei;
|
|
bb = body[i];
|
|
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
|
if (e->dest != EXIT_BLOCK_PTR
|
|
&& !flow_bb_inside_loop_p (data->current_loop, e->dest))
|
|
find_interesting_uses_outside (data, e);
|
|
|
|
for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi); gsi_next (&bsi))
|
|
find_interesting_uses_stmt (data, gsi_stmt (bsi));
|
|
for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
|
|
if (!is_gimple_debug (gsi_stmt (bsi)))
|
|
find_interesting_uses_stmt (data, gsi_stmt (bsi));
|
|
}
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
bitmap_iterator bi;
|
|
|
|
fprintf (dump_file, "\n");
|
|
|
|
EXECUTE_IF_SET_IN_BITMAP (data->relevant, 0, i, bi)
|
|
{
|
|
info = ver_info (data, i);
|
|
if (info->inv_id)
|
|
{
|
|
fprintf (dump_file, " ");
|
|
print_generic_expr (dump_file, info->name, TDF_SLIM);
|
|
fprintf (dump_file, " is invariant (%d)%s\n",
|
|
info->inv_id, info->has_nonlin_use ? "" : ", eliminable");
|
|
}
|
|
}
|
|
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
|
|
free (body);
|
|
}
|
|
|
|
/* Strips constant offsets from EXPR and stores them to OFFSET. If INSIDE_ADDR
|
|
is true, assume we are inside an address. If TOP_COMPREF is true, assume
|
|
we are at the top-level of the processed address. */
|
|
|
|
static tree
|
|
strip_offset_1 (tree expr, bool inside_addr, bool top_compref,
|
|
unsigned HOST_WIDE_INT *offset)
|
|
{
|
|
tree op0 = NULL_TREE, op1 = NULL_TREE, tmp, step;
|
|
enum tree_code code;
|
|
tree type, orig_type = TREE_TYPE (expr);
|
|
unsigned HOST_WIDE_INT off0, off1, st;
|
|
tree orig_expr = expr;
|
|
|
|
STRIP_NOPS (expr);
|
|
|
|
type = TREE_TYPE (expr);
|
|
code = TREE_CODE (expr);
|
|
*offset = 0;
|
|
|
|
switch (code)
|
|
{
|
|
case INTEGER_CST:
|
|
if (!cst_and_fits_in_hwi (expr)
|
|
|| integer_zerop (expr))
|
|
return orig_expr;
|
|
|
|
*offset = int_cst_value (expr);
|
|
return build_int_cst (orig_type, 0);
|
|
|
|
case POINTER_PLUS_EXPR:
|
|
case PLUS_EXPR:
|
|
case MINUS_EXPR:
|
|
op0 = TREE_OPERAND (expr, 0);
|
|
op1 = TREE_OPERAND (expr, 1);
|
|
|
|
op0 = strip_offset_1 (op0, false, false, &off0);
|
|
op1 = strip_offset_1 (op1, false, false, &off1);
|
|
|
|
*offset = (code == MINUS_EXPR ? off0 - off1 : off0 + off1);
|
|
if (op0 == TREE_OPERAND (expr, 0)
|
|
&& op1 == TREE_OPERAND (expr, 1))
|
|
return orig_expr;
|
|
|
|
if (integer_zerop (op1))
|
|
expr = op0;
|
|
else if (integer_zerop (op0))
|
|
{
|
|
if (code == MINUS_EXPR)
|
|
expr = fold_build1 (NEGATE_EXPR, type, op1);
|
|
else
|
|
expr = op1;
|
|
}
|
|
else
|
|
expr = fold_build2 (code, type, op0, op1);
|
|
|
|
return fold_convert (orig_type, expr);
|
|
|
|
case MULT_EXPR:
|
|
op1 = TREE_OPERAND (expr, 1);
|
|
if (!cst_and_fits_in_hwi (op1))
|
|
return orig_expr;
|
|
|
|
op0 = TREE_OPERAND (expr, 0);
|
|
op0 = strip_offset_1 (op0, false, false, &off0);
|
|
if (op0 == TREE_OPERAND (expr, 0))
|
|
return orig_expr;
|
|
|
|
*offset = off0 * int_cst_value (op1);
|
|
if (integer_zerop (op0))
|
|
expr = op0;
|
|
else
|
|
expr = fold_build2 (MULT_EXPR, type, op0, op1);
|
|
|
|
return fold_convert (orig_type, expr);
|
|
|
|
case ARRAY_REF:
|
|
case ARRAY_RANGE_REF:
|
|
if (!inside_addr)
|
|
return orig_expr;
|
|
|
|
step = array_ref_element_size (expr);
|
|
if (!cst_and_fits_in_hwi (step))
|
|
break;
|
|
|
|
st = int_cst_value (step);
|
|
op1 = TREE_OPERAND (expr, 1);
|
|
op1 = strip_offset_1 (op1, false, false, &off1);
|
|
*offset = off1 * st;
|
|
|
|
if (top_compref
|
|
&& integer_zerop (op1))
|
|
{
|
|
/* Strip the component reference completely. */
|
|
op0 = TREE_OPERAND (expr, 0);
|
|
op0 = strip_offset_1 (op0, inside_addr, top_compref, &off0);
|
|
*offset += off0;
|
|
return op0;
|
|
}
|
|
break;
|
|
|
|
case COMPONENT_REF:
|
|
if (!inside_addr)
|
|
return orig_expr;
|
|
|
|
tmp = component_ref_field_offset (expr);
|
|
if (top_compref
|
|
&& cst_and_fits_in_hwi (tmp))
|
|
{
|
|
/* Strip the component reference completely. */
|
|
op0 = TREE_OPERAND (expr, 0);
|
|
op0 = strip_offset_1 (op0, inside_addr, top_compref, &off0);
|
|
*offset = off0 + int_cst_value (tmp);
|
|
return op0;
|
|
}
|
|
break;
|
|
|
|
case ADDR_EXPR:
|
|
op0 = TREE_OPERAND (expr, 0);
|
|
op0 = strip_offset_1 (op0, true, true, &off0);
|
|
*offset += off0;
|
|
|
|
if (op0 == TREE_OPERAND (expr, 0))
|
|
return orig_expr;
|
|
|
|
expr = build_fold_addr_expr (op0);
|
|
return fold_convert (orig_type, expr);
|
|
|
|
case MEM_REF:
|
|
/* ??? Offset operand? */
|
|
inside_addr = false;
|
|
break;
|
|
|
|
default:
|
|
return orig_expr;
|
|
}
|
|
|
|
/* Default handling of expressions for that we want to recurse into
|
|
the first operand. */
|
|
op0 = TREE_OPERAND (expr, 0);
|
|
op0 = strip_offset_1 (op0, inside_addr, false, &off0);
|
|
*offset += off0;
|
|
|
|
if (op0 == TREE_OPERAND (expr, 0)
|
|
&& (!op1 || op1 == TREE_OPERAND (expr, 1)))
|
|
return orig_expr;
|
|
|
|
expr = copy_node (expr);
|
|
TREE_OPERAND (expr, 0) = op0;
|
|
if (op1)
|
|
TREE_OPERAND (expr, 1) = op1;
|
|
|
|
/* Inside address, we might strip the top level component references,
|
|
thus changing type of the expression. Handling of ADDR_EXPR
|
|
will fix that. */
|
|
expr = fold_convert (orig_type, expr);
|
|
|
|
return expr;
|
|
}
|
|
|
|
/* Strips constant offsets from EXPR and stores them to OFFSET. */
|
|
|
|
static tree
|
|
strip_offset (tree expr, unsigned HOST_WIDE_INT *offset)
|
|
{
|
|
return strip_offset_1 (expr, false, false, offset);
|
|
}
|
|
|
|
/* Returns variant of TYPE that can be used as base for different uses.
|
|
We return unsigned type with the same precision, which avoids problems
|
|
with overflows. */
|
|
|
|
static tree
|
|
generic_type_for (tree type)
|
|
{
|
|
if (POINTER_TYPE_P (type))
|
|
return unsigned_type_for (type);
|
|
|
|
if (TYPE_UNSIGNED (type))
|
|
return type;
|
|
|
|
return unsigned_type_for (type);
|
|
}
|
|
|
|
/* Records invariants in *EXPR_P. Callback for walk_tree. DATA contains
|
|
the bitmap to that we should store it. */
|
|
|
|
static struct ivopts_data *fd_ivopts_data;
|
|
static tree
|
|
find_depends (tree *expr_p, int *ws ATTRIBUTE_UNUSED, void *data)
|
|
{
|
|
bitmap *depends_on = (bitmap *) data;
|
|
struct version_info *info;
|
|
|
|
if (TREE_CODE (*expr_p) != SSA_NAME)
|
|
return NULL_TREE;
|
|
info = name_info (fd_ivopts_data, *expr_p);
|
|
|
|
if (!info->inv_id || info->has_nonlin_use)
|
|
return NULL_TREE;
|
|
|
|
if (!*depends_on)
|
|
*depends_on = BITMAP_ALLOC (NULL);
|
|
bitmap_set_bit (*depends_on, info->inv_id);
|
|
|
|
return NULL_TREE;
|
|
}
|
|
|
|
/* Adds a candidate BASE + STEP * i. Important field is set to IMPORTANT and
|
|
position to POS. If USE is not NULL, the candidate is set as related to
|
|
it. If both BASE and STEP are NULL, we add a pseudocandidate for the
|
|
replacement of the final value of the iv by a direct computation. */
|
|
|
|
static struct iv_cand *
|
|
add_candidate_1 (struct ivopts_data *data,
|
|
tree base, tree step, bool important, enum iv_position pos,
|
|
struct iv_use *use, gimple incremented_at)
|
|
{
|
|
unsigned i;
|
|
struct iv_cand *cand = NULL;
|
|
tree type, orig_type;
|
|
|
|
/* For non-original variables, make sure their values are computed in a type
|
|
that does not invoke undefined behavior on overflows (since in general,
|
|
we cannot prove that these induction variables are non-wrapping). */
|
|
if (pos != IP_ORIGINAL)
|
|
{
|
|
orig_type = TREE_TYPE (base);
|
|
type = generic_type_for (orig_type);
|
|
if (type != orig_type)
|
|
{
|
|
base = fold_convert (type, base);
|
|
step = fold_convert (type, step);
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < n_iv_cands (data); i++)
|
|
{
|
|
cand = iv_cand (data, i);
|
|
|
|
if (cand->pos != pos)
|
|
continue;
|
|
|
|
if (cand->incremented_at != incremented_at
|
|
|| ((pos == IP_AFTER_USE || pos == IP_BEFORE_USE)
|
|
&& cand->ainc_use != use))
|
|
continue;
|
|
|
|
if (!cand->iv)
|
|
{
|
|
if (!base && !step)
|
|
break;
|
|
|
|
continue;
|
|
}
|
|
|
|
if (!base && !step)
|
|
continue;
|
|
|
|
if (operand_equal_p (base, cand->iv->base, 0)
|
|
&& operand_equal_p (step, cand->iv->step, 0)
|
|
&& (TYPE_PRECISION (TREE_TYPE (base))
|
|
== TYPE_PRECISION (TREE_TYPE (cand->iv->base))))
|
|
break;
|
|
}
|
|
|
|
if (i == n_iv_cands (data))
|
|
{
|
|
cand = XCNEW (struct iv_cand);
|
|
cand->id = i;
|
|
|
|
if (!base && !step)
|
|
cand->iv = NULL;
|
|
else
|
|
cand->iv = alloc_iv (base, step);
|
|
|
|
cand->pos = pos;
|
|
if (pos != IP_ORIGINAL && cand->iv)
|
|
{
|
|
cand->var_before = create_tmp_var_raw (TREE_TYPE (base), "ivtmp");
|
|
cand->var_after = cand->var_before;
|
|
}
|
|
cand->important = important;
|
|
cand->incremented_at = incremented_at;
|
|
VEC_safe_push (iv_cand_p, heap, data->iv_candidates, cand);
|
|
|
|
if (step
|
|
&& TREE_CODE (step) != INTEGER_CST)
|
|
{
|
|
fd_ivopts_data = data;
|
|
walk_tree (&step, find_depends, &cand->depends_on, NULL);
|
|
}
|
|
|
|
if (pos == IP_AFTER_USE || pos == IP_BEFORE_USE)
|
|
cand->ainc_use = use;
|
|
else
|
|
cand->ainc_use = NULL;
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
dump_cand (dump_file, cand);
|
|
}
|
|
|
|
if (important && !cand->important)
|
|
{
|
|
cand->important = true;
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file, "Candidate %d is important\n", cand->id);
|
|
}
|
|
|
|
if (use)
|
|
{
|
|
bitmap_set_bit (use->related_cands, i);
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file, "Candidate %d is related to use %d\n",
|
|
cand->id, use->id);
|
|
}
|
|
|
|
return cand;
|
|
}
|
|
|
|
/* Returns true if incrementing the induction variable at the end of the LOOP
|
|
is allowed.
|
|
|
|
The purpose is to avoid splitting latch edge with a biv increment, thus
|
|
creating a jump, possibly confusing other optimization passes and leaving
|
|
less freedom to scheduler. So we allow IP_END_POS only if IP_NORMAL_POS
|
|
is not available (so we do not have a better alternative), or if the latch
|
|
edge is already nonempty. */
|
|
|
|
static bool
|
|
allow_ip_end_pos_p (struct loop *loop)
|
|
{
|
|
if (!ip_normal_pos (loop))
|
|
return true;
|
|
|
|
if (!empty_block_p (ip_end_pos (loop)))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/* If possible, adds autoincrement candidates BASE + STEP * i based on use USE.
|
|
Important field is set to IMPORTANT. */
|
|
|
|
static void
|
|
add_autoinc_candidates (struct ivopts_data *data, tree base, tree step,
|
|
bool important, struct iv_use *use)
|
|
{
|
|
basic_block use_bb = gimple_bb (use->stmt);
|
|
enum machine_mode mem_mode;
|
|
unsigned HOST_WIDE_INT cstepi;
|
|
|
|
/* If we insert the increment in any position other than the standard
|
|
ones, we must ensure that it is incremented once per iteration.
|
|
It must not be in an inner nested loop, or one side of an if
|
|
statement. */
|
|
if (use_bb->loop_father != data->current_loop
|
|
|| !dominated_by_p (CDI_DOMINATORS, data->current_loop->latch, use_bb)
|
|
|| stmt_could_throw_p (use->stmt)
|
|
|| !cst_and_fits_in_hwi (step))
|
|
return;
|
|
|
|
cstepi = int_cst_value (step);
|
|
|
|
mem_mode = TYPE_MODE (TREE_TYPE (*use->op_p));
|
|
if ((HAVE_PRE_INCREMENT && GET_MODE_SIZE (mem_mode) == cstepi)
|
|
|| (HAVE_PRE_DECREMENT && GET_MODE_SIZE (mem_mode) == -cstepi))
|
|
{
|
|
enum tree_code code = MINUS_EXPR;
|
|
tree new_base;
|
|
tree new_step = step;
|
|
|
|
if (POINTER_TYPE_P (TREE_TYPE (base)))
|
|
{
|
|
new_step = fold_build1 (NEGATE_EXPR, TREE_TYPE (step), step);
|
|
code = POINTER_PLUS_EXPR;
|
|
}
|
|
else
|
|
new_step = fold_convert (TREE_TYPE (base), new_step);
|
|
new_base = fold_build2 (code, TREE_TYPE (base), base, new_step);
|
|
add_candidate_1 (data, new_base, step, important, IP_BEFORE_USE, use,
|
|
use->stmt);
|
|
}
|
|
if ((HAVE_POST_INCREMENT && GET_MODE_SIZE (mem_mode) == cstepi)
|
|
|| (HAVE_POST_DECREMENT && GET_MODE_SIZE (mem_mode) == -cstepi))
|
|
{
|
|
add_candidate_1 (data, base, step, important, IP_AFTER_USE, use,
|
|
use->stmt);
|
|
}
|
|
}
|
|
|
|
/* Adds a candidate BASE + STEP * i. Important field is set to IMPORTANT and
|
|
position to POS. If USE is not NULL, the candidate is set as related to
|
|
it. The candidate computation is scheduled on all available positions. */
|
|
|
|
static void
|
|
add_candidate (struct ivopts_data *data,
|
|
tree base, tree step, bool important, struct iv_use *use)
|
|
{
|
|
if (ip_normal_pos (data->current_loop))
|
|
add_candidate_1 (data, base, step, important, IP_NORMAL, use, NULL);
|
|
if (ip_end_pos (data->current_loop)
|
|
&& allow_ip_end_pos_p (data->current_loop))
|
|
add_candidate_1 (data, base, step, important, IP_END, use, NULL);
|
|
|
|
if (use != NULL && use->type == USE_ADDRESS)
|
|
add_autoinc_candidates (data, base, step, important, use);
|
|
}
|
|
|
|
/* Add a standard "0 + 1 * iteration" iv candidate for a
|
|
type with SIZE bits. */
|
|
|
|
static void
|
|
add_standard_iv_candidates_for_size (struct ivopts_data *data,
|
|
unsigned int size)
|
|
{
|
|
tree type = lang_hooks.types.type_for_size (size, true);
|
|
add_candidate (data, build_int_cst (type, 0), build_int_cst (type, 1),
|
|
true, NULL);
|
|
}
|
|
|
|
/* Adds standard iv candidates. */
|
|
|
|
static void
|
|
add_standard_iv_candidates (struct ivopts_data *data)
|
|
{
|
|
add_standard_iv_candidates_for_size (data, INT_TYPE_SIZE);
|
|
|
|
/* The same for a double-integer type if it is still fast enough. */
|
|
if (BITS_PER_WORD >= INT_TYPE_SIZE * 2)
|
|
add_standard_iv_candidates_for_size (data, INT_TYPE_SIZE * 2);
|
|
}
|
|
|
|
|
|
/* Adds candidates bases on the old induction variable IV. */
|
|
|
|
static void
|
|
add_old_iv_candidates (struct ivopts_data *data, struct iv *iv)
|
|
{
|
|
gimple phi;
|
|
tree def;
|
|
struct iv_cand *cand;
|
|
|
|
add_candidate (data, iv->base, iv->step, true, NULL);
|
|
|
|
/* The same, but with initial value zero. */
|
|
if (POINTER_TYPE_P (TREE_TYPE (iv->base)))
|
|
add_candidate (data, size_int (0), iv->step, true, NULL);
|
|
else
|
|
add_candidate (data, build_int_cst (TREE_TYPE (iv->base), 0),
|
|
iv->step, true, NULL);
|
|
|
|
phi = SSA_NAME_DEF_STMT (iv->ssa_name);
|
|
if (gimple_code (phi) == GIMPLE_PHI)
|
|
{
|
|
/* Additionally record the possibility of leaving the original iv
|
|
untouched. */
|
|
def = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (data->current_loop));
|
|
cand = add_candidate_1 (data,
|
|
iv->base, iv->step, true, IP_ORIGINAL, NULL,
|
|
SSA_NAME_DEF_STMT (def));
|
|
cand->var_before = iv->ssa_name;
|
|
cand->var_after = def;
|
|
}
|
|
}
|
|
|
|
/* Adds candidates based on the old induction variables. */
|
|
|
|
static void
|
|
add_old_ivs_candidates (struct ivopts_data *data)
|
|
{
|
|
unsigned i;
|
|
struct iv *iv;
|
|
bitmap_iterator bi;
|
|
|
|
EXECUTE_IF_SET_IN_BITMAP (data->relevant, 0, i, bi)
|
|
{
|
|
iv = ver_info (data, i)->iv;
|
|
if (iv && iv->biv_p && !integer_zerop (iv->step))
|
|
add_old_iv_candidates (data, iv);
|
|
}
|
|
}
|
|
|
|
/* Adds candidates based on the value of the induction variable IV and USE. */
|
|
|
|
static void
|
|
add_iv_value_candidates (struct ivopts_data *data,
|
|
struct iv *iv, struct iv_use *use)
|
|
{
|
|
unsigned HOST_WIDE_INT offset;
|
|
tree base;
|
|
tree basetype;
|
|
|
|
add_candidate (data, iv->base, iv->step, false, use);
|
|
|
|
/* The same, but with initial value zero. Make such variable important,
|
|
since it is generic enough so that possibly many uses may be based
|
|
on it. */
|
|
basetype = TREE_TYPE (iv->base);
|
|
if (POINTER_TYPE_P (basetype))
|
|
basetype = sizetype;
|
|
add_candidate (data, build_int_cst (basetype, 0),
|
|
iv->step, true, use);
|
|
|
|
/* Third, try removing the constant offset. Make sure to even
|
|
add a candidate for &a[0] vs. (T *)&a. */
|
|
base = strip_offset (iv->base, &offset);
|
|
if (offset
|
|
|| base != iv->base)
|
|
add_candidate (data, base, iv->step, false, use);
|
|
}
|
|
|
|
/* Adds candidates based on the uses. */
|
|
|
|
static void
|
|
add_derived_ivs_candidates (struct ivopts_data *data)
|
|
{
|
|
unsigned i;
|
|
|
|
for (i = 0; i < n_iv_uses (data); i++)
|
|
{
|
|
struct iv_use *use = iv_use (data, i);
|
|
|
|
if (!use)
|
|
continue;
|
|
|
|
switch (use->type)
|
|
{
|
|
case USE_NONLINEAR_EXPR:
|
|
case USE_COMPARE:
|
|
case USE_ADDRESS:
|
|
/* Just add the ivs based on the value of the iv used here. */
|
|
add_iv_value_candidates (data, use->iv, use);
|
|
break;
|
|
|
|
default:
|
|
gcc_unreachable ();
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Record important candidates and add them to related_cands bitmaps
|
|
if needed. */
|
|
|
|
static void
|
|
record_important_candidates (struct ivopts_data *data)
|
|
{
|
|
unsigned i;
|
|
struct iv_use *use;
|
|
|
|
for (i = 0; i < n_iv_cands (data); i++)
|
|
{
|
|
struct iv_cand *cand = iv_cand (data, i);
|
|
|
|
if (cand->important)
|
|
bitmap_set_bit (data->important_candidates, i);
|
|
}
|
|
|
|
data->consider_all_candidates = (n_iv_cands (data)
|
|
<= CONSIDER_ALL_CANDIDATES_BOUND);
|
|
|
|
if (data->consider_all_candidates)
|
|
{
|
|
/* We will not need "related_cands" bitmaps in this case,
|
|
so release them to decrease peak memory consumption. */
|
|
for (i = 0; i < n_iv_uses (data); i++)
|
|
{
|
|
use = iv_use (data, i);
|
|
BITMAP_FREE (use->related_cands);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Add important candidates to the related_cands bitmaps. */
|
|
for (i = 0; i < n_iv_uses (data); i++)
|
|
bitmap_ior_into (iv_use (data, i)->related_cands,
|
|
data->important_candidates);
|
|
}
|
|
}
|
|
|
|
/* Allocates the data structure mapping the (use, candidate) pairs to costs.
|
|
If consider_all_candidates is true, we use a two-dimensional array, otherwise
|
|
we allocate a simple list to every use. */
|
|
|
|
static void
|
|
alloc_use_cost_map (struct ivopts_data *data)
|
|
{
|
|
unsigned i, size, s, j;
|
|
|
|
for (i = 0; i < n_iv_uses (data); i++)
|
|
{
|
|
struct iv_use *use = iv_use (data, i);
|
|
bitmap_iterator bi;
|
|
|
|
if (data->consider_all_candidates)
|
|
size = n_iv_cands (data);
|
|
else
|
|
{
|
|
s = 0;
|
|
EXECUTE_IF_SET_IN_BITMAP (use->related_cands, 0, j, bi)
|
|
{
|
|
s++;
|
|
}
|
|
|
|
/* Round up to the power of two, so that moduling by it is fast. */
|
|
for (size = 1; size < s; size <<= 1)
|
|
continue;
|
|
}
|
|
|
|
use->n_map_members = size;
|
|
use->cost_map = XCNEWVEC (struct cost_pair, size);
|
|
}
|
|
}
|
|
|
|
/* Returns description of computation cost of expression whose runtime
|
|
cost is RUNTIME and complexity corresponds to COMPLEXITY. */
|
|
|
|
static comp_cost
|
|
new_cost (unsigned runtime, unsigned complexity)
|
|
{
|
|
comp_cost cost;
|
|
|
|
cost.cost = runtime;
|
|
cost.complexity = complexity;
|
|
|
|
return cost;
|
|
}
|
|
|
|
/* Adds costs COST1 and COST2. */
|
|
|
|
static comp_cost
|
|
add_costs (comp_cost cost1, comp_cost cost2)
|
|
{
|
|
cost1.cost += cost2.cost;
|
|
cost1.complexity += cost2.complexity;
|
|
|
|
return cost1;
|
|
}
|
|
/* Subtracts costs COST1 and COST2. */
|
|
|
|
static comp_cost
|
|
sub_costs (comp_cost cost1, comp_cost cost2)
|
|
{
|
|
cost1.cost -= cost2.cost;
|
|
cost1.complexity -= cost2.complexity;
|
|
|
|
return cost1;
|
|
}
|
|
|
|
/* Returns a negative number if COST1 < COST2, a positive number if
|
|
COST1 > COST2, and 0 if COST1 = COST2. */
|
|
|
|
static int
|
|
compare_costs (comp_cost cost1, comp_cost cost2)
|
|
{
|
|
if (cost1.cost == cost2.cost)
|
|
return cost1.complexity - cost2.complexity;
|
|
|
|
return cost1.cost - cost2.cost;
|
|
}
|
|
|
|
/* Returns true if COST is infinite. */
|
|
|
|
static bool
|
|
infinite_cost_p (comp_cost cost)
|
|
{
|
|
return cost.cost == INFTY;
|
|
}
|
|
|
|
/* Sets cost of (USE, CANDIDATE) pair to COST and record that it depends
|
|
on invariants DEPENDS_ON and that the value used in expressing it
|
|
is VALUE, and in case of iv elimination the comparison operator is COMP. */
|
|
|
|
static void
|
|
set_use_iv_cost (struct ivopts_data *data,
|
|
struct iv_use *use, struct iv_cand *cand,
|
|
comp_cost cost, bitmap depends_on, tree value,
|
|
enum tree_code comp, int inv_expr_id)
|
|
{
|
|
unsigned i, s;
|
|
|
|
if (infinite_cost_p (cost))
|
|
{
|
|
BITMAP_FREE (depends_on);
|
|
return;
|
|
}
|
|
|
|
if (data->consider_all_candidates)
|
|
{
|
|
use->cost_map[cand->id].cand = cand;
|
|
use->cost_map[cand->id].cost = cost;
|
|
use->cost_map[cand->id].depends_on = depends_on;
|
|
use->cost_map[cand->id].value = value;
|
|
use->cost_map[cand->id].comp = comp;
|
|
use->cost_map[cand->id].inv_expr_id = inv_expr_id;
|
|
return;
|
|
}
|
|
|
|
/* n_map_members is a power of two, so this computes modulo. */
|
|
s = cand->id & (use->n_map_members - 1);
|
|
for (i = s; i < use->n_map_members; i++)
|
|
if (!use->cost_map[i].cand)
|
|
goto found;
|
|
for (i = 0; i < s; i++)
|
|
if (!use->cost_map[i].cand)
|
|
goto found;
|
|
|
|
gcc_unreachable ();
|
|
|
|
found:
|
|
use->cost_map[i].cand = cand;
|
|
use->cost_map[i].cost = cost;
|
|
use->cost_map[i].depends_on = depends_on;
|
|
use->cost_map[i].value = value;
|
|
use->cost_map[i].comp = comp;
|
|
use->cost_map[i].inv_expr_id = inv_expr_id;
|
|
}
|
|
|
|
/* Gets cost of (USE, CANDIDATE) pair. */
|
|
|
|
static struct cost_pair *
|
|
get_use_iv_cost (struct ivopts_data *data, struct iv_use *use,
|
|
struct iv_cand *cand)
|
|
{
|
|
unsigned i, s;
|
|
struct cost_pair *ret;
|
|
|
|
if (!cand)
|
|
return NULL;
|
|
|
|
if (data->consider_all_candidates)
|
|
{
|
|
ret = use->cost_map + cand->id;
|
|
if (!ret->cand)
|
|
return NULL;
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* n_map_members is a power of two, so this computes modulo. */
|
|
s = cand->id & (use->n_map_members - 1);
|
|
for (i = s; i < use->n_map_members; i++)
|
|
if (use->cost_map[i].cand == cand)
|
|
return use->cost_map + i;
|
|
|
|
for (i = 0; i < s; i++)
|
|
if (use->cost_map[i].cand == cand)
|
|
return use->cost_map + i;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* Returns estimate on cost of computing SEQ. */
|
|
|
|
static unsigned
|
|
seq_cost (rtx seq, bool speed)
|
|
{
|
|
unsigned cost = 0;
|
|
rtx set;
|
|
|
|
for (; seq; seq = NEXT_INSN (seq))
|
|
{
|
|
set = single_set (seq);
|
|
if (set)
|
|
cost += set_src_cost (SET_SRC (set), speed);
|
|
else
|
|
cost++;
|
|
}
|
|
|
|
return cost;
|
|
}
|
|
|
|
/* Produce DECL_RTL for object obj so it looks like it is stored in memory. */
|
|
static rtx
|
|
produce_memory_decl_rtl (tree obj, int *regno)
|
|
{
|
|
addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (obj));
|
|
enum machine_mode address_mode = targetm.addr_space.address_mode (as);
|
|
rtx x;
|
|
|
|
gcc_assert (obj);
|
|
if (TREE_STATIC (obj) || DECL_EXTERNAL (obj))
|
|
{
|
|
const char *name = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (obj));
|
|
x = gen_rtx_SYMBOL_REF (address_mode, name);
|
|
SET_SYMBOL_REF_DECL (x, obj);
|
|
x = gen_rtx_MEM (DECL_MODE (obj), x);
|
|
set_mem_addr_space (x, as);
|
|
targetm.encode_section_info (obj, x, true);
|
|
}
|
|
else
|
|
{
|
|
x = gen_raw_REG (address_mode, (*regno)++);
|
|
x = gen_rtx_MEM (DECL_MODE (obj), x);
|
|
set_mem_addr_space (x, as);
|
|
}
|
|
|
|
return x;
|
|
}
|
|
|
|
/* Prepares decl_rtl for variables referred in *EXPR_P. Callback for
|
|
walk_tree. DATA contains the actual fake register number. */
|
|
|
|
static tree
|
|
prepare_decl_rtl (tree *expr_p, int *ws, void *data)
|
|
{
|
|
tree obj = NULL_TREE;
|
|
rtx x = NULL_RTX;
|
|
int *regno = (int *) data;
|
|
|
|
switch (TREE_CODE (*expr_p))
|
|
{
|
|
case ADDR_EXPR:
|
|
for (expr_p = &TREE_OPERAND (*expr_p, 0);
|
|
handled_component_p (*expr_p);
|
|
expr_p = &TREE_OPERAND (*expr_p, 0))
|
|
continue;
|
|
obj = *expr_p;
|
|
if (DECL_P (obj) && !DECL_RTL_SET_P (obj))
|
|
x = produce_memory_decl_rtl (obj, regno);
|
|
break;
|
|
|
|
case SSA_NAME:
|
|
*ws = 0;
|
|
obj = SSA_NAME_VAR (*expr_p);
|
|
if (!DECL_RTL_SET_P (obj))
|
|
x = gen_raw_REG (DECL_MODE (obj), (*regno)++);
|
|
break;
|
|
|
|
case VAR_DECL:
|
|
case PARM_DECL:
|
|
case RESULT_DECL:
|
|
*ws = 0;
|
|
obj = *expr_p;
|
|
|
|
if (DECL_RTL_SET_P (obj))
|
|
break;
|
|
|
|
if (DECL_MODE (obj) == BLKmode)
|
|
x = produce_memory_decl_rtl (obj, regno);
|
|
else
|
|
x = gen_raw_REG (DECL_MODE (obj), (*regno)++);
|
|
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (x)
|
|
{
|
|
VEC_safe_push (tree, heap, decl_rtl_to_reset, obj);
|
|
SET_DECL_RTL (obj, x);
|
|
}
|
|
|
|
return NULL_TREE;
|
|
}
|
|
|
|
/* Determines cost of the computation of EXPR. */
|
|
|
|
static unsigned
|
|
computation_cost (tree expr, bool speed)
|
|
{
|
|
rtx seq, rslt;
|
|
tree type = TREE_TYPE (expr);
|
|
unsigned cost;
|
|
/* Avoid using hard regs in ways which may be unsupported. */
|
|
int regno = LAST_VIRTUAL_REGISTER + 1;
|
|
struct cgraph_node *node = cgraph_get_node (current_function_decl);
|
|
enum node_frequency real_frequency = node->frequency;
|
|
|
|
node->frequency = NODE_FREQUENCY_NORMAL;
|
|
crtl->maybe_hot_insn_p = speed;
|
|
walk_tree (&expr, prepare_decl_rtl, ®no, NULL);
|
|
start_sequence ();
|
|
rslt = expand_expr (expr, NULL_RTX, TYPE_MODE (type), EXPAND_NORMAL);
|
|
seq = get_insns ();
|
|
end_sequence ();
|
|
default_rtl_profile ();
|
|
node->frequency = real_frequency;
|
|
|
|
cost = seq_cost (seq, speed);
|
|
if (MEM_P (rslt))
|
|
cost += address_cost (XEXP (rslt, 0), TYPE_MODE (type),
|
|
TYPE_ADDR_SPACE (type), speed);
|
|
else if (!REG_P (rslt))
|
|
cost += set_src_cost (rslt, speed);
|
|
|
|
return cost;
|
|
}
|
|
|
|
/* Returns variable containing the value of candidate CAND at statement AT. */
|
|
|
|
static tree
|
|
var_at_stmt (struct loop *loop, struct iv_cand *cand, gimple stmt)
|
|
{
|
|
if (stmt_after_increment (loop, cand, stmt))
|
|
return cand->var_after;
|
|
else
|
|
return cand->var_before;
|
|
}
|
|
|
|
/* If A is (TYPE) BA and B is (TYPE) BB, and the types of BA and BB have the
|
|
same precision that is at least as wide as the precision of TYPE, stores
|
|
BA to A and BB to B, and returns the type of BA. Otherwise, returns the
|
|
type of A and B. */
|
|
|
|
static tree
|
|
determine_common_wider_type (tree *a, tree *b)
|
|
{
|
|
tree wider_type = NULL;
|
|
tree suba, subb;
|
|
tree atype = TREE_TYPE (*a);
|
|
|
|
if (CONVERT_EXPR_P (*a))
|
|
{
|
|
suba = TREE_OPERAND (*a, 0);
|
|
wider_type = TREE_TYPE (suba);
|
|
if (TYPE_PRECISION (wider_type) < TYPE_PRECISION (atype))
|
|
return atype;
|
|
}
|
|
else
|
|
return atype;
|
|
|
|
if (CONVERT_EXPR_P (*b))
|
|
{
|
|
subb = TREE_OPERAND (*b, 0);
|
|
if (TYPE_PRECISION (wider_type) != TYPE_PRECISION (TREE_TYPE (subb)))
|
|
return atype;
|
|
}
|
|
else
|
|
return atype;
|
|
|
|
*a = suba;
|
|
*b = subb;
|
|
return wider_type;
|
|
}
|
|
|
|
/* Determines the expression by that USE is expressed from induction variable
|
|
CAND at statement AT in LOOP. The expression is stored in a decomposed
|
|
form into AFF. Returns false if USE cannot be expressed using CAND. */
|
|
|
|
static bool
|
|
get_computation_aff (struct loop *loop,
|
|
struct iv_use *use, struct iv_cand *cand, gimple at,
|
|
struct affine_tree_combination *aff)
|
|
{
|
|
tree ubase = use->iv->base;
|
|
tree ustep = use->iv->step;
|
|
tree cbase = cand->iv->base;
|
|
tree cstep = cand->iv->step, cstep_common;
|
|
tree utype = TREE_TYPE (ubase), ctype = TREE_TYPE (cbase);
|
|
tree common_type, var;
|
|
tree uutype;
|
|
aff_tree cbase_aff, var_aff;
|
|
double_int rat;
|
|
|
|
if (TYPE_PRECISION (utype) > TYPE_PRECISION (ctype))
|
|
{
|
|
/* We do not have a precision to express the values of use. */
|
|
return false;
|
|
}
|
|
|
|
var = var_at_stmt (loop, cand, at);
|
|
uutype = unsigned_type_for (utype);
|
|
|
|
/* If the conversion is not noop, perform it. */
|
|
if (TYPE_PRECISION (utype) < TYPE_PRECISION (ctype))
|
|
{
|
|
cstep = fold_convert (uutype, cstep);
|
|
cbase = fold_convert (uutype, cbase);
|
|
var = fold_convert (uutype, var);
|
|
}
|
|
|
|
if (!constant_multiple_of (ustep, cstep, &rat))
|
|
return false;
|
|
|
|
/* In case both UBASE and CBASE are shortened to UUTYPE from some common
|
|
type, we achieve better folding by computing their difference in this
|
|
wider type, and cast the result to UUTYPE. We do not need to worry about
|
|
overflows, as all the arithmetics will in the end be performed in UUTYPE
|
|
anyway. */
|
|
common_type = determine_common_wider_type (&ubase, &cbase);
|
|
|
|
/* use = ubase - ratio * cbase + ratio * var. */
|
|
tree_to_aff_combination (ubase, common_type, aff);
|
|
tree_to_aff_combination (cbase, common_type, &cbase_aff);
|
|
tree_to_aff_combination (var, uutype, &var_aff);
|
|
|
|
/* We need to shift the value if we are after the increment. */
|
|
if (stmt_after_increment (loop, cand, at))
|
|
{
|
|
aff_tree cstep_aff;
|
|
|
|
if (common_type != uutype)
|
|
cstep_common = fold_convert (common_type, cstep);
|
|
else
|
|
cstep_common = cstep;
|
|
|
|
tree_to_aff_combination (cstep_common, common_type, &cstep_aff);
|
|
aff_combination_add (&cbase_aff, &cstep_aff);
|
|
}
|
|
|
|
aff_combination_scale (&cbase_aff, double_int_neg (rat));
|
|
aff_combination_add (aff, &cbase_aff);
|
|
if (common_type != uutype)
|
|
aff_combination_convert (aff, uutype);
|
|
|
|
aff_combination_scale (&var_aff, rat);
|
|
aff_combination_add (aff, &var_aff);
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Determines the expression by that USE is expressed from induction variable
|
|
CAND at statement AT in LOOP. The computation is unshared. */
|
|
|
|
static tree
|
|
get_computation_at (struct loop *loop,
|
|
struct iv_use *use, struct iv_cand *cand, gimple at)
|
|
{
|
|
aff_tree aff;
|
|
tree type = TREE_TYPE (use->iv->base);
|
|
|
|
if (!get_computation_aff (loop, use, cand, at, &aff))
|
|
return NULL_TREE;
|
|
unshare_aff_combination (&aff);
|
|
return fold_convert (type, aff_combination_to_tree (&aff));
|
|
}
|
|
|
|
/* Determines the expression by that USE is expressed from induction variable
|
|
CAND in LOOP. The computation is unshared. */
|
|
|
|
static tree
|
|
get_computation (struct loop *loop, struct iv_use *use, struct iv_cand *cand)
|
|
{
|
|
return get_computation_at (loop, use, cand, use->stmt);
|
|
}
|
|
|
|
/* Adjust the cost COST for being in loop setup rather than loop body.
|
|
If we're optimizing for space, the loop setup overhead is constant;
|
|
if we're optimizing for speed, amortize it over the per-iteration cost. */
|
|
static unsigned
|
|
adjust_setup_cost (struct ivopts_data *data, unsigned cost)
|
|
{
|
|
if (cost == INFTY)
|
|
return cost;
|
|
else if (optimize_loop_for_speed_p (data->current_loop))
|
|
return cost / avg_loop_niter (data->current_loop);
|
|
else
|
|
return cost;
|
|
}
|
|
|
|
/* Returns cost of addition in MODE. */
|
|
|
|
static unsigned
|
|
add_cost (enum machine_mode mode, bool speed)
|
|
{
|
|
static unsigned costs[NUM_MACHINE_MODES];
|
|
rtx seq;
|
|
unsigned cost;
|
|
|
|
if (costs[mode])
|
|
return costs[mode];
|
|
|
|
start_sequence ();
|
|
force_operand (gen_rtx_fmt_ee (PLUS, mode,
|
|
gen_raw_REG (mode, LAST_VIRTUAL_REGISTER + 1),
|
|
gen_raw_REG (mode, LAST_VIRTUAL_REGISTER + 2)),
|
|
NULL_RTX);
|
|
seq = get_insns ();
|
|
end_sequence ();
|
|
|
|
cost = seq_cost (seq, speed);
|
|
if (!cost)
|
|
cost = 1;
|
|
|
|
costs[mode] = cost;
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file, "Addition in %s costs %d\n",
|
|
GET_MODE_NAME (mode), cost);
|
|
return cost;
|
|
}
|
|
|
|
/* Entry in a hashtable of already known costs for multiplication. */
|
|
struct mbc_entry
|
|
{
|
|
HOST_WIDE_INT cst; /* The constant to multiply by. */
|
|
enum machine_mode mode; /* In mode. */
|
|
unsigned cost; /* The cost. */
|
|
};
|
|
|
|
/* Counts hash value for the ENTRY. */
|
|
|
|
static hashval_t
|
|
mbc_entry_hash (const void *entry)
|
|
{
|
|
const struct mbc_entry *e = (const struct mbc_entry *) entry;
|
|
|
|
return 57 * (hashval_t) e->mode + (hashval_t) (e->cst % 877);
|
|
}
|
|
|
|
/* Compares the hash table entries ENTRY1 and ENTRY2. */
|
|
|
|
static int
|
|
mbc_entry_eq (const void *entry1, const void *entry2)
|
|
{
|
|
const struct mbc_entry *e1 = (const struct mbc_entry *) entry1;
|
|
const struct mbc_entry *e2 = (const struct mbc_entry *) entry2;
|
|
|
|
return (e1->mode == e2->mode
|
|
&& e1->cst == e2->cst);
|
|
}
|
|
|
|
/* Returns cost of multiplication by constant CST in MODE. */
|
|
|
|
unsigned
|
|
multiply_by_cost (HOST_WIDE_INT cst, enum machine_mode mode, bool speed)
|
|
{
|
|
static htab_t costs;
|
|
struct mbc_entry **cached, act;
|
|
rtx seq;
|
|
unsigned cost;
|
|
|
|
if (!costs)
|
|
costs = htab_create (100, mbc_entry_hash, mbc_entry_eq, free);
|
|
|
|
act.mode = mode;
|
|
act.cst = cst;
|
|
cached = (struct mbc_entry **) htab_find_slot (costs, &act, INSERT);
|
|
if (*cached)
|
|
return (*cached)->cost;
|
|
|
|
*cached = XNEW (struct mbc_entry);
|
|
(*cached)->mode = mode;
|
|
(*cached)->cst = cst;
|
|
|
|
start_sequence ();
|
|
expand_mult (mode, gen_raw_REG (mode, LAST_VIRTUAL_REGISTER + 1),
|
|
gen_int_mode (cst, mode), NULL_RTX, 0);
|
|
seq = get_insns ();
|
|
end_sequence ();
|
|
|
|
cost = seq_cost (seq, speed);
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file, "Multiplication by %d in %s costs %d\n",
|
|
(int) cst, GET_MODE_NAME (mode), cost);
|
|
|
|
(*cached)->cost = cost;
|
|
|
|
return cost;
|
|
}
|
|
|
|
/* Returns true if multiplying by RATIO is allowed in an address. Test the
|
|
validity for a memory reference accessing memory of mode MODE in
|
|
address space AS. */
|
|
|
|
DEF_VEC_P (sbitmap);
|
|
DEF_VEC_ALLOC_P (sbitmap, heap);
|
|
|
|
bool
|
|
multiplier_allowed_in_address_p (HOST_WIDE_INT ratio, enum machine_mode mode,
|
|
addr_space_t as)
|
|
{
|
|
#define MAX_RATIO 128
|
|
unsigned int data_index = (int) as * MAX_MACHINE_MODE + (int) mode;
|
|
static VEC (sbitmap, heap) *valid_mult_list;
|
|
sbitmap valid_mult;
|
|
|
|
if (data_index >= VEC_length (sbitmap, valid_mult_list))
|
|
VEC_safe_grow_cleared (sbitmap, heap, valid_mult_list, data_index + 1);
|
|
|
|
valid_mult = VEC_index (sbitmap, valid_mult_list, data_index);
|
|
if (!valid_mult)
|
|
{
|
|
enum machine_mode address_mode = targetm.addr_space.address_mode (as);
|
|
rtx reg1 = gen_raw_REG (address_mode, LAST_VIRTUAL_REGISTER + 1);
|
|
rtx addr;
|
|
HOST_WIDE_INT i;
|
|
|
|
valid_mult = sbitmap_alloc (2 * MAX_RATIO + 1);
|
|
sbitmap_zero (valid_mult);
|
|
addr = gen_rtx_fmt_ee (MULT, address_mode, reg1, NULL_RTX);
|
|
for (i = -MAX_RATIO; i <= MAX_RATIO; i++)
|
|
{
|
|
XEXP (addr, 1) = gen_int_mode (i, address_mode);
|
|
if (memory_address_addr_space_p (mode, addr, as))
|
|
SET_BIT (valid_mult, i + MAX_RATIO);
|
|
}
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, " allowed multipliers:");
|
|
for (i = -MAX_RATIO; i <= MAX_RATIO; i++)
|
|
if (TEST_BIT (valid_mult, i + MAX_RATIO))
|
|
fprintf (dump_file, " %d", (int) i);
|
|
fprintf (dump_file, "\n");
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
|
|
VEC_replace (sbitmap, valid_mult_list, data_index, valid_mult);
|
|
}
|
|
|
|
if (ratio > MAX_RATIO || ratio < -MAX_RATIO)
|
|
return false;
|
|
|
|
return TEST_BIT (valid_mult, ratio + MAX_RATIO);
|
|
}
|
|
|
|
/* Returns cost of address in shape symbol + var + OFFSET + RATIO * index.
|
|
If SYMBOL_PRESENT is false, symbol is omitted. If VAR_PRESENT is false,
|
|
variable is omitted. Compute the cost for a memory reference that accesses
|
|
a memory location of mode MEM_MODE in address space AS.
|
|
|
|
MAY_AUTOINC is set to true if the autoincrement (increasing index by
|
|
size of MEM_MODE / RATIO) is available. To make this determination, we
|
|
look at the size of the increment to be made, which is given in CSTEP.
|
|
CSTEP may be zero if the step is unknown.
|
|
STMT_AFTER_INC is true iff the statement we're looking at is after the
|
|
increment of the original biv.
|
|
|
|
TODO -- there must be some better way. This all is quite crude. */
|
|
|
|
typedef struct
|
|
{
|
|
HOST_WIDE_INT min_offset, max_offset;
|
|
unsigned costs[2][2][2][2];
|
|
} *address_cost_data;
|
|
|
|
DEF_VEC_P (address_cost_data);
|
|
DEF_VEC_ALLOC_P (address_cost_data, heap);
|
|
|
|
static comp_cost
|
|
get_address_cost (bool symbol_present, bool var_present,
|
|
unsigned HOST_WIDE_INT offset, HOST_WIDE_INT ratio,
|
|
HOST_WIDE_INT cstep, enum machine_mode mem_mode,
|
|
addr_space_t as, bool speed,
|
|
bool stmt_after_inc, bool *may_autoinc)
|
|
{
|
|
enum machine_mode address_mode = targetm.addr_space.address_mode (as);
|
|
static VEC(address_cost_data, heap) *address_cost_data_list;
|
|
unsigned int data_index = (int) as * MAX_MACHINE_MODE + (int) mem_mode;
|
|
address_cost_data data;
|
|
static bool has_preinc[MAX_MACHINE_MODE], has_postinc[MAX_MACHINE_MODE];
|
|
static bool has_predec[MAX_MACHINE_MODE], has_postdec[MAX_MACHINE_MODE];
|
|
unsigned cost, acost, complexity;
|
|
bool offset_p, ratio_p, autoinc;
|
|
HOST_WIDE_INT s_offset, autoinc_offset, msize;
|
|
unsigned HOST_WIDE_INT mask;
|
|
unsigned bits;
|
|
|
|
if (data_index >= VEC_length (address_cost_data, address_cost_data_list))
|
|
VEC_safe_grow_cleared (address_cost_data, heap, address_cost_data_list,
|
|
data_index + 1);
|
|
|
|
data = VEC_index (address_cost_data, address_cost_data_list, data_index);
|
|
if (!data)
|
|
{
|
|
HOST_WIDE_INT i;
|
|
HOST_WIDE_INT rat, off = 0;
|
|
int old_cse_not_expected, width;
|
|
unsigned sym_p, var_p, off_p, rat_p, add_c;
|
|
rtx seq, addr, base;
|
|
rtx reg0, reg1;
|
|
|
|
data = (address_cost_data) xcalloc (1, sizeof (*data));
|
|
|
|
reg1 = gen_raw_REG (address_mode, LAST_VIRTUAL_REGISTER + 1);
|
|
|
|
width = GET_MODE_BITSIZE (address_mode) - 1;
|
|
if (width > (HOST_BITS_PER_WIDE_INT - 1))
|
|
width = HOST_BITS_PER_WIDE_INT - 1;
|
|
addr = gen_rtx_fmt_ee (PLUS, address_mode, reg1, NULL_RTX);
|
|
|
|
for (i = width; i >= 0; i--)
|
|
{
|
|
off = -((HOST_WIDE_INT) 1 << i);
|
|
XEXP (addr, 1) = gen_int_mode (off, address_mode);
|
|
if (memory_address_addr_space_p (mem_mode, addr, as))
|
|
break;
|
|
}
|
|
data->min_offset = (i == -1? 0 : off);
|
|
|
|
for (i = width; i >= 0; i--)
|
|
{
|
|
off = ((HOST_WIDE_INT) 1 << i) - 1;
|
|
XEXP (addr, 1) = gen_int_mode (off, address_mode);
|
|
if (memory_address_addr_space_p (mem_mode, addr, as))
|
|
break;
|
|
}
|
|
if (i == -1)
|
|
off = 0;
|
|
data->max_offset = off;
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "get_address_cost:\n");
|
|
fprintf (dump_file, " min offset %s " HOST_WIDE_INT_PRINT_DEC "\n",
|
|
GET_MODE_NAME (mem_mode),
|
|
data->min_offset);
|
|
fprintf (dump_file, " max offset %s " HOST_WIDE_INT_PRINT_DEC "\n",
|
|
GET_MODE_NAME (mem_mode),
|
|
data->max_offset);
|
|
}
|
|
|
|
rat = 1;
|
|
for (i = 2; i <= MAX_RATIO; i++)
|
|
if (multiplier_allowed_in_address_p (i, mem_mode, as))
|
|
{
|
|
rat = i;
|
|
break;
|
|
}
|
|
|
|
/* Compute the cost of various addressing modes. */
|
|
acost = 0;
|
|
reg0 = gen_raw_REG (address_mode, LAST_VIRTUAL_REGISTER + 1);
|
|
reg1 = gen_raw_REG (address_mode, LAST_VIRTUAL_REGISTER + 2);
|
|
|
|
if (HAVE_PRE_DECREMENT)
|
|
{
|
|
addr = gen_rtx_PRE_DEC (address_mode, reg0);
|
|
has_predec[mem_mode]
|
|
= memory_address_addr_space_p (mem_mode, addr, as);
|
|
}
|
|
if (HAVE_POST_DECREMENT)
|
|
{
|
|
addr = gen_rtx_POST_DEC (address_mode, reg0);
|
|
has_postdec[mem_mode]
|
|
= memory_address_addr_space_p (mem_mode, addr, as);
|
|
}
|
|
if (HAVE_PRE_INCREMENT)
|
|
{
|
|
addr = gen_rtx_PRE_INC (address_mode, reg0);
|
|
has_preinc[mem_mode]
|
|
= memory_address_addr_space_p (mem_mode, addr, as);
|
|
}
|
|
if (HAVE_POST_INCREMENT)
|
|
{
|
|
addr = gen_rtx_POST_INC (address_mode, reg0);
|
|
has_postinc[mem_mode]
|
|
= memory_address_addr_space_p (mem_mode, addr, as);
|
|
}
|
|
for (i = 0; i < 16; i++)
|
|
{
|
|
sym_p = i & 1;
|
|
var_p = (i >> 1) & 1;
|
|
off_p = (i >> 2) & 1;
|
|
rat_p = (i >> 3) & 1;
|
|
|
|
addr = reg0;
|
|
if (rat_p)
|
|
addr = gen_rtx_fmt_ee (MULT, address_mode, addr,
|
|
gen_int_mode (rat, address_mode));
|
|
|
|
if (var_p)
|
|
addr = gen_rtx_fmt_ee (PLUS, address_mode, addr, reg1);
|
|
|
|
if (sym_p)
|
|
{
|
|
base = gen_rtx_SYMBOL_REF (address_mode, ggc_strdup (""));
|
|
/* ??? We can run into trouble with some backends by presenting
|
|
it with symbols which haven't been properly passed through
|
|
targetm.encode_section_info. By setting the local bit, we
|
|
enhance the probability of things working. */
|
|
SYMBOL_REF_FLAGS (base) = SYMBOL_FLAG_LOCAL;
|
|
|
|
if (off_p)
|
|
base = gen_rtx_fmt_e (CONST, address_mode,
|
|
gen_rtx_fmt_ee
|
|
(PLUS, address_mode, base,
|
|
gen_int_mode (off, address_mode)));
|
|
}
|
|
else if (off_p)
|
|
base = gen_int_mode (off, address_mode);
|
|
else
|
|
base = NULL_RTX;
|
|
|
|
if (base)
|
|
addr = gen_rtx_fmt_ee (PLUS, address_mode, addr, base);
|
|
|
|
start_sequence ();
|
|
/* To avoid splitting addressing modes, pretend that no cse will
|
|
follow. */
|
|
old_cse_not_expected = cse_not_expected;
|
|
cse_not_expected = true;
|
|
addr = memory_address_addr_space (mem_mode, addr, as);
|
|
cse_not_expected = old_cse_not_expected;
|
|
seq = get_insns ();
|
|
end_sequence ();
|
|
|
|
acost = seq_cost (seq, speed);
|
|
acost += address_cost (addr, mem_mode, as, speed);
|
|
|
|
if (!acost)
|
|
acost = 1;
|
|
data->costs[sym_p][var_p][off_p][rat_p] = acost;
|
|
}
|
|
|
|
/* On some targets, it is quite expensive to load symbol to a register,
|
|
which makes addresses that contain symbols look much more expensive.
|
|
However, the symbol will have to be loaded in any case before the
|
|
loop (and quite likely we have it in register already), so it does not
|
|
make much sense to penalize them too heavily. So make some final
|
|
tweaks for the SYMBOL_PRESENT modes:
|
|
|
|
If VAR_PRESENT is false, and the mode obtained by changing symbol to
|
|
var is cheaper, use this mode with small penalty.
|
|
If VAR_PRESENT is true, try whether the mode with
|
|
SYMBOL_PRESENT = false is cheaper even with cost of addition, and
|
|
if this is the case, use it. */
|
|
add_c = add_cost (address_mode, speed);
|
|
for (i = 0; i < 8; i++)
|
|
{
|
|
var_p = i & 1;
|
|
off_p = (i >> 1) & 1;
|
|
rat_p = (i >> 2) & 1;
|
|
|
|
acost = data->costs[0][1][off_p][rat_p] + 1;
|
|
if (var_p)
|
|
acost += add_c;
|
|
|
|
if (acost < data->costs[1][var_p][off_p][rat_p])
|
|
data->costs[1][var_p][off_p][rat_p] = acost;
|
|
}
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "Address costs:\n");
|
|
|
|
for (i = 0; i < 16; i++)
|
|
{
|
|
sym_p = i & 1;
|
|
var_p = (i >> 1) & 1;
|
|
off_p = (i >> 2) & 1;
|
|
rat_p = (i >> 3) & 1;
|
|
|
|
fprintf (dump_file, " ");
|
|
if (sym_p)
|
|
fprintf (dump_file, "sym + ");
|
|
if (var_p)
|
|
fprintf (dump_file, "var + ");
|
|
if (off_p)
|
|
fprintf (dump_file, "cst + ");
|
|
if (rat_p)
|
|
fprintf (dump_file, "rat * ");
|
|
|
|
acost = data->costs[sym_p][var_p][off_p][rat_p];
|
|
fprintf (dump_file, "index costs %d\n", acost);
|
|
}
|
|
if (has_predec[mem_mode] || has_postdec[mem_mode]
|
|
|| has_preinc[mem_mode] || has_postinc[mem_mode])
|
|
fprintf (dump_file, " May include autoinc/dec\n");
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
|
|
VEC_replace (address_cost_data, address_cost_data_list,
|
|
data_index, data);
|
|
}
|
|
|
|
bits = GET_MODE_BITSIZE (address_mode);
|
|
mask = ~(~(unsigned HOST_WIDE_INT) 0 << (bits - 1) << 1);
|
|
offset &= mask;
|
|
if ((offset >> (bits - 1) & 1))
|
|
offset |= ~mask;
|
|
s_offset = offset;
|
|
|
|
autoinc = false;
|
|
msize = GET_MODE_SIZE (mem_mode);
|
|
autoinc_offset = offset;
|
|
if (stmt_after_inc)
|
|
autoinc_offset += ratio * cstep;
|
|
if (symbol_present || var_present || ratio != 1)
|
|
autoinc = false;
|
|
else if ((has_postinc[mem_mode] && autoinc_offset == 0
|
|
&& msize == cstep)
|
|
|| (has_postdec[mem_mode] && autoinc_offset == 0
|
|
&& msize == -cstep)
|
|
|| (has_preinc[mem_mode] && autoinc_offset == msize
|
|
&& msize == cstep)
|
|
|| (has_predec[mem_mode] && autoinc_offset == -msize
|
|
&& msize == -cstep))
|
|
autoinc = true;
|
|
|
|
cost = 0;
|
|
offset_p = (s_offset != 0
|
|
&& data->min_offset <= s_offset
|
|
&& s_offset <= data->max_offset);
|
|
ratio_p = (ratio != 1
|
|
&& multiplier_allowed_in_address_p (ratio, mem_mode, as));
|
|
|
|
if (ratio != 1 && !ratio_p)
|
|
cost += multiply_by_cost (ratio, address_mode, speed);
|
|
|
|
if (s_offset && !offset_p && !symbol_present)
|
|
cost += add_cost (address_mode, speed);
|
|
|
|
if (may_autoinc)
|
|
*may_autoinc = autoinc;
|
|
acost = data->costs[symbol_present][var_present][offset_p][ratio_p];
|
|
complexity = (symbol_present != 0) + (var_present != 0) + offset_p + ratio_p;
|
|
return new_cost (cost + acost, complexity);
|
|
}
|
|
|
|
/* Calculate the SPEED or size cost of shiftadd EXPR in MODE. MULT is the
|
|
the EXPR operand holding the shift. COST0 and COST1 are the costs for
|
|
calculating the operands of EXPR. Returns true if successful, and returns
|
|
the cost in COST. */
|
|
|
|
static bool
|
|
get_shiftadd_cost (tree expr, enum machine_mode mode, comp_cost cost0,
|
|
comp_cost cost1, tree mult, bool speed, comp_cost *cost)
|
|
{
|
|
comp_cost res;
|
|
tree op1 = TREE_OPERAND (expr, 1);
|
|
tree cst = TREE_OPERAND (mult, 1);
|
|
tree multop = TREE_OPERAND (mult, 0);
|
|
int m = exact_log2 (int_cst_value (cst));
|
|
int maxm = MIN (BITS_PER_WORD, GET_MODE_BITSIZE (mode));
|
|
int sa_cost;
|
|
|
|
if (!(m >= 0 && m < maxm))
|
|
return false;
|
|
|
|
sa_cost = (TREE_CODE (expr) != MINUS_EXPR
|
|
? shiftadd_cost[speed][mode][m]
|
|
: (mult == op1
|
|
? shiftsub1_cost[speed][mode][m]
|
|
: shiftsub0_cost[speed][mode][m]));
|
|
res = new_cost (sa_cost, 0);
|
|
res = add_costs (res, mult == op1 ? cost0 : cost1);
|
|
|
|
STRIP_NOPS (multop);
|
|
if (!is_gimple_val (multop))
|
|
res = add_costs (res, force_expr_to_var_cost (multop, speed));
|
|
|
|
*cost = res;
|
|
return true;
|
|
}
|
|
|
|
/* Estimates cost of forcing expression EXPR into a variable. */
|
|
|
|
static comp_cost
|
|
force_expr_to_var_cost (tree expr, bool speed)
|
|
{
|
|
static bool costs_initialized = false;
|
|
static unsigned integer_cost [2];
|
|
static unsigned symbol_cost [2];
|
|
static unsigned address_cost [2];
|
|
tree op0, op1;
|
|
comp_cost cost0, cost1, cost;
|
|
enum machine_mode mode;
|
|
|
|
if (!costs_initialized)
|
|
{
|
|
tree type = build_pointer_type (integer_type_node);
|
|
tree var, addr;
|
|
rtx x;
|
|
int i;
|
|
|
|
var = create_tmp_var_raw (integer_type_node, "test_var");
|
|
TREE_STATIC (var) = 1;
|
|
x = produce_memory_decl_rtl (var, NULL);
|
|
SET_DECL_RTL (var, x);
|
|
|
|
addr = build1 (ADDR_EXPR, type, var);
|
|
|
|
|
|
for (i = 0; i < 2; i++)
|
|
{
|
|
integer_cost[i] = computation_cost (build_int_cst (integer_type_node,
|
|
2000), i);
|
|
|
|
symbol_cost[i] = computation_cost (addr, i) + 1;
|
|
|
|
address_cost[i]
|
|
= computation_cost (fold_build_pointer_plus_hwi (addr, 2000), i) + 1;
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "force_expr_to_var_cost %s costs:\n", i ? "speed" : "size");
|
|
fprintf (dump_file, " integer %d\n", (int) integer_cost[i]);
|
|
fprintf (dump_file, " symbol %d\n", (int) symbol_cost[i]);
|
|
fprintf (dump_file, " address %d\n", (int) address_cost[i]);
|
|
fprintf (dump_file, " other %d\n", (int) target_spill_cost[i]);
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
}
|
|
|
|
costs_initialized = true;
|
|
}
|
|
|
|
STRIP_NOPS (expr);
|
|
|
|
if (SSA_VAR_P (expr))
|
|
return zero_cost;
|
|
|
|
if (is_gimple_min_invariant (expr))
|
|
{
|
|
if (TREE_CODE (expr) == INTEGER_CST)
|
|
return new_cost (integer_cost [speed], 0);
|
|
|
|
if (TREE_CODE (expr) == ADDR_EXPR)
|
|
{
|
|
tree obj = TREE_OPERAND (expr, 0);
|
|
|
|
if (TREE_CODE (obj) == VAR_DECL
|
|
|| TREE_CODE (obj) == PARM_DECL
|
|
|| TREE_CODE (obj) == RESULT_DECL)
|
|
return new_cost (symbol_cost [speed], 0);
|
|
}
|
|
|
|
return new_cost (address_cost [speed], 0);
|
|
}
|
|
|
|
switch (TREE_CODE (expr))
|
|
{
|
|
case POINTER_PLUS_EXPR:
|
|
case PLUS_EXPR:
|
|
case MINUS_EXPR:
|
|
case MULT_EXPR:
|
|
op0 = TREE_OPERAND (expr, 0);
|
|
op1 = TREE_OPERAND (expr, 1);
|
|
STRIP_NOPS (op0);
|
|
STRIP_NOPS (op1);
|
|
|
|
if (is_gimple_val (op0))
|
|
cost0 = zero_cost;
|
|
else
|
|
cost0 = force_expr_to_var_cost (op0, speed);
|
|
|
|
if (is_gimple_val (op1))
|
|
cost1 = zero_cost;
|
|
else
|
|
cost1 = force_expr_to_var_cost (op1, speed);
|
|
|
|
break;
|
|
|
|
case NEGATE_EXPR:
|
|
op0 = TREE_OPERAND (expr, 0);
|
|
STRIP_NOPS (op0);
|
|
op1 = NULL_TREE;
|
|
|
|
if (is_gimple_val (op0))
|
|
cost0 = zero_cost;
|
|
else
|
|
cost0 = force_expr_to_var_cost (op0, speed);
|
|
|
|
cost1 = zero_cost;
|
|
break;
|
|
|
|
default:
|
|
/* Just an arbitrary value, FIXME. */
|
|
return new_cost (target_spill_cost[speed], 0);
|
|
}
|
|
|
|
mode = TYPE_MODE (TREE_TYPE (expr));
|
|
switch (TREE_CODE (expr))
|
|
{
|
|
case POINTER_PLUS_EXPR:
|
|
case PLUS_EXPR:
|
|
case MINUS_EXPR:
|
|
case NEGATE_EXPR:
|
|
cost = new_cost (add_cost (mode, speed), 0);
|
|
if (TREE_CODE (expr) != NEGATE_EXPR)
|
|
{
|
|
tree mult = NULL_TREE;
|
|
comp_cost sa_cost;
|
|
if (TREE_CODE (op1) == MULT_EXPR)
|
|
mult = op1;
|
|
else if (TREE_CODE (op0) == MULT_EXPR)
|
|
mult = op0;
|
|
|
|
if (mult != NULL_TREE
|
|
&& cst_and_fits_in_hwi (TREE_OPERAND (mult, 1))
|
|
&& get_shiftadd_cost (expr, mode, cost0, cost1, mult, speed,
|
|
&sa_cost))
|
|
return sa_cost;
|
|
}
|
|
break;
|
|
|
|
case MULT_EXPR:
|
|
if (cst_and_fits_in_hwi (op0))
|
|
cost = new_cost (multiply_by_cost (int_cst_value (op0), mode, speed), 0);
|
|
else if (cst_and_fits_in_hwi (op1))
|
|
cost = new_cost (multiply_by_cost (int_cst_value (op1), mode, speed), 0);
|
|
else
|
|
return new_cost (target_spill_cost [speed], 0);
|
|
break;
|
|
|
|
default:
|
|
gcc_unreachable ();
|
|
}
|
|
|
|
cost = add_costs (cost, cost0);
|
|
cost = add_costs (cost, cost1);
|
|
|
|
/* Bound the cost by target_spill_cost. The parts of complicated
|
|
computations often are either loop invariant or at least can
|
|
be shared between several iv uses, so letting this grow without
|
|
limits would not give reasonable results. */
|
|
if (cost.cost > (int) target_spill_cost [speed])
|
|
cost.cost = target_spill_cost [speed];
|
|
|
|
return cost;
|
|
}
|
|
|
|
/* Estimates cost of forcing EXPR into a variable. DEPENDS_ON is a set of the
|
|
invariants the computation depends on. */
|
|
|
|
static comp_cost
|
|
force_var_cost (struct ivopts_data *data,
|
|
tree expr, bitmap *depends_on)
|
|
{
|
|
if (depends_on)
|
|
{
|
|
fd_ivopts_data = data;
|
|
walk_tree (&expr, find_depends, depends_on, NULL);
|
|
}
|
|
|
|
return force_expr_to_var_cost (expr, data->speed);
|
|
}
|
|
|
|
/* Estimates cost of expressing address ADDR as var + symbol + offset. The
|
|
value of offset is added to OFFSET, SYMBOL_PRESENT and VAR_PRESENT are set
|
|
to false if the corresponding part is missing. DEPENDS_ON is a set of the
|
|
invariants the computation depends on. */
|
|
|
|
static comp_cost
|
|
split_address_cost (struct ivopts_data *data,
|
|
tree addr, bool *symbol_present, bool *var_present,
|
|
unsigned HOST_WIDE_INT *offset, bitmap *depends_on)
|
|
{
|
|
tree core;
|
|
HOST_WIDE_INT bitsize;
|
|
HOST_WIDE_INT bitpos;
|
|
tree toffset;
|
|
enum machine_mode mode;
|
|
int unsignedp, volatilep;
|
|
|
|
core = get_inner_reference (addr, &bitsize, &bitpos, &toffset, &mode,
|
|
&unsignedp, &volatilep, false);
|
|
|
|
if (toffset != 0
|
|
|| bitpos % BITS_PER_UNIT != 0
|
|
|| TREE_CODE (core) != VAR_DECL)
|
|
{
|
|
*symbol_present = false;
|
|
*var_present = true;
|
|
fd_ivopts_data = data;
|
|
walk_tree (&addr, find_depends, depends_on, NULL);
|
|
return new_cost (target_spill_cost[data->speed], 0);
|
|
}
|
|
|
|
*offset += bitpos / BITS_PER_UNIT;
|
|
if (TREE_STATIC (core)
|
|
|| DECL_EXTERNAL (core))
|
|
{
|
|
*symbol_present = true;
|
|
*var_present = false;
|
|
return zero_cost;
|
|
}
|
|
|
|
*symbol_present = false;
|
|
*var_present = true;
|
|
return zero_cost;
|
|
}
|
|
|
|
/* Estimates cost of expressing difference of addresses E1 - E2 as
|
|
var + symbol + offset. The value of offset is added to OFFSET,
|
|
SYMBOL_PRESENT and VAR_PRESENT are set to false if the corresponding
|
|
part is missing. DEPENDS_ON is a set of the invariants the computation
|
|
depends on. */
|
|
|
|
static comp_cost
|
|
ptr_difference_cost (struct ivopts_data *data,
|
|
tree e1, tree e2, bool *symbol_present, bool *var_present,
|
|
unsigned HOST_WIDE_INT *offset, bitmap *depends_on)
|
|
{
|
|
HOST_WIDE_INT diff = 0;
|
|
aff_tree aff_e1, aff_e2;
|
|
tree type;
|
|
|
|
gcc_assert (TREE_CODE (e1) == ADDR_EXPR);
|
|
|
|
if (ptr_difference_const (e1, e2, &diff))
|
|
{
|
|
*offset += diff;
|
|
*symbol_present = false;
|
|
*var_present = false;
|
|
return zero_cost;
|
|
}
|
|
|
|
if (integer_zerop (e2))
|
|
return split_address_cost (data, TREE_OPERAND (e1, 0),
|
|
symbol_present, var_present, offset, depends_on);
|
|
|
|
*symbol_present = false;
|
|
*var_present = true;
|
|
|
|
type = signed_type_for (TREE_TYPE (e1));
|
|
tree_to_aff_combination (e1, type, &aff_e1);
|
|
tree_to_aff_combination (e2, type, &aff_e2);
|
|
aff_combination_scale (&aff_e2, double_int_minus_one);
|
|
aff_combination_add (&aff_e1, &aff_e2);
|
|
|
|
return force_var_cost (data, aff_combination_to_tree (&aff_e1), depends_on);
|
|
}
|
|
|
|
/* Estimates cost of expressing difference E1 - E2 as
|
|
var + symbol + offset. The value of offset is added to OFFSET,
|
|
SYMBOL_PRESENT and VAR_PRESENT are set to false if the corresponding
|
|
part is missing. DEPENDS_ON is a set of the invariants the computation
|
|
depends on. */
|
|
|
|
static comp_cost
|
|
difference_cost (struct ivopts_data *data,
|
|
tree e1, tree e2, bool *symbol_present, bool *var_present,
|
|
unsigned HOST_WIDE_INT *offset, bitmap *depends_on)
|
|
{
|
|
enum machine_mode mode = TYPE_MODE (TREE_TYPE (e1));
|
|
unsigned HOST_WIDE_INT off1, off2;
|
|
aff_tree aff_e1, aff_e2;
|
|
tree type;
|
|
|
|
e1 = strip_offset (e1, &off1);
|
|
e2 = strip_offset (e2, &off2);
|
|
*offset += off1 - off2;
|
|
|
|
STRIP_NOPS (e1);
|
|
STRIP_NOPS (e2);
|
|
|
|
if (TREE_CODE (e1) == ADDR_EXPR)
|
|
return ptr_difference_cost (data, e1, e2, symbol_present, var_present,
|
|
offset, depends_on);
|
|
*symbol_present = false;
|
|
|
|
if (operand_equal_p (e1, e2, 0))
|
|
{
|
|
*var_present = false;
|
|
return zero_cost;
|
|
}
|
|
|
|
*var_present = true;
|
|
|
|
if (integer_zerop (e2))
|
|
return force_var_cost (data, e1, depends_on);
|
|
|
|
if (integer_zerop (e1))
|
|
{
|
|
comp_cost cost = force_var_cost (data, e2, depends_on);
|
|
cost.cost += multiply_by_cost (-1, mode, data->speed);
|
|
return cost;
|
|
}
|
|
|
|
type = signed_type_for (TREE_TYPE (e1));
|
|
tree_to_aff_combination (e1, type, &aff_e1);
|
|
tree_to_aff_combination (e2, type, &aff_e2);
|
|
aff_combination_scale (&aff_e2, double_int_minus_one);
|
|
aff_combination_add (&aff_e1, &aff_e2);
|
|
|
|
return force_var_cost (data, aff_combination_to_tree (&aff_e1), depends_on);
|
|
}
|
|
|
|
/* Returns true if AFF1 and AFF2 are identical. */
|
|
|
|
static bool
|
|
compare_aff_trees (aff_tree *aff1, aff_tree *aff2)
|
|
{
|
|
unsigned i;
|
|
|
|
if (aff1->n != aff2->n)
|
|
return false;
|
|
|
|
for (i = 0; i < aff1->n; i++)
|
|
{
|
|
if (double_int_cmp (aff1->elts[i].coef, aff2->elts[i].coef, 0) != 0)
|
|
return false;
|
|
|
|
if (!operand_equal_p (aff1->elts[i].val, aff2->elts[i].val, 0))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/* Stores EXPR in DATA->inv_expr_tab, and assigns it an inv_expr_id. */
|
|
|
|
static int
|
|
get_expr_id (struct ivopts_data *data, tree expr)
|
|
{
|
|
struct iv_inv_expr_ent ent;
|
|
struct iv_inv_expr_ent **slot;
|
|
|
|
ent.expr = expr;
|
|
ent.hash = iterative_hash_expr (expr, 0);
|
|
slot = (struct iv_inv_expr_ent **) htab_find_slot (data->inv_expr_tab,
|
|
&ent, INSERT);
|
|
if (*slot)
|
|
return (*slot)->id;
|
|
|
|
*slot = XNEW (struct iv_inv_expr_ent);
|
|
(*slot)->expr = expr;
|
|
(*slot)->hash = ent.hash;
|
|
(*slot)->id = data->inv_expr_id++;
|
|
return (*slot)->id;
|
|
}
|
|
|
|
/* Returns the pseudo expr id if expression UBASE - RATIO * CBASE
|
|
requires a new compiler generated temporary. Returns -1 otherwise.
|
|
ADDRESS_P is a flag indicating if the expression is for address
|
|
computation. */
|
|
|
|
static int
|
|
get_loop_invariant_expr_id (struct ivopts_data *data, tree ubase,
|
|
tree cbase, HOST_WIDE_INT ratio,
|
|
bool address_p)
|
|
{
|
|
aff_tree ubase_aff, cbase_aff;
|
|
tree expr, ub, cb;
|
|
|
|
STRIP_NOPS (ubase);
|
|
STRIP_NOPS (cbase);
|
|
ub = ubase;
|
|
cb = cbase;
|
|
|
|
if ((TREE_CODE (ubase) == INTEGER_CST)
|
|
&& (TREE_CODE (cbase) == INTEGER_CST))
|
|
return -1;
|
|
|
|
/* Strips the constant part. */
|
|
if (TREE_CODE (ubase) == PLUS_EXPR
|
|
|| TREE_CODE (ubase) == MINUS_EXPR
|
|
|| TREE_CODE (ubase) == POINTER_PLUS_EXPR)
|
|
{
|
|
if (TREE_CODE (TREE_OPERAND (ubase, 1)) == INTEGER_CST)
|
|
ubase = TREE_OPERAND (ubase, 0);
|
|
}
|
|
|
|
/* Strips the constant part. */
|
|
if (TREE_CODE (cbase) == PLUS_EXPR
|
|
|| TREE_CODE (cbase) == MINUS_EXPR
|
|
|| TREE_CODE (cbase) == POINTER_PLUS_EXPR)
|
|
{
|
|
if (TREE_CODE (TREE_OPERAND (cbase, 1)) == INTEGER_CST)
|
|
cbase = TREE_OPERAND (cbase, 0);
|
|
}
|
|
|
|
if (address_p)
|
|
{
|
|
if (((TREE_CODE (ubase) == SSA_NAME)
|
|
|| (TREE_CODE (ubase) == ADDR_EXPR
|
|
&& is_gimple_min_invariant (ubase)))
|
|
&& (TREE_CODE (cbase) == INTEGER_CST))
|
|
return -1;
|
|
|
|
if (((TREE_CODE (cbase) == SSA_NAME)
|
|
|| (TREE_CODE (cbase) == ADDR_EXPR
|
|
&& is_gimple_min_invariant (cbase)))
|
|
&& (TREE_CODE (ubase) == INTEGER_CST))
|
|
return -1;
|
|
}
|
|
|
|
if (ratio == 1)
|
|
{
|
|
if(operand_equal_p (ubase, cbase, 0))
|
|
return -1;
|
|
|
|
if (TREE_CODE (ubase) == ADDR_EXPR
|
|
&& TREE_CODE (cbase) == ADDR_EXPR)
|
|
{
|
|
tree usym, csym;
|
|
|
|
usym = TREE_OPERAND (ubase, 0);
|
|
csym = TREE_OPERAND (cbase, 0);
|
|
if (TREE_CODE (usym) == ARRAY_REF)
|
|
{
|
|
tree ind = TREE_OPERAND (usym, 1);
|
|
if (TREE_CODE (ind) == INTEGER_CST
|
|
&& host_integerp (ind, 0)
|
|
&& TREE_INT_CST_LOW (ind) == 0)
|
|
usym = TREE_OPERAND (usym, 0);
|
|
}
|
|
if (TREE_CODE (csym) == ARRAY_REF)
|
|
{
|
|
tree ind = TREE_OPERAND (csym, 1);
|
|
if (TREE_CODE (ind) == INTEGER_CST
|
|
&& host_integerp (ind, 0)
|
|
&& TREE_INT_CST_LOW (ind) == 0)
|
|
csym = TREE_OPERAND (csym, 0);
|
|
}
|
|
if (operand_equal_p (usym, csym, 0))
|
|
return -1;
|
|
}
|
|
/* Now do more complex comparison */
|
|
tree_to_aff_combination (ubase, TREE_TYPE (ubase), &ubase_aff);
|
|
tree_to_aff_combination (cbase, TREE_TYPE (cbase), &cbase_aff);
|
|
if (compare_aff_trees (&ubase_aff, &cbase_aff))
|
|
return -1;
|
|
}
|
|
|
|
tree_to_aff_combination (ub, TREE_TYPE (ub), &ubase_aff);
|
|
tree_to_aff_combination (cb, TREE_TYPE (cb), &cbase_aff);
|
|
|
|
aff_combination_scale (&cbase_aff, shwi_to_double_int (-1 * ratio));
|
|
aff_combination_add (&ubase_aff, &cbase_aff);
|
|
expr = aff_combination_to_tree (&ubase_aff);
|
|
return get_expr_id (data, expr);
|
|
}
|
|
|
|
|
|
|
|
/* Determines the cost of the computation by that USE is expressed
|
|
from induction variable CAND. If ADDRESS_P is true, we just need
|
|
to create an address from it, otherwise we want to get it into
|
|
register. A set of invariants we depend on is stored in
|
|
DEPENDS_ON. AT is the statement at that the value is computed.
|
|
If CAN_AUTOINC is nonnull, use it to record whether autoinc
|
|
addressing is likely. */
|
|
|
|
static comp_cost
|
|
get_computation_cost_at (struct ivopts_data *data,
|
|
struct iv_use *use, struct iv_cand *cand,
|
|
bool address_p, bitmap *depends_on, gimple at,
|
|
bool *can_autoinc,
|
|
int *inv_expr_id)
|
|
{
|
|
tree ubase = use->iv->base, ustep = use->iv->step;
|
|
tree cbase, cstep;
|
|
tree utype = TREE_TYPE (ubase), ctype;
|
|
unsigned HOST_WIDE_INT cstepi, offset = 0;
|
|
HOST_WIDE_INT ratio, aratio;
|
|
bool var_present, symbol_present, stmt_is_after_inc;
|
|
comp_cost cost;
|
|
double_int rat;
|
|
bool speed = optimize_bb_for_speed_p (gimple_bb (at));
|
|
|
|
*depends_on = NULL;
|
|
|
|
/* Only consider real candidates. */
|
|
if (!cand->iv)
|
|
return infinite_cost;
|
|
|
|
cbase = cand->iv->base;
|
|
cstep = cand->iv->step;
|
|
ctype = TREE_TYPE (cbase);
|
|
|
|
if (TYPE_PRECISION (utype) > TYPE_PRECISION (ctype))
|
|
{
|
|
/* We do not have a precision to express the values of use. */
|
|
return infinite_cost;
|
|
}
|
|
|
|
if (address_p)
|
|
{
|
|
/* Do not try to express address of an object with computation based
|
|
on address of a different object. This may cause problems in rtl
|
|
level alias analysis (that does not expect this to be happening,
|
|
as this is illegal in C), and would be unlikely to be useful
|
|
anyway. */
|
|
if (use->iv->base_object
|
|
&& cand->iv->base_object
|
|
&& !operand_equal_p (use->iv->base_object, cand->iv->base_object, 0))
|
|
return infinite_cost;
|
|
}
|
|
|
|
if (TYPE_PRECISION (utype) < TYPE_PRECISION (ctype))
|
|
{
|
|
/* TODO -- add direct handling of this case. */
|
|
goto fallback;
|
|
}
|
|
|
|
/* CSTEPI is removed from the offset in case statement is after the
|
|
increment. If the step is not constant, we use zero instead.
|
|
This is a bit imprecise (there is the extra addition), but
|
|
redundancy elimination is likely to transform the code so that
|
|
it uses value of the variable before increment anyway,
|
|
so it is not that much unrealistic. */
|
|
if (cst_and_fits_in_hwi (cstep))
|
|
cstepi = int_cst_value (cstep);
|
|
else
|
|
cstepi = 0;
|
|
|
|
if (!constant_multiple_of (ustep, cstep, &rat))
|
|
return infinite_cost;
|
|
|
|
if (double_int_fits_in_shwi_p (rat))
|
|
ratio = double_int_to_shwi (rat);
|
|
else
|
|
return infinite_cost;
|
|
|
|
STRIP_NOPS (cbase);
|
|
ctype = TREE_TYPE (cbase);
|
|
|
|
stmt_is_after_inc = stmt_after_increment (data->current_loop, cand, at);
|
|
|
|
/* use = ubase + ratio * (var - cbase). If either cbase is a constant
|
|
or ratio == 1, it is better to handle this like
|
|
|
|
ubase - ratio * cbase + ratio * var
|
|
|
|
(also holds in the case ratio == -1, TODO. */
|
|
|
|
if (cst_and_fits_in_hwi (cbase))
|
|
{
|
|
offset = - ratio * int_cst_value (cbase);
|
|
cost = difference_cost (data,
|
|
ubase, build_int_cst (utype, 0),
|
|
&symbol_present, &var_present, &offset,
|
|
depends_on);
|
|
cost.cost /= avg_loop_niter (data->current_loop);
|
|
}
|
|
else if (ratio == 1)
|
|
{
|
|
tree real_cbase = cbase;
|
|
|
|
/* Check to see if any adjustment is needed. */
|
|
if (cstepi == 0 && stmt_is_after_inc)
|
|
{
|
|
aff_tree real_cbase_aff;
|
|
aff_tree cstep_aff;
|
|
|
|
tree_to_aff_combination (cbase, TREE_TYPE (real_cbase),
|
|
&real_cbase_aff);
|
|
tree_to_aff_combination (cstep, TREE_TYPE (cstep), &cstep_aff);
|
|
|
|
aff_combination_add (&real_cbase_aff, &cstep_aff);
|
|
real_cbase = aff_combination_to_tree (&real_cbase_aff);
|
|
}
|
|
|
|
cost = difference_cost (data,
|
|
ubase, real_cbase,
|
|
&symbol_present, &var_present, &offset,
|
|
depends_on);
|
|
cost.cost /= avg_loop_niter (data->current_loop);
|
|
}
|
|
else if (address_p
|
|
&& !POINTER_TYPE_P (ctype)
|
|
&& multiplier_allowed_in_address_p
|
|
(ratio, TYPE_MODE (TREE_TYPE (utype)),
|
|
TYPE_ADDR_SPACE (TREE_TYPE (utype))))
|
|
{
|
|
cbase
|
|
= fold_build2 (MULT_EXPR, ctype, cbase, build_int_cst (ctype, ratio));
|
|
cost = difference_cost (data,
|
|
ubase, cbase,
|
|
&symbol_present, &var_present, &offset,
|
|
depends_on);
|
|
cost.cost /= avg_loop_niter (data->current_loop);
|
|
}
|
|
else
|
|
{
|
|
cost = force_var_cost (data, cbase, depends_on);
|
|
cost = add_costs (cost,
|
|
difference_cost (data,
|
|
ubase, build_int_cst (utype, 0),
|
|
&symbol_present, &var_present,
|
|
&offset, depends_on));
|
|
cost.cost /= avg_loop_niter (data->current_loop);
|
|
cost.cost += add_cost (TYPE_MODE (ctype), data->speed);
|
|
}
|
|
|
|
if (inv_expr_id)
|
|
{
|
|
*inv_expr_id =
|
|
get_loop_invariant_expr_id (data, ubase, cbase, ratio, address_p);
|
|
/* Clear depends on. */
|
|
if (*inv_expr_id != -1 && depends_on && *depends_on)
|
|
bitmap_clear (*depends_on);
|
|
}
|
|
|
|
/* If we are after the increment, the value of the candidate is higher by
|
|
one iteration. */
|
|
if (stmt_is_after_inc)
|
|
offset -= ratio * cstepi;
|
|
|
|
/* Now the computation is in shape symbol + var1 + const + ratio * var2.
|
|
(symbol/var1/const parts may be omitted). If we are looking for an
|
|
address, find the cost of addressing this. */
|
|
if (address_p)
|
|
return add_costs (cost,
|
|
get_address_cost (symbol_present, var_present,
|
|
offset, ratio, cstepi,
|
|
TYPE_MODE (TREE_TYPE (utype)),
|
|
TYPE_ADDR_SPACE (TREE_TYPE (utype)),
|
|
speed, stmt_is_after_inc,
|
|
can_autoinc));
|
|
|
|
/* Otherwise estimate the costs for computing the expression. */
|
|
if (!symbol_present && !var_present && !offset)
|
|
{
|
|
if (ratio != 1)
|
|
cost.cost += multiply_by_cost (ratio, TYPE_MODE (ctype), speed);
|
|
return cost;
|
|
}
|
|
|
|
/* Symbol + offset should be compile-time computable so consider that they
|
|
are added once to the variable, if present. */
|
|
if (var_present && (symbol_present || offset))
|
|
cost.cost += adjust_setup_cost (data,
|
|
add_cost (TYPE_MODE (ctype), speed));
|
|
|
|
/* Having offset does not affect runtime cost in case it is added to
|
|
symbol, but it increases complexity. */
|
|
if (offset)
|
|
cost.complexity++;
|
|
|
|
cost.cost += add_cost (TYPE_MODE (ctype), speed);
|
|
|
|
aratio = ratio > 0 ? ratio : -ratio;
|
|
if (aratio != 1)
|
|
cost.cost += multiply_by_cost (aratio, TYPE_MODE (ctype), speed);
|
|
return cost;
|
|
|
|
fallback:
|
|
if (can_autoinc)
|
|
*can_autoinc = false;
|
|
|
|
{
|
|
/* Just get the expression, expand it and measure the cost. */
|
|
tree comp = get_computation_at (data->current_loop, use, cand, at);
|
|
|
|
if (!comp)
|
|
return infinite_cost;
|
|
|
|
if (address_p)
|
|
comp = build_simple_mem_ref (comp);
|
|
|
|
return new_cost (computation_cost (comp, speed), 0);
|
|
}
|
|
}
|
|
|
|
/* Determines the cost of the computation by that USE is expressed
|
|
from induction variable CAND. If ADDRESS_P is true, we just need
|
|
to create an address from it, otherwise we want to get it into
|
|
register. A set of invariants we depend on is stored in
|
|
DEPENDS_ON. If CAN_AUTOINC is nonnull, use it to record whether
|
|
autoinc addressing is likely. */
|
|
|
|
static comp_cost
|
|
get_computation_cost (struct ivopts_data *data,
|
|
struct iv_use *use, struct iv_cand *cand,
|
|
bool address_p, bitmap *depends_on,
|
|
bool *can_autoinc, int *inv_expr_id)
|
|
{
|
|
return get_computation_cost_at (data,
|
|
use, cand, address_p, depends_on, use->stmt,
|
|
can_autoinc, inv_expr_id);
|
|
}
|
|
|
|
/* Determines cost of basing replacement of USE on CAND in a generic
|
|
expression. */
|
|
|
|
static bool
|
|
determine_use_iv_cost_generic (struct ivopts_data *data,
|
|
struct iv_use *use, struct iv_cand *cand)
|
|
{
|
|
bitmap depends_on;
|
|
comp_cost cost;
|
|
int inv_expr_id = -1;
|
|
|
|
/* The simple case first -- if we need to express value of the preserved
|
|
original biv, the cost is 0. This also prevents us from counting the
|
|
cost of increment twice -- once at this use and once in the cost of
|
|
the candidate. */
|
|
if (cand->pos == IP_ORIGINAL
|
|
&& cand->incremented_at == use->stmt)
|
|
{
|
|
set_use_iv_cost (data, use, cand, zero_cost, NULL, NULL_TREE,
|
|
ERROR_MARK, -1);
|
|
return true;
|
|
}
|
|
|
|
cost = get_computation_cost (data, use, cand, false, &depends_on,
|
|
NULL, &inv_expr_id);
|
|
|
|
set_use_iv_cost (data, use, cand, cost, depends_on, NULL_TREE, ERROR_MARK,
|
|
inv_expr_id);
|
|
|
|
return !infinite_cost_p (cost);
|
|
}
|
|
|
|
/* Determines cost of basing replacement of USE on CAND in an address. */
|
|
|
|
static bool
|
|
determine_use_iv_cost_address (struct ivopts_data *data,
|
|
struct iv_use *use, struct iv_cand *cand)
|
|
{
|
|
bitmap depends_on;
|
|
bool can_autoinc;
|
|
int inv_expr_id = -1;
|
|
comp_cost cost = get_computation_cost (data, use, cand, true, &depends_on,
|
|
&can_autoinc, &inv_expr_id);
|
|
|
|
if (cand->ainc_use == use)
|
|
{
|
|
if (can_autoinc)
|
|
cost.cost -= cand->cost_step;
|
|
/* If we generated the candidate solely for exploiting autoincrement
|
|
opportunities, and it turns out it can't be used, set the cost to
|
|
infinity to make sure we ignore it. */
|
|
else if (cand->pos == IP_AFTER_USE || cand->pos == IP_BEFORE_USE)
|
|
cost = infinite_cost;
|
|
}
|
|
set_use_iv_cost (data, use, cand, cost, depends_on, NULL_TREE, ERROR_MARK,
|
|
inv_expr_id);
|
|
|
|
return !infinite_cost_p (cost);
|
|
}
|
|
|
|
/* Computes value of candidate CAND at position AT in iteration NITER, and
|
|
stores it to VAL. */
|
|
|
|
static void
|
|
cand_value_at (struct loop *loop, struct iv_cand *cand, gimple at, tree niter,
|
|
aff_tree *val)
|
|
{
|
|
aff_tree step, delta, nit;
|
|
struct iv *iv = cand->iv;
|
|
tree type = TREE_TYPE (iv->base);
|
|
tree steptype = type;
|
|
if (POINTER_TYPE_P (type))
|
|
steptype = sizetype;
|
|
|
|
tree_to_aff_combination (iv->step, steptype, &step);
|
|
tree_to_aff_combination (niter, TREE_TYPE (niter), &nit);
|
|
aff_combination_convert (&nit, steptype);
|
|
aff_combination_mult (&nit, &step, &delta);
|
|
if (stmt_after_increment (loop, cand, at))
|
|
aff_combination_add (&delta, &step);
|
|
|
|
tree_to_aff_combination (iv->base, type, val);
|
|
aff_combination_add (val, &delta);
|
|
}
|
|
|
|
/* Returns period of induction variable iv. */
|
|
|
|
static tree
|
|
iv_period (struct iv *iv)
|
|
{
|
|
tree step = iv->step, period, type;
|
|
tree pow2div;
|
|
|
|
gcc_assert (step && TREE_CODE (step) == INTEGER_CST);
|
|
|
|
type = unsigned_type_for (TREE_TYPE (step));
|
|
/* Period of the iv is lcm (step, type_range)/step -1,
|
|
i.e., N*type_range/step - 1. Since type range is power
|
|
of two, N == (step >> num_of_ending_zeros_binary (step),
|
|
so the final result is
|
|
|
|
(type_range >> num_of_ending_zeros_binary (step)) - 1
|
|
|
|
*/
|
|
pow2div = num_ending_zeros (step);
|
|
|
|
period = build_low_bits_mask (type,
|
|
(TYPE_PRECISION (type)
|
|
- tree_low_cst (pow2div, 1)));
|
|
|
|
return period;
|
|
}
|
|
|
|
/* Returns the comparison operator used when eliminating the iv USE. */
|
|
|
|
static enum tree_code
|
|
iv_elimination_compare (struct ivopts_data *data, struct iv_use *use)
|
|
{
|
|
struct loop *loop = data->current_loop;
|
|
basic_block ex_bb;
|
|
edge exit;
|
|
|
|
ex_bb = gimple_bb (use->stmt);
|
|
exit = EDGE_SUCC (ex_bb, 0);
|
|
if (flow_bb_inside_loop_p (loop, exit->dest))
|
|
exit = EDGE_SUCC (ex_bb, 1);
|
|
|
|
return (exit->flags & EDGE_TRUE_VALUE ? EQ_EXPR : NE_EXPR);
|
|
}
|
|
|
|
static tree
|
|
strip_wrap_conserving_type_conversions (tree exp)
|
|
{
|
|
while (tree_ssa_useless_type_conversion (exp)
|
|
&& (nowrap_type_p (TREE_TYPE (exp))
|
|
== nowrap_type_p (TREE_TYPE (TREE_OPERAND (exp, 0)))))
|
|
exp = TREE_OPERAND (exp, 0);
|
|
return exp;
|
|
}
|
|
|
|
/* Walk the SSA form and check whether E == WHAT. Fairly simplistic, we
|
|
check for an exact match. */
|
|
|
|
static bool
|
|
expr_equal_p (tree e, tree what)
|
|
{
|
|
gimple stmt;
|
|
enum tree_code code;
|
|
|
|
e = strip_wrap_conserving_type_conversions (e);
|
|
what = strip_wrap_conserving_type_conversions (what);
|
|
|
|
code = TREE_CODE (what);
|
|
if (TREE_TYPE (e) != TREE_TYPE (what))
|
|
return false;
|
|
|
|
if (operand_equal_p (e, what, 0))
|
|
return true;
|
|
|
|
if (TREE_CODE (e) != SSA_NAME)
|
|
return false;
|
|
|
|
stmt = SSA_NAME_DEF_STMT (e);
|
|
if (gimple_code (stmt) != GIMPLE_ASSIGN
|
|
|| gimple_assign_rhs_code (stmt) != code)
|
|
return false;
|
|
|
|
switch (get_gimple_rhs_class (code))
|
|
{
|
|
case GIMPLE_BINARY_RHS:
|
|
if (!expr_equal_p (gimple_assign_rhs2 (stmt), TREE_OPERAND (what, 1)))
|
|
return false;
|
|
/* Fallthru. */
|
|
|
|
case GIMPLE_UNARY_RHS:
|
|
case GIMPLE_SINGLE_RHS:
|
|
return expr_equal_p (gimple_assign_rhs1 (stmt), TREE_OPERAND (what, 0));
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/* Returns true if we can prove that BASE - OFFSET does not overflow. For now,
|
|
we only detect the situation that BASE = SOMETHING + OFFSET, where the
|
|
calculation is performed in non-wrapping type.
|
|
|
|
TODO: More generally, we could test for the situation that
|
|
BASE = SOMETHING + OFFSET' and OFFSET is between OFFSET' and zero.
|
|
This would require knowing the sign of OFFSET.
|
|
|
|
Also, we only look for the first addition in the computation of BASE.
|
|
More complex analysis would be better, but introducing it just for
|
|
this optimization seems like an overkill. */
|
|
|
|
static bool
|
|
difference_cannot_overflow_p (tree base, tree offset)
|
|
{
|
|
enum tree_code code;
|
|
tree e1, e2;
|
|
|
|
if (!nowrap_type_p (TREE_TYPE (base)))
|
|
return false;
|
|
|
|
base = expand_simple_operations (base);
|
|
|
|
if (TREE_CODE (base) == SSA_NAME)
|
|
{
|
|
gimple stmt = SSA_NAME_DEF_STMT (base);
|
|
|
|
if (gimple_code (stmt) != GIMPLE_ASSIGN)
|
|
return false;
|
|
|
|
code = gimple_assign_rhs_code (stmt);
|
|
if (get_gimple_rhs_class (code) != GIMPLE_BINARY_RHS)
|
|
return false;
|
|
|
|
e1 = gimple_assign_rhs1 (stmt);
|
|
e2 = gimple_assign_rhs2 (stmt);
|
|
}
|
|
else
|
|
{
|
|
code = TREE_CODE (base);
|
|
if (get_gimple_rhs_class (code) != GIMPLE_BINARY_RHS)
|
|
return false;
|
|
e1 = TREE_OPERAND (base, 0);
|
|
e2 = TREE_OPERAND (base, 1);
|
|
}
|
|
|
|
/* TODO: deeper inspection may be necessary to prove the equality. */
|
|
switch (code)
|
|
{
|
|
case PLUS_EXPR:
|
|
return expr_equal_p (e1, offset) || expr_equal_p (e2, offset);
|
|
case POINTER_PLUS_EXPR:
|
|
return expr_equal_p (e2, offset);
|
|
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/* Tries to replace loop exit by one formulated in terms of a LT_EXPR
|
|
comparison with CAND. NITER describes the number of iterations of
|
|
the loops. If successful, the comparison in COMP_P is altered accordingly.
|
|
|
|
We aim to handle the following situation:
|
|
|
|
sometype *base, *p;
|
|
int a, b, i;
|
|
|
|
i = a;
|
|
p = p_0 = base + a;
|
|
|
|
do
|
|
{
|
|
bla (*p);
|
|
p++;
|
|
i++;
|
|
}
|
|
while (i < b);
|
|
|
|
Here, the number of iterations of the loop is (a + 1 > b) ? 0 : b - a - 1.
|
|
We aim to optimize this to
|
|
|
|
p = p_0 = base + a;
|
|
do
|
|
{
|
|
bla (*p);
|
|
p++;
|
|
}
|
|
while (p < p_0 - a + b);
|
|
|
|
This preserves the correctness, since the pointer arithmetics does not
|
|
overflow. More precisely:
|
|
|
|
1) if a + 1 <= b, then p_0 - a + b is the final value of p, hence there is no
|
|
overflow in computing it or the values of p.
|
|
2) if a + 1 > b, then we need to verify that the expression p_0 - a does not
|
|
overflow. To prove this, we use the fact that p_0 = base + a. */
|
|
|
|
static bool
|
|
iv_elimination_compare_lt (struct ivopts_data *data,
|
|
struct iv_cand *cand, enum tree_code *comp_p,
|
|
struct tree_niter_desc *niter)
|
|
{
|
|
tree cand_type, a, b, mbz, nit_type = TREE_TYPE (niter->niter), offset;
|
|
struct affine_tree_combination nit, tmpa, tmpb;
|
|
enum tree_code comp;
|
|
HOST_WIDE_INT step;
|
|
|
|
/* We need to know that the candidate induction variable does not overflow.
|
|
While more complex analysis may be used to prove this, for now just
|
|
check that the variable appears in the original program and that it
|
|
is computed in a type that guarantees no overflows. */
|
|
cand_type = TREE_TYPE (cand->iv->base);
|
|
if (cand->pos != IP_ORIGINAL || !nowrap_type_p (cand_type))
|
|
return false;
|
|
|
|
/* Make sure that the loop iterates till the loop bound is hit, as otherwise
|
|
the calculation of the BOUND could overflow, making the comparison
|
|
invalid. */
|
|
if (!data->loop_single_exit_p)
|
|
return false;
|
|
|
|
/* We need to be able to decide whether candidate is increasing or decreasing
|
|
in order to choose the right comparison operator. */
|
|
if (!cst_and_fits_in_hwi (cand->iv->step))
|
|
return false;
|
|
step = int_cst_value (cand->iv->step);
|
|
|
|
/* Check that the number of iterations matches the expected pattern:
|
|
a + 1 > b ? 0 : b - a - 1. */
|
|
mbz = niter->may_be_zero;
|
|
if (TREE_CODE (mbz) == GT_EXPR)
|
|
{
|
|
/* Handle a + 1 > b. */
|
|
tree op0 = TREE_OPERAND (mbz, 0);
|
|
if (TREE_CODE (op0) == PLUS_EXPR && integer_onep (TREE_OPERAND (op0, 1)))
|
|
{
|
|
a = TREE_OPERAND (op0, 0);
|
|
b = TREE_OPERAND (mbz, 1);
|
|
}
|
|
else
|
|
return false;
|
|
}
|
|
else if (TREE_CODE (mbz) == LT_EXPR)
|
|
{
|
|
tree op1 = TREE_OPERAND (mbz, 1);
|
|
|
|
/* Handle b < a + 1. */
|
|
if (TREE_CODE (op1) == PLUS_EXPR && integer_onep (TREE_OPERAND (op1, 1)))
|
|
{
|
|
a = TREE_OPERAND (op1, 0);
|
|
b = TREE_OPERAND (mbz, 0);
|
|
}
|
|
else
|
|
return false;
|
|
}
|
|
else
|
|
return false;
|
|
|
|
/* Expected number of iterations is B - A - 1. Check that it matches
|
|
the actual number, i.e., that B - A - NITER = 1. */
|
|
tree_to_aff_combination (niter->niter, nit_type, &nit);
|
|
tree_to_aff_combination (fold_convert (nit_type, a), nit_type, &tmpa);
|
|
tree_to_aff_combination (fold_convert (nit_type, b), nit_type, &tmpb);
|
|
aff_combination_scale (&nit, double_int_minus_one);
|
|
aff_combination_scale (&tmpa, double_int_minus_one);
|
|
aff_combination_add (&tmpb, &tmpa);
|
|
aff_combination_add (&tmpb, &nit);
|
|
if (tmpb.n != 0 || !double_int_equal_p (tmpb.offset, double_int_one))
|
|
return false;
|
|
|
|
/* Finally, check that CAND->IV->BASE - CAND->IV->STEP * A does not
|
|
overflow. */
|
|
offset = fold_build2 (MULT_EXPR, TREE_TYPE (cand->iv->step),
|
|
cand->iv->step,
|
|
fold_convert (TREE_TYPE (cand->iv->step), a));
|
|
if (!difference_cannot_overflow_p (cand->iv->base, offset))
|
|
return false;
|
|
|
|
/* Determine the new comparison operator. */
|
|
comp = step < 0 ? GT_EXPR : LT_EXPR;
|
|
if (*comp_p == NE_EXPR)
|
|
*comp_p = comp;
|
|
else if (*comp_p == EQ_EXPR)
|
|
*comp_p = invert_tree_comparison (comp, false);
|
|
else
|
|
gcc_unreachable ();
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Check whether it is possible to express the condition in USE by comparison
|
|
of candidate CAND. If so, store the value compared with to BOUND, and the
|
|
comparison operator to COMP. */
|
|
|
|
static bool
|
|
may_eliminate_iv (struct ivopts_data *data,
|
|
struct iv_use *use, struct iv_cand *cand, tree *bound,
|
|
enum tree_code *comp)
|
|
{
|
|
basic_block ex_bb;
|
|
edge exit;
|
|
tree period;
|
|
struct loop *loop = data->current_loop;
|
|
aff_tree bnd;
|
|
struct tree_niter_desc *desc = NULL;
|
|
|
|
if (TREE_CODE (cand->iv->step) != INTEGER_CST)
|
|
return false;
|
|
|
|
/* For now works only for exits that dominate the loop latch.
|
|
TODO: extend to other conditions inside loop body. */
|
|
ex_bb = gimple_bb (use->stmt);
|
|
if (use->stmt != last_stmt (ex_bb)
|
|
|| gimple_code (use->stmt) != GIMPLE_COND
|
|
|| !dominated_by_p (CDI_DOMINATORS, loop->latch, ex_bb))
|
|
return false;
|
|
|
|
exit = EDGE_SUCC (ex_bb, 0);
|
|
if (flow_bb_inside_loop_p (loop, exit->dest))
|
|
exit = EDGE_SUCC (ex_bb, 1);
|
|
if (flow_bb_inside_loop_p (loop, exit->dest))
|
|
return false;
|
|
|
|
desc = niter_for_exit (data, exit);
|
|
if (!desc)
|
|
return false;
|
|
|
|
/* Determine whether we can use the variable to test the exit condition.
|
|
This is the case iff the period of the induction variable is greater
|
|
than the number of iterations for which the exit condition is true. */
|
|
period = iv_period (cand->iv);
|
|
|
|
/* If the number of iterations is constant, compare against it directly. */
|
|
if (TREE_CODE (desc->niter) == INTEGER_CST)
|
|
{
|
|
/* See cand_value_at. */
|
|
if (stmt_after_increment (loop, cand, use->stmt))
|
|
{
|
|
if (!tree_int_cst_lt (desc->niter, period))
|
|
return false;
|
|
}
|
|
else
|
|
{
|
|
if (tree_int_cst_lt (period, desc->niter))
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/* If not, and if this is the only possible exit of the loop, see whether
|
|
we can get a conservative estimate on the number of iterations of the
|
|
entire loop and compare against that instead. */
|
|
else
|
|
{
|
|
double_int period_value, max_niter;
|
|
|
|
max_niter = desc->max;
|
|
if (stmt_after_increment (loop, cand, use->stmt))
|
|
max_niter = double_int_add (max_niter, double_int_one);
|
|
period_value = tree_to_double_int (period);
|
|
if (double_int_ucmp (max_niter, period_value) > 0)
|
|
{
|
|
/* See if we can take advantage of infered loop bound information. */
|
|
if (data->loop_single_exit_p)
|
|
{
|
|
if (!estimated_loop_iterations (loop, true, &max_niter))
|
|
return false;
|
|
/* The loop bound is already adjusted by adding 1. */
|
|
if (double_int_ucmp (max_niter, period_value) > 0)
|
|
return false;
|
|
}
|
|
else
|
|
return false;
|
|
}
|
|
}
|
|
|
|
cand_value_at (loop, cand, use->stmt, desc->niter, &bnd);
|
|
|
|
*bound = aff_combination_to_tree (&bnd);
|
|
*comp = iv_elimination_compare (data, use);
|
|
|
|
/* It is unlikely that computing the number of iterations using division
|
|
would be more profitable than keeping the original induction variable. */
|
|
if (expression_expensive_p (*bound))
|
|
return false;
|
|
|
|
/* Sometimes, it is possible to handle the situation that the number of
|
|
iterations may be zero unless additional assumtions by using <
|
|
instead of != in the exit condition.
|
|
|
|
TODO: we could also calculate the value MAY_BE_ZERO ? 0 : NITER and
|
|
base the exit condition on it. However, that is often too
|
|
expensive. */
|
|
if (!integer_zerop (desc->may_be_zero))
|
|
return iv_elimination_compare_lt (data, cand, comp, desc);
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Calculates the cost of BOUND, if it is a PARM_DECL. A PARM_DECL must
|
|
be copied, if is is used in the loop body and DATA->body_includes_call. */
|
|
|
|
static int
|
|
parm_decl_cost (struct ivopts_data *data, tree bound)
|
|
{
|
|
tree sbound = bound;
|
|
STRIP_NOPS (sbound);
|
|
|
|
if (TREE_CODE (sbound) == SSA_NAME
|
|
&& TREE_CODE (SSA_NAME_VAR (sbound)) == PARM_DECL
|
|
&& gimple_nop_p (SSA_NAME_DEF_STMT (sbound))
|
|
&& data->body_includes_call)
|
|
return COSTS_N_INSNS (1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Determines cost of basing replacement of USE on CAND in a condition. */
|
|
|
|
static bool
|
|
determine_use_iv_cost_condition (struct ivopts_data *data,
|
|
struct iv_use *use, struct iv_cand *cand)
|
|
{
|
|
tree bound = NULL_TREE;
|
|
struct iv *cmp_iv;
|
|
bitmap depends_on_elim = NULL, depends_on_express = NULL, depends_on;
|
|
comp_cost elim_cost, express_cost, cost, bound_cost;
|
|
bool ok;
|
|
int elim_inv_expr_id = -1, express_inv_expr_id = -1, inv_expr_id;
|
|
tree *control_var, *bound_cst;
|
|
enum tree_code comp = ERROR_MARK;
|
|
|
|
/* Only consider real candidates. */
|
|
if (!cand->iv)
|
|
{
|
|
set_use_iv_cost (data, use, cand, infinite_cost, NULL, NULL_TREE,
|
|
ERROR_MARK, -1);
|
|
return false;
|
|
}
|
|
|
|
/* Try iv elimination. */
|
|
if (may_eliminate_iv (data, use, cand, &bound, &comp))
|
|
{
|
|
elim_cost = force_var_cost (data, bound, &depends_on_elim);
|
|
if (elim_cost.cost == 0)
|
|
elim_cost.cost = parm_decl_cost (data, bound);
|
|
else if (TREE_CODE (bound) == INTEGER_CST)
|
|
elim_cost.cost = 0;
|
|
/* If we replace a loop condition 'i < n' with 'p < base + n',
|
|
depends_on_elim will have 'base' and 'n' set, which implies
|
|
that both 'base' and 'n' will be live during the loop. More likely,
|
|
'base + n' will be loop invariant, resulting in only one live value
|
|
during the loop. So in that case we clear depends_on_elim and set
|
|
elim_inv_expr_id instead. */
|
|
if (depends_on_elim && bitmap_count_bits (depends_on_elim) > 1)
|
|
{
|
|
elim_inv_expr_id = get_expr_id (data, bound);
|
|
bitmap_clear (depends_on_elim);
|
|
}
|
|
/* The bound is a loop invariant, so it will be only computed
|
|
once. */
|
|
elim_cost.cost = adjust_setup_cost (data, elim_cost.cost);
|
|
}
|
|
else
|
|
elim_cost = infinite_cost;
|
|
|
|
/* Try expressing the original giv. If it is compared with an invariant,
|
|
note that we cannot get rid of it. */
|
|
ok = extract_cond_operands (data, use->stmt, &control_var, &bound_cst,
|
|
NULL, &cmp_iv);
|
|
gcc_assert (ok);
|
|
|
|
/* When the condition is a comparison of the candidate IV against
|
|
zero, prefer this IV.
|
|
|
|
TODO: The constant that we're substracting from the cost should
|
|
be target-dependent. This information should be added to the
|
|
target costs for each backend. */
|
|
if (!infinite_cost_p (elim_cost) /* Do not try to decrease infinite! */
|
|
&& integer_zerop (*bound_cst)
|
|
&& (operand_equal_p (*control_var, cand->var_after, 0)
|
|
|| operand_equal_p (*control_var, cand->var_before, 0)))
|
|
elim_cost.cost -= 1;
|
|
|
|
express_cost = get_computation_cost (data, use, cand, false,
|
|
&depends_on_express, NULL,
|
|
&express_inv_expr_id);
|
|
fd_ivopts_data = data;
|
|
walk_tree (&cmp_iv->base, find_depends, &depends_on_express, NULL);
|
|
|
|
/* Count the cost of the original bound as well. */
|
|
bound_cost = force_var_cost (data, *bound_cst, NULL);
|
|
if (bound_cost.cost == 0)
|
|
bound_cost.cost = parm_decl_cost (data, *bound_cst);
|
|
else if (TREE_CODE (*bound_cst) == INTEGER_CST)
|
|
bound_cost.cost = 0;
|
|
express_cost.cost += bound_cost.cost;
|
|
|
|
/* Choose the better approach, preferring the eliminated IV. */
|
|
if (compare_costs (elim_cost, express_cost) <= 0)
|
|
{
|
|
cost = elim_cost;
|
|
depends_on = depends_on_elim;
|
|
depends_on_elim = NULL;
|
|
inv_expr_id = elim_inv_expr_id;
|
|
}
|
|
else
|
|
{
|
|
cost = express_cost;
|
|
depends_on = depends_on_express;
|
|
depends_on_express = NULL;
|
|
bound = NULL_TREE;
|
|
comp = ERROR_MARK;
|
|
inv_expr_id = express_inv_expr_id;
|
|
}
|
|
|
|
set_use_iv_cost (data, use, cand, cost, depends_on, bound, comp, inv_expr_id);
|
|
|
|
if (depends_on_elim)
|
|
BITMAP_FREE (depends_on_elim);
|
|
if (depends_on_express)
|
|
BITMAP_FREE (depends_on_express);
|
|
|
|
return !infinite_cost_p (cost);
|
|
}
|
|
|
|
/* Determines cost of basing replacement of USE on CAND. Returns false
|
|
if USE cannot be based on CAND. */
|
|
|
|
static bool
|
|
determine_use_iv_cost (struct ivopts_data *data,
|
|
struct iv_use *use, struct iv_cand *cand)
|
|
{
|
|
switch (use->type)
|
|
{
|
|
case USE_NONLINEAR_EXPR:
|
|
return determine_use_iv_cost_generic (data, use, cand);
|
|
|
|
case USE_ADDRESS:
|
|
return determine_use_iv_cost_address (data, use, cand);
|
|
|
|
case USE_COMPARE:
|
|
return determine_use_iv_cost_condition (data, use, cand);
|
|
|
|
default:
|
|
gcc_unreachable ();
|
|
}
|
|
}
|
|
|
|
/* Return true if get_computation_cost indicates that autoincrement is
|
|
a possibility for the pair of USE and CAND, false otherwise. */
|
|
|
|
static bool
|
|
autoinc_possible_for_pair (struct ivopts_data *data, struct iv_use *use,
|
|
struct iv_cand *cand)
|
|
{
|
|
bitmap depends_on;
|
|
bool can_autoinc;
|
|
comp_cost cost;
|
|
|
|
if (use->type != USE_ADDRESS)
|
|
return false;
|
|
|
|
cost = get_computation_cost (data, use, cand, true, &depends_on,
|
|
&can_autoinc, NULL);
|
|
|
|
BITMAP_FREE (depends_on);
|
|
|
|
return !infinite_cost_p (cost) && can_autoinc;
|
|
}
|
|
|
|
/* Examine IP_ORIGINAL candidates to see if they are incremented next to a
|
|
use that allows autoincrement, and set their AINC_USE if possible. */
|
|
|
|
static void
|
|
set_autoinc_for_original_candidates (struct ivopts_data *data)
|
|
{
|
|
unsigned i, j;
|
|
|
|
for (i = 0; i < n_iv_cands (data); i++)
|
|
{
|
|
struct iv_cand *cand = iv_cand (data, i);
|
|
struct iv_use *closest = NULL;
|
|
if (cand->pos != IP_ORIGINAL)
|
|
continue;
|
|
for (j = 0; j < n_iv_uses (data); j++)
|
|
{
|
|
struct iv_use *use = iv_use (data, j);
|
|
unsigned uid = gimple_uid (use->stmt);
|
|
if (gimple_bb (use->stmt) != gimple_bb (cand->incremented_at)
|
|
|| uid > gimple_uid (cand->incremented_at))
|
|
continue;
|
|
if (closest == NULL || uid > gimple_uid (closest->stmt))
|
|
closest = use;
|
|
}
|
|
if (closest == NULL || !autoinc_possible_for_pair (data, closest, cand))
|
|
continue;
|
|
cand->ainc_use = closest;
|
|
}
|
|
}
|
|
|
|
/* Finds the candidates for the induction variables. */
|
|
|
|
static void
|
|
find_iv_candidates (struct ivopts_data *data)
|
|
{
|
|
/* Add commonly used ivs. */
|
|
add_standard_iv_candidates (data);
|
|
|
|
/* Add old induction variables. */
|
|
add_old_ivs_candidates (data);
|
|
|
|
/* Add induction variables derived from uses. */
|
|
add_derived_ivs_candidates (data);
|
|
|
|
set_autoinc_for_original_candidates (data);
|
|
|
|
/* Record the important candidates. */
|
|
record_important_candidates (data);
|
|
}
|
|
|
|
/* Determines costs of basing the use of the iv on an iv candidate. */
|
|
|
|
static void
|
|
determine_use_iv_costs (struct ivopts_data *data)
|
|
{
|
|
unsigned i, j;
|
|
struct iv_use *use;
|
|
struct iv_cand *cand;
|
|
bitmap to_clear = BITMAP_ALLOC (NULL);
|
|
|
|
alloc_use_cost_map (data);
|
|
|
|
for (i = 0; i < n_iv_uses (data); i++)
|
|
{
|
|
use = iv_use (data, i);
|
|
|
|
if (data->consider_all_candidates)
|
|
{
|
|
for (j = 0; j < n_iv_cands (data); j++)
|
|
{
|
|
cand = iv_cand (data, j);
|
|
determine_use_iv_cost (data, use, cand);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
bitmap_iterator bi;
|
|
|
|
EXECUTE_IF_SET_IN_BITMAP (use->related_cands, 0, j, bi)
|
|
{
|
|
cand = iv_cand (data, j);
|
|
if (!determine_use_iv_cost (data, use, cand))
|
|
bitmap_set_bit (to_clear, j);
|
|
}
|
|
|
|
/* Remove the candidates for that the cost is infinite from
|
|
the list of related candidates. */
|
|
bitmap_and_compl_into (use->related_cands, to_clear);
|
|
bitmap_clear (to_clear);
|
|
}
|
|
}
|
|
|
|
BITMAP_FREE (to_clear);
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "Use-candidate costs:\n");
|
|
|
|
for (i = 0; i < n_iv_uses (data); i++)
|
|
{
|
|
use = iv_use (data, i);
|
|
|
|
fprintf (dump_file, "Use %d:\n", i);
|
|
fprintf (dump_file, " cand\tcost\tcompl.\tdepends on\n");
|
|
for (j = 0; j < use->n_map_members; j++)
|
|
{
|
|
if (!use->cost_map[j].cand
|
|
|| infinite_cost_p (use->cost_map[j].cost))
|
|
continue;
|
|
|
|
fprintf (dump_file, " %d\t%d\t%d\t",
|
|
use->cost_map[j].cand->id,
|
|
use->cost_map[j].cost.cost,
|
|
use->cost_map[j].cost.complexity);
|
|
if (use->cost_map[j].depends_on)
|
|
bitmap_print (dump_file,
|
|
use->cost_map[j].depends_on, "","");
|
|
if (use->cost_map[j].inv_expr_id != -1)
|
|
fprintf (dump_file, " inv_expr:%d", use->cost_map[j].inv_expr_id);
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
}
|
|
|
|
/* Determines cost of the candidate CAND. */
|
|
|
|
static void
|
|
determine_iv_cost (struct ivopts_data *data, struct iv_cand *cand)
|
|
{
|
|
comp_cost cost_base;
|
|
unsigned cost, cost_step;
|
|
tree base;
|
|
|
|
if (!cand->iv)
|
|
{
|
|
cand->cost = 0;
|
|
return;
|
|
}
|
|
|
|
/* There are two costs associated with the candidate -- its increment
|
|
and its initialization. The second is almost negligible for any loop
|
|
that rolls enough, so we take it just very little into account. */
|
|
|
|
base = cand->iv->base;
|
|
cost_base = force_var_cost (data, base, NULL);
|
|
/* It will be exceptional that the iv register happens to be initialized with
|
|
the proper value at no cost. In general, there will at least be a regcopy
|
|
or a const set. */
|
|
if (cost_base.cost == 0)
|
|
cost_base.cost = COSTS_N_INSNS (1);
|
|
cost_step = add_cost (TYPE_MODE (TREE_TYPE (base)), data->speed);
|
|
|
|
cost = cost_step + adjust_setup_cost (data, cost_base.cost);
|
|
|
|
/* Prefer the original ivs unless we may gain something by replacing it.
|
|
The reason is to make debugging simpler; so this is not relevant for
|
|
artificial ivs created by other optimization passes. */
|
|
if (cand->pos != IP_ORIGINAL
|
|
|| DECL_ARTIFICIAL (SSA_NAME_VAR (cand->var_before)))
|
|
cost++;
|
|
|
|
/* Prefer not to insert statements into latch unless there are some
|
|
already (so that we do not create unnecessary jumps). */
|
|
if (cand->pos == IP_END
|
|
&& empty_block_p (ip_end_pos (data->current_loop)))
|
|
cost++;
|
|
|
|
cand->cost = cost;
|
|
cand->cost_step = cost_step;
|
|
}
|
|
|
|
/* Determines costs of computation of the candidates. */
|
|
|
|
static void
|
|
determine_iv_costs (struct ivopts_data *data)
|
|
{
|
|
unsigned i;
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "Candidate costs:\n");
|
|
fprintf (dump_file, " cand\tcost\n");
|
|
}
|
|
|
|
for (i = 0; i < n_iv_cands (data); i++)
|
|
{
|
|
struct iv_cand *cand = iv_cand (data, i);
|
|
|
|
determine_iv_cost (data, cand);
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file, " %d\t%d\n", i, cand->cost);
|
|
}
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
|
|
/* Calculates cost for having SIZE induction variables. */
|
|
|
|
static unsigned
|
|
ivopts_global_cost_for_size (struct ivopts_data *data, unsigned size)
|
|
{
|
|
/* We add size to the cost, so that we prefer eliminating ivs
|
|
if possible. */
|
|
return size + estimate_reg_pressure_cost (size, data->regs_used, data->speed,
|
|
data->body_includes_call);
|
|
}
|
|
|
|
/* For each size of the induction variable set determine the penalty. */
|
|
|
|
static void
|
|
determine_set_costs (struct ivopts_data *data)
|
|
{
|
|
unsigned j, n;
|
|
gimple phi;
|
|
gimple_stmt_iterator psi;
|
|
tree op;
|
|
struct loop *loop = data->current_loop;
|
|
bitmap_iterator bi;
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "Global costs:\n");
|
|
fprintf (dump_file, " target_avail_regs %d\n", target_avail_regs);
|
|
fprintf (dump_file, " target_clobbered_regs %d\n", target_clobbered_regs);
|
|
fprintf (dump_file, " target_reg_cost %d\n", target_reg_cost[data->speed]);
|
|
fprintf (dump_file, " target_spill_cost %d\n", target_spill_cost[data->speed]);
|
|
}
|
|
|
|
n = 0;
|
|
for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
|
|
{
|
|
phi = gsi_stmt (psi);
|
|
op = PHI_RESULT (phi);
|
|
|
|
if (!is_gimple_reg (op))
|
|
continue;
|
|
|
|
if (get_iv (data, op))
|
|
continue;
|
|
|
|
n++;
|
|
}
|
|
|
|
EXECUTE_IF_SET_IN_BITMAP (data->relevant, 0, j, bi)
|
|
{
|
|
struct version_info *info = ver_info (data, j);
|
|
|
|
if (info->inv_id && info->has_nonlin_use)
|
|
n++;
|
|
}
|
|
|
|
data->regs_used = n;
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file, " regs_used %d\n", n);
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, " cost for size:\n");
|
|
fprintf (dump_file, " ivs\tcost\n");
|
|
for (j = 0; j <= 2 * target_avail_regs; j++)
|
|
fprintf (dump_file, " %d\t%d\n", j,
|
|
ivopts_global_cost_for_size (data, j));
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
}
|
|
|
|
/* Returns true if A is a cheaper cost pair than B. */
|
|
|
|
static bool
|
|
cheaper_cost_pair (struct cost_pair *a, struct cost_pair *b)
|
|
{
|
|
int cmp;
|
|
|
|
if (!a)
|
|
return false;
|
|
|
|
if (!b)
|
|
return true;
|
|
|
|
cmp = compare_costs (a->cost, b->cost);
|
|
if (cmp < 0)
|
|
return true;
|
|
|
|
if (cmp > 0)
|
|
return false;
|
|
|
|
/* In case the costs are the same, prefer the cheaper candidate. */
|
|
if (a->cand->cost < b->cand->cost)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
/* Returns candidate by that USE is expressed in IVS. */
|
|
|
|
static struct cost_pair *
|
|
iv_ca_cand_for_use (struct iv_ca *ivs, struct iv_use *use)
|
|
{
|
|
return ivs->cand_for_use[use->id];
|
|
}
|
|
|
|
/* Computes the cost field of IVS structure. */
|
|
|
|
static void
|
|
iv_ca_recount_cost (struct ivopts_data *data, struct iv_ca *ivs)
|
|
{
|
|
comp_cost cost = ivs->cand_use_cost;
|
|
|
|
cost.cost += ivs->cand_cost;
|
|
|
|
cost.cost += ivopts_global_cost_for_size (data,
|
|
ivs->n_regs + ivs->num_used_inv_expr);
|
|
|
|
ivs->cost = cost;
|
|
}
|
|
|
|
/* Remove invariants in set INVS to set IVS. */
|
|
|
|
static void
|
|
iv_ca_set_remove_invariants (struct iv_ca *ivs, bitmap invs)
|
|
{
|
|
bitmap_iterator bi;
|
|
unsigned iid;
|
|
|
|
if (!invs)
|
|
return;
|
|
|
|
EXECUTE_IF_SET_IN_BITMAP (invs, 0, iid, bi)
|
|
{
|
|
ivs->n_invariant_uses[iid]--;
|
|
if (ivs->n_invariant_uses[iid] == 0)
|
|
ivs->n_regs--;
|
|
}
|
|
}
|
|
|
|
/* Set USE not to be expressed by any candidate in IVS. */
|
|
|
|
static void
|
|
iv_ca_set_no_cp (struct ivopts_data *data, struct iv_ca *ivs,
|
|
struct iv_use *use)
|
|
{
|
|
unsigned uid = use->id, cid;
|
|
struct cost_pair *cp;
|
|
|
|
cp = ivs->cand_for_use[uid];
|
|
if (!cp)
|
|
return;
|
|
cid = cp->cand->id;
|
|
|
|
ivs->bad_uses++;
|
|
ivs->cand_for_use[uid] = NULL;
|
|
ivs->n_cand_uses[cid]--;
|
|
|
|
if (ivs->n_cand_uses[cid] == 0)
|
|
{
|
|
bitmap_clear_bit (ivs->cands, cid);
|
|
/* Do not count the pseudocandidates. */
|
|
if (cp->cand->iv)
|
|
ivs->n_regs--;
|
|
ivs->n_cands--;
|
|
ivs->cand_cost -= cp->cand->cost;
|
|
|
|
iv_ca_set_remove_invariants (ivs, cp->cand->depends_on);
|
|
}
|
|
|
|
ivs->cand_use_cost = sub_costs (ivs->cand_use_cost, cp->cost);
|
|
|
|
iv_ca_set_remove_invariants (ivs, cp->depends_on);
|
|
|
|
if (cp->inv_expr_id != -1)
|
|
{
|
|
ivs->used_inv_expr[cp->inv_expr_id]--;
|
|
if (ivs->used_inv_expr[cp->inv_expr_id] == 0)
|
|
ivs->num_used_inv_expr--;
|
|
}
|
|
iv_ca_recount_cost (data, ivs);
|
|
}
|
|
|
|
/* Add invariants in set INVS to set IVS. */
|
|
|
|
static void
|
|
iv_ca_set_add_invariants (struct iv_ca *ivs, bitmap invs)
|
|
{
|
|
bitmap_iterator bi;
|
|
unsigned iid;
|
|
|
|
if (!invs)
|
|
return;
|
|
|
|
EXECUTE_IF_SET_IN_BITMAP (invs, 0, iid, bi)
|
|
{
|
|
ivs->n_invariant_uses[iid]++;
|
|
if (ivs->n_invariant_uses[iid] == 1)
|
|
ivs->n_regs++;
|
|
}
|
|
}
|
|
|
|
/* Set cost pair for USE in set IVS to CP. */
|
|
|
|
static void
|
|
iv_ca_set_cp (struct ivopts_data *data, struct iv_ca *ivs,
|
|
struct iv_use *use, struct cost_pair *cp)
|
|
{
|
|
unsigned uid = use->id, cid;
|
|
|
|
if (ivs->cand_for_use[uid] == cp)
|
|
return;
|
|
|
|
if (ivs->cand_for_use[uid])
|
|
iv_ca_set_no_cp (data, ivs, use);
|
|
|
|
if (cp)
|
|
{
|
|
cid = cp->cand->id;
|
|
|
|
ivs->bad_uses--;
|
|
ivs->cand_for_use[uid] = cp;
|
|
ivs->n_cand_uses[cid]++;
|
|
if (ivs->n_cand_uses[cid] == 1)
|
|
{
|
|
bitmap_set_bit (ivs->cands, cid);
|
|
/* Do not count the pseudocandidates. */
|
|
if (cp->cand->iv)
|
|
ivs->n_regs++;
|
|
ivs->n_cands++;
|
|
ivs->cand_cost += cp->cand->cost;
|
|
|
|
iv_ca_set_add_invariants (ivs, cp->cand->depends_on);
|
|
}
|
|
|
|
ivs->cand_use_cost = add_costs (ivs->cand_use_cost, cp->cost);
|
|
iv_ca_set_add_invariants (ivs, cp->depends_on);
|
|
|
|
if (cp->inv_expr_id != -1)
|
|
{
|
|
ivs->used_inv_expr[cp->inv_expr_id]++;
|
|
if (ivs->used_inv_expr[cp->inv_expr_id] == 1)
|
|
ivs->num_used_inv_expr++;
|
|
}
|
|
iv_ca_recount_cost (data, ivs);
|
|
}
|
|
}
|
|
|
|
/* Extend set IVS by expressing USE by some of the candidates in it
|
|
if possible. All important candidates will be considered
|
|
if IMPORTANT_CANDIDATES is true. */
|
|
|
|
static void
|
|
iv_ca_add_use (struct ivopts_data *data, struct iv_ca *ivs,
|
|
struct iv_use *use, bool important_candidates)
|
|
{
|
|
struct cost_pair *best_cp = NULL, *cp;
|
|
bitmap_iterator bi;
|
|
bitmap cands;
|
|
unsigned i;
|
|
|
|
gcc_assert (ivs->upto >= use->id);
|
|
|
|
if (ivs->upto == use->id)
|
|
{
|
|
ivs->upto++;
|
|
ivs->bad_uses++;
|
|
}
|
|
|
|
cands = (important_candidates ? data->important_candidates : ivs->cands);
|
|
EXECUTE_IF_SET_IN_BITMAP (cands, 0, i, bi)
|
|
{
|
|
struct iv_cand *cand = iv_cand (data, i);
|
|
|
|
cp = get_use_iv_cost (data, use, cand);
|
|
|
|
if (cheaper_cost_pair (cp, best_cp))
|
|
best_cp = cp;
|
|
}
|
|
|
|
iv_ca_set_cp (data, ivs, use, best_cp);
|
|
}
|
|
|
|
/* Get cost for assignment IVS. */
|
|
|
|
static comp_cost
|
|
iv_ca_cost (struct iv_ca *ivs)
|
|
{
|
|
/* This was a conditional expression but it triggered a bug in
|
|
Sun C 5.5. */
|
|
if (ivs->bad_uses)
|
|
return infinite_cost;
|
|
else
|
|
return ivs->cost;
|
|
}
|
|
|
|
/* Returns true if all dependences of CP are among invariants in IVS. */
|
|
|
|
static bool
|
|
iv_ca_has_deps (struct iv_ca *ivs, struct cost_pair *cp)
|
|
{
|
|
unsigned i;
|
|
bitmap_iterator bi;
|
|
|
|
if (!cp->depends_on)
|
|
return true;
|
|
|
|
EXECUTE_IF_SET_IN_BITMAP (cp->depends_on, 0, i, bi)
|
|
{
|
|
if (ivs->n_invariant_uses[i] == 0)
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Creates change of expressing USE by NEW_CP instead of OLD_CP and chains
|
|
it before NEXT_CHANGE. */
|
|
|
|
static struct iv_ca_delta *
|
|
iv_ca_delta_add (struct iv_use *use, struct cost_pair *old_cp,
|
|
struct cost_pair *new_cp, struct iv_ca_delta *next_change)
|
|
{
|
|
struct iv_ca_delta *change = XNEW (struct iv_ca_delta);
|
|
|
|
change->use = use;
|
|
change->old_cp = old_cp;
|
|
change->new_cp = new_cp;
|
|
change->next_change = next_change;
|
|
|
|
return change;
|
|
}
|
|
|
|
/* Joins two lists of changes L1 and L2. Destructive -- old lists
|
|
are rewritten. */
|
|
|
|
static struct iv_ca_delta *
|
|
iv_ca_delta_join (struct iv_ca_delta *l1, struct iv_ca_delta *l2)
|
|
{
|
|
struct iv_ca_delta *last;
|
|
|
|
if (!l2)
|
|
return l1;
|
|
|
|
if (!l1)
|
|
return l2;
|
|
|
|
for (last = l1; last->next_change; last = last->next_change)
|
|
continue;
|
|
last->next_change = l2;
|
|
|
|
return l1;
|
|
}
|
|
|
|
/* Reverse the list of changes DELTA, forming the inverse to it. */
|
|
|
|
static struct iv_ca_delta *
|
|
iv_ca_delta_reverse (struct iv_ca_delta *delta)
|
|
{
|
|
struct iv_ca_delta *act, *next, *prev = NULL;
|
|
struct cost_pair *tmp;
|
|
|
|
for (act = delta; act; act = next)
|
|
{
|
|
next = act->next_change;
|
|
act->next_change = prev;
|
|
prev = act;
|
|
|
|
tmp = act->old_cp;
|
|
act->old_cp = act->new_cp;
|
|
act->new_cp = tmp;
|
|
}
|
|
|
|
return prev;
|
|
}
|
|
|
|
/* Commit changes in DELTA to IVS. If FORWARD is false, the changes are
|
|
reverted instead. */
|
|
|
|
static void
|
|
iv_ca_delta_commit (struct ivopts_data *data, struct iv_ca *ivs,
|
|
struct iv_ca_delta *delta, bool forward)
|
|
{
|
|
struct cost_pair *from, *to;
|
|
struct iv_ca_delta *act;
|
|
|
|
if (!forward)
|
|
delta = iv_ca_delta_reverse (delta);
|
|
|
|
for (act = delta; act; act = act->next_change)
|
|
{
|
|
from = act->old_cp;
|
|
to = act->new_cp;
|
|
gcc_assert (iv_ca_cand_for_use (ivs, act->use) == from);
|
|
iv_ca_set_cp (data, ivs, act->use, to);
|
|
}
|
|
|
|
if (!forward)
|
|
iv_ca_delta_reverse (delta);
|
|
}
|
|
|
|
/* Returns true if CAND is used in IVS. */
|
|
|
|
static bool
|
|
iv_ca_cand_used_p (struct iv_ca *ivs, struct iv_cand *cand)
|
|
{
|
|
return ivs->n_cand_uses[cand->id] > 0;
|
|
}
|
|
|
|
/* Returns number of induction variable candidates in the set IVS. */
|
|
|
|
static unsigned
|
|
iv_ca_n_cands (struct iv_ca *ivs)
|
|
{
|
|
return ivs->n_cands;
|
|
}
|
|
|
|
/* Free the list of changes DELTA. */
|
|
|
|
static void
|
|
iv_ca_delta_free (struct iv_ca_delta **delta)
|
|
{
|
|
struct iv_ca_delta *act, *next;
|
|
|
|
for (act = *delta; act; act = next)
|
|
{
|
|
next = act->next_change;
|
|
free (act);
|
|
}
|
|
|
|
*delta = NULL;
|
|
}
|
|
|
|
/* Allocates new iv candidates assignment. */
|
|
|
|
static struct iv_ca *
|
|
iv_ca_new (struct ivopts_data *data)
|
|
{
|
|
struct iv_ca *nw = XNEW (struct iv_ca);
|
|
|
|
nw->upto = 0;
|
|
nw->bad_uses = 0;
|
|
nw->cand_for_use = XCNEWVEC (struct cost_pair *, n_iv_uses (data));
|
|
nw->n_cand_uses = XCNEWVEC (unsigned, n_iv_cands (data));
|
|
nw->cands = BITMAP_ALLOC (NULL);
|
|
nw->n_cands = 0;
|
|
nw->n_regs = 0;
|
|
nw->cand_use_cost = zero_cost;
|
|
nw->cand_cost = 0;
|
|
nw->n_invariant_uses = XCNEWVEC (unsigned, data->max_inv_id + 1);
|
|
nw->cost = zero_cost;
|
|
nw->used_inv_expr = XCNEWVEC (unsigned, data->inv_expr_id + 1);
|
|
nw->num_used_inv_expr = 0;
|
|
|
|
return nw;
|
|
}
|
|
|
|
/* Free memory occupied by the set IVS. */
|
|
|
|
static void
|
|
iv_ca_free (struct iv_ca **ivs)
|
|
{
|
|
free ((*ivs)->cand_for_use);
|
|
free ((*ivs)->n_cand_uses);
|
|
BITMAP_FREE ((*ivs)->cands);
|
|
free ((*ivs)->n_invariant_uses);
|
|
free ((*ivs)->used_inv_expr);
|
|
free (*ivs);
|
|
*ivs = NULL;
|
|
}
|
|
|
|
/* Dumps IVS to FILE. */
|
|
|
|
static void
|
|
iv_ca_dump (struct ivopts_data *data, FILE *file, struct iv_ca *ivs)
|
|
{
|
|
const char *pref = " invariants ";
|
|
unsigned i;
|
|
comp_cost cost = iv_ca_cost (ivs);
|
|
|
|
fprintf (file, " cost: %d (complexity %d)\n", cost.cost, cost.complexity);
|
|
fprintf (file, " cand_cost: %d\n cand_use_cost: %d (complexity %d)\n",
|
|
ivs->cand_cost, ivs->cand_use_cost.cost, ivs->cand_use_cost.complexity);
|
|
bitmap_print (file, ivs->cands, " candidates: ","\n");
|
|
|
|
for (i = 0; i < ivs->upto; i++)
|
|
{
|
|
struct iv_use *use = iv_use (data, i);
|
|
struct cost_pair *cp = iv_ca_cand_for_use (ivs, use);
|
|
if (cp)
|
|
fprintf (file, " use:%d --> iv_cand:%d, cost=(%d,%d)\n",
|
|
use->id, cp->cand->id, cp->cost.cost, cp->cost.complexity);
|
|
else
|
|
fprintf (file, " use:%d --> ??\n", use->id);
|
|
}
|
|
|
|
for (i = 1; i <= data->max_inv_id; i++)
|
|
if (ivs->n_invariant_uses[i])
|
|
{
|
|
fprintf (file, "%s%d", pref, i);
|
|
pref = ", ";
|
|
}
|
|
fprintf (file, "\n\n");
|
|
}
|
|
|
|
/* Try changing candidate in IVS to CAND for each use. Return cost of the
|
|
new set, and store differences in DELTA. Number of induction variables
|
|
in the new set is stored to N_IVS. MIN_NCAND is a flag. When it is true
|
|
the function will try to find a solution with mimimal iv candidates. */
|
|
|
|
static comp_cost
|
|
iv_ca_extend (struct ivopts_data *data, struct iv_ca *ivs,
|
|
struct iv_cand *cand, struct iv_ca_delta **delta,
|
|
unsigned *n_ivs, bool min_ncand)
|
|
{
|
|
unsigned i;
|
|
comp_cost cost;
|
|
struct iv_use *use;
|
|
struct cost_pair *old_cp, *new_cp;
|
|
|
|
*delta = NULL;
|
|
for (i = 0; i < ivs->upto; i++)
|
|
{
|
|
use = iv_use (data, i);
|
|
old_cp = iv_ca_cand_for_use (ivs, use);
|
|
|
|
if (old_cp
|
|
&& old_cp->cand == cand)
|
|
continue;
|
|
|
|
new_cp = get_use_iv_cost (data, use, cand);
|
|
if (!new_cp)
|
|
continue;
|
|
|
|
if (!min_ncand && !iv_ca_has_deps (ivs, new_cp))
|
|
continue;
|
|
|
|
if (!min_ncand && !cheaper_cost_pair (new_cp, old_cp))
|
|
continue;
|
|
|
|
*delta = iv_ca_delta_add (use, old_cp, new_cp, *delta);
|
|
}
|
|
|
|
iv_ca_delta_commit (data, ivs, *delta, true);
|
|
cost = iv_ca_cost (ivs);
|
|
if (n_ivs)
|
|
*n_ivs = iv_ca_n_cands (ivs);
|
|
iv_ca_delta_commit (data, ivs, *delta, false);
|
|
|
|
return cost;
|
|
}
|
|
|
|
/* Try narrowing set IVS by removing CAND. Return the cost of
|
|
the new set and store the differences in DELTA. */
|
|
|
|
static comp_cost
|
|
iv_ca_narrow (struct ivopts_data *data, struct iv_ca *ivs,
|
|
struct iv_cand *cand, struct iv_ca_delta **delta)
|
|
{
|
|
unsigned i, ci;
|
|
struct iv_use *use;
|
|
struct cost_pair *old_cp, *new_cp, *cp;
|
|
bitmap_iterator bi;
|
|
struct iv_cand *cnd;
|
|
comp_cost cost;
|
|
|
|
*delta = NULL;
|
|
for (i = 0; i < n_iv_uses (data); i++)
|
|
{
|
|
use = iv_use (data, i);
|
|
|
|
old_cp = iv_ca_cand_for_use (ivs, use);
|
|
if (old_cp->cand != cand)
|
|
continue;
|
|
|
|
new_cp = NULL;
|
|
|
|
if (data->consider_all_candidates)
|
|
{
|
|
EXECUTE_IF_SET_IN_BITMAP (ivs->cands, 0, ci, bi)
|
|
{
|
|
if (ci == cand->id)
|
|
continue;
|
|
|
|
cnd = iv_cand (data, ci);
|
|
|
|
cp = get_use_iv_cost (data, use, cnd);
|
|
if (!cp)
|
|
continue;
|
|
|
|
if (!iv_ca_has_deps (ivs, cp))
|
|
continue;
|
|
|
|
if (!cheaper_cost_pair (cp, new_cp))
|
|
continue;
|
|
|
|
new_cp = cp;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
EXECUTE_IF_AND_IN_BITMAP (use->related_cands, ivs->cands, 0, ci, bi)
|
|
{
|
|
if (ci == cand->id)
|
|
continue;
|
|
|
|
cnd = iv_cand (data, ci);
|
|
|
|
cp = get_use_iv_cost (data, use, cnd);
|
|
if (!cp)
|
|
continue;
|
|
if (!iv_ca_has_deps (ivs, cp))
|
|
continue;
|
|
|
|
if (!cheaper_cost_pair (cp, new_cp))
|
|
continue;
|
|
|
|
new_cp = cp;
|
|
}
|
|
}
|
|
|
|
if (!new_cp)
|
|
{
|
|
iv_ca_delta_free (delta);
|
|
return infinite_cost;
|
|
}
|
|
|
|
*delta = iv_ca_delta_add (use, old_cp, new_cp, *delta);
|
|
}
|
|
|
|
iv_ca_delta_commit (data, ivs, *delta, true);
|
|
cost = iv_ca_cost (ivs);
|
|
iv_ca_delta_commit (data, ivs, *delta, false);
|
|
|
|
return cost;
|
|
}
|
|
|
|
/* Try optimizing the set of candidates IVS by removing candidates different
|
|
from to EXCEPT_CAND from it. Return cost of the new set, and store
|
|
differences in DELTA. */
|
|
|
|
static comp_cost
|
|
iv_ca_prune (struct ivopts_data *data, struct iv_ca *ivs,
|
|
struct iv_cand *except_cand, struct iv_ca_delta **delta)
|
|
{
|
|
bitmap_iterator bi;
|
|
struct iv_ca_delta *act_delta, *best_delta;
|
|
unsigned i;
|
|
comp_cost best_cost, acost;
|
|
struct iv_cand *cand;
|
|
|
|
best_delta = NULL;
|
|
best_cost = iv_ca_cost (ivs);
|
|
|
|
EXECUTE_IF_SET_IN_BITMAP (ivs->cands, 0, i, bi)
|
|
{
|
|
cand = iv_cand (data, i);
|
|
|
|
if (cand == except_cand)
|
|
continue;
|
|
|
|
acost = iv_ca_narrow (data, ivs, cand, &act_delta);
|
|
|
|
if (compare_costs (acost, best_cost) < 0)
|
|
{
|
|
best_cost = acost;
|
|
iv_ca_delta_free (&best_delta);
|
|
best_delta = act_delta;
|
|
}
|
|
else
|
|
iv_ca_delta_free (&act_delta);
|
|
}
|
|
|
|
if (!best_delta)
|
|
{
|
|
*delta = NULL;
|
|
return best_cost;
|
|
}
|
|
|
|
/* Recurse to possibly remove other unnecessary ivs. */
|
|
iv_ca_delta_commit (data, ivs, best_delta, true);
|
|
best_cost = iv_ca_prune (data, ivs, except_cand, delta);
|
|
iv_ca_delta_commit (data, ivs, best_delta, false);
|
|
*delta = iv_ca_delta_join (best_delta, *delta);
|
|
return best_cost;
|
|
}
|
|
|
|
/* Tries to extend the sets IVS in the best possible way in order
|
|
to express the USE. If ORIGINALP is true, prefer candidates from
|
|
the original set of IVs, otherwise favor important candidates not
|
|
based on any memory object. */
|
|
|
|
static bool
|
|
try_add_cand_for (struct ivopts_data *data, struct iv_ca *ivs,
|
|
struct iv_use *use, bool originalp)
|
|
{
|
|
comp_cost best_cost, act_cost;
|
|
unsigned i;
|
|
bitmap_iterator bi;
|
|
struct iv_cand *cand;
|
|
struct iv_ca_delta *best_delta = NULL, *act_delta;
|
|
struct cost_pair *cp;
|
|
|
|
iv_ca_add_use (data, ivs, use, false);
|
|
best_cost = iv_ca_cost (ivs);
|
|
|
|
cp = iv_ca_cand_for_use (ivs, use);
|
|
if (!cp)
|
|
{
|
|
ivs->upto--;
|
|
ivs->bad_uses--;
|
|
iv_ca_add_use (data, ivs, use, true);
|
|
best_cost = iv_ca_cost (ivs);
|
|
cp = iv_ca_cand_for_use (ivs, use);
|
|
}
|
|
if (cp)
|
|
{
|
|
best_delta = iv_ca_delta_add (use, NULL, cp, NULL);
|
|
iv_ca_set_no_cp (data, ivs, use);
|
|
}
|
|
|
|
/* If ORIGINALP is true, try to find the original IV for the use. Otherwise
|
|
first try important candidates not based on any memory object. Only if
|
|
this fails, try the specific ones. Rationale -- in loops with many
|
|
variables the best choice often is to use just one generic biv. If we
|
|
added here many ivs specific to the uses, the optimization algorithm later
|
|
would be likely to get stuck in a local minimum, thus causing us to create
|
|
too many ivs. The approach from few ivs to more seems more likely to be
|
|
successful -- starting from few ivs, replacing an expensive use by a
|
|
specific iv should always be a win. */
|
|
EXECUTE_IF_SET_IN_BITMAP (data->important_candidates, 0, i, bi)
|
|
{
|
|
cand = iv_cand (data, i);
|
|
|
|
if (originalp && cand->pos !=IP_ORIGINAL)
|
|
continue;
|
|
|
|
if (!originalp && cand->iv->base_object != NULL_TREE)
|
|
continue;
|
|
|
|
if (iv_ca_cand_used_p (ivs, cand))
|
|
continue;
|
|
|
|
cp = get_use_iv_cost (data, use, cand);
|
|
if (!cp)
|
|
continue;
|
|
|
|
iv_ca_set_cp (data, ivs, use, cp);
|
|
act_cost = iv_ca_extend (data, ivs, cand, &act_delta, NULL,
|
|
true);
|
|
iv_ca_set_no_cp (data, ivs, use);
|
|
act_delta = iv_ca_delta_add (use, NULL, cp, act_delta);
|
|
|
|
if (compare_costs (act_cost, best_cost) < 0)
|
|
{
|
|
best_cost = act_cost;
|
|
|
|
iv_ca_delta_free (&best_delta);
|
|
best_delta = act_delta;
|
|
}
|
|
else
|
|
iv_ca_delta_free (&act_delta);
|
|
}
|
|
|
|
if (infinite_cost_p (best_cost))
|
|
{
|
|
for (i = 0; i < use->n_map_members; i++)
|
|
{
|
|
cp = use->cost_map + i;
|
|
cand = cp->cand;
|
|
if (!cand)
|
|
continue;
|
|
|
|
/* Already tried this. */
|
|
if (cand->important)
|
|
{
|
|
if (originalp && cand->pos == IP_ORIGINAL)
|
|
continue;
|
|
if (!originalp && cand->iv->base_object == NULL_TREE)
|
|
continue;
|
|
}
|
|
|
|
if (iv_ca_cand_used_p (ivs, cand))
|
|
continue;
|
|
|
|
act_delta = NULL;
|
|
iv_ca_set_cp (data, ivs, use, cp);
|
|
act_cost = iv_ca_extend (data, ivs, cand, &act_delta, NULL, true);
|
|
iv_ca_set_no_cp (data, ivs, use);
|
|
act_delta = iv_ca_delta_add (use, iv_ca_cand_for_use (ivs, use),
|
|
cp, act_delta);
|
|
|
|
if (compare_costs (act_cost, best_cost) < 0)
|
|
{
|
|
best_cost = act_cost;
|
|
|
|
if (best_delta)
|
|
iv_ca_delta_free (&best_delta);
|
|
best_delta = act_delta;
|
|
}
|
|
else
|
|
iv_ca_delta_free (&act_delta);
|
|
}
|
|
}
|
|
|
|
iv_ca_delta_commit (data, ivs, best_delta, true);
|
|
iv_ca_delta_free (&best_delta);
|
|
|
|
return !infinite_cost_p (best_cost);
|
|
}
|
|
|
|
/* Finds an initial assignment of candidates to uses. */
|
|
|
|
static struct iv_ca *
|
|
get_initial_solution (struct ivopts_data *data, bool originalp)
|
|
{
|
|
struct iv_ca *ivs = iv_ca_new (data);
|
|
unsigned i;
|
|
|
|
for (i = 0; i < n_iv_uses (data); i++)
|
|
if (!try_add_cand_for (data, ivs, iv_use (data, i), originalp))
|
|
{
|
|
iv_ca_free (&ivs);
|
|
return NULL;
|
|
}
|
|
|
|
return ivs;
|
|
}
|
|
|
|
/* Tries to improve set of induction variables IVS. */
|
|
|
|
static bool
|
|
try_improve_iv_set (struct ivopts_data *data, struct iv_ca *ivs)
|
|
{
|
|
unsigned i, n_ivs;
|
|
comp_cost acost, best_cost = iv_ca_cost (ivs);
|
|
struct iv_ca_delta *best_delta = NULL, *act_delta, *tmp_delta;
|
|
struct iv_cand *cand;
|
|
|
|
/* Try extending the set of induction variables by one. */
|
|
for (i = 0; i < n_iv_cands (data); i++)
|
|
{
|
|
cand = iv_cand (data, i);
|
|
|
|
if (iv_ca_cand_used_p (ivs, cand))
|
|
continue;
|
|
|
|
acost = iv_ca_extend (data, ivs, cand, &act_delta, &n_ivs, false);
|
|
if (!act_delta)
|
|
continue;
|
|
|
|
/* If we successfully added the candidate and the set is small enough,
|
|
try optimizing it by removing other candidates. */
|
|
if (n_ivs <= ALWAYS_PRUNE_CAND_SET_BOUND)
|
|
{
|
|
iv_ca_delta_commit (data, ivs, act_delta, true);
|
|
acost = iv_ca_prune (data, ivs, cand, &tmp_delta);
|
|
iv_ca_delta_commit (data, ivs, act_delta, false);
|
|
act_delta = iv_ca_delta_join (act_delta, tmp_delta);
|
|
}
|
|
|
|
if (compare_costs (acost, best_cost) < 0)
|
|
{
|
|
best_cost = acost;
|
|
iv_ca_delta_free (&best_delta);
|
|
best_delta = act_delta;
|
|
}
|
|
else
|
|
iv_ca_delta_free (&act_delta);
|
|
}
|
|
|
|
if (!best_delta)
|
|
{
|
|
/* Try removing the candidates from the set instead. */
|
|
best_cost = iv_ca_prune (data, ivs, NULL, &best_delta);
|
|
|
|
/* Nothing more we can do. */
|
|
if (!best_delta)
|
|
return false;
|
|
}
|
|
|
|
iv_ca_delta_commit (data, ivs, best_delta, true);
|
|
gcc_assert (compare_costs (best_cost, iv_ca_cost (ivs)) == 0);
|
|
iv_ca_delta_free (&best_delta);
|
|
return true;
|
|
}
|
|
|
|
/* Attempts to find the optimal set of induction variables. We do simple
|
|
greedy heuristic -- we try to replace at most one candidate in the selected
|
|
solution and remove the unused ivs while this improves the cost. */
|
|
|
|
static struct iv_ca *
|
|
find_optimal_iv_set_1 (struct ivopts_data *data, bool originalp)
|
|
{
|
|
struct iv_ca *set;
|
|
|
|
/* Get the initial solution. */
|
|
set = get_initial_solution (data, originalp);
|
|
if (!set)
|
|
{
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file, "Unable to substitute for ivs, failed.\n");
|
|
return NULL;
|
|
}
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "Initial set of candidates:\n");
|
|
iv_ca_dump (data, dump_file, set);
|
|
}
|
|
|
|
while (try_improve_iv_set (data, set))
|
|
{
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "Improved to:\n");
|
|
iv_ca_dump (data, dump_file, set);
|
|
}
|
|
}
|
|
|
|
return set;
|
|
}
|
|
|
|
static struct iv_ca *
|
|
find_optimal_iv_set (struct ivopts_data *data)
|
|
{
|
|
unsigned i;
|
|
struct iv_ca *set, *origset;
|
|
struct iv_use *use;
|
|
comp_cost cost, origcost;
|
|
|
|
/* Determine the cost based on a strategy that starts with original IVs,
|
|
and try again using a strategy that prefers candidates not based
|
|
on any IVs. */
|
|
origset = find_optimal_iv_set_1 (data, true);
|
|
set = find_optimal_iv_set_1 (data, false);
|
|
|
|
if (!origset && !set)
|
|
return NULL;
|
|
|
|
origcost = origset ? iv_ca_cost (origset) : infinite_cost;
|
|
cost = set ? iv_ca_cost (set) : infinite_cost;
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "Original cost %d (complexity %d)\n\n",
|
|
origcost.cost, origcost.complexity);
|
|
fprintf (dump_file, "Final cost %d (complexity %d)\n\n",
|
|
cost.cost, cost.complexity);
|
|
}
|
|
|
|
/* Choose the one with the best cost. */
|
|
if (compare_costs (origcost, cost) <= 0)
|
|
{
|
|
if (set)
|
|
iv_ca_free (&set);
|
|
set = origset;
|
|
}
|
|
else if (origset)
|
|
iv_ca_free (&origset);
|
|
|
|
for (i = 0; i < n_iv_uses (data); i++)
|
|
{
|
|
use = iv_use (data, i);
|
|
use->selected = iv_ca_cand_for_use (set, use)->cand;
|
|
}
|
|
|
|
return set;
|
|
}
|
|
|
|
/* Creates a new induction variable corresponding to CAND. */
|
|
|
|
static void
|
|
create_new_iv (struct ivopts_data *data, struct iv_cand *cand)
|
|
{
|
|
gimple_stmt_iterator incr_pos;
|
|
tree base;
|
|
bool after = false;
|
|
|
|
if (!cand->iv)
|
|
return;
|
|
|
|
switch (cand->pos)
|
|
{
|
|
case IP_NORMAL:
|
|
incr_pos = gsi_last_bb (ip_normal_pos (data->current_loop));
|
|
break;
|
|
|
|
case IP_END:
|
|
incr_pos = gsi_last_bb (ip_end_pos (data->current_loop));
|
|
after = true;
|
|
break;
|
|
|
|
case IP_AFTER_USE:
|
|
after = true;
|
|
/* fall through */
|
|
case IP_BEFORE_USE:
|
|
incr_pos = gsi_for_stmt (cand->incremented_at);
|
|
break;
|
|
|
|
case IP_ORIGINAL:
|
|
/* Mark that the iv is preserved. */
|
|
name_info (data, cand->var_before)->preserve_biv = true;
|
|
name_info (data, cand->var_after)->preserve_biv = true;
|
|
|
|
/* Rewrite the increment so that it uses var_before directly. */
|
|
find_interesting_uses_op (data, cand->var_after)->selected = cand;
|
|
return;
|
|
}
|
|
|
|
gimple_add_tmp_var (cand->var_before);
|
|
add_referenced_var (cand->var_before);
|
|
|
|
base = unshare_expr (cand->iv->base);
|
|
|
|
create_iv (base, unshare_expr (cand->iv->step),
|
|
cand->var_before, data->current_loop,
|
|
&incr_pos, after, &cand->var_before, &cand->var_after);
|
|
}
|
|
|
|
/* Creates new induction variables described in SET. */
|
|
|
|
static void
|
|
create_new_ivs (struct ivopts_data *data, struct iv_ca *set)
|
|
{
|
|
unsigned i;
|
|
struct iv_cand *cand;
|
|
bitmap_iterator bi;
|
|
|
|
EXECUTE_IF_SET_IN_BITMAP (set->cands, 0, i, bi)
|
|
{
|
|
cand = iv_cand (data, i);
|
|
create_new_iv (data, cand);
|
|
}
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "\nSelected IV set: \n");
|
|
EXECUTE_IF_SET_IN_BITMAP (set->cands, 0, i, bi)
|
|
{
|
|
cand = iv_cand (data, i);
|
|
dump_cand (dump_file, cand);
|
|
}
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
}
|
|
|
|
/* Rewrites USE (definition of iv used in a nonlinear expression)
|
|
using candidate CAND. */
|
|
|
|
static void
|
|
rewrite_use_nonlinear_expr (struct ivopts_data *data,
|
|
struct iv_use *use, struct iv_cand *cand)
|
|
{
|
|
tree comp;
|
|
tree op, tgt;
|
|
gimple ass;
|
|
gimple_stmt_iterator bsi;
|
|
|
|
/* An important special case -- if we are asked to express value of
|
|
the original iv by itself, just exit; there is no need to
|
|
introduce a new computation (that might also need casting the
|
|
variable to unsigned and back). */
|
|
if (cand->pos == IP_ORIGINAL
|
|
&& cand->incremented_at == use->stmt)
|
|
{
|
|
tree step, ctype, utype;
|
|
enum tree_code incr_code = PLUS_EXPR, old_code;
|
|
|
|
gcc_assert (is_gimple_assign (use->stmt));
|
|
gcc_assert (gimple_assign_lhs (use->stmt) == cand->var_after);
|
|
|
|
step = cand->iv->step;
|
|
ctype = TREE_TYPE (step);
|
|
utype = TREE_TYPE (cand->var_after);
|
|
if (TREE_CODE (step) == NEGATE_EXPR)
|
|
{
|
|
incr_code = MINUS_EXPR;
|
|
step = TREE_OPERAND (step, 0);
|
|
}
|
|
|
|
/* Check whether we may leave the computation unchanged.
|
|
This is the case only if it does not rely on other
|
|
computations in the loop -- otherwise, the computation
|
|
we rely upon may be removed in remove_unused_ivs,
|
|
thus leading to ICE. */
|
|
old_code = gimple_assign_rhs_code (use->stmt);
|
|
if (old_code == PLUS_EXPR
|
|
|| old_code == MINUS_EXPR
|
|
|| old_code == POINTER_PLUS_EXPR)
|
|
{
|
|
if (gimple_assign_rhs1 (use->stmt) == cand->var_before)
|
|
op = gimple_assign_rhs2 (use->stmt);
|
|
else if (old_code != MINUS_EXPR
|
|
&& gimple_assign_rhs2 (use->stmt) == cand->var_before)
|
|
op = gimple_assign_rhs1 (use->stmt);
|
|
else
|
|
op = NULL_TREE;
|
|
}
|
|
else
|
|
op = NULL_TREE;
|
|
|
|
if (op
|
|
&& (TREE_CODE (op) == INTEGER_CST
|
|
|| operand_equal_p (op, step, 0)))
|
|
return;
|
|
|
|
/* Otherwise, add the necessary computations to express
|
|
the iv. */
|
|
op = fold_convert (ctype, cand->var_before);
|
|
comp = fold_convert (utype,
|
|
build2 (incr_code, ctype, op,
|
|
unshare_expr (step)));
|
|
}
|
|
else
|
|
{
|
|
comp = get_computation (data->current_loop, use, cand);
|
|
gcc_assert (comp != NULL_TREE);
|
|
}
|
|
|
|
switch (gimple_code (use->stmt))
|
|
{
|
|
case GIMPLE_PHI:
|
|
tgt = PHI_RESULT (use->stmt);
|
|
|
|
/* If we should keep the biv, do not replace it. */
|
|
if (name_info (data, tgt)->preserve_biv)
|
|
return;
|
|
|
|
bsi = gsi_after_labels (gimple_bb (use->stmt));
|
|
break;
|
|
|
|
case GIMPLE_ASSIGN:
|
|
tgt = gimple_assign_lhs (use->stmt);
|
|
bsi = gsi_for_stmt (use->stmt);
|
|
break;
|
|
|
|
default:
|
|
gcc_unreachable ();
|
|
}
|
|
|
|
if (!valid_gimple_rhs_p (comp)
|
|
|| (gimple_code (use->stmt) != GIMPLE_PHI
|
|
/* We can't allow re-allocating the stmt as it might be pointed
|
|
to still. */
|
|
&& (get_gimple_rhs_num_ops (TREE_CODE (comp))
|
|
>= gimple_num_ops (gsi_stmt (bsi)))))
|
|
{
|
|
comp = force_gimple_operand_gsi (&bsi, comp, true, NULL_TREE,
|
|
true, GSI_SAME_STMT);
|
|
if (POINTER_TYPE_P (TREE_TYPE (tgt)))
|
|
{
|
|
duplicate_ssa_name_ptr_info (comp, SSA_NAME_PTR_INFO (tgt));
|
|
/* As this isn't a plain copy we have to reset alignment
|
|
information. */
|
|
if (SSA_NAME_PTR_INFO (comp))
|
|
{
|
|
SSA_NAME_PTR_INFO (comp)->align = 1;
|
|
SSA_NAME_PTR_INFO (comp)->misalign = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (gimple_code (use->stmt) == GIMPLE_PHI)
|
|
{
|
|
ass = gimple_build_assign (tgt, comp);
|
|
gsi_insert_before (&bsi, ass, GSI_SAME_STMT);
|
|
|
|
bsi = gsi_for_stmt (use->stmt);
|
|
remove_phi_node (&bsi, false);
|
|
}
|
|
else
|
|
{
|
|
gimple_assign_set_rhs_from_tree (&bsi, comp);
|
|
use->stmt = gsi_stmt (bsi);
|
|
}
|
|
}
|
|
|
|
/* Performs a peephole optimization to reorder the iv update statement with
|
|
a mem ref to enable instruction combining in later phases. The mem ref uses
|
|
the iv value before the update, so the reordering transformation requires
|
|
adjustment of the offset. CAND is the selected IV_CAND.
|
|
|
|
Example:
|
|
|
|
t = MEM_REF (base, iv1, 8, 16); // base, index, stride, offset
|
|
iv2 = iv1 + 1;
|
|
|
|
if (t < val) (1)
|
|
goto L;
|
|
goto Head;
|
|
|
|
|
|
directly propagating t over to (1) will introduce overlapping live range
|
|
thus increase register pressure. This peephole transform it into:
|
|
|
|
|
|
iv2 = iv1 + 1;
|
|
t = MEM_REF (base, iv2, 8, 8);
|
|
if (t < val)
|
|
goto L;
|
|
goto Head;
|
|
*/
|
|
|
|
static void
|
|
adjust_iv_update_pos (struct iv_cand *cand, struct iv_use *use)
|
|
{
|
|
tree var_after;
|
|
gimple iv_update, stmt;
|
|
basic_block bb;
|
|
gimple_stmt_iterator gsi, gsi_iv;
|
|
|
|
if (cand->pos != IP_NORMAL)
|
|
return;
|
|
|
|
var_after = cand->var_after;
|
|
iv_update = SSA_NAME_DEF_STMT (var_after);
|
|
|
|
bb = gimple_bb (iv_update);
|
|
gsi = gsi_last_nondebug_bb (bb);
|
|
stmt = gsi_stmt (gsi);
|
|
|
|
/* Only handle conditional statement for now. */
|
|
if (gimple_code (stmt) != GIMPLE_COND)
|
|
return;
|
|
|
|
gsi_prev_nondebug (&gsi);
|
|
stmt = gsi_stmt (gsi);
|
|
if (stmt != iv_update)
|
|
return;
|
|
|
|
gsi_prev_nondebug (&gsi);
|
|
if (gsi_end_p (gsi))
|
|
return;
|
|
|
|
stmt = gsi_stmt (gsi);
|
|
if (gimple_code (stmt) != GIMPLE_ASSIGN)
|
|
return;
|
|
|
|
if (stmt != use->stmt)
|
|
return;
|
|
|
|
if (TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
|
|
return;
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "Reordering \n");
|
|
print_gimple_stmt (dump_file, iv_update, 0, 0);
|
|
print_gimple_stmt (dump_file, use->stmt, 0, 0);
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
|
|
gsi = gsi_for_stmt (use->stmt);
|
|
gsi_iv = gsi_for_stmt (iv_update);
|
|
gsi_move_before (&gsi_iv, &gsi);
|
|
|
|
cand->pos = IP_BEFORE_USE;
|
|
cand->incremented_at = use->stmt;
|
|
}
|
|
|
|
/* Rewrites USE (address that is an iv) using candidate CAND. */
|
|
|
|
static void
|
|
rewrite_use_address (struct ivopts_data *data,
|
|
struct iv_use *use, struct iv_cand *cand)
|
|
{
|
|
aff_tree aff;
|
|
gimple_stmt_iterator bsi = gsi_for_stmt (use->stmt);
|
|
tree base_hint = NULL_TREE;
|
|
tree ref, iv;
|
|
bool ok;
|
|
|
|
adjust_iv_update_pos (cand, use);
|
|
ok = get_computation_aff (data->current_loop, use, cand, use->stmt, &aff);
|
|
gcc_assert (ok);
|
|
unshare_aff_combination (&aff);
|
|
|
|
/* To avoid undefined overflow problems, all IV candidates use unsigned
|
|
integer types. The drawback is that this makes it impossible for
|
|
create_mem_ref to distinguish an IV that is based on a memory object
|
|
from one that represents simply an offset.
|
|
|
|
To work around this problem, we pass a hint to create_mem_ref that
|
|
indicates which variable (if any) in aff is an IV based on a memory
|
|
object. Note that we only consider the candidate. If this is not
|
|
based on an object, the base of the reference is in some subexpression
|
|
of the use -- but these will use pointer types, so they are recognized
|
|
by the create_mem_ref heuristics anyway. */
|
|
if (cand->iv->base_object)
|
|
base_hint = var_at_stmt (data->current_loop, cand, use->stmt);
|
|
|
|
iv = var_at_stmt (data->current_loop, cand, use->stmt);
|
|
ref = create_mem_ref (&bsi, TREE_TYPE (*use->op_p), &aff,
|
|
reference_alias_ptr_type (*use->op_p),
|
|
iv, base_hint, data->speed);
|
|
copy_ref_info (ref, *use->op_p);
|
|
*use->op_p = ref;
|
|
}
|
|
|
|
/* Rewrites USE (the condition such that one of the arguments is an iv) using
|
|
candidate CAND. */
|
|
|
|
static void
|
|
rewrite_use_compare (struct ivopts_data *data,
|
|
struct iv_use *use, struct iv_cand *cand)
|
|
{
|
|
tree comp, *var_p, op, bound;
|
|
gimple_stmt_iterator bsi = gsi_for_stmt (use->stmt);
|
|
enum tree_code compare;
|
|
struct cost_pair *cp = get_use_iv_cost (data, use, cand);
|
|
bool ok;
|
|
|
|
bound = cp->value;
|
|
if (bound)
|
|
{
|
|
tree var = var_at_stmt (data->current_loop, cand, use->stmt);
|
|
tree var_type = TREE_TYPE (var);
|
|
gimple_seq stmts;
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "Replacing exit test: ");
|
|
print_gimple_stmt (dump_file, use->stmt, 0, TDF_SLIM);
|
|
}
|
|
compare = cp->comp;
|
|
bound = unshare_expr (fold_convert (var_type, bound));
|
|
op = force_gimple_operand (bound, &stmts, true, NULL_TREE);
|
|
if (stmts)
|
|
gsi_insert_seq_on_edge_immediate (
|
|
loop_preheader_edge (data->current_loop),
|
|
stmts);
|
|
|
|
gimple_cond_set_lhs (use->stmt, var);
|
|
gimple_cond_set_code (use->stmt, compare);
|
|
gimple_cond_set_rhs (use->stmt, op);
|
|
return;
|
|
}
|
|
|
|
/* The induction variable elimination failed; just express the original
|
|
giv. */
|
|
comp = get_computation (data->current_loop, use, cand);
|
|
gcc_assert (comp != NULL_TREE);
|
|
|
|
ok = extract_cond_operands (data, use->stmt, &var_p, NULL, NULL, NULL);
|
|
gcc_assert (ok);
|
|
|
|
*var_p = force_gimple_operand_gsi (&bsi, comp, true, SSA_NAME_VAR (*var_p),
|
|
true, GSI_SAME_STMT);
|
|
}
|
|
|
|
/* Rewrites USE using candidate CAND. */
|
|
|
|
static void
|
|
rewrite_use (struct ivopts_data *data, struct iv_use *use, struct iv_cand *cand)
|
|
{
|
|
switch (use->type)
|
|
{
|
|
case USE_NONLINEAR_EXPR:
|
|
rewrite_use_nonlinear_expr (data, use, cand);
|
|
break;
|
|
|
|
case USE_ADDRESS:
|
|
rewrite_use_address (data, use, cand);
|
|
break;
|
|
|
|
case USE_COMPARE:
|
|
rewrite_use_compare (data, use, cand);
|
|
break;
|
|
|
|
default:
|
|
gcc_unreachable ();
|
|
}
|
|
|
|
update_stmt (use->stmt);
|
|
}
|
|
|
|
/* Rewrite the uses using the selected induction variables. */
|
|
|
|
static void
|
|
rewrite_uses (struct ivopts_data *data)
|
|
{
|
|
unsigned i;
|
|
struct iv_cand *cand;
|
|
struct iv_use *use;
|
|
|
|
for (i = 0; i < n_iv_uses (data); i++)
|
|
{
|
|
use = iv_use (data, i);
|
|
cand = use->selected;
|
|
gcc_assert (cand);
|
|
|
|
rewrite_use (data, use, cand);
|
|
}
|
|
}
|
|
|
|
/* Removes the ivs that are not used after rewriting. */
|
|
|
|
static void
|
|
remove_unused_ivs (struct ivopts_data *data)
|
|
{
|
|
unsigned j;
|
|
bitmap_iterator bi;
|
|
bitmap toremove = BITMAP_ALLOC (NULL);
|
|
|
|
/* Figure out an order in which to release SSA DEFs so that we don't
|
|
release something that we'd have to propagate into a debug stmt
|
|
afterwards. */
|
|
EXECUTE_IF_SET_IN_BITMAP (data->relevant, 0, j, bi)
|
|
{
|
|
struct version_info *info;
|
|
|
|
info = ver_info (data, j);
|
|
if (info->iv
|
|
&& !integer_zerop (info->iv->step)
|
|
&& !info->inv_id
|
|
&& !info->iv->have_use_for
|
|
&& !info->preserve_biv)
|
|
bitmap_set_bit (toremove, SSA_NAME_VERSION (info->iv->ssa_name));
|
|
}
|
|
|
|
release_defs_bitset (toremove);
|
|
|
|
BITMAP_FREE (toremove);
|
|
}
|
|
|
|
/* Frees memory occupied by struct tree_niter_desc in *VALUE. Callback
|
|
for pointer_map_traverse. */
|
|
|
|
static bool
|
|
free_tree_niter_desc (const void *key ATTRIBUTE_UNUSED, void **value,
|
|
void *data ATTRIBUTE_UNUSED)
|
|
{
|
|
struct tree_niter_desc *const niter = (struct tree_niter_desc *) *value;
|
|
|
|
free (niter);
|
|
return true;
|
|
}
|
|
|
|
/* Frees data allocated by the optimization of a single loop. */
|
|
|
|
static void
|
|
free_loop_data (struct ivopts_data *data)
|
|
{
|
|
unsigned i, j;
|
|
bitmap_iterator bi;
|
|
tree obj;
|
|
|
|
if (data->niters)
|
|
{
|
|
pointer_map_traverse (data->niters, free_tree_niter_desc, NULL);
|
|
pointer_map_destroy (data->niters);
|
|
data->niters = NULL;
|
|
}
|
|
|
|
EXECUTE_IF_SET_IN_BITMAP (data->relevant, 0, i, bi)
|
|
{
|
|
struct version_info *info;
|
|
|
|
info = ver_info (data, i);
|
|
free (info->iv);
|
|
info->iv = NULL;
|
|
info->has_nonlin_use = false;
|
|
info->preserve_biv = false;
|
|
info->inv_id = 0;
|
|
}
|
|
bitmap_clear (data->relevant);
|
|
bitmap_clear (data->important_candidates);
|
|
|
|
for (i = 0; i < n_iv_uses (data); i++)
|
|
{
|
|
struct iv_use *use = iv_use (data, i);
|
|
|
|
free (use->iv);
|
|
BITMAP_FREE (use->related_cands);
|
|
for (j = 0; j < use->n_map_members; j++)
|
|
if (use->cost_map[j].depends_on)
|
|
BITMAP_FREE (use->cost_map[j].depends_on);
|
|
free (use->cost_map);
|
|
free (use);
|
|
}
|
|
VEC_truncate (iv_use_p, data->iv_uses, 0);
|
|
|
|
for (i = 0; i < n_iv_cands (data); i++)
|
|
{
|
|
struct iv_cand *cand = iv_cand (data, i);
|
|
|
|
free (cand->iv);
|
|
if (cand->depends_on)
|
|
BITMAP_FREE (cand->depends_on);
|
|
free (cand);
|
|
}
|
|
VEC_truncate (iv_cand_p, data->iv_candidates, 0);
|
|
|
|
if (data->version_info_size < num_ssa_names)
|
|
{
|
|
data->version_info_size = 2 * num_ssa_names;
|
|
free (data->version_info);
|
|
data->version_info = XCNEWVEC (struct version_info, data->version_info_size);
|
|
}
|
|
|
|
data->max_inv_id = 0;
|
|
|
|
FOR_EACH_VEC_ELT (tree, decl_rtl_to_reset, i, obj)
|
|
SET_DECL_RTL (obj, NULL_RTX);
|
|
|
|
VEC_truncate (tree, decl_rtl_to_reset, 0);
|
|
|
|
htab_empty (data->inv_expr_tab);
|
|
data->inv_expr_id = 0;
|
|
}
|
|
|
|
/* Finalizes data structures used by the iv optimization pass. LOOPS is the
|
|
loop tree. */
|
|
|
|
static void
|
|
tree_ssa_iv_optimize_finalize (struct ivopts_data *data)
|
|
{
|
|
free_loop_data (data);
|
|
free (data->version_info);
|
|
BITMAP_FREE (data->relevant);
|
|
BITMAP_FREE (data->important_candidates);
|
|
|
|
VEC_free (tree, heap, decl_rtl_to_reset);
|
|
VEC_free (iv_use_p, heap, data->iv_uses);
|
|
VEC_free (iv_cand_p, heap, data->iv_candidates);
|
|
htab_delete (data->inv_expr_tab);
|
|
}
|
|
|
|
/* Returns true if the loop body BODY includes any function calls. */
|
|
|
|
static bool
|
|
loop_body_includes_call (basic_block *body, unsigned num_nodes)
|
|
{
|
|
gimple_stmt_iterator gsi;
|
|
unsigned i;
|
|
|
|
for (i = 0; i < num_nodes; i++)
|
|
for (gsi = gsi_start_bb (body[i]); !gsi_end_p (gsi); gsi_next (&gsi))
|
|
{
|
|
gimple stmt = gsi_stmt (gsi);
|
|
if (is_gimple_call (stmt)
|
|
&& !is_inexpensive_builtin (gimple_call_fndecl (stmt)))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/* Optimizes the LOOP. Returns true if anything changed. */
|
|
|
|
static bool
|
|
tree_ssa_iv_optimize_loop (struct ivopts_data *data, struct loop *loop)
|
|
{
|
|
bool changed = false;
|
|
struct iv_ca *iv_ca;
|
|
edge exit = single_dom_exit (loop);
|
|
basic_block *body;
|
|
|
|
gcc_assert (!data->niters);
|
|
data->current_loop = loop;
|
|
data->speed = optimize_loop_for_speed_p (loop);
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "Processing loop %d\n", loop->num);
|
|
|
|
if (exit)
|
|
{
|
|
fprintf (dump_file, " single exit %d -> %d, exit condition ",
|
|
exit->src->index, exit->dest->index);
|
|
print_gimple_stmt (dump_file, last_stmt (exit->src), 0, TDF_SLIM);
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
|
|
body = get_loop_body (loop);
|
|
data->body_includes_call = loop_body_includes_call (body, loop->num_nodes);
|
|
renumber_gimple_stmt_uids_in_blocks (body, loop->num_nodes);
|
|
free (body);
|
|
|
|
data->loop_single_exit_p = exit != NULL && loop_only_exit_p (loop, exit);
|
|
|
|
/* For each ssa name determines whether it behaves as an induction variable
|
|
in some loop. */
|
|
if (!find_induction_variables (data))
|
|
goto finish;
|
|
|
|
/* Finds interesting uses (item 1). */
|
|
find_interesting_uses (data);
|
|
if (n_iv_uses (data) > MAX_CONSIDERED_USES)
|
|
goto finish;
|
|
|
|
/* Finds candidates for the induction variables (item 2). */
|
|
find_iv_candidates (data);
|
|
|
|
/* Calculates the costs (item 3, part 1). */
|
|
determine_iv_costs (data);
|
|
determine_use_iv_costs (data);
|
|
determine_set_costs (data);
|
|
|
|
/* Find the optimal set of induction variables (item 3, part 2). */
|
|
iv_ca = find_optimal_iv_set (data);
|
|
if (!iv_ca)
|
|
goto finish;
|
|
changed = true;
|
|
|
|
/* Create the new induction variables (item 4, part 1). */
|
|
create_new_ivs (data, iv_ca);
|
|
iv_ca_free (&iv_ca);
|
|
|
|
/* Rewrite the uses (item 4, part 2). */
|
|
rewrite_uses (data);
|
|
|
|
/* Remove the ivs that are unused after rewriting. */
|
|
remove_unused_ivs (data);
|
|
|
|
/* We have changed the structure of induction variables; it might happen
|
|
that definitions in the scev database refer to some of them that were
|
|
eliminated. */
|
|
scev_reset ();
|
|
|
|
finish:
|
|
free_loop_data (data);
|
|
|
|
return changed;
|
|
}
|
|
|
|
/* Main entry point. Optimizes induction variables in loops. */
|
|
|
|
void
|
|
tree_ssa_iv_optimize (void)
|
|
{
|
|
struct loop *loop;
|
|
struct ivopts_data data;
|
|
loop_iterator li;
|
|
|
|
tree_ssa_iv_optimize_init (&data);
|
|
|
|
/* Optimize the loops starting with the innermost ones. */
|
|
FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST)
|
|
{
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
flow_loop_dump (loop, dump_file, NULL, 1);
|
|
|
|
tree_ssa_iv_optimize_loop (&data, loop);
|
|
}
|
|
|
|
tree_ssa_iv_optimize_finalize (&data);
|
|
}
|