a815571193
2004-10-17 Dhruv Matani <dhruvbird@gmx.net> Paolo Carlini <pcarlini@suse.de> * include/ext/bitmap_allocator.h: Change unsigned int -> size_t: this makes the code 64-bit correct and also fixes (together with using at the beginning a bitmap 2 * size_t bytes wide) alignment issues: now 8 is guaranteed, easily tunable to 16 via _BALLOC_ALIGN_BYTES. Fix pthread-rope7.cc fail by nulling out __mini_vector<> destructor. * src/bitmap_allocator.cc: Change to size_t. * config/linker-map.gnu: Adjust. Co-Authored-By: Paolo Carlini <pcarlini@suse.de> From-SVN: r89170
1175 lines
30 KiB
C++
1175 lines
30 KiB
C++
// Bitmap Allocator. -*- C++ -*-
|
|
|
|
// Copyright (C) 2004 Free Software Foundation, Inc.
|
|
//
|
|
// This file is part of the GNU ISO C++ Library. This library is free
|
|
// software; you can redistribute it and/or modify it under the
|
|
// terms of the GNU General Public License as published by the
|
|
// Free Software Foundation; either version 2, or (at your option)
|
|
// any later version.
|
|
|
|
// This library is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU General Public License for more details.
|
|
|
|
// You should have received a copy of the GNU General Public License along
|
|
// with this library; see the file COPYING. If not, write to the Free
|
|
// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
|
|
// USA.
|
|
|
|
// As a special exception, you may use this file as part of a free software
|
|
// library without restriction. Specifically, if other files instantiate
|
|
// templates or use macros or inline functions from this file, or you compile
|
|
// this file and link it with other files to produce an executable, this
|
|
// file does not by itself cause the resulting executable to be covered by
|
|
// the GNU General Public License. This exception does not however
|
|
// invalidate any other reasons why the executable file might be covered by
|
|
// the GNU General Public License.
|
|
|
|
/** @file ext/bitmap_allocator.h
|
|
* This file is a GNU extension to the Standard C++ Library.
|
|
* You should only include this header if you are using GCC 3 or later.
|
|
*/
|
|
|
|
#ifndef _BITMAP_ALLOCATOR_H
|
|
#define _BITMAP_ALLOCATOR_H 1
|
|
|
|
// For std::size_t, and ptrdiff_t.
|
|
#include <cstddef>
|
|
|
|
// For std::pair.
|
|
#include <utility>
|
|
|
|
// For greater_equal, and less_equal.
|
|
#include <functional>
|
|
|
|
// For operator new.
|
|
#include <new>
|
|
|
|
// For __gthread_mutex_t, __gthread_mutex_lock and __gthread_mutex_unlock.
|
|
#include <bits/gthr.h>
|
|
|
|
// Define this to enable error checking withing the allocator
|
|
// itself(to debug the allocator itself).
|
|
//#define _BALLOC_SANITY_CHECK
|
|
|
|
// The constant in the expression below is the alignment required in
|
|
// bytes.
|
|
#define _BALLOC_ALIGN_BYTES 8
|
|
|
|
#if defined _BALLOC_SANITY_CHECK
|
|
#include <cassert>
|
|
#define _BALLOC_ASSERT(_EXPR) assert(_EXPR)
|
|
#else
|
|
#define _BALLOC_ASSERT(_EXPR)
|
|
#endif
|
|
|
|
|
|
namespace __gnu_cxx
|
|
{
|
|
#if defined __GTHREADS
|
|
namespace
|
|
{
|
|
// If true, then the application being compiled will be using
|
|
// threads, so use mutexes as a synchronization primitive, else do
|
|
// no use any synchronization primitives.
|
|
bool const __threads_enabled = __gthread_active_p();
|
|
}
|
|
#endif
|
|
|
|
#if defined __GTHREADS
|
|
// _Mutex is an OO-Wrapper for __gthread_mutex_t. It does not allow
|
|
// you to copy or assign an already initialized mutex. This is used
|
|
// merely as a convenience for the locking classes.
|
|
class _Mutex
|
|
{
|
|
__gthread_mutex_t _M_mut;
|
|
|
|
// Prevent Copying and assignment.
|
|
_Mutex(_Mutex const&);
|
|
_Mutex& operator=(_Mutex const&);
|
|
|
|
public:
|
|
_Mutex()
|
|
{
|
|
if (__threads_enabled)
|
|
{
|
|
#if !defined __GTHREAD_MUTEX_INIT
|
|
__GTHREAD_MUTEX_INIT_FUNCTION(&_M_mut);
|
|
#else
|
|
__gthread_mutex_t __mtemp = __GTHREAD_MUTEX_INIT;
|
|
_M_mut = __mtemp;
|
|
#endif
|
|
}
|
|
}
|
|
|
|
~_Mutex()
|
|
{
|
|
// Gthreads does not define a Mutex Destruction Function.
|
|
}
|
|
|
|
__gthread_mutex_t*
|
|
_M_get() { return &_M_mut; }
|
|
};
|
|
|
|
// _Lock is a simple manual lokcing class which allows you to
|
|
// manually lock and unlock a mutex associated with the lock. There
|
|
// is not automatic locking or unlocking happening without the
|
|
// programmer's explicit instructions. This class unlocks the mutex
|
|
// ONLY if it has not been locked. However, this check does not
|
|
// apply for lokcing, and wayward use may cause dead-locks.
|
|
class _Lock
|
|
{
|
|
_Mutex* _M_pmt;
|
|
bool _M_locked;
|
|
|
|
// Prevent Copying and assignment.
|
|
_Lock(_Lock const&);
|
|
_Lock& operator=(_Lock const&);
|
|
|
|
public:
|
|
_Lock(_Mutex* __mptr)
|
|
: _M_pmt(__mptr), _M_locked(false)
|
|
{ }
|
|
|
|
void
|
|
_M_lock()
|
|
{
|
|
if (__threads_enabled)
|
|
{
|
|
_M_locked = true;
|
|
__gthread_mutex_lock(_M_pmt->_M_get());
|
|
}
|
|
}
|
|
|
|
void
|
|
_M_unlock()
|
|
{
|
|
if (__threads_enabled)
|
|
{
|
|
if (__builtin_expect(_M_locked, true))
|
|
{
|
|
__gthread_mutex_unlock(_M_pmt->_M_get());
|
|
_M_locked = false;
|
|
}
|
|
}
|
|
}
|
|
|
|
~_Lock() { }
|
|
};
|
|
|
|
// _Auto_Lock locks the associated mutex on construction, and
|
|
// unlocks on it's destruction. There are no checks performed, and
|
|
// this calss follows the RAII principle.
|
|
class _Auto_Lock
|
|
{
|
|
_Mutex* _M_pmt;
|
|
// Prevent Copying and assignment.
|
|
_Auto_Lock(_Auto_Lock const&);
|
|
_Auto_Lock& operator=(_Auto_Lock const&);
|
|
|
|
void
|
|
_M_lock()
|
|
{
|
|
if (__threads_enabled)
|
|
__gthread_mutex_lock(_M_pmt->_M_get());
|
|
}
|
|
|
|
void
|
|
_M_unlock()
|
|
{
|
|
if (__threads_enabled)
|
|
__gthread_mutex_unlock(_M_pmt->_M_get());
|
|
}
|
|
|
|
public:
|
|
_Auto_Lock(_Mutex* __mptr) : _M_pmt(__mptr)
|
|
{ this->_M_lock(); }
|
|
|
|
~_Auto_Lock() { this->_M_unlock(); }
|
|
};
|
|
#endif
|
|
|
|
namespace balloc
|
|
{
|
|
// __mini_vector<> is to be used only for built-in types or
|
|
// PODs. It is a stripped down version of the full-fledged
|
|
// std::vector<>. Noteable differences are:
|
|
//
|
|
// 1. Not all accessor functions are present.
|
|
// 2. Used ONLY for PODs.
|
|
// 3. No Allocator template argument. Uses ::operator new() to get
|
|
// memory, and ::operator delete() to free it.
|
|
template<typename _Tp>
|
|
class __mini_vector
|
|
{
|
|
__mini_vector(const __mini_vector&);
|
|
__mini_vector& operator=(const __mini_vector&);
|
|
|
|
public:
|
|
typedef _Tp value_type;
|
|
typedef _Tp* pointer;
|
|
typedef _Tp& reference;
|
|
typedef const _Tp& const_reference;
|
|
typedef std::size_t size_type;
|
|
typedef std::ptrdiff_t difference_type;
|
|
typedef pointer iterator;
|
|
|
|
private:
|
|
pointer _M_start;
|
|
pointer _M_finish;
|
|
pointer _M_end_of_storage;
|
|
|
|
size_type
|
|
_M_space_left() const throw()
|
|
{ return _M_end_of_storage - _M_finish; }
|
|
|
|
pointer
|
|
allocate(size_type __n)
|
|
{ return static_cast<pointer>(::operator new(__n * sizeof(_Tp))); }
|
|
|
|
void
|
|
deallocate(pointer __p, size_type)
|
|
{ ::operator delete(__p); }
|
|
|
|
public:
|
|
// Members used: size(), push_back(), pop_back(),
|
|
// insert(iterator, const_reference), erase(iterator),
|
|
// begin(), end(), back(), operator[].
|
|
|
|
__mini_vector() : _M_start(0), _M_finish(0),
|
|
_M_end_of_storage(0)
|
|
{ }
|
|
|
|
#if 0
|
|
~__mini_vector()
|
|
{
|
|
if (this->_M_start)
|
|
{
|
|
this->deallocate(this->_M_start, this->_M_end_of_storage
|
|
- this->_M_start);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
size_type
|
|
size() const throw()
|
|
{ return _M_finish - _M_start; }
|
|
|
|
iterator
|
|
begin() const throw()
|
|
{ return this->_M_start; }
|
|
|
|
iterator
|
|
end() const throw()
|
|
{ return this->_M_finish; }
|
|
|
|
reference
|
|
back() const throw()
|
|
{ return *(this->end() - 1); }
|
|
|
|
reference
|
|
operator[](const size_type __pos) const throw()
|
|
{ return this->_M_start[__pos]; }
|
|
|
|
void
|
|
insert(iterator __pos, const_reference __x);
|
|
|
|
void
|
|
push_back(const_reference __x)
|
|
{
|
|
if (this->_M_space_left())
|
|
{
|
|
*this->end() = __x;
|
|
++this->_M_finish;
|
|
}
|
|
else
|
|
this->insert(this->end(), __x);
|
|
}
|
|
|
|
void
|
|
pop_back() throw()
|
|
{ --this->_M_finish; }
|
|
|
|
void
|
|
erase(iterator __pos) throw();
|
|
|
|
void
|
|
clear() throw()
|
|
{ this->_M_finish = this->_M_start; }
|
|
};
|
|
|
|
// Out of line function definitions.
|
|
template<typename _Tp>
|
|
void __mini_vector<_Tp>::
|
|
insert(iterator __pos, const_reference __x)
|
|
{
|
|
if (this->_M_space_left())
|
|
{
|
|
size_type __to_move = this->_M_finish - __pos;
|
|
iterator __dest = this->end();
|
|
iterator __src = this->end() - 1;
|
|
|
|
++this->_M_finish;
|
|
while (__to_move)
|
|
{
|
|
*__dest = *__src;
|
|
--__dest; --__src; --__to_move;
|
|
}
|
|
*__pos = __x;
|
|
}
|
|
else
|
|
{
|
|
size_type __new_size = this->size() ? this->size() * 2 : 1;
|
|
iterator __new_start = this->allocate(__new_size);
|
|
iterator __first = this->begin();
|
|
iterator __start = __new_start;
|
|
while (__first != __pos)
|
|
{
|
|
*__start = *__first;
|
|
++__start; ++__first;
|
|
}
|
|
*__start = __x;
|
|
++__start;
|
|
while (__first != this->end())
|
|
{
|
|
*__start = *__first;
|
|
++__start; ++__first;
|
|
}
|
|
if (this->_M_start)
|
|
this->deallocate(this->_M_start, this->size());
|
|
|
|
this->_M_start = __new_start;
|
|
this->_M_finish = __start;
|
|
this->_M_end_of_storage = this->_M_start + __new_size;
|
|
}
|
|
}
|
|
|
|
template<typename _Tp>
|
|
void __mini_vector<_Tp>::
|
|
erase(iterator __pos) throw()
|
|
{
|
|
while (__pos + 1 != this->end())
|
|
{
|
|
*__pos = __pos[1];
|
|
++__pos;
|
|
}
|
|
--this->_M_finish;
|
|
}
|
|
|
|
|
|
template<typename _Tp>
|
|
struct __mv_iter_traits
|
|
{
|
|
typedef typename _Tp::value_type value_type;
|
|
typedef typename _Tp::difference_type difference_type;
|
|
};
|
|
|
|
template<typename _Tp>
|
|
struct __mv_iter_traits<_Tp*>
|
|
{
|
|
typedef _Tp value_type;
|
|
typedef std::ptrdiff_t difference_type;
|
|
};
|
|
|
|
enum
|
|
{
|
|
bits_per_byte = 8,
|
|
bits_per_block = sizeof(size_t) * bits_per_byte
|
|
};
|
|
|
|
template<typename _ForwardIterator, typename _Tp, typename _Compare>
|
|
_ForwardIterator
|
|
__lower_bound(_ForwardIterator __first, _ForwardIterator __last,
|
|
const _Tp& __val, _Compare __comp)
|
|
{
|
|
typedef typename __mv_iter_traits<_ForwardIterator>::value_type
|
|
_ValueType;
|
|
typedef typename __mv_iter_traits<_ForwardIterator>::difference_type
|
|
_DistanceType;
|
|
|
|
_DistanceType __len = __last - __first;
|
|
_DistanceType __half;
|
|
_ForwardIterator __middle;
|
|
|
|
while (__len > 0)
|
|
{
|
|
__half = __len >> 1;
|
|
__middle = __first;
|
|
__middle += __half;
|
|
if (__comp(*__middle, __val))
|
|
{
|
|
__first = __middle;
|
|
++__first;
|
|
__len = __len - __half - 1;
|
|
}
|
|
else
|
|
__len = __half;
|
|
}
|
|
return __first;
|
|
}
|
|
|
|
template<typename _InputIterator, typename _Predicate>
|
|
inline _InputIterator
|
|
__find_if(_InputIterator __first, _InputIterator __last, _Predicate __p)
|
|
{
|
|
while (__first != __last && !__p(*__first))
|
|
++__first;
|
|
return __first;
|
|
}
|
|
|
|
template<typename _AddrPair>
|
|
inline size_t
|
|
__num_blocks(_AddrPair __ap)
|
|
{ return (__ap.second - __ap.first) + 1; }
|
|
|
|
template<typename _AddrPair>
|
|
inline size_t
|
|
__num_bitmaps(_AddrPair __ap)
|
|
{ return __num_blocks(__ap) / bits_per_block; }
|
|
|
|
// _Tp should be a pointer type.
|
|
template<typename _Tp>
|
|
class _Inclusive_between
|
|
: public std::unary_function<typename std::pair<_Tp, _Tp>, bool>
|
|
{
|
|
typedef _Tp pointer;
|
|
pointer _M_ptr_value;
|
|
typedef typename std::pair<_Tp, _Tp> _Block_pair;
|
|
|
|
public:
|
|
_Inclusive_between(pointer __ptr) : _M_ptr_value(__ptr)
|
|
{ }
|
|
|
|
bool
|
|
operator()(_Block_pair __bp) const throw()
|
|
{
|
|
if (std::less_equal<pointer>()(_M_ptr_value, __bp.second)
|
|
&& std::greater_equal<pointer>()(_M_ptr_value, __bp.first))
|
|
return true;
|
|
else
|
|
return false;
|
|
}
|
|
};
|
|
|
|
// Used to pass a Functor to functions by reference.
|
|
template<typename _Functor>
|
|
class _Functor_Ref
|
|
: public std::unary_function<typename _Functor::argument_type,
|
|
typename _Functor::result_type>
|
|
{
|
|
_Functor& _M_fref;
|
|
|
|
public:
|
|
typedef typename _Functor::argument_type argument_type;
|
|
typedef typename _Functor::result_type result_type;
|
|
|
|
_Functor_Ref(_Functor& __fref) : _M_fref(__fref)
|
|
{ }
|
|
|
|
result_type
|
|
operator()(argument_type __arg)
|
|
{ return _M_fref(__arg); }
|
|
};
|
|
|
|
// _Tp should be a pointer type, and _Alloc is the Allocator for
|
|
// the vector.
|
|
template<typename _Tp>
|
|
class _Ffit_finder
|
|
: public std::unary_function<typename std::pair<_Tp, _Tp>, bool>
|
|
{
|
|
typedef typename std::pair<_Tp, _Tp> _Block_pair;
|
|
typedef typename balloc::__mini_vector<_Block_pair> _BPVector;
|
|
typedef typename _BPVector::difference_type _Counter_type;
|
|
|
|
size_t* _M_pbitmap;
|
|
_Counter_type _M_data_offset;
|
|
|
|
public:
|
|
_Ffit_finder() : _M_pbitmap(0), _M_data_offset(0)
|
|
{ }
|
|
|
|
bool
|
|
operator()(_Block_pair __bp) throw()
|
|
{
|
|
// Set the _rover to the last physical location bitmap,
|
|
// which is the bitmap which belongs to the first free
|
|
// block. Thus, the bitmaps are in exact reverse order of
|
|
// the actual memory layout. So, we count down the bimaps,
|
|
// which is the same as moving up the memory.
|
|
|
|
// If the used count stored at the start of the Bit Map headers
|
|
// is equal to the number of Objects that the current Block can
|
|
// store, then there is definitely no space for another single
|
|
// object, so just return false.
|
|
_Counter_type __diff =
|
|
__gnu_cxx::balloc::__num_bitmaps(__bp);
|
|
|
|
if (*(reinterpret_cast<size_t*>
|
|
(__bp.first) - (__diff + 1))
|
|
== __gnu_cxx::balloc::__num_blocks(__bp))
|
|
return false;
|
|
|
|
size_t* __rover = reinterpret_cast<size_t*>(__bp.first) - 1;
|
|
|
|
for (_Counter_type __i = 0; __i < __diff; ++__i)
|
|
{
|
|
_M_data_offset = __i;
|
|
if (*__rover)
|
|
{
|
|
_M_pbitmap = __rover;
|
|
return true;
|
|
}
|
|
--__rover;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
size_t*
|
|
_M_get() const throw()
|
|
{ return _M_pbitmap; }
|
|
|
|
_Counter_type
|
|
_M_offset() const throw()
|
|
{ return _M_data_offset * bits_per_block; }
|
|
};
|
|
|
|
|
|
|
|
// _Tp should be a pointer type.
|
|
template<typename _Tp>
|
|
class _Bitmap_counter
|
|
{
|
|
typedef typename balloc::__mini_vector<typename std::pair<_Tp, _Tp> >
|
|
_BPVector;
|
|
typedef typename _BPVector::size_type _Index_type;
|
|
typedef _Tp pointer;
|
|
|
|
_BPVector& _M_vbp;
|
|
size_t* _M_curr_bmap;
|
|
size_t* _M_last_bmap_in_block;
|
|
_Index_type _M_curr_index;
|
|
|
|
public:
|
|
// Use the 2nd parameter with care. Make sure that such an
|
|
// entry exists in the vector before passing that particular
|
|
// index to this ctor.
|
|
_Bitmap_counter(_BPVector& Rvbp, long __index = -1) : _M_vbp(Rvbp)
|
|
{ this->_M_reset(__index); }
|
|
|
|
void
|
|
_M_reset(long __index = -1) throw()
|
|
{
|
|
if (__index == -1)
|
|
{
|
|
_M_curr_bmap = 0;
|
|
_M_curr_index = static_cast<_Index_type>(-1);
|
|
return;
|
|
}
|
|
|
|
_M_curr_index = __index;
|
|
_M_curr_bmap = reinterpret_cast<size_t*>
|
|
(_M_vbp[_M_curr_index].first) - 1;
|
|
|
|
_BALLOC_ASSERT(__index <= (long)_M_vbp.size() - 1);
|
|
|
|
_M_last_bmap_in_block = _M_curr_bmap
|
|
- ((_M_vbp[_M_curr_index].second
|
|
- _M_vbp[_M_curr_index].first + 1)
|
|
/ bits_per_block - 1);
|
|
}
|
|
|
|
// Dangerous Function! Use with extreme care. Pass to this
|
|
// function ONLY those values that are known to be correct,
|
|
// otherwise this will mess up big time.
|
|
void
|
|
_M_set_internal_bitmap(size_t* __new_internal_marker) throw()
|
|
{ _M_curr_bmap = __new_internal_marker; }
|
|
|
|
bool
|
|
_M_finished() const throw()
|
|
{ return(_M_curr_bmap == 0); }
|
|
|
|
_Bitmap_counter&
|
|
operator++() throw()
|
|
{
|
|
if (_M_curr_bmap == _M_last_bmap_in_block)
|
|
{
|
|
if (++_M_curr_index == _M_vbp.size())
|
|
_M_curr_bmap = 0;
|
|
else
|
|
this->_M_reset(_M_curr_index);
|
|
}
|
|
else
|
|
--_M_curr_bmap;
|
|
return *this;
|
|
}
|
|
|
|
size_t*
|
|
_M_get() const throw()
|
|
{ return _M_curr_bmap; }
|
|
|
|
pointer
|
|
_M_base() const throw()
|
|
{ return _M_vbp[_M_curr_index].first; }
|
|
|
|
_Index_type
|
|
_M_offset() const throw()
|
|
{
|
|
return bits_per_block
|
|
* ((reinterpret_cast<size_t*>(this->_M_base())
|
|
- _M_curr_bmap) - 1);
|
|
}
|
|
|
|
_Index_type
|
|
_M_where() const throw()
|
|
{ return _M_curr_index; }
|
|
};
|
|
|
|
inline void
|
|
__bit_allocate(size_t* __pbmap, size_t __pos) throw()
|
|
{
|
|
size_t __mask = 1 << __pos;
|
|
__mask = ~__mask;
|
|
*__pbmap &= __mask;
|
|
}
|
|
|
|
inline void
|
|
__bit_free(size_t* __pbmap, size_t __pos) throw()
|
|
{
|
|
size_t __mask = 1 << __pos;
|
|
*__pbmap |= __mask;
|
|
}
|
|
} // namespace balloc
|
|
|
|
// Generic Version of the bsf instruction.
|
|
inline size_t
|
|
_Bit_scan_forward(size_t __num)
|
|
{ return static_cast<size_t>(__builtin_ctzl(__num)); }
|
|
|
|
class free_list
|
|
{
|
|
typedef size_t* value_type;
|
|
typedef balloc::__mini_vector<value_type> vector_type;
|
|
typedef vector_type::iterator iterator;
|
|
|
|
struct _LT_pointer_compare
|
|
{
|
|
bool
|
|
operator()(const size_t* __pui,
|
|
const size_t __cui) const throw()
|
|
{ return *__pui < __cui; }
|
|
};
|
|
|
|
#if defined __GTHREADS
|
|
static _Mutex _S_bfl_mutex;
|
|
#endif
|
|
static vector_type _S_free_list;
|
|
|
|
void
|
|
_M_validate(size_t* __addr) throw()
|
|
{
|
|
const vector_type::size_type __max_size = 64;
|
|
if (_S_free_list.size() >= __max_size)
|
|
{
|
|
// Ok, the threshold value has been reached. We determine
|
|
// which block to remove from the list of free blocks.
|
|
if (*__addr >= *_S_free_list.back())
|
|
{
|
|
// Ok, the new block is greater than or equal to the
|
|
// last block in the list of free blocks. We just free
|
|
// the new block.
|
|
::operator delete(static_cast<void*>(__addr));
|
|
return;
|
|
}
|
|
else
|
|
{
|
|
// Deallocate the last block in the list of free lists,
|
|
// and insert the new one in it's correct position.
|
|
::operator delete(static_cast<void*>(_S_free_list.back()));
|
|
_S_free_list.pop_back();
|
|
}
|
|
}
|
|
|
|
// Just add the block to the list of free lists unconditionally.
|
|
iterator __temp = __gnu_cxx::balloc::__lower_bound
|
|
(_S_free_list.begin(), _S_free_list.end(),
|
|
*__addr, _LT_pointer_compare());
|
|
|
|
// We may insert the new free list before _temp;
|
|
_S_free_list.insert(__temp, __addr);
|
|
}
|
|
|
|
bool
|
|
_M_should_i_give(size_t __block_size,
|
|
size_t __required_size) throw()
|
|
{
|
|
const size_t __max_wastage_percentage = 36;
|
|
if (__block_size >= __required_size &&
|
|
(((__block_size - __required_size) * 100 / __block_size)
|
|
< __max_wastage_percentage))
|
|
return true;
|
|
else
|
|
return false;
|
|
}
|
|
|
|
public:
|
|
inline void
|
|
_M_insert(size_t* __addr) throw()
|
|
{
|
|
#if defined __GTHREADS
|
|
_Auto_Lock __bfl_lock(&_S_bfl_mutex);
|
|
#endif
|
|
// Call _M_validate to decide what should be done with
|
|
// this particular free list.
|
|
this->_M_validate(reinterpret_cast<size_t*>(__addr) - 1);
|
|
// See discussion as to why this is 1!
|
|
}
|
|
|
|
size_t*
|
|
_M_get(size_t __sz) throw(std::bad_alloc);
|
|
|
|
// This function just clears the internal Free List, and gives back
|
|
// all the memory to the OS.
|
|
void
|
|
_M_clear();
|
|
};
|
|
|
|
|
|
// Forward declare the class.
|
|
template<typename _Tp>
|
|
class bitmap_allocator;
|
|
|
|
// Specialize for void:
|
|
template<>
|
|
class bitmap_allocator<void>
|
|
{
|
|
public:
|
|
typedef void* pointer;
|
|
typedef const void* const_pointer;
|
|
|
|
// Reference-to-void members are impossible.
|
|
typedef void value_type;
|
|
template<typename _Tp1>
|
|
struct rebind
|
|
{
|
|
typedef bitmap_allocator<_Tp1> other;
|
|
};
|
|
};
|
|
|
|
template<typename _Tp>
|
|
class bitmap_allocator : private free_list
|
|
{
|
|
public:
|
|
typedef std::size_t size_type;
|
|
typedef std::ptrdiff_t difference_type;
|
|
typedef _Tp* pointer;
|
|
typedef const _Tp* const_pointer;
|
|
typedef _Tp& reference;
|
|
typedef const _Tp& const_reference;
|
|
typedef _Tp value_type;
|
|
template<typename _Tp1>
|
|
struct rebind
|
|
{
|
|
typedef bitmap_allocator<_Tp1> other;
|
|
};
|
|
|
|
private:
|
|
template<size_t _BSize, size_t _AlignSize>
|
|
struct aligned_size
|
|
{
|
|
enum
|
|
{
|
|
modulus = _BSize % _AlignSize,
|
|
value = _BSize + (modulus ? _AlignSize - (modulus) : 0)
|
|
};
|
|
};
|
|
|
|
struct _Alloc_block
|
|
{
|
|
char __M_unused[aligned_size<sizeof(value_type),
|
|
_BALLOC_ALIGN_BYTES>::value];
|
|
};
|
|
|
|
|
|
typedef typename std::pair<_Alloc_block*, _Alloc_block*> _Block_pair;
|
|
|
|
typedef typename
|
|
balloc::__mini_vector<_Block_pair> _BPVector;
|
|
|
|
#if defined _BALLOC_SANITY_CHECK
|
|
// Complexity: O(lg(N)). Where, N is the number of block of size
|
|
// sizeof(value_type).
|
|
void
|
|
_S_check_for_free_blocks() throw()
|
|
{
|
|
typedef typename
|
|
__gnu_cxx::balloc::_Ffit_finder<_Alloc_block*> _FFF;
|
|
_FFF __fff;
|
|
typedef typename _BPVector::iterator _BPiter;
|
|
_BPiter __bpi =
|
|
__gnu_cxx::balloc::__find_if
|
|
(_S_mem_blocks.begin(), _S_mem_blocks.end(),
|
|
__gnu_cxx::balloc::_Functor_Ref<_FFF>(__fff));
|
|
|
|
_BALLOC_ASSERT(__bpi == _S_mem_blocks.end());
|
|
}
|
|
#endif
|
|
|
|
// Complexity: O(1), but internally depends upon the complexity
|
|
// of the function free_list::_M_get. The
|
|
// part where the bitmap headers are written is of worst case
|
|
// complexity: O(X),where X is the number of blocks of size
|
|
// sizeof(value_type) within the newly acquired block. Having a
|
|
// tight bound.
|
|
void
|
|
_S_refill_pool() throw(std::bad_alloc)
|
|
{
|
|
#if defined _BALLOC_SANITY_CHECK
|
|
_S_check_for_free_blocks();
|
|
#endif
|
|
|
|
const size_t __num_bitmaps = _S_block_size / balloc::bits_per_block;
|
|
const size_t __size_to_allocate = sizeof(size_t)
|
|
+ _S_block_size * sizeof(_Alloc_block)
|
|
+ __num_bitmaps * sizeof(size_t);
|
|
|
|
size_t* __temp =
|
|
reinterpret_cast<size_t*>
|
|
(this->_M_get(__size_to_allocate));
|
|
*__temp = 0;
|
|
++__temp;
|
|
|
|
// The Header information goes at the Beginning of the Block.
|
|
_Block_pair __bp =
|
|
std::make_pair(reinterpret_cast<_Alloc_block*>
|
|
(__temp + __num_bitmaps),
|
|
reinterpret_cast<_Alloc_block*>
|
|
(__temp + __num_bitmaps)
|
|
+ _S_block_size - 1);
|
|
|
|
// Fill the Vector with this information.
|
|
_S_mem_blocks.push_back(__bp);
|
|
|
|
size_t __bit_mask = 0; // 0 Indicates all Allocated.
|
|
__bit_mask = ~__bit_mask; // 1 Indicates all Free.
|
|
|
|
for (size_t __i = 0; __i < __num_bitmaps; ++__i)
|
|
__temp[__i] = __bit_mask;
|
|
|
|
_S_block_size *= 2;
|
|
}
|
|
|
|
|
|
static _BPVector _S_mem_blocks;
|
|
static size_t _S_block_size;
|
|
static __gnu_cxx::balloc::
|
|
_Bitmap_counter<_Alloc_block*> _S_last_request;
|
|
static typename _BPVector::size_type _S_last_dealloc_index;
|
|
#if defined __GTHREADS
|
|
static _Mutex _S_mut;
|
|
#endif
|
|
|
|
public:
|
|
|
|
// Complexity: Worst case complexity is O(N), but that is hardly
|
|
// ever hit. if and when this particular case is encountered,
|
|
// the next few cases are guaranteed to have a worst case
|
|
// complexity of O(1)! That's why this function performs very
|
|
// well on the average. you can consider this function to be
|
|
// having a complexity referred to commonly as: Amortized
|
|
// Constant time.
|
|
pointer
|
|
_M_allocate_single_object() throw(std::bad_alloc)
|
|
{
|
|
#if defined __GTHREADS
|
|
_Auto_Lock __bit_lock(&_S_mut);
|
|
#endif
|
|
|
|
// The algorithm is something like this: The last_request
|
|
// variable points to the last accessed Bit Map. When such a
|
|
// condition occurs, we try to find a free block in the
|
|
// current bitmap, or succeeding bitmaps until the last bitmap
|
|
// is reached. If no free block turns up, we resort to First
|
|
// Fit method.
|
|
|
|
// WARNING: Do not re-order the condition in the while
|
|
// statement below, because it relies on C++'s short-circuit
|
|
// evaluation. The return from _S_last_request->_M_get() will
|
|
// NOT be dereference able if _S_last_request->_M_finished()
|
|
// returns true. This would inevitably lead to a NULL pointer
|
|
// dereference if tinkered with.
|
|
while (_S_last_request._M_finished() == false
|
|
&& (*(_S_last_request._M_get()) == 0))
|
|
{
|
|
_S_last_request.operator++();
|
|
}
|
|
|
|
if (__builtin_expect(_S_last_request._M_finished() == true, false))
|
|
{
|
|
// Fall Back to First Fit algorithm.
|
|
typedef typename
|
|
__gnu_cxx::balloc::_Ffit_finder<_Alloc_block*> _FFF;
|
|
_FFF __fff;
|
|
typedef typename _BPVector::iterator _BPiter;
|
|
_BPiter __bpi =
|
|
__gnu_cxx::balloc::__find_if
|
|
(_S_mem_blocks.begin(), _S_mem_blocks.end(),
|
|
__gnu_cxx::balloc::_Functor_Ref<_FFF>(__fff));
|
|
|
|
if (__bpi != _S_mem_blocks.end())
|
|
{
|
|
// Search was successful. Ok, now mark the first bit from
|
|
// the right as 0, meaning Allocated. This bit is obtained
|
|
// by calling _M_get() on __fff.
|
|
size_t __nz_bit = _Bit_scan_forward(*__fff._M_get());
|
|
balloc::__bit_allocate(__fff._M_get(), __nz_bit);
|
|
|
|
_S_last_request._M_reset(__bpi - _S_mem_blocks.begin());
|
|
|
|
// Now, get the address of the bit we marked as allocated.
|
|
pointer __ret = reinterpret_cast<pointer>
|
|
(__bpi->first + __fff._M_offset() + __nz_bit);
|
|
size_t* __puse_count =
|
|
reinterpret_cast<size_t*>
|
|
(__bpi->first)
|
|
- (__gnu_cxx::balloc::__num_bitmaps(*__bpi) + 1);
|
|
|
|
++(*__puse_count);
|
|
return __ret;
|
|
}
|
|
else
|
|
{
|
|
// Search was unsuccessful. We Add more memory to the
|
|
// pool by calling _S_refill_pool().
|
|
_S_refill_pool();
|
|
|
|
// _M_Reset the _S_last_request structure to the first
|
|
// free block's bit map.
|
|
_S_last_request._M_reset(_S_mem_blocks.size() - 1);
|
|
|
|
// Now, mark that bit as allocated.
|
|
}
|
|
}
|
|
|
|
// _S_last_request holds a pointer to a valid bit map, that
|
|
// points to a free block in memory.
|
|
size_t __nz_bit = _Bit_scan_forward(*_S_last_request._M_get());
|
|
balloc::__bit_allocate(_S_last_request._M_get(), __nz_bit);
|
|
|
|
pointer __ret = reinterpret_cast<pointer>
|
|
(_S_last_request._M_base() + _S_last_request._M_offset() + __nz_bit);
|
|
|
|
size_t* __puse_count = reinterpret_cast<size_t*>
|
|
(_S_mem_blocks[_S_last_request._M_where()].first)
|
|
- (__gnu_cxx::balloc::
|
|
__num_bitmaps(_S_mem_blocks[_S_last_request._M_where()]) + 1);
|
|
|
|
++(*__puse_count);
|
|
return __ret;
|
|
}
|
|
|
|
// Complexity: O(lg(N)), but the worst case is hit quite often!
|
|
// I need to do something about this. I'll be able to work on
|
|
// it, only when I have some solid figures from a few real apps.
|
|
void
|
|
_M_deallocate_single_object(pointer __p) throw()
|
|
{
|
|
#if defined __GTHREADS
|
|
_Auto_Lock __bit_lock(&_S_mut);
|
|
#endif
|
|
_Alloc_block* __real_p = reinterpret_cast<_Alloc_block*>(__p);
|
|
|
|
typedef typename _BPVector::iterator _Iterator;
|
|
typedef typename _BPVector::difference_type _Difference_type;
|
|
|
|
_Difference_type __diff;
|
|
long __displacement;
|
|
|
|
_BALLOC_ASSERT(_S_last_dealloc_index >= 0);
|
|
|
|
|
|
if (__gnu_cxx::balloc::_Inclusive_between<_Alloc_block*>
|
|
(__real_p)
|
|
(_S_mem_blocks[_S_last_dealloc_index]))
|
|
{
|
|
_BALLOC_ASSERT(_S_last_dealloc_index <= _S_mem_blocks.size() - 1);
|
|
|
|
// Initial Assumption was correct!
|
|
__diff = _S_last_dealloc_index;
|
|
__displacement = __real_p - _S_mem_blocks[__diff].first;
|
|
}
|
|
else
|
|
{
|
|
_Iterator _iter =
|
|
__gnu_cxx::balloc::
|
|
__find_if(_S_mem_blocks.begin(),
|
|
_S_mem_blocks.end(),
|
|
__gnu_cxx::balloc::
|
|
_Inclusive_between<_Alloc_block*>(__real_p));
|
|
|
|
_BALLOC_ASSERT(_iter != _S_mem_blocks.end());
|
|
|
|
__diff = _iter - _S_mem_blocks.begin();
|
|
__displacement = __real_p - _S_mem_blocks[__diff].first;
|
|
_S_last_dealloc_index = __diff;
|
|
}
|
|
|
|
// Get the position of the iterator that has been found.
|
|
const size_t __rotate = __displacement % balloc::bits_per_block;
|
|
size_t* __bitmapC =
|
|
reinterpret_cast<size_t*>
|
|
(_S_mem_blocks[__diff].first) - 1;
|
|
__bitmapC -= (__displacement / balloc::bits_per_block);
|
|
|
|
balloc::__bit_free(__bitmapC, __rotate);
|
|
size_t* __puse_count = reinterpret_cast<size_t*>
|
|
(_S_mem_blocks[__diff].first)
|
|
- (__gnu_cxx::balloc::__num_bitmaps(_S_mem_blocks[__diff]) + 1);
|
|
|
|
_BALLOC_ASSERT(*__puse_count != 0);
|
|
|
|
--(*__puse_count);
|
|
|
|
if (__builtin_expect(*__puse_count == 0, false))
|
|
{
|
|
_S_block_size /= 2;
|
|
|
|
// We can safely remove this block.
|
|
// _Block_pair __bp = _S_mem_blocks[__diff];
|
|
this->_M_insert(__puse_count);
|
|
_S_mem_blocks.erase(_S_mem_blocks.begin() + __diff);
|
|
|
|
// Reset the _S_last_request variable to reflect the
|
|
// erased block. We do this to protect future requests
|
|
// after the last block has been removed from a particular
|
|
// memory Chunk, which in turn has been returned to the
|
|
// free list, and hence had been erased from the vector,
|
|
// so the size of the vector gets reduced by 1.
|
|
if ((_Difference_type)_S_last_request._M_where() >= __diff--)
|
|
_S_last_request._M_reset(__diff);
|
|
|
|
// If the Index into the vector of the region of memory
|
|
// that might hold the next address that will be passed to
|
|
// deallocated may have been invalidated due to the above
|
|
// erase procedure being called on the vector, hence we
|
|
// try to restore this invariant too.
|
|
if (_S_last_dealloc_index >= _S_mem_blocks.size())
|
|
{
|
|
_S_last_dealloc_index =(__diff != -1 ? __diff : 0);
|
|
_BALLOC_ASSERT(_S_last_dealloc_index >= 0);
|
|
}
|
|
}
|
|
}
|
|
|
|
public:
|
|
bitmap_allocator() throw()
|
|
{ }
|
|
|
|
bitmap_allocator(const bitmap_allocator&)
|
|
{ }
|
|
|
|
template<typename _Tp1>
|
|
bitmap_allocator(const bitmap_allocator<_Tp1>&) throw()
|
|
{ }
|
|
|
|
~bitmap_allocator() throw()
|
|
{ }
|
|
|
|
// Complexity: O(1), but internally the complexity depends upon the
|
|
// complexity of the function(s) _S_allocate_single_object and
|
|
// operator new.
|
|
pointer
|
|
allocate(size_type __n)
|
|
{
|
|
if (__builtin_expect(__n == 1, true))
|
|
return this->_M_allocate_single_object();
|
|
else
|
|
{
|
|
const size_type __b = __n * sizeof(value_type);
|
|
return reinterpret_cast<pointer>(::operator new(__b));
|
|
}
|
|
}
|
|
|
|
pointer
|
|
allocate(size_type __n, typename bitmap_allocator<void>::const_pointer)
|
|
{ return allocate(__n); }
|
|
|
|
void
|
|
deallocate(pointer __p, size_type __n) throw()
|
|
{
|
|
if (__builtin_expect(__p != 0, true))
|
|
{
|
|
if (__builtin_expect(__n == 1, true))
|
|
this->_M_deallocate_single_object(__p);
|
|
else
|
|
::operator delete(__p);
|
|
}
|
|
}
|
|
|
|
pointer
|
|
address(reference __r) const
|
|
{ return &__r; }
|
|
|
|
const_pointer
|
|
address(const_reference __r) const
|
|
{ return &__r; }
|
|
|
|
size_type
|
|
max_size() const throw()
|
|
{ return (size_type()-1)/sizeof(value_type); }
|
|
|
|
void
|
|
construct(pointer __p, const_reference __data)
|
|
{ ::new(__p) value_type(__data); }
|
|
|
|
void
|
|
destroy(pointer __p)
|
|
{ __p->~value_type(); }
|
|
};
|
|
|
|
template<typename _Tp1, typename _Tp2>
|
|
bool
|
|
operator==(const bitmap_allocator<_Tp1>&,
|
|
const bitmap_allocator<_Tp2>&) throw()
|
|
{ return true; }
|
|
|
|
template<typename _Tp1, typename _Tp2>
|
|
bool
|
|
operator!=(const bitmap_allocator<_Tp1>&,
|
|
const bitmap_allocator<_Tp2>&) throw()
|
|
{ return false; }
|
|
|
|
// Static member definitions.
|
|
template<typename _Tp>
|
|
typename bitmap_allocator<_Tp>::_BPVector
|
|
bitmap_allocator<_Tp>::_S_mem_blocks;
|
|
|
|
template<typename _Tp>
|
|
size_t bitmap_allocator<_Tp>::_S_block_size =
|
|
2 * balloc::bits_per_block;
|
|
|
|
template<typename _Tp>
|
|
typename __gnu_cxx::bitmap_allocator<_Tp>::_BPVector::size_type
|
|
bitmap_allocator<_Tp>::_S_last_dealloc_index = 0;
|
|
|
|
template<typename _Tp>
|
|
__gnu_cxx::balloc::_Bitmap_counter
|
|
<typename bitmap_allocator<_Tp>::_Alloc_block*>
|
|
bitmap_allocator<_Tp>::_S_last_request(_S_mem_blocks);
|
|
|
|
#if defined __GTHREADS
|
|
template<typename _Tp>
|
|
__gnu_cxx::_Mutex
|
|
bitmap_allocator<_Tp>::_S_mut;
|
|
#endif
|
|
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
// LocalWords: namespace GTHREADS bool const gthread endif Mutex mutex
|