gcc/libgo/go/crypto/elliptic/p256_s390x.go
Ian Lance Taylor 198766b648 re PR go/79146 (Bootstrapping go on s390x fails; redefined symbols)
PR go/79146
    crypto/elliptic: explicitly ignore p256_s390x.go
    
    The file only works if used in conjunction with assembly code not
    (yet) written for gccgo.
    
    Fixes GCC PR 79146.

    Reviewed-on: https://go-review.googlesource.com/35477

From-SVN: r244679
2017-01-20 02:27:46 +00:00

515 lines
13 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build ignore
// -build s390x
package elliptic
import (
"math/big"
)
type p256CurveFast struct {
*CurveParams
}
type p256Point struct {
x [32]byte
y [32]byte
z [32]byte
}
var (
p256 Curve
p256PreFast *[37][64]p256Point
)
// hasVectorFacility reports whether the machine has the z/Architecture
// vector facility installed and enabled.
func hasVectorFacility() bool
var hasVX = hasVectorFacility()
func initP256Arch() {
if hasVX {
p256 = p256CurveFast{p256Params}
initTable()
return
}
// No vector support, use pure Go implementation.
p256 = p256Curve{p256Params}
return
}
func (curve p256CurveFast) Params() *CurveParams {
return curve.CurveParams
}
// Functions implemented in p256_asm_s390x.s
// Montgomery multiplication modulo P256
func p256MulAsm(res, in1, in2 []byte)
// Montgomery square modulo P256
func p256Sqr(res, in []byte) {
p256MulAsm(res, in, in)
}
// Montgomery multiplication by 1
func p256FromMont(res, in []byte)
// iff cond == 1 val <- -val
func p256NegCond(val *p256Point, cond int)
// if cond == 0 res <- b; else res <- a
func p256MovCond(res, a, b *p256Point, cond int)
// Constant time table access
func p256Select(point *p256Point, table []p256Point, idx int)
func p256SelectBase(point *p256Point, table []p256Point, idx int)
// Montgomery multiplication modulo Ord(G)
func p256OrdMul(res, in1, in2 []byte)
// Montgomery square modulo Ord(G), repeated n times
func p256OrdSqr(res, in []byte, n int) {
copy(res, in)
for i := 0; i < n; i += 1 {
p256OrdMul(res, res, res)
}
}
// Point add with P2 being affine point
// If sign == 1 -> P2 = -P2
// If sel == 0 -> P3 = P1
// if zero == 0 -> P3 = P2
func p256PointAddAffineAsm(P3, P1, P2 *p256Point, sign, sel, zero int)
// Point add
func p256PointAddAsm(P3, P1, P2 *p256Point)
func p256PointDoubleAsm(P3, P1 *p256Point)
func (curve p256CurveFast) Inverse(k *big.Int) *big.Int {
if k.Cmp(p256Params.N) >= 0 {
// This should never happen.
reducedK := new(big.Int).Mod(k, p256Params.N)
k = reducedK
}
// table will store precomputed powers of x. The 32 bytes at index
// i store x^(i+1).
var table [15][32]byte
x := fromBig(k)
// This code operates in the Montgomery domain where R = 2^256 mod n
// and n is the order of the scalar field. (See initP256 for the
// value.) Elements in the Montgomery domain take the form a×R and
// multiplication of x and y in the calculates (x × y × R^-1) mod n. RR
// is R×R mod n thus the Montgomery multiplication x and RR gives x×R,
// i.e. converts x into the Montgomery domain. Stored in BigEndian form
RR := []byte{0x66, 0xe1, 0x2d, 0x94, 0xf3, 0xd9, 0x56, 0x20, 0x28, 0x45, 0xb2, 0x39, 0x2b, 0x6b, 0xec, 0x59,
0x46, 0x99, 0x79, 0x9c, 0x49, 0xbd, 0x6f, 0xa6, 0x83, 0x24, 0x4c, 0x95, 0xbe, 0x79, 0xee, 0xa2}
p256OrdMul(table[0][:], x, RR)
// Prepare the table, no need in constant time access, because the
// power is not a secret. (Entry 0 is never used.)
for i := 2; i < 16; i += 2 {
p256OrdSqr(table[i-1][:], table[(i/2)-1][:], 1)
p256OrdMul(table[i][:], table[i-1][:], table[0][:])
}
copy(x, table[14][:]) // f
p256OrdSqr(x[0:32], x[0:32], 4)
p256OrdMul(x[0:32], x[0:32], table[14][:]) // ff
t := make([]byte, 32)
copy(t, x)
p256OrdSqr(x, x, 8)
p256OrdMul(x, x, t) // ffff
copy(t, x)
p256OrdSqr(x, x, 16)
p256OrdMul(x, x, t) // ffffffff
copy(t, x)
p256OrdSqr(x, x, 64) // ffffffff0000000000000000
p256OrdMul(x, x, t) // ffffffff00000000ffffffff
p256OrdSqr(x, x, 32) // ffffffff00000000ffffffff00000000
p256OrdMul(x, x, t) // ffffffff00000000ffffffffffffffff
// Remaining 32 windows
expLo := [32]byte{0xb, 0xc, 0xe, 0x6, 0xf, 0xa, 0xa, 0xd, 0xa, 0x7, 0x1, 0x7, 0x9, 0xe, 0x8, 0x4,
0xf, 0x3, 0xb, 0x9, 0xc, 0xa, 0xc, 0x2, 0xf, 0xc, 0x6, 0x3, 0x2, 0x5, 0x4, 0xf}
for i := 0; i < 32; i++ {
p256OrdSqr(x, x, 4)
p256OrdMul(x, x, table[expLo[i]-1][:])
}
// Multiplying by one in the Montgomery domain converts a Montgomery
// value out of the domain.
one := []byte{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1}
p256OrdMul(x, x, one)
return new(big.Int).SetBytes(x)
}
// fromBig converts a *big.Int into a format used by this code.
func fromBig(big *big.Int) []byte {
// This could be done a lot more efficiently...
res := big.Bytes()
if 32 == len(res) {
return res
}
t := make([]byte, 32)
offset := 32 - len(res)
for i := len(res) - 1; i >= 0; i-- {
t[i+offset] = res[i]
}
return t
}
// p256GetMultiplier makes sure byte array will have 32 byte elements, If the scalar
// is equal or greater than the order of the group, it's reduced modulo that order.
func p256GetMultiplier(in []byte) []byte {
n := new(big.Int).SetBytes(in)
if n.Cmp(p256Params.N) >= 0 {
n.Mod(n, p256Params.N)
}
return fromBig(n)
}
// p256MulAsm operates in a Montgomery domain with R = 2^256 mod p, where p is the
// underlying field of the curve. (See initP256 for the value.) Thus rr here is
// R×R mod p. See comment in Inverse about how this is used.
var rr = []byte{0x00, 0x00, 0x00, 0x04, 0xff, 0xff, 0xff, 0xfd, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe,
0xff, 0xff, 0xff, 0xfb, 0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x03}
// (This is one, in the Montgomery domain.)
var one = []byte{0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01}
func maybeReduceModP(in *big.Int) *big.Int {
if in.Cmp(p256Params.P) < 0 {
return in
}
return new(big.Int).Mod(in, p256Params.P)
}
func (curve p256CurveFast) CombinedMult(bigX, bigY *big.Int, baseScalar, scalar []byte) (x, y *big.Int) {
var r1, r2 p256Point
r1.p256BaseMult(p256GetMultiplier(baseScalar))
copy(r2.x[:], fromBig(maybeReduceModP(bigX)))
copy(r2.y[:], fromBig(maybeReduceModP(bigY)))
copy(r2.z[:], one)
p256MulAsm(r2.x[:], r2.x[:], rr[:])
p256MulAsm(r2.y[:], r2.y[:], rr[:])
r2.p256ScalarMult(p256GetMultiplier(scalar))
p256PointAddAsm(&r1, &r1, &r2)
return r1.p256PointToAffine()
}
func (curve p256CurveFast) ScalarBaseMult(scalar []byte) (x, y *big.Int) {
var r p256Point
r.p256BaseMult(p256GetMultiplier(scalar))
return r.p256PointToAffine()
}
func (curve p256CurveFast) ScalarMult(bigX, bigY *big.Int, scalar []byte) (x, y *big.Int) {
var r p256Point
copy(r.x[:], fromBig(maybeReduceModP(bigX)))
copy(r.y[:], fromBig(maybeReduceModP(bigY)))
copy(r.z[:], one)
p256MulAsm(r.x[:], r.x[:], rr[:])
p256MulAsm(r.y[:], r.y[:], rr[:])
r.p256ScalarMult(p256GetMultiplier(scalar))
return r.p256PointToAffine()
}
func (p *p256Point) p256PointToAffine() (x, y *big.Int) {
zInv := make([]byte, 32)
zInvSq := make([]byte, 32)
p256Inverse(zInv, p.z[:])
p256Sqr(zInvSq, zInv)
p256MulAsm(zInv, zInv, zInvSq)
p256MulAsm(zInvSq, p.x[:], zInvSq)
p256MulAsm(zInv, p.y[:], zInv)
p256FromMont(zInvSq, zInvSq)
p256FromMont(zInv, zInv)
return new(big.Int).SetBytes(zInvSq), new(big.Int).SetBytes(zInv)
}
// p256Inverse sets out to in^-1 mod p.
func p256Inverse(out, in []byte) {
var stack [6 * 32]byte
p2 := stack[32*0 : 32*0+32]
p4 := stack[32*1 : 32*1+32]
p8 := stack[32*2 : 32*2+32]
p16 := stack[32*3 : 32*3+32]
p32 := stack[32*4 : 32*4+32]
p256Sqr(out, in)
p256MulAsm(p2, out, in) // 3*p
p256Sqr(out, p2)
p256Sqr(out, out)
p256MulAsm(p4, out, p2) // f*p
p256Sqr(out, p4)
p256Sqr(out, out)
p256Sqr(out, out)
p256Sqr(out, out)
p256MulAsm(p8, out, p4) // ff*p
p256Sqr(out, p8)
for i := 0; i < 7; i++ {
p256Sqr(out, out)
}
p256MulAsm(p16, out, p8) // ffff*p
p256Sqr(out, p16)
for i := 0; i < 15; i++ {
p256Sqr(out, out)
}
p256MulAsm(p32, out, p16) // ffffffff*p
p256Sqr(out, p32)
for i := 0; i < 31; i++ {
p256Sqr(out, out)
}
p256MulAsm(out, out, in)
for i := 0; i < 32*4; i++ {
p256Sqr(out, out)
}
p256MulAsm(out, out, p32)
for i := 0; i < 32; i++ {
p256Sqr(out, out)
}
p256MulAsm(out, out, p32)
for i := 0; i < 16; i++ {
p256Sqr(out, out)
}
p256MulAsm(out, out, p16)
for i := 0; i < 8; i++ {
p256Sqr(out, out)
}
p256MulAsm(out, out, p8)
p256Sqr(out, out)
p256Sqr(out, out)
p256Sqr(out, out)
p256Sqr(out, out)
p256MulAsm(out, out, p4)
p256Sqr(out, out)
p256Sqr(out, out)
p256MulAsm(out, out, p2)
p256Sqr(out, out)
p256Sqr(out, out)
p256MulAsm(out, out, in)
}
func boothW5(in uint) (int, int) {
var s uint = ^((in >> 5) - 1)
var d uint = (1 << 6) - in - 1
d = (d & s) | (in & (^s))
d = (d >> 1) + (d & 1)
return int(d), int(s & 1)
}
func boothW7(in uint) (int, int) {
var s uint = ^((in >> 7) - 1)
var d uint = (1 << 8) - in - 1
d = (d & s) | (in & (^s))
d = (d >> 1) + (d & 1)
return int(d), int(s & 1)
}
func initTable() {
p256PreFast = new([37][64]p256Point) //z coordinate not used
basePoint := p256Point{
x: [32]byte{0x18, 0x90, 0x5f, 0x76, 0xa5, 0x37, 0x55, 0xc6, 0x79, 0xfb, 0x73, 0x2b, 0x77, 0x62, 0x25, 0x10,
0x75, 0xba, 0x95, 0xfc, 0x5f, 0xed, 0xb6, 0x01, 0x79, 0xe7, 0x30, 0xd4, 0x18, 0xa9, 0x14, 0x3c}, //(p256.x*2^256)%p
y: [32]byte{0x85, 0x71, 0xff, 0x18, 0x25, 0x88, 0x5d, 0x85, 0xd2, 0xe8, 0x86, 0x88, 0xdd, 0x21, 0xf3, 0x25,
0x8b, 0x4a, 0xb8, 0xe4, 0xba, 0x19, 0xe4, 0x5c, 0xdd, 0xf2, 0x53, 0x57, 0xce, 0x95, 0x56, 0x0a}, //(p256.y*2^256)%p
z: [32]byte{0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01}, //(p256.z*2^256)%p
}
t1 := new(p256Point)
t2 := new(p256Point)
*t2 = basePoint
zInv := make([]byte, 32)
zInvSq := make([]byte, 32)
for j := 0; j < 64; j++ {
*t1 = *t2
for i := 0; i < 37; i++ {
// The window size is 7 so we need to double 7 times.
if i != 0 {
for k := 0; k < 7; k++ {
p256PointDoubleAsm(t1, t1)
}
}
// Convert the point to affine form. (Its values are
// still in Montgomery form however.)
p256Inverse(zInv, t1.z[:])
p256Sqr(zInvSq, zInv)
p256MulAsm(zInv, zInv, zInvSq)
p256MulAsm(t1.x[:], t1.x[:], zInvSq)
p256MulAsm(t1.y[:], t1.y[:], zInv)
copy(t1.z[:], basePoint.z[:])
// Update the table entry
copy(p256PreFast[i][j].x[:], t1.x[:])
copy(p256PreFast[i][j].y[:], t1.y[:])
}
if j == 0 {
p256PointDoubleAsm(t2, &basePoint)
} else {
p256PointAddAsm(t2, t2, &basePoint)
}
}
}
func (p *p256Point) p256BaseMult(scalar []byte) {
wvalue := (uint(scalar[31]) << 1) & 0xff
sel, sign := boothW7(uint(wvalue))
p256SelectBase(p, p256PreFast[0][:], sel)
p256NegCond(p, sign)
copy(p.z[:], one[:])
var t0 p256Point
copy(t0.z[:], one[:])
index := uint(6)
zero := sel
for i := 1; i < 37; i++ {
if index < 247 {
wvalue = ((uint(scalar[31-index/8]) >> (index % 8)) + (uint(scalar[31-index/8-1]) << (8 - (index % 8)))) & 0xff
} else {
wvalue = (uint(scalar[31-index/8]) >> (index % 8)) & 0xff
}
index += 7
sel, sign = boothW7(uint(wvalue))
p256SelectBase(&t0, p256PreFast[i][:], sel)
p256PointAddAffineAsm(p, p, &t0, sign, sel, zero)
zero |= sel
}
}
func (p *p256Point) p256ScalarMult(scalar []byte) {
// precomp is a table of precomputed points that stores powers of p
// from p^1 to p^16.
var precomp [16]p256Point
var t0, t1, t2, t3 p256Point
// Prepare the table
*&precomp[0] = *p
p256PointDoubleAsm(&t0, p)
p256PointDoubleAsm(&t1, &t0)
p256PointDoubleAsm(&t2, &t1)
p256PointDoubleAsm(&t3, &t2)
*&precomp[1] = t0 // 2
*&precomp[3] = t1 // 4
*&precomp[7] = t2 // 8
*&precomp[15] = t3 // 16
p256PointAddAsm(&t0, &t0, p)
p256PointAddAsm(&t1, &t1, p)
p256PointAddAsm(&t2, &t2, p)
*&precomp[2] = t0 // 3
*&precomp[4] = t1 // 5
*&precomp[8] = t2 // 9
p256PointDoubleAsm(&t0, &t0)
p256PointDoubleAsm(&t1, &t1)
*&precomp[5] = t0 // 6
*&precomp[9] = t1 // 10
p256PointAddAsm(&t2, &t0, p)
p256PointAddAsm(&t1, &t1, p)
*&precomp[6] = t2 // 7
*&precomp[10] = t1 // 11
p256PointDoubleAsm(&t0, &t0)
p256PointDoubleAsm(&t2, &t2)
*&precomp[11] = t0 // 12
*&precomp[13] = t2 // 14
p256PointAddAsm(&t0, &t0, p)
p256PointAddAsm(&t2, &t2, p)
*&precomp[12] = t0 // 13
*&precomp[14] = t2 // 15
// Start scanning the window from top bit
index := uint(254)
var sel, sign int
wvalue := (uint(scalar[31-index/8]) >> (index % 8)) & 0x3f
sel, _ = boothW5(uint(wvalue))
p256Select(p, precomp[:], sel)
zero := sel
for index > 4 {
index -= 5
p256PointDoubleAsm(p, p)
p256PointDoubleAsm(p, p)
p256PointDoubleAsm(p, p)
p256PointDoubleAsm(p, p)
p256PointDoubleAsm(p, p)
if index < 247 {
wvalue = ((uint(scalar[31-index/8]) >> (index % 8)) + (uint(scalar[31-index/8-1]) << (8 - (index % 8)))) & 0x3f
} else {
wvalue = (uint(scalar[31-index/8]) >> (index % 8)) & 0x3f
}
sel, sign = boothW5(uint(wvalue))
p256Select(&t0, precomp[:], sel)
p256NegCond(&t0, sign)
p256PointAddAsm(&t1, p, &t0)
p256MovCond(&t1, &t1, p, sel)
p256MovCond(p, &t1, &t0, zero)
zero |= sel
}
p256PointDoubleAsm(p, p)
p256PointDoubleAsm(p, p)
p256PointDoubleAsm(p, p)
p256PointDoubleAsm(p, p)
p256PointDoubleAsm(p, p)
wvalue = (uint(scalar[31]) << 1) & 0x3f
sel, sign = boothW5(uint(wvalue))
p256Select(&t0, precomp[:], sel)
p256NegCond(&t0, sign)
p256PointAddAsm(&t1, p, &t0)
p256MovCond(&t1, &t1, p, sel)
p256MovCond(p, &t1, &t0, zero)
}