gcc/libgo/go/runtime/cgocall.go
Ian Lance Taylor cfcbb4227f libgo: update to Go1.16beta1 release
This does not yet include support for the //go:embed directive added
in this release.

	* Makefile.am (check-runtime): Don't create check-runtime-dir.
	(mostlyclean-local): Don't remove check-runtime-dir.
	(check-go-tool, check-vet): Copy in go.mod and modules.txt.
	(check-cgo-test, check-carchive-test): Add go.mod file.
	* Makefile.in: Regenerate.

Reviewed-on: https://go-review.googlesource.com/c/gofrontend/+/280172
2020-12-30 15:13:24 -08:00

311 lines
7.9 KiB
Go

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Cgo call and callback support.
package runtime
import (
"runtime/internal/sys"
"unsafe"
)
// Functions called by cgo-generated code.
//go:linkname cgoCheckPointer
//go:linkname cgoCheckResult
// Pointer checking for cgo code.
// We want to detect all cases where a program that does not use
// unsafe makes a cgo call passing a Go pointer to memory that
// contains a Go pointer. Here a Go pointer is defined as a pointer
// to memory allocated by the Go runtime. Programs that use unsafe
// can evade this restriction easily, so we don't try to catch them.
// The cgo program will rewrite all possibly bad pointer arguments to
// call cgoCheckPointer, where we can catch cases of a Go pointer
// pointing to a Go pointer.
// Complicating matters, taking the address of a slice or array
// element permits the C program to access all elements of the slice
// or array. In that case we will see a pointer to a single element,
// but we need to check the entire data structure.
// The cgoCheckPointer call takes additional arguments indicating that
// it was called on an address expression. An additional argument of
// true means that it only needs to check a single element. An
// additional argument of a slice or array means that it needs to
// check the entire slice/array, but nothing else. Otherwise, the
// pointer could be anything, and we check the entire heap object,
// which is conservative but safe.
// When and if we implement a moving garbage collector,
// cgoCheckPointer will pin the pointer for the duration of the cgo
// call. (This is necessary but not sufficient; the cgo program will
// also have to change to pin Go pointers that cannot point to Go
// pointers.)
// cgoCheckPointer checks if the argument contains a Go pointer that
// points to a Go pointer, and panics if it does.
func cgoCheckPointer(ptr interface{}, arg interface{}) {
if debug.cgocheck == 0 {
return
}
ep := efaceOf(&ptr)
t := ep._type
top := true
if arg != nil && (t.kind&kindMask == kindPtr || t.kind&kindMask == kindUnsafePointer) {
p := ep.data
if t.kind&kindDirectIface == 0 {
p = *(*unsafe.Pointer)(p)
}
if p == nil || !cgoIsGoPointer(p) {
return
}
aep := efaceOf(&arg)
switch aep._type.kind & kindMask {
case kindBool:
if t.kind&kindMask == kindUnsafePointer {
// We don't know the type of the element.
break
}
pt := (*ptrtype)(unsafe.Pointer(t))
cgoCheckArg(pt.elem, p, true, false, cgoCheckPointerFail)
return
case kindSlice:
// Check the slice rather than the pointer.
ep = aep
t = ep._type
case kindArray:
// Check the array rather than the pointer.
// Pass top as false since we have a pointer
// to the array.
ep = aep
t = ep._type
top = false
default:
throw("can't happen")
}
}
cgoCheckArg(t, ep.data, t.kind&kindDirectIface == 0, top, cgoCheckPointerFail)
}
const cgoCheckPointerFail = "cgo argument has Go pointer to Go pointer"
const cgoResultFail = "cgo result has Go pointer"
// cgoCheckArg is the real work of cgoCheckPointer. The argument p
// is either a pointer to the value (of type t), or the value itself,
// depending on indir. The top parameter is whether we are at the top
// level, where Go pointers are allowed.
func cgoCheckArg(t *_type, p unsafe.Pointer, indir, top bool, msg string) {
if t.ptrdata == 0 || p == nil {
// If the type has no pointers there is nothing to do.
return
}
switch t.kind & kindMask {
default:
throw("can't happen")
case kindArray:
at := (*arraytype)(unsafe.Pointer(t))
if !indir {
if at.len != 1 {
throw("can't happen")
}
cgoCheckArg(at.elem, p, at.elem.kind&kindDirectIface == 0, top, msg)
return
}
for i := uintptr(0); i < at.len; i++ {
cgoCheckArg(at.elem, p, true, top, msg)
p = add(p, at.elem.size)
}
case kindChan, kindMap:
// These types contain internal pointers that will
// always be allocated in the Go heap. It's never OK
// to pass them to C.
panic(errorString(msg))
case kindFunc:
if indir {
p = *(*unsafe.Pointer)(p)
}
if !cgoIsGoPointer(p) {
return
}
panic(errorString(msg))
case kindInterface:
it := *(**_type)(p)
if it == nil {
return
}
// A type known at compile time is OK since it's
// constant. A type not known at compile time will be
// in the heap and will not be OK.
if inheap(uintptr(unsafe.Pointer(it))) {
panic(errorString(msg))
}
p = *(*unsafe.Pointer)(add(p, sys.PtrSize))
if !cgoIsGoPointer(p) {
return
}
if !top {
panic(errorString(msg))
}
cgoCheckArg(it, p, it.kind&kindDirectIface == 0, false, msg)
case kindSlice:
st := (*slicetype)(unsafe.Pointer(t))
s := (*slice)(p)
p = s.array
if p == nil || !cgoIsGoPointer(p) {
return
}
if !top {
panic(errorString(msg))
}
if st.elem.ptrdata == 0 {
return
}
for i := 0; i < s.cap; i++ {
cgoCheckArg(st.elem, p, true, false, msg)
p = add(p, st.elem.size)
}
case kindString:
ss := (*stringStruct)(p)
if !cgoIsGoPointer(ss.str) {
return
}
if !top {
panic(errorString(msg))
}
case kindStruct:
st := (*structtype)(unsafe.Pointer(t))
if !indir {
if len(st.fields) != 1 {
throw("can't happen")
}
cgoCheckArg(st.fields[0].typ, p, st.fields[0].typ.kind&kindDirectIface == 0, top, msg)
return
}
for _, f := range st.fields {
if f.typ.ptrdata == 0 {
continue
}
cgoCheckArg(f.typ, add(p, f.offset()), true, top, msg)
}
case kindPtr, kindUnsafePointer:
if indir {
p = *(*unsafe.Pointer)(p)
if p == nil {
return
}
}
if !cgoIsGoPointer(p) {
return
}
if !top {
panic(errorString(msg))
}
cgoCheckUnknownPointer(p, msg)
}
}
// cgoCheckUnknownPointer is called for an arbitrary pointer into Go
// memory. It checks whether that Go memory contains any other
// pointer into Go memory. If it does, we panic.
// The return values are unused but useful to see in panic tracebacks.
func cgoCheckUnknownPointer(p unsafe.Pointer, msg string) (base, i uintptr) {
if inheap(uintptr(p)) {
b, span, _ := findObject(uintptr(p), 0, 0, false)
base = b
if base == 0 {
return
}
hbits := heapBitsForAddr(base)
n := span.elemsize
for i = uintptr(0); i < n; i += sys.PtrSize {
if !hbits.morePointers() {
// No more possible pointers.
break
}
if hbits.isPointer() && cgoIsGoPointer(*(*unsafe.Pointer)(unsafe.Pointer(base + i))) {
panic(errorString(msg))
}
hbits = hbits.next()
}
return
}
lo := 0
hi := len(gcRootsIndex)
for lo < hi {
m := lo + (hi-lo)/2
pr := gcRootsIndex[m]
addr := uintptr(pr.decl)
if cgoInRange(p, addr, addr+pr.size) {
cgoCheckBits(pr.decl, pr.gcdata, 0, pr.ptrdata)
return
}
if uintptr(p) < addr {
hi = m
} else {
lo = m + 1
}
}
return
}
// cgoIsGoPointer reports whether the pointer is a Go pointer--a
// pointer to Go memory. We only care about Go memory that might
// contain pointers.
//go:nosplit
//go:nowritebarrierrec
func cgoIsGoPointer(p unsafe.Pointer) bool {
if p == nil {
return false
}
if inHeapOrStack(uintptr(p)) {
return true
}
roots := gcRoots
for roots != nil {
for i := 0; i < roots.count; i++ {
pr := roots.roots[i]
addr := uintptr(pr.decl)
if cgoInRange(p, addr, addr+pr.size) {
return true
}
}
roots = roots.next
}
return false
}
// cgoInRange reports whether p is between start and end.
//go:nosplit
//go:nowritebarrierrec
func cgoInRange(p unsafe.Pointer, start, end uintptr) bool {
return start <= uintptr(p) && uintptr(p) < end
}
// cgoCheckResult is called to check the result parameter of an
// exported Go function. It panics if the result is or contains a Go
// pointer.
func cgoCheckResult(val interface{}) {
if debug.cgocheck == 0 {
return
}
ep := efaceOf(&val)
t := ep._type
cgoCheckArg(t, ep.data, t.kind&kindDirectIface == 0, false, cgoResultFail)
}