cfcbb4227f
This does not yet include support for the //go:embed directive added in this release. * Makefile.am (check-runtime): Don't create check-runtime-dir. (mostlyclean-local): Don't remove check-runtime-dir. (check-go-tool, check-vet): Copy in go.mod and modules.txt. (check-cgo-test, check-carchive-test): Add go.mod file. * Makefile.in: Regenerate. Reviewed-on: https://go-review.googlesource.com/c/gofrontend/+/280172
311 lines
7.9 KiB
Go
311 lines
7.9 KiB
Go
// Copyright 2009 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
// Cgo call and callback support.
|
|
|
|
package runtime
|
|
|
|
import (
|
|
"runtime/internal/sys"
|
|
"unsafe"
|
|
)
|
|
|
|
// Functions called by cgo-generated code.
|
|
//go:linkname cgoCheckPointer
|
|
//go:linkname cgoCheckResult
|
|
|
|
// Pointer checking for cgo code.
|
|
|
|
// We want to detect all cases where a program that does not use
|
|
// unsafe makes a cgo call passing a Go pointer to memory that
|
|
// contains a Go pointer. Here a Go pointer is defined as a pointer
|
|
// to memory allocated by the Go runtime. Programs that use unsafe
|
|
// can evade this restriction easily, so we don't try to catch them.
|
|
// The cgo program will rewrite all possibly bad pointer arguments to
|
|
// call cgoCheckPointer, where we can catch cases of a Go pointer
|
|
// pointing to a Go pointer.
|
|
|
|
// Complicating matters, taking the address of a slice or array
|
|
// element permits the C program to access all elements of the slice
|
|
// or array. In that case we will see a pointer to a single element,
|
|
// but we need to check the entire data structure.
|
|
|
|
// The cgoCheckPointer call takes additional arguments indicating that
|
|
// it was called on an address expression. An additional argument of
|
|
// true means that it only needs to check a single element. An
|
|
// additional argument of a slice or array means that it needs to
|
|
// check the entire slice/array, but nothing else. Otherwise, the
|
|
// pointer could be anything, and we check the entire heap object,
|
|
// which is conservative but safe.
|
|
|
|
// When and if we implement a moving garbage collector,
|
|
// cgoCheckPointer will pin the pointer for the duration of the cgo
|
|
// call. (This is necessary but not sufficient; the cgo program will
|
|
// also have to change to pin Go pointers that cannot point to Go
|
|
// pointers.)
|
|
|
|
// cgoCheckPointer checks if the argument contains a Go pointer that
|
|
// points to a Go pointer, and panics if it does.
|
|
func cgoCheckPointer(ptr interface{}, arg interface{}) {
|
|
if debug.cgocheck == 0 {
|
|
return
|
|
}
|
|
|
|
ep := efaceOf(&ptr)
|
|
t := ep._type
|
|
|
|
top := true
|
|
if arg != nil && (t.kind&kindMask == kindPtr || t.kind&kindMask == kindUnsafePointer) {
|
|
p := ep.data
|
|
if t.kind&kindDirectIface == 0 {
|
|
p = *(*unsafe.Pointer)(p)
|
|
}
|
|
if p == nil || !cgoIsGoPointer(p) {
|
|
return
|
|
}
|
|
aep := efaceOf(&arg)
|
|
switch aep._type.kind & kindMask {
|
|
case kindBool:
|
|
if t.kind&kindMask == kindUnsafePointer {
|
|
// We don't know the type of the element.
|
|
break
|
|
}
|
|
pt := (*ptrtype)(unsafe.Pointer(t))
|
|
cgoCheckArg(pt.elem, p, true, false, cgoCheckPointerFail)
|
|
return
|
|
case kindSlice:
|
|
// Check the slice rather than the pointer.
|
|
ep = aep
|
|
t = ep._type
|
|
case kindArray:
|
|
// Check the array rather than the pointer.
|
|
// Pass top as false since we have a pointer
|
|
// to the array.
|
|
ep = aep
|
|
t = ep._type
|
|
top = false
|
|
default:
|
|
throw("can't happen")
|
|
}
|
|
}
|
|
|
|
cgoCheckArg(t, ep.data, t.kind&kindDirectIface == 0, top, cgoCheckPointerFail)
|
|
}
|
|
|
|
const cgoCheckPointerFail = "cgo argument has Go pointer to Go pointer"
|
|
const cgoResultFail = "cgo result has Go pointer"
|
|
|
|
// cgoCheckArg is the real work of cgoCheckPointer. The argument p
|
|
// is either a pointer to the value (of type t), or the value itself,
|
|
// depending on indir. The top parameter is whether we are at the top
|
|
// level, where Go pointers are allowed.
|
|
func cgoCheckArg(t *_type, p unsafe.Pointer, indir, top bool, msg string) {
|
|
if t.ptrdata == 0 || p == nil {
|
|
// If the type has no pointers there is nothing to do.
|
|
return
|
|
}
|
|
|
|
switch t.kind & kindMask {
|
|
default:
|
|
throw("can't happen")
|
|
case kindArray:
|
|
at := (*arraytype)(unsafe.Pointer(t))
|
|
if !indir {
|
|
if at.len != 1 {
|
|
throw("can't happen")
|
|
}
|
|
cgoCheckArg(at.elem, p, at.elem.kind&kindDirectIface == 0, top, msg)
|
|
return
|
|
}
|
|
for i := uintptr(0); i < at.len; i++ {
|
|
cgoCheckArg(at.elem, p, true, top, msg)
|
|
p = add(p, at.elem.size)
|
|
}
|
|
case kindChan, kindMap:
|
|
// These types contain internal pointers that will
|
|
// always be allocated in the Go heap. It's never OK
|
|
// to pass them to C.
|
|
panic(errorString(msg))
|
|
case kindFunc:
|
|
if indir {
|
|
p = *(*unsafe.Pointer)(p)
|
|
}
|
|
if !cgoIsGoPointer(p) {
|
|
return
|
|
}
|
|
panic(errorString(msg))
|
|
case kindInterface:
|
|
it := *(**_type)(p)
|
|
if it == nil {
|
|
return
|
|
}
|
|
// A type known at compile time is OK since it's
|
|
// constant. A type not known at compile time will be
|
|
// in the heap and will not be OK.
|
|
if inheap(uintptr(unsafe.Pointer(it))) {
|
|
panic(errorString(msg))
|
|
}
|
|
p = *(*unsafe.Pointer)(add(p, sys.PtrSize))
|
|
if !cgoIsGoPointer(p) {
|
|
return
|
|
}
|
|
if !top {
|
|
panic(errorString(msg))
|
|
}
|
|
cgoCheckArg(it, p, it.kind&kindDirectIface == 0, false, msg)
|
|
case kindSlice:
|
|
st := (*slicetype)(unsafe.Pointer(t))
|
|
s := (*slice)(p)
|
|
p = s.array
|
|
if p == nil || !cgoIsGoPointer(p) {
|
|
return
|
|
}
|
|
if !top {
|
|
panic(errorString(msg))
|
|
}
|
|
if st.elem.ptrdata == 0 {
|
|
return
|
|
}
|
|
for i := 0; i < s.cap; i++ {
|
|
cgoCheckArg(st.elem, p, true, false, msg)
|
|
p = add(p, st.elem.size)
|
|
}
|
|
case kindString:
|
|
ss := (*stringStruct)(p)
|
|
if !cgoIsGoPointer(ss.str) {
|
|
return
|
|
}
|
|
if !top {
|
|
panic(errorString(msg))
|
|
}
|
|
case kindStruct:
|
|
st := (*structtype)(unsafe.Pointer(t))
|
|
if !indir {
|
|
if len(st.fields) != 1 {
|
|
throw("can't happen")
|
|
}
|
|
cgoCheckArg(st.fields[0].typ, p, st.fields[0].typ.kind&kindDirectIface == 0, top, msg)
|
|
return
|
|
}
|
|
for _, f := range st.fields {
|
|
if f.typ.ptrdata == 0 {
|
|
continue
|
|
}
|
|
cgoCheckArg(f.typ, add(p, f.offset()), true, top, msg)
|
|
}
|
|
case kindPtr, kindUnsafePointer:
|
|
if indir {
|
|
p = *(*unsafe.Pointer)(p)
|
|
if p == nil {
|
|
return
|
|
}
|
|
}
|
|
|
|
if !cgoIsGoPointer(p) {
|
|
return
|
|
}
|
|
if !top {
|
|
panic(errorString(msg))
|
|
}
|
|
|
|
cgoCheckUnknownPointer(p, msg)
|
|
}
|
|
}
|
|
|
|
// cgoCheckUnknownPointer is called for an arbitrary pointer into Go
|
|
// memory. It checks whether that Go memory contains any other
|
|
// pointer into Go memory. If it does, we panic.
|
|
// The return values are unused but useful to see in panic tracebacks.
|
|
func cgoCheckUnknownPointer(p unsafe.Pointer, msg string) (base, i uintptr) {
|
|
if inheap(uintptr(p)) {
|
|
b, span, _ := findObject(uintptr(p), 0, 0, false)
|
|
base = b
|
|
if base == 0 {
|
|
return
|
|
}
|
|
hbits := heapBitsForAddr(base)
|
|
n := span.elemsize
|
|
for i = uintptr(0); i < n; i += sys.PtrSize {
|
|
if !hbits.morePointers() {
|
|
// No more possible pointers.
|
|
break
|
|
}
|
|
if hbits.isPointer() && cgoIsGoPointer(*(*unsafe.Pointer)(unsafe.Pointer(base + i))) {
|
|
panic(errorString(msg))
|
|
}
|
|
hbits = hbits.next()
|
|
}
|
|
|
|
return
|
|
}
|
|
|
|
lo := 0
|
|
hi := len(gcRootsIndex)
|
|
for lo < hi {
|
|
m := lo + (hi-lo)/2
|
|
pr := gcRootsIndex[m]
|
|
addr := uintptr(pr.decl)
|
|
if cgoInRange(p, addr, addr+pr.size) {
|
|
cgoCheckBits(pr.decl, pr.gcdata, 0, pr.ptrdata)
|
|
return
|
|
}
|
|
if uintptr(p) < addr {
|
|
hi = m
|
|
} else {
|
|
lo = m + 1
|
|
}
|
|
}
|
|
|
|
return
|
|
}
|
|
|
|
// cgoIsGoPointer reports whether the pointer is a Go pointer--a
|
|
// pointer to Go memory. We only care about Go memory that might
|
|
// contain pointers.
|
|
//go:nosplit
|
|
//go:nowritebarrierrec
|
|
func cgoIsGoPointer(p unsafe.Pointer) bool {
|
|
if p == nil {
|
|
return false
|
|
}
|
|
|
|
if inHeapOrStack(uintptr(p)) {
|
|
return true
|
|
}
|
|
|
|
roots := gcRoots
|
|
for roots != nil {
|
|
for i := 0; i < roots.count; i++ {
|
|
pr := roots.roots[i]
|
|
addr := uintptr(pr.decl)
|
|
if cgoInRange(p, addr, addr+pr.size) {
|
|
return true
|
|
}
|
|
}
|
|
roots = roots.next
|
|
}
|
|
|
|
return false
|
|
}
|
|
|
|
// cgoInRange reports whether p is between start and end.
|
|
//go:nosplit
|
|
//go:nowritebarrierrec
|
|
func cgoInRange(p unsafe.Pointer, start, end uintptr) bool {
|
|
return start <= uintptr(p) && uintptr(p) < end
|
|
}
|
|
|
|
// cgoCheckResult is called to check the result parameter of an
|
|
// exported Go function. It panics if the result is or contains a Go
|
|
// pointer.
|
|
func cgoCheckResult(val interface{}) {
|
|
if debug.cgocheck == 0 {
|
|
return
|
|
}
|
|
|
|
ep := efaceOf(&val)
|
|
t := ep._type
|
|
cgoCheckArg(t, ep.data, t.kind&kindDirectIface == 0, false, cgoResultFail)
|
|
}
|