805134b917
2015-08-01 Tom de Vries <tom@codesourcery.com> * tree.c (operation_can_overflow, operation_no_trapping_overflow): New function. * tree.h (operation_can_overflow, operation_no_trapping_overflow): Declare. * tree-vect-loop.c (vect_is_simple_reduction_1): Use operation_no_trapping_overflow. Allow non-overflow operations. * graphite-sese-to-poly.c (is_reduction_operation_p): Allow non-overflow operations. * gcc.dg/autopar/reduc-2char.c (init_arrays): Mark with attribute optimize ("-ftree-parallelize-loops=0"). Add successful scans for 2 detected reductions. Add xfail scans for 3 detected reductions. * gcc.dg/autopar/reduc-2short.c: Same. * gcc.dg/autopar/reduc-8.c (init_arrays): Mark with attribute optimize ("-ftree-parallelize-loops=0"). Add successful scans for 2 detected reductions. * gcc.dg/vect/trapv-vect-reduc-4.c: Update scan to match vectorized min and max reductions. From-SVN: r226463
6311 lines
208 KiB
C
6311 lines
208 KiB
C
/* Loop Vectorization
|
|
Copyright (C) 2003-2015 Free Software Foundation, Inc.
|
|
Contributed by Dorit Naishlos <dorit@il.ibm.com> and
|
|
Ira Rosen <irar@il.ibm.com>
|
|
|
|
This file is part of GCC.
|
|
|
|
GCC is free software; you can redistribute it and/or modify it under
|
|
the terms of the GNU General Public License as published by the Free
|
|
Software Foundation; either version 3, or (at your option) any later
|
|
version.
|
|
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GCC; see the file COPYING3. If not see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#include "config.h"
|
|
#include "system.h"
|
|
#include "coretypes.h"
|
|
#include "dumpfile.h"
|
|
#include "backend.h"
|
|
#include "cfghooks.h"
|
|
#include "tree.h"
|
|
#include "gimple.h"
|
|
#include "rtl.h"
|
|
#include "ssa.h"
|
|
#include "alias.h"
|
|
#include "fold-const.h"
|
|
#include "stor-layout.h"
|
|
#include "cfganal.h"
|
|
#include "gimple-pretty-print.h"
|
|
#include "internal-fn.h"
|
|
#include "gimplify.h"
|
|
#include "gimple-iterator.h"
|
|
#include "gimplify-me.h"
|
|
#include "tree-ssa-loop-ivopts.h"
|
|
#include "tree-ssa-loop-manip.h"
|
|
#include "tree-ssa-loop-niter.h"
|
|
#include "tree-pass.h"
|
|
#include "cfgloop.h"
|
|
#include "flags.h"
|
|
#include "insn-config.h"
|
|
#include "expmed.h"
|
|
#include "dojump.h"
|
|
#include "explow.h"
|
|
#include "calls.h"
|
|
#include "emit-rtl.h"
|
|
#include "varasm.h"
|
|
#include "stmt.h"
|
|
#include "expr.h"
|
|
#include "recog.h"
|
|
#include "insn-codes.h"
|
|
#include "optabs.h"
|
|
#include "params.h"
|
|
#include "diagnostic-core.h"
|
|
#include "tree-chrec.h"
|
|
#include "tree-scalar-evolution.h"
|
|
#include "tree-vectorizer.h"
|
|
#include "target.h"
|
|
|
|
/* Loop Vectorization Pass.
|
|
|
|
This pass tries to vectorize loops.
|
|
|
|
For example, the vectorizer transforms the following simple loop:
|
|
|
|
short a[N]; short b[N]; short c[N]; int i;
|
|
|
|
for (i=0; i<N; i++){
|
|
a[i] = b[i] + c[i];
|
|
}
|
|
|
|
as if it was manually vectorized by rewriting the source code into:
|
|
|
|
typedef int __attribute__((mode(V8HI))) v8hi;
|
|
short a[N]; short b[N]; short c[N]; int i;
|
|
v8hi *pa = (v8hi*)a, *pb = (v8hi*)b, *pc = (v8hi*)c;
|
|
v8hi va, vb, vc;
|
|
|
|
for (i=0; i<N/8; i++){
|
|
vb = pb[i];
|
|
vc = pc[i];
|
|
va = vb + vc;
|
|
pa[i] = va;
|
|
}
|
|
|
|
The main entry to this pass is vectorize_loops(), in which
|
|
the vectorizer applies a set of analyses on a given set of loops,
|
|
followed by the actual vectorization transformation for the loops that
|
|
had successfully passed the analysis phase.
|
|
Throughout this pass we make a distinction between two types of
|
|
data: scalars (which are represented by SSA_NAMES), and memory references
|
|
("data-refs"). These two types of data require different handling both
|
|
during analysis and transformation. The types of data-refs that the
|
|
vectorizer currently supports are ARRAY_REFS which base is an array DECL
|
|
(not a pointer), and INDIRECT_REFS through pointers; both array and pointer
|
|
accesses are required to have a simple (consecutive) access pattern.
|
|
|
|
Analysis phase:
|
|
===============
|
|
The driver for the analysis phase is vect_analyze_loop().
|
|
It applies a set of analyses, some of which rely on the scalar evolution
|
|
analyzer (scev) developed by Sebastian Pop.
|
|
|
|
During the analysis phase the vectorizer records some information
|
|
per stmt in a "stmt_vec_info" struct which is attached to each stmt in the
|
|
loop, as well as general information about the loop as a whole, which is
|
|
recorded in a "loop_vec_info" struct attached to each loop.
|
|
|
|
Transformation phase:
|
|
=====================
|
|
The loop transformation phase scans all the stmts in the loop, and
|
|
creates a vector stmt (or a sequence of stmts) for each scalar stmt S in
|
|
the loop that needs to be vectorized. It inserts the vector code sequence
|
|
just before the scalar stmt S, and records a pointer to the vector code
|
|
in STMT_VINFO_VEC_STMT (stmt_info) (stmt_info is the stmt_vec_info struct
|
|
attached to S). This pointer will be used for the vectorization of following
|
|
stmts which use the def of stmt S. Stmt S is removed if it writes to memory;
|
|
otherwise, we rely on dead code elimination for removing it.
|
|
|
|
For example, say stmt S1 was vectorized into stmt VS1:
|
|
|
|
VS1: vb = px[i];
|
|
S1: b = x[i]; STMT_VINFO_VEC_STMT (stmt_info (S1)) = VS1
|
|
S2: a = b;
|
|
|
|
To vectorize stmt S2, the vectorizer first finds the stmt that defines
|
|
the operand 'b' (S1), and gets the relevant vector def 'vb' from the
|
|
vector stmt VS1 pointed to by STMT_VINFO_VEC_STMT (stmt_info (S1)). The
|
|
resulting sequence would be:
|
|
|
|
VS1: vb = px[i];
|
|
S1: b = x[i]; STMT_VINFO_VEC_STMT (stmt_info (S1)) = VS1
|
|
VS2: va = vb;
|
|
S2: a = b; STMT_VINFO_VEC_STMT (stmt_info (S2)) = VS2
|
|
|
|
Operands that are not SSA_NAMEs, are data-refs that appear in
|
|
load/store operations (like 'x[i]' in S1), and are handled differently.
|
|
|
|
Target modeling:
|
|
=================
|
|
Currently the only target specific information that is used is the
|
|
size of the vector (in bytes) - "TARGET_VECTORIZE_UNITS_PER_SIMD_WORD".
|
|
Targets that can support different sizes of vectors, for now will need
|
|
to specify one value for "TARGET_VECTORIZE_UNITS_PER_SIMD_WORD". More
|
|
flexibility will be added in the future.
|
|
|
|
Since we only vectorize operations which vector form can be
|
|
expressed using existing tree codes, to verify that an operation is
|
|
supported, the vectorizer checks the relevant optab at the relevant
|
|
machine_mode (e.g, optab_handler (add_optab, V8HImode)). If
|
|
the value found is CODE_FOR_nothing, then there's no target support, and
|
|
we can't vectorize the stmt.
|
|
|
|
For additional information on this project see:
|
|
http://gcc.gnu.org/projects/tree-ssa/vectorization.html
|
|
*/
|
|
|
|
static void vect_estimate_min_profitable_iters (loop_vec_info, int *, int *);
|
|
|
|
/* Function vect_determine_vectorization_factor
|
|
|
|
Determine the vectorization factor (VF). VF is the number of data elements
|
|
that are operated upon in parallel in a single iteration of the vectorized
|
|
loop. For example, when vectorizing a loop that operates on 4byte elements,
|
|
on a target with vector size (VS) 16byte, the VF is set to 4, since 4
|
|
elements can fit in a single vector register.
|
|
|
|
We currently support vectorization of loops in which all types operated upon
|
|
are of the same size. Therefore this function currently sets VF according to
|
|
the size of the types operated upon, and fails if there are multiple sizes
|
|
in the loop.
|
|
|
|
VF is also the factor by which the loop iterations are strip-mined, e.g.:
|
|
original loop:
|
|
for (i=0; i<N; i++){
|
|
a[i] = b[i] + c[i];
|
|
}
|
|
|
|
vectorized loop:
|
|
for (i=0; i<N; i+=VF){
|
|
a[i:VF] = b[i:VF] + c[i:VF];
|
|
}
|
|
*/
|
|
|
|
static bool
|
|
vect_determine_vectorization_factor (loop_vec_info loop_vinfo)
|
|
{
|
|
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
|
basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
|
|
int nbbs = loop->num_nodes;
|
|
unsigned int vectorization_factor = 0;
|
|
tree scalar_type;
|
|
gphi *phi;
|
|
tree vectype;
|
|
unsigned int nunits;
|
|
stmt_vec_info stmt_info;
|
|
int i;
|
|
HOST_WIDE_INT dummy;
|
|
gimple stmt, pattern_stmt = NULL;
|
|
gimple_seq pattern_def_seq = NULL;
|
|
gimple_stmt_iterator pattern_def_si = gsi_none ();
|
|
bool analyze_pattern_stmt = false;
|
|
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"=== vect_determine_vectorization_factor ===\n");
|
|
|
|
for (i = 0; i < nbbs; i++)
|
|
{
|
|
basic_block bb = bbs[i];
|
|
|
|
for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si);
|
|
gsi_next (&si))
|
|
{
|
|
phi = si.phi ();
|
|
stmt_info = vinfo_for_stmt (phi);
|
|
if (dump_enabled_p ())
|
|
{
|
|
dump_printf_loc (MSG_NOTE, vect_location, "==> examining phi: ");
|
|
dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
|
|
dump_printf (MSG_NOTE, "\n");
|
|
}
|
|
|
|
gcc_assert (stmt_info);
|
|
|
|
if (STMT_VINFO_RELEVANT_P (stmt_info))
|
|
{
|
|
gcc_assert (!STMT_VINFO_VECTYPE (stmt_info));
|
|
scalar_type = TREE_TYPE (PHI_RESULT (phi));
|
|
|
|
if (dump_enabled_p ())
|
|
{
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"get vectype for scalar type: ");
|
|
dump_generic_expr (MSG_NOTE, TDF_SLIM, scalar_type);
|
|
dump_printf (MSG_NOTE, "\n");
|
|
}
|
|
|
|
vectype = get_vectype_for_scalar_type (scalar_type);
|
|
if (!vectype)
|
|
{
|
|
if (dump_enabled_p ())
|
|
{
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"not vectorized: unsupported "
|
|
"data-type ");
|
|
dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
|
|
scalar_type);
|
|
dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
|
|
}
|
|
return false;
|
|
}
|
|
STMT_VINFO_VECTYPE (stmt_info) = vectype;
|
|
|
|
if (dump_enabled_p ())
|
|
{
|
|
dump_printf_loc (MSG_NOTE, vect_location, "vectype: ");
|
|
dump_generic_expr (MSG_NOTE, TDF_SLIM, vectype);
|
|
dump_printf (MSG_NOTE, "\n");
|
|
}
|
|
|
|
nunits = TYPE_VECTOR_SUBPARTS (vectype);
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location, "nunits = %d\n",
|
|
nunits);
|
|
|
|
if (!vectorization_factor
|
|
|| (nunits > vectorization_factor))
|
|
vectorization_factor = nunits;
|
|
}
|
|
}
|
|
|
|
for (gimple_stmt_iterator si = gsi_start_bb (bb);
|
|
!gsi_end_p (si) || analyze_pattern_stmt;)
|
|
{
|
|
tree vf_vectype;
|
|
|
|
if (analyze_pattern_stmt)
|
|
stmt = pattern_stmt;
|
|
else
|
|
stmt = gsi_stmt (si);
|
|
|
|
stmt_info = vinfo_for_stmt (stmt);
|
|
|
|
if (dump_enabled_p ())
|
|
{
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"==> examining statement: ");
|
|
dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
|
|
dump_printf (MSG_NOTE, "\n");
|
|
}
|
|
|
|
gcc_assert (stmt_info);
|
|
|
|
/* Skip stmts which do not need to be vectorized. */
|
|
if ((!STMT_VINFO_RELEVANT_P (stmt_info)
|
|
&& !STMT_VINFO_LIVE_P (stmt_info))
|
|
|| gimple_clobber_p (stmt))
|
|
{
|
|
if (STMT_VINFO_IN_PATTERN_P (stmt_info)
|
|
&& (pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info))
|
|
&& (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt))
|
|
|| STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt))))
|
|
{
|
|
stmt = pattern_stmt;
|
|
stmt_info = vinfo_for_stmt (pattern_stmt);
|
|
if (dump_enabled_p ())
|
|
{
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"==> examining pattern statement: ");
|
|
dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
|
|
dump_printf (MSG_NOTE, "\n");
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location, "skip.\n");
|
|
gsi_next (&si);
|
|
continue;
|
|
}
|
|
}
|
|
else if (STMT_VINFO_IN_PATTERN_P (stmt_info)
|
|
&& (pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info))
|
|
&& (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt))
|
|
|| STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt))))
|
|
analyze_pattern_stmt = true;
|
|
|
|
/* If a pattern statement has def stmts, analyze them too. */
|
|
if (is_pattern_stmt_p (stmt_info))
|
|
{
|
|
if (pattern_def_seq == NULL)
|
|
{
|
|
pattern_def_seq = STMT_VINFO_PATTERN_DEF_SEQ (stmt_info);
|
|
pattern_def_si = gsi_start (pattern_def_seq);
|
|
}
|
|
else if (!gsi_end_p (pattern_def_si))
|
|
gsi_next (&pattern_def_si);
|
|
if (pattern_def_seq != NULL)
|
|
{
|
|
gimple pattern_def_stmt = NULL;
|
|
stmt_vec_info pattern_def_stmt_info = NULL;
|
|
|
|
while (!gsi_end_p (pattern_def_si))
|
|
{
|
|
pattern_def_stmt = gsi_stmt (pattern_def_si);
|
|
pattern_def_stmt_info
|
|
= vinfo_for_stmt (pattern_def_stmt);
|
|
if (STMT_VINFO_RELEVANT_P (pattern_def_stmt_info)
|
|
|| STMT_VINFO_LIVE_P (pattern_def_stmt_info))
|
|
break;
|
|
gsi_next (&pattern_def_si);
|
|
}
|
|
|
|
if (!gsi_end_p (pattern_def_si))
|
|
{
|
|
if (dump_enabled_p ())
|
|
{
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"==> examining pattern def stmt: ");
|
|
dump_gimple_stmt (MSG_NOTE, TDF_SLIM,
|
|
pattern_def_stmt, 0);
|
|
dump_printf (MSG_NOTE, "\n");
|
|
}
|
|
|
|
stmt = pattern_def_stmt;
|
|
stmt_info = pattern_def_stmt_info;
|
|
}
|
|
else
|
|
{
|
|
pattern_def_si = gsi_none ();
|
|
analyze_pattern_stmt = false;
|
|
}
|
|
}
|
|
else
|
|
analyze_pattern_stmt = false;
|
|
}
|
|
|
|
if (gimple_get_lhs (stmt) == NULL_TREE
|
|
/* MASK_STORE has no lhs, but is ok. */
|
|
&& (!is_gimple_call (stmt)
|
|
|| !gimple_call_internal_p (stmt)
|
|
|| gimple_call_internal_fn (stmt) != IFN_MASK_STORE))
|
|
{
|
|
if (is_gimple_call (stmt))
|
|
{
|
|
/* Ignore calls with no lhs. These must be calls to
|
|
#pragma omp simd functions, and what vectorization factor
|
|
it really needs can't be determined until
|
|
vectorizable_simd_clone_call. */
|
|
if (!analyze_pattern_stmt && gsi_end_p (pattern_def_si))
|
|
{
|
|
pattern_def_seq = NULL;
|
|
gsi_next (&si);
|
|
}
|
|
continue;
|
|
}
|
|
if (dump_enabled_p ())
|
|
{
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"not vectorized: irregular stmt.");
|
|
dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt,
|
|
0);
|
|
dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
|
|
}
|
|
return false;
|
|
}
|
|
|
|
if (VECTOR_MODE_P (TYPE_MODE (gimple_expr_type (stmt))))
|
|
{
|
|
if (dump_enabled_p ())
|
|
{
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"not vectorized: vector stmt in loop:");
|
|
dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
|
|
dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
|
|
}
|
|
return false;
|
|
}
|
|
|
|
if (STMT_VINFO_VECTYPE (stmt_info))
|
|
{
|
|
/* The only case when a vectype had been already set is for stmts
|
|
that contain a dataref, or for "pattern-stmts" (stmts
|
|
generated by the vectorizer to represent/replace a certain
|
|
idiom). */
|
|
gcc_assert (STMT_VINFO_DATA_REF (stmt_info)
|
|
|| is_pattern_stmt_p (stmt_info)
|
|
|| !gsi_end_p (pattern_def_si));
|
|
vectype = STMT_VINFO_VECTYPE (stmt_info);
|
|
}
|
|
else
|
|
{
|
|
gcc_assert (!STMT_VINFO_DATA_REF (stmt_info));
|
|
if (is_gimple_call (stmt)
|
|
&& gimple_call_internal_p (stmt)
|
|
&& gimple_call_internal_fn (stmt) == IFN_MASK_STORE)
|
|
scalar_type = TREE_TYPE (gimple_call_arg (stmt, 3));
|
|
else
|
|
scalar_type = TREE_TYPE (gimple_get_lhs (stmt));
|
|
if (dump_enabled_p ())
|
|
{
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"get vectype for scalar type: ");
|
|
dump_generic_expr (MSG_NOTE, TDF_SLIM, scalar_type);
|
|
dump_printf (MSG_NOTE, "\n");
|
|
}
|
|
vectype = get_vectype_for_scalar_type (scalar_type);
|
|
if (!vectype)
|
|
{
|
|
if (dump_enabled_p ())
|
|
{
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"not vectorized: unsupported "
|
|
"data-type ");
|
|
dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
|
|
scalar_type);
|
|
dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
|
|
}
|
|
return false;
|
|
}
|
|
|
|
STMT_VINFO_VECTYPE (stmt_info) = vectype;
|
|
|
|
if (dump_enabled_p ())
|
|
{
|
|
dump_printf_loc (MSG_NOTE, vect_location, "vectype: ");
|
|
dump_generic_expr (MSG_NOTE, TDF_SLIM, vectype);
|
|
dump_printf (MSG_NOTE, "\n");
|
|
}
|
|
}
|
|
|
|
/* The vectorization factor is according to the smallest
|
|
scalar type (or the largest vector size, but we only
|
|
support one vector size per loop). */
|
|
scalar_type = vect_get_smallest_scalar_type (stmt, &dummy,
|
|
&dummy);
|
|
if (dump_enabled_p ())
|
|
{
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"get vectype for scalar type: ");
|
|
dump_generic_expr (MSG_NOTE, TDF_SLIM, scalar_type);
|
|
dump_printf (MSG_NOTE, "\n");
|
|
}
|
|
vf_vectype = get_vectype_for_scalar_type (scalar_type);
|
|
if (!vf_vectype)
|
|
{
|
|
if (dump_enabled_p ())
|
|
{
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"not vectorized: unsupported data-type ");
|
|
dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
|
|
scalar_type);
|
|
dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
|
|
}
|
|
return false;
|
|
}
|
|
|
|
if ((GET_MODE_SIZE (TYPE_MODE (vectype))
|
|
!= GET_MODE_SIZE (TYPE_MODE (vf_vectype))))
|
|
{
|
|
if (dump_enabled_p ())
|
|
{
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"not vectorized: different sized vector "
|
|
"types in statement, ");
|
|
dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
|
|
vectype);
|
|
dump_printf (MSG_MISSED_OPTIMIZATION, " and ");
|
|
dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
|
|
vf_vectype);
|
|
dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
|
|
}
|
|
return false;
|
|
}
|
|
|
|
if (dump_enabled_p ())
|
|
{
|
|
dump_printf_loc (MSG_NOTE, vect_location, "vectype: ");
|
|
dump_generic_expr (MSG_NOTE, TDF_SLIM, vf_vectype);
|
|
dump_printf (MSG_NOTE, "\n");
|
|
}
|
|
|
|
nunits = TYPE_VECTOR_SUBPARTS (vf_vectype);
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location, "nunits = %d\n", nunits);
|
|
if (!vectorization_factor
|
|
|| (nunits > vectorization_factor))
|
|
vectorization_factor = nunits;
|
|
|
|
if (!analyze_pattern_stmt && gsi_end_p (pattern_def_si))
|
|
{
|
|
pattern_def_seq = NULL;
|
|
gsi_next (&si);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* TODO: Analyze cost. Decide if worth while to vectorize. */
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location, "vectorization factor = %d\n",
|
|
vectorization_factor);
|
|
if (vectorization_factor <= 1)
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"not vectorized: unsupported data-type\n");
|
|
return false;
|
|
}
|
|
LOOP_VINFO_VECT_FACTOR (loop_vinfo) = vectorization_factor;
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
/* Function vect_is_simple_iv_evolution.
|
|
|
|
FORNOW: A simple evolution of an induction variables in the loop is
|
|
considered a polynomial evolution. */
|
|
|
|
static bool
|
|
vect_is_simple_iv_evolution (unsigned loop_nb, tree access_fn, tree * init,
|
|
tree * step)
|
|
{
|
|
tree init_expr;
|
|
tree step_expr;
|
|
tree evolution_part = evolution_part_in_loop_num (access_fn, loop_nb);
|
|
basic_block bb;
|
|
|
|
/* When there is no evolution in this loop, the evolution function
|
|
is not "simple". */
|
|
if (evolution_part == NULL_TREE)
|
|
return false;
|
|
|
|
/* When the evolution is a polynomial of degree >= 2
|
|
the evolution function is not "simple". */
|
|
if (tree_is_chrec (evolution_part))
|
|
return false;
|
|
|
|
step_expr = evolution_part;
|
|
init_expr = unshare_expr (initial_condition_in_loop_num (access_fn, loop_nb));
|
|
|
|
if (dump_enabled_p ())
|
|
{
|
|
dump_printf_loc (MSG_NOTE, vect_location, "step: ");
|
|
dump_generic_expr (MSG_NOTE, TDF_SLIM, step_expr);
|
|
dump_printf (MSG_NOTE, ", init: ");
|
|
dump_generic_expr (MSG_NOTE, TDF_SLIM, init_expr);
|
|
dump_printf (MSG_NOTE, "\n");
|
|
}
|
|
|
|
*init = init_expr;
|
|
*step = step_expr;
|
|
|
|
if (TREE_CODE (step_expr) != INTEGER_CST
|
|
&& (TREE_CODE (step_expr) != SSA_NAME
|
|
|| ((bb = gimple_bb (SSA_NAME_DEF_STMT (step_expr)))
|
|
&& flow_bb_inside_loop_p (get_loop (cfun, loop_nb), bb))
|
|
|| (!INTEGRAL_TYPE_P (TREE_TYPE (step_expr))
|
|
&& (!SCALAR_FLOAT_TYPE_P (TREE_TYPE (step_expr))
|
|
|| !flag_associative_math)))
|
|
&& (TREE_CODE (step_expr) != REAL_CST
|
|
|| !flag_associative_math))
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"step unknown.\n");
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Function vect_analyze_scalar_cycles_1.
|
|
|
|
Examine the cross iteration def-use cycles of scalar variables
|
|
in LOOP. LOOP_VINFO represents the loop that is now being
|
|
considered for vectorization (can be LOOP, or an outer-loop
|
|
enclosing LOOP). */
|
|
|
|
static void
|
|
vect_analyze_scalar_cycles_1 (loop_vec_info loop_vinfo, struct loop *loop)
|
|
{
|
|
basic_block bb = loop->header;
|
|
tree init, step;
|
|
auto_vec<gimple, 64> worklist;
|
|
gphi_iterator gsi;
|
|
bool double_reduc;
|
|
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"=== vect_analyze_scalar_cycles ===\n");
|
|
|
|
/* First - identify all inductions. Reduction detection assumes that all the
|
|
inductions have been identified, therefore, this order must not be
|
|
changed. */
|
|
for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
|
{
|
|
gphi *phi = gsi.phi ();
|
|
tree access_fn = NULL;
|
|
tree def = PHI_RESULT (phi);
|
|
stmt_vec_info stmt_vinfo = vinfo_for_stmt (phi);
|
|
|
|
if (dump_enabled_p ())
|
|
{
|
|
dump_printf_loc (MSG_NOTE, vect_location, "Analyze phi: ");
|
|
dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
|
|
dump_printf (MSG_NOTE, "\n");
|
|
}
|
|
|
|
/* Skip virtual phi's. The data dependences that are associated with
|
|
virtual defs/uses (i.e., memory accesses) are analyzed elsewhere. */
|
|
if (virtual_operand_p (def))
|
|
continue;
|
|
|
|
STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_unknown_def_type;
|
|
|
|
/* Analyze the evolution function. */
|
|
access_fn = analyze_scalar_evolution (loop, def);
|
|
if (access_fn)
|
|
{
|
|
STRIP_NOPS (access_fn);
|
|
if (dump_enabled_p ())
|
|
{
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"Access function of PHI: ");
|
|
dump_generic_expr (MSG_NOTE, TDF_SLIM, access_fn);
|
|
dump_printf (MSG_NOTE, "\n");
|
|
}
|
|
STMT_VINFO_LOOP_PHI_EVOLUTION_PART (stmt_vinfo)
|
|
= evolution_part_in_loop_num (access_fn, loop->num);
|
|
}
|
|
|
|
if (!access_fn
|
|
|| !vect_is_simple_iv_evolution (loop->num, access_fn, &init, &step)
|
|
|| (LOOP_VINFO_LOOP (loop_vinfo) != loop
|
|
&& TREE_CODE (step) != INTEGER_CST))
|
|
{
|
|
worklist.safe_push (phi);
|
|
continue;
|
|
}
|
|
|
|
gcc_assert (STMT_VINFO_LOOP_PHI_EVOLUTION_PART (stmt_vinfo) != NULL_TREE);
|
|
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location, "Detected induction.\n");
|
|
STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_induction_def;
|
|
}
|
|
|
|
|
|
/* Second - identify all reductions and nested cycles. */
|
|
while (worklist.length () > 0)
|
|
{
|
|
gimple phi = worklist.pop ();
|
|
tree def = PHI_RESULT (phi);
|
|
stmt_vec_info stmt_vinfo = vinfo_for_stmt (phi);
|
|
gimple reduc_stmt;
|
|
bool nested_cycle;
|
|
|
|
if (dump_enabled_p ())
|
|
{
|
|
dump_printf_loc (MSG_NOTE, vect_location, "Analyze phi: ");
|
|
dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
|
|
dump_printf (MSG_NOTE, "\n");
|
|
}
|
|
|
|
gcc_assert (!virtual_operand_p (def)
|
|
&& STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_unknown_def_type);
|
|
|
|
nested_cycle = (loop != LOOP_VINFO_LOOP (loop_vinfo));
|
|
reduc_stmt = vect_force_simple_reduction (loop_vinfo, phi, !nested_cycle,
|
|
&double_reduc, false);
|
|
if (reduc_stmt)
|
|
{
|
|
if (double_reduc)
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"Detected double reduction.\n");
|
|
|
|
STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_double_reduction_def;
|
|
STMT_VINFO_DEF_TYPE (vinfo_for_stmt (reduc_stmt)) =
|
|
vect_double_reduction_def;
|
|
}
|
|
else
|
|
{
|
|
if (nested_cycle)
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"Detected vectorizable nested cycle.\n");
|
|
|
|
STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_nested_cycle;
|
|
STMT_VINFO_DEF_TYPE (vinfo_for_stmt (reduc_stmt)) =
|
|
vect_nested_cycle;
|
|
}
|
|
else
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"Detected reduction.\n");
|
|
|
|
STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_reduction_def;
|
|
STMT_VINFO_DEF_TYPE (vinfo_for_stmt (reduc_stmt)) =
|
|
vect_reduction_def;
|
|
/* Store the reduction cycles for possible vectorization in
|
|
loop-aware SLP. */
|
|
LOOP_VINFO_REDUCTIONS (loop_vinfo).safe_push (reduc_stmt);
|
|
}
|
|
}
|
|
}
|
|
else
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"Unknown def-use cycle pattern.\n");
|
|
}
|
|
}
|
|
|
|
|
|
/* Function vect_analyze_scalar_cycles.
|
|
|
|
Examine the cross iteration def-use cycles of scalar variables, by
|
|
analyzing the loop-header PHIs of scalar variables. Classify each
|
|
cycle as one of the following: invariant, induction, reduction, unknown.
|
|
We do that for the loop represented by LOOP_VINFO, and also to its
|
|
inner-loop, if exists.
|
|
Examples for scalar cycles:
|
|
|
|
Example1: reduction:
|
|
|
|
loop1:
|
|
for (i=0; i<N; i++)
|
|
sum += a[i];
|
|
|
|
Example2: induction:
|
|
|
|
loop2:
|
|
for (i=0; i<N; i++)
|
|
a[i] = i; */
|
|
|
|
static void
|
|
vect_analyze_scalar_cycles (loop_vec_info loop_vinfo)
|
|
{
|
|
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
|
|
|
vect_analyze_scalar_cycles_1 (loop_vinfo, loop);
|
|
|
|
/* When vectorizing an outer-loop, the inner-loop is executed sequentially.
|
|
Reductions in such inner-loop therefore have different properties than
|
|
the reductions in the nest that gets vectorized:
|
|
1. When vectorized, they are executed in the same order as in the original
|
|
scalar loop, so we can't change the order of computation when
|
|
vectorizing them.
|
|
2. FIXME: Inner-loop reductions can be used in the inner-loop, so the
|
|
current checks are too strict. */
|
|
|
|
if (loop->inner)
|
|
vect_analyze_scalar_cycles_1 (loop_vinfo, loop->inner);
|
|
}
|
|
|
|
/* Transfer group and reduction information from STMT to its pattern stmt. */
|
|
|
|
static void
|
|
vect_fixup_reduc_chain (gimple stmt)
|
|
{
|
|
gimple firstp = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (stmt));
|
|
gimple stmtp;
|
|
gcc_assert (!GROUP_FIRST_ELEMENT (vinfo_for_stmt (firstp))
|
|
&& GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)));
|
|
GROUP_SIZE (vinfo_for_stmt (firstp)) = GROUP_SIZE (vinfo_for_stmt (stmt));
|
|
do
|
|
{
|
|
stmtp = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (stmt));
|
|
GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmtp)) = firstp;
|
|
stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (stmt));
|
|
if (stmt)
|
|
GROUP_NEXT_ELEMENT (vinfo_for_stmt (stmtp))
|
|
= STMT_VINFO_RELATED_STMT (vinfo_for_stmt (stmt));
|
|
}
|
|
while (stmt);
|
|
STMT_VINFO_DEF_TYPE (vinfo_for_stmt (stmtp)) = vect_reduction_def;
|
|
}
|
|
|
|
/* Fixup scalar cycles that now have their stmts detected as patterns. */
|
|
|
|
static void
|
|
vect_fixup_scalar_cycles_with_patterns (loop_vec_info loop_vinfo)
|
|
{
|
|
gimple first;
|
|
unsigned i;
|
|
|
|
FOR_EACH_VEC_ELT (LOOP_VINFO_REDUCTION_CHAINS (loop_vinfo), i, first)
|
|
if (STMT_VINFO_IN_PATTERN_P (vinfo_for_stmt (first)))
|
|
{
|
|
vect_fixup_reduc_chain (first);
|
|
LOOP_VINFO_REDUCTION_CHAINS (loop_vinfo)[i]
|
|
= STMT_VINFO_RELATED_STMT (vinfo_for_stmt (first));
|
|
}
|
|
}
|
|
|
|
/* Function vect_get_loop_niters.
|
|
|
|
Determine how many iterations the loop is executed and place it
|
|
in NUMBER_OF_ITERATIONS. Place the number of latch iterations
|
|
in NUMBER_OF_ITERATIONSM1.
|
|
|
|
Return the loop exit condition. */
|
|
|
|
|
|
static gcond *
|
|
vect_get_loop_niters (struct loop *loop, tree *number_of_iterations,
|
|
tree *number_of_iterationsm1)
|
|
{
|
|
tree niters;
|
|
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"=== get_loop_niters ===\n");
|
|
|
|
niters = number_of_latch_executions (loop);
|
|
*number_of_iterationsm1 = niters;
|
|
|
|
/* We want the number of loop header executions which is the number
|
|
of latch executions plus one.
|
|
??? For UINT_MAX latch executions this number overflows to zero
|
|
for loops like do { n++; } while (n != 0); */
|
|
if (niters && !chrec_contains_undetermined (niters))
|
|
niters = fold_build2 (PLUS_EXPR, TREE_TYPE (niters), unshare_expr (niters),
|
|
build_int_cst (TREE_TYPE (niters), 1));
|
|
*number_of_iterations = niters;
|
|
|
|
return get_loop_exit_condition (loop);
|
|
}
|
|
|
|
|
|
/* Function bb_in_loop_p
|
|
|
|
Used as predicate for dfs order traversal of the loop bbs. */
|
|
|
|
static bool
|
|
bb_in_loop_p (const_basic_block bb, const void *data)
|
|
{
|
|
const struct loop *const loop = (const struct loop *)data;
|
|
if (flow_bb_inside_loop_p (loop, bb))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
|
|
/* Function new_loop_vec_info.
|
|
|
|
Create and initialize a new loop_vec_info struct for LOOP, as well as
|
|
stmt_vec_info structs for all the stmts in LOOP. */
|
|
|
|
static loop_vec_info
|
|
new_loop_vec_info (struct loop *loop)
|
|
{
|
|
loop_vec_info res;
|
|
basic_block *bbs;
|
|
gimple_stmt_iterator si;
|
|
unsigned int i, nbbs;
|
|
|
|
res = (loop_vec_info) xcalloc (1, sizeof (struct _loop_vec_info));
|
|
LOOP_VINFO_LOOP (res) = loop;
|
|
|
|
bbs = get_loop_body (loop);
|
|
|
|
/* Create/Update stmt_info for all stmts in the loop. */
|
|
for (i = 0; i < loop->num_nodes; i++)
|
|
{
|
|
basic_block bb = bbs[i];
|
|
|
|
/* BBs in a nested inner-loop will have been already processed (because
|
|
we will have called vect_analyze_loop_form for any nested inner-loop).
|
|
Therefore, for stmts in an inner-loop we just want to update the
|
|
STMT_VINFO_LOOP_VINFO field of their stmt_info to point to the new
|
|
loop_info of the outer-loop we are currently considering to vectorize
|
|
(instead of the loop_info of the inner-loop).
|
|
For stmts in other BBs we need to create a stmt_info from scratch. */
|
|
if (bb->loop_father != loop)
|
|
{
|
|
/* Inner-loop bb. */
|
|
gcc_assert (loop->inner && bb->loop_father == loop->inner);
|
|
for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
|
|
{
|
|
gimple phi = gsi_stmt (si);
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (phi);
|
|
loop_vec_info inner_loop_vinfo =
|
|
STMT_VINFO_LOOP_VINFO (stmt_info);
|
|
gcc_assert (loop->inner == LOOP_VINFO_LOOP (inner_loop_vinfo));
|
|
STMT_VINFO_LOOP_VINFO (stmt_info) = res;
|
|
}
|
|
for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
|
|
{
|
|
gimple stmt = gsi_stmt (si);
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
|
loop_vec_info inner_loop_vinfo =
|
|
STMT_VINFO_LOOP_VINFO (stmt_info);
|
|
gcc_assert (loop->inner == LOOP_VINFO_LOOP (inner_loop_vinfo));
|
|
STMT_VINFO_LOOP_VINFO (stmt_info) = res;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* bb in current nest. */
|
|
for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
|
|
{
|
|
gimple phi = gsi_stmt (si);
|
|
gimple_set_uid (phi, 0);
|
|
set_vinfo_for_stmt (phi, new_stmt_vec_info (phi, res, NULL));
|
|
}
|
|
|
|
for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
|
|
{
|
|
gimple stmt = gsi_stmt (si);
|
|
gimple_set_uid (stmt, 0);
|
|
set_vinfo_for_stmt (stmt, new_stmt_vec_info (stmt, res, NULL));
|
|
}
|
|
}
|
|
}
|
|
|
|
/* CHECKME: We want to visit all BBs before their successors (except for
|
|
latch blocks, for which this assertion wouldn't hold). In the simple
|
|
case of the loop forms we allow, a dfs order of the BBs would the same
|
|
as reversed postorder traversal, so we are safe. */
|
|
|
|
free (bbs);
|
|
bbs = XCNEWVEC (basic_block, loop->num_nodes);
|
|
nbbs = dfs_enumerate_from (loop->header, 0, bb_in_loop_p,
|
|
bbs, loop->num_nodes, loop);
|
|
gcc_assert (nbbs == loop->num_nodes);
|
|
|
|
LOOP_VINFO_BBS (res) = bbs;
|
|
LOOP_VINFO_NITERSM1 (res) = NULL;
|
|
LOOP_VINFO_NITERS (res) = NULL;
|
|
LOOP_VINFO_NITERS_UNCHANGED (res) = NULL;
|
|
LOOP_VINFO_COST_MODEL_MIN_ITERS (res) = 0;
|
|
LOOP_VINFO_COST_MODEL_THRESHOLD (res) = 0;
|
|
LOOP_VINFO_VECTORIZABLE_P (res) = 0;
|
|
LOOP_VINFO_PEELING_FOR_ALIGNMENT (res) = 0;
|
|
LOOP_VINFO_VECT_FACTOR (res) = 0;
|
|
LOOP_VINFO_LOOP_NEST (res).create (3);
|
|
LOOP_VINFO_DATAREFS (res).create (10);
|
|
LOOP_VINFO_DDRS (res).create (10 * 10);
|
|
LOOP_VINFO_UNALIGNED_DR (res) = NULL;
|
|
LOOP_VINFO_MAY_MISALIGN_STMTS (res).create (
|
|
PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIGNMENT_CHECKS));
|
|
LOOP_VINFO_MAY_ALIAS_DDRS (res).create (
|
|
PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIAS_CHECKS));
|
|
LOOP_VINFO_GROUPED_STORES (res).create (10);
|
|
LOOP_VINFO_REDUCTIONS (res).create (10);
|
|
LOOP_VINFO_REDUCTION_CHAINS (res).create (10);
|
|
LOOP_VINFO_SLP_INSTANCES (res).create (10);
|
|
LOOP_VINFO_SLP_UNROLLING_FACTOR (res) = 1;
|
|
LOOP_VINFO_TARGET_COST_DATA (res) = init_cost (loop);
|
|
LOOP_VINFO_PEELING_FOR_GAPS (res) = false;
|
|
LOOP_VINFO_PEELING_FOR_NITER (res) = false;
|
|
LOOP_VINFO_OPERANDS_SWAPPED (res) = false;
|
|
|
|
return res;
|
|
}
|
|
|
|
|
|
/* Function destroy_loop_vec_info.
|
|
|
|
Free LOOP_VINFO struct, as well as all the stmt_vec_info structs of all the
|
|
stmts in the loop. */
|
|
|
|
void
|
|
destroy_loop_vec_info (loop_vec_info loop_vinfo, bool clean_stmts)
|
|
{
|
|
struct loop *loop;
|
|
basic_block *bbs;
|
|
int nbbs;
|
|
gimple_stmt_iterator si;
|
|
int j;
|
|
vec<slp_instance> slp_instances;
|
|
slp_instance instance;
|
|
bool swapped;
|
|
|
|
if (!loop_vinfo)
|
|
return;
|
|
|
|
loop = LOOP_VINFO_LOOP (loop_vinfo);
|
|
|
|
bbs = LOOP_VINFO_BBS (loop_vinfo);
|
|
nbbs = clean_stmts ? loop->num_nodes : 0;
|
|
swapped = LOOP_VINFO_OPERANDS_SWAPPED (loop_vinfo);
|
|
|
|
for (j = 0; j < nbbs; j++)
|
|
{
|
|
basic_block bb = bbs[j];
|
|
for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
|
|
free_stmt_vec_info (gsi_stmt (si));
|
|
|
|
for (si = gsi_start_bb (bb); !gsi_end_p (si); )
|
|
{
|
|
gimple stmt = gsi_stmt (si);
|
|
|
|
/* We may have broken canonical form by moving a constant
|
|
into RHS1 of a commutative op. Fix such occurrences. */
|
|
if (swapped && is_gimple_assign (stmt))
|
|
{
|
|
enum tree_code code = gimple_assign_rhs_code (stmt);
|
|
|
|
if ((code == PLUS_EXPR
|
|
|| code == POINTER_PLUS_EXPR
|
|
|| code == MULT_EXPR)
|
|
&& CONSTANT_CLASS_P (gimple_assign_rhs1 (stmt)))
|
|
swap_ssa_operands (stmt,
|
|
gimple_assign_rhs1_ptr (stmt),
|
|
gimple_assign_rhs2_ptr (stmt));
|
|
}
|
|
|
|
/* Free stmt_vec_info. */
|
|
free_stmt_vec_info (stmt);
|
|
gsi_next (&si);
|
|
}
|
|
}
|
|
|
|
free (LOOP_VINFO_BBS (loop_vinfo));
|
|
vect_destroy_datarefs (loop_vinfo, NULL);
|
|
free_dependence_relations (LOOP_VINFO_DDRS (loop_vinfo));
|
|
LOOP_VINFO_LOOP_NEST (loop_vinfo).release ();
|
|
LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).release ();
|
|
LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo).release ();
|
|
slp_instances = LOOP_VINFO_SLP_INSTANCES (loop_vinfo);
|
|
FOR_EACH_VEC_ELT (slp_instances, j, instance)
|
|
vect_free_slp_instance (instance);
|
|
|
|
LOOP_VINFO_SLP_INSTANCES (loop_vinfo).release ();
|
|
LOOP_VINFO_GROUPED_STORES (loop_vinfo).release ();
|
|
LOOP_VINFO_REDUCTIONS (loop_vinfo).release ();
|
|
LOOP_VINFO_REDUCTION_CHAINS (loop_vinfo).release ();
|
|
|
|
delete LOOP_VINFO_PEELING_HTAB (loop_vinfo);
|
|
LOOP_VINFO_PEELING_HTAB (loop_vinfo) = NULL;
|
|
|
|
destroy_cost_data (LOOP_VINFO_TARGET_COST_DATA (loop_vinfo));
|
|
loop_vinfo->scalar_cost_vec.release ();
|
|
|
|
free (loop_vinfo);
|
|
loop->aux = NULL;
|
|
}
|
|
|
|
|
|
/* Calculate the cost of one scalar iteration of the loop. */
|
|
static void
|
|
vect_get_single_scalar_iteration_cost (loop_vec_info loop_vinfo)
|
|
{
|
|
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
|
basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
|
|
int nbbs = loop->num_nodes, factor, scalar_single_iter_cost = 0;
|
|
int innerloop_iters, i;
|
|
|
|
/* Count statements in scalar loop. Using this as scalar cost for a single
|
|
iteration for now.
|
|
|
|
TODO: Add outer loop support.
|
|
|
|
TODO: Consider assigning different costs to different scalar
|
|
statements. */
|
|
|
|
/* FORNOW. */
|
|
innerloop_iters = 1;
|
|
if (loop->inner)
|
|
innerloop_iters = 50; /* FIXME */
|
|
|
|
for (i = 0; i < nbbs; i++)
|
|
{
|
|
gimple_stmt_iterator si;
|
|
basic_block bb = bbs[i];
|
|
|
|
if (bb->loop_father == loop->inner)
|
|
factor = innerloop_iters;
|
|
else
|
|
factor = 1;
|
|
|
|
for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
|
|
{
|
|
gimple stmt = gsi_stmt (si);
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
|
|
|
if (!is_gimple_assign (stmt) && !is_gimple_call (stmt))
|
|
continue;
|
|
|
|
/* Skip stmts that are not vectorized inside the loop. */
|
|
if (stmt_info
|
|
&& !STMT_VINFO_RELEVANT_P (stmt_info)
|
|
&& (!STMT_VINFO_LIVE_P (stmt_info)
|
|
|| !VECTORIZABLE_CYCLE_DEF (STMT_VINFO_DEF_TYPE (stmt_info)))
|
|
&& !STMT_VINFO_IN_PATTERN_P (stmt_info))
|
|
continue;
|
|
|
|
vect_cost_for_stmt kind;
|
|
if (STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt)))
|
|
{
|
|
if (DR_IS_READ (STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt))))
|
|
kind = scalar_load;
|
|
else
|
|
kind = scalar_store;
|
|
}
|
|
else
|
|
kind = scalar_stmt;
|
|
|
|
scalar_single_iter_cost
|
|
+= record_stmt_cost (&LOOP_VINFO_SCALAR_ITERATION_COST (loop_vinfo),
|
|
factor, kind, NULL, 0, vect_prologue);
|
|
}
|
|
}
|
|
LOOP_VINFO_SINGLE_SCALAR_ITERATION_COST (loop_vinfo)
|
|
= scalar_single_iter_cost;
|
|
}
|
|
|
|
|
|
/* Function vect_analyze_loop_1.
|
|
|
|
Apply a set of analyses on LOOP, and create a loop_vec_info struct
|
|
for it. The different analyses will record information in the
|
|
loop_vec_info struct. This is a subset of the analyses applied in
|
|
vect_analyze_loop, to be applied on an inner-loop nested in the loop
|
|
that is now considered for (outer-loop) vectorization. */
|
|
|
|
static loop_vec_info
|
|
vect_analyze_loop_1 (struct loop *loop)
|
|
{
|
|
loop_vec_info loop_vinfo;
|
|
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"===== analyze_loop_nest_1 =====\n");
|
|
|
|
/* Check the CFG characteristics of the loop (nesting, entry/exit, etc. */
|
|
|
|
loop_vinfo = vect_analyze_loop_form (loop);
|
|
if (!loop_vinfo)
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"bad inner-loop form.\n");
|
|
return NULL;
|
|
}
|
|
|
|
return loop_vinfo;
|
|
}
|
|
|
|
|
|
/* Function vect_analyze_loop_form.
|
|
|
|
Verify that certain CFG restrictions hold, including:
|
|
- the loop has a pre-header
|
|
- the loop has a single entry and exit
|
|
- the loop exit condition is simple enough, and the number of iterations
|
|
can be analyzed (a countable loop). */
|
|
|
|
loop_vec_info
|
|
vect_analyze_loop_form (struct loop *loop)
|
|
{
|
|
loop_vec_info loop_vinfo;
|
|
gcond *loop_cond;
|
|
tree number_of_iterations = NULL, number_of_iterationsm1 = NULL;
|
|
loop_vec_info inner_loop_vinfo = NULL;
|
|
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"=== vect_analyze_loop_form ===\n");
|
|
|
|
/* Different restrictions apply when we are considering an inner-most loop,
|
|
vs. an outer (nested) loop.
|
|
(FORNOW. May want to relax some of these restrictions in the future). */
|
|
|
|
if (!loop->inner)
|
|
{
|
|
/* Inner-most loop. We currently require that the number of BBs is
|
|
exactly 2 (the header and latch). Vectorizable inner-most loops
|
|
look like this:
|
|
|
|
(pre-header)
|
|
|
|
|
header <--------+
|
|
| | |
|
|
| +--> latch --+
|
|
|
|
|
(exit-bb) */
|
|
|
|
if (loop->num_nodes != 2)
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"not vectorized: control flow in loop.\n");
|
|
return NULL;
|
|
}
|
|
|
|
if (empty_block_p (loop->header))
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"not vectorized: empty loop.\n");
|
|
return NULL;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
struct loop *innerloop = loop->inner;
|
|
edge entryedge;
|
|
|
|
/* Nested loop. We currently require that the loop is doubly-nested,
|
|
contains a single inner loop, and the number of BBs is exactly 5.
|
|
Vectorizable outer-loops look like this:
|
|
|
|
(pre-header)
|
|
|
|
|
header <---+
|
|
| |
|
|
inner-loop |
|
|
| |
|
|
tail ------+
|
|
|
|
|
(exit-bb)
|
|
|
|
The inner-loop has the properties expected of inner-most loops
|
|
as described above. */
|
|
|
|
if ((loop->inner)->inner || (loop->inner)->next)
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"not vectorized: multiple nested loops.\n");
|
|
return NULL;
|
|
}
|
|
|
|
/* Analyze the inner-loop. */
|
|
inner_loop_vinfo = vect_analyze_loop_1 (loop->inner);
|
|
if (!inner_loop_vinfo)
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"not vectorized: Bad inner loop.\n");
|
|
return NULL;
|
|
}
|
|
|
|
if (!expr_invariant_in_loop_p (loop,
|
|
LOOP_VINFO_NITERS (inner_loop_vinfo)))
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"not vectorized: inner-loop count not"
|
|
" invariant.\n");
|
|
destroy_loop_vec_info (inner_loop_vinfo, true);
|
|
return NULL;
|
|
}
|
|
|
|
if (loop->num_nodes != 5)
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"not vectorized: control flow in loop.\n");
|
|
destroy_loop_vec_info (inner_loop_vinfo, true);
|
|
return NULL;
|
|
}
|
|
|
|
gcc_assert (EDGE_COUNT (innerloop->header->preds) == 2);
|
|
entryedge = EDGE_PRED (innerloop->header, 0);
|
|
if (EDGE_PRED (innerloop->header, 0)->src == innerloop->latch)
|
|
entryedge = EDGE_PRED (innerloop->header, 1);
|
|
|
|
if (entryedge->src != loop->header
|
|
|| !single_exit (innerloop)
|
|
|| single_exit (innerloop)->dest != EDGE_PRED (loop->latch, 0)->src)
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"not vectorized: unsupported outerloop form.\n");
|
|
destroy_loop_vec_info (inner_loop_vinfo, true);
|
|
return NULL;
|
|
}
|
|
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"Considering outer-loop vectorization.\n");
|
|
}
|
|
|
|
if (!single_exit (loop)
|
|
|| EDGE_COUNT (loop->header->preds) != 2)
|
|
{
|
|
if (dump_enabled_p ())
|
|
{
|
|
if (!single_exit (loop))
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"not vectorized: multiple exits.\n");
|
|
else if (EDGE_COUNT (loop->header->preds) != 2)
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"not vectorized: too many incoming edges.\n");
|
|
}
|
|
if (inner_loop_vinfo)
|
|
destroy_loop_vec_info (inner_loop_vinfo, true);
|
|
return NULL;
|
|
}
|
|
|
|
/* We assume that the loop exit condition is at the end of the loop. i.e,
|
|
that the loop is represented as a do-while (with a proper if-guard
|
|
before the loop if needed), where the loop header contains all the
|
|
executable statements, and the latch is empty. */
|
|
if (!empty_block_p (loop->latch)
|
|
|| !gimple_seq_empty_p (phi_nodes (loop->latch)))
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"not vectorized: latch block not empty.\n");
|
|
if (inner_loop_vinfo)
|
|
destroy_loop_vec_info (inner_loop_vinfo, true);
|
|
return NULL;
|
|
}
|
|
|
|
/* Make sure there exists a single-predecessor exit bb: */
|
|
if (!single_pred_p (single_exit (loop)->dest))
|
|
{
|
|
edge e = single_exit (loop);
|
|
if (!(e->flags & EDGE_ABNORMAL))
|
|
{
|
|
split_loop_exit_edge (e);
|
|
if (dump_enabled_p ())
|
|
dump_printf (MSG_NOTE, "split exit edge.\n");
|
|
}
|
|
else
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"not vectorized: abnormal loop exit edge.\n");
|
|
if (inner_loop_vinfo)
|
|
destroy_loop_vec_info (inner_loop_vinfo, true);
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
loop_cond = vect_get_loop_niters (loop, &number_of_iterations,
|
|
&number_of_iterationsm1);
|
|
if (!loop_cond)
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"not vectorized: complicated exit condition.\n");
|
|
if (inner_loop_vinfo)
|
|
destroy_loop_vec_info (inner_loop_vinfo, true);
|
|
return NULL;
|
|
}
|
|
|
|
if (!number_of_iterations
|
|
|| chrec_contains_undetermined (number_of_iterations))
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"not vectorized: number of iterations cannot be "
|
|
"computed.\n");
|
|
if (inner_loop_vinfo)
|
|
destroy_loop_vec_info (inner_loop_vinfo, true);
|
|
return NULL;
|
|
}
|
|
|
|
if (integer_zerop (number_of_iterations))
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"not vectorized: number of iterations = 0.\n");
|
|
if (inner_loop_vinfo)
|
|
destroy_loop_vec_info (inner_loop_vinfo, true);
|
|
return NULL;
|
|
}
|
|
|
|
loop_vinfo = new_loop_vec_info (loop);
|
|
LOOP_VINFO_NITERSM1 (loop_vinfo) = number_of_iterationsm1;
|
|
LOOP_VINFO_NITERS (loop_vinfo) = number_of_iterations;
|
|
LOOP_VINFO_NITERS_UNCHANGED (loop_vinfo) = number_of_iterations;
|
|
|
|
if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
|
|
{
|
|
if (dump_enabled_p ())
|
|
{
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"Symbolic number of iterations is ");
|
|
dump_generic_expr (MSG_NOTE, TDF_DETAILS, number_of_iterations);
|
|
dump_printf (MSG_NOTE, "\n");
|
|
}
|
|
}
|
|
|
|
STMT_VINFO_TYPE (vinfo_for_stmt (loop_cond)) = loop_exit_ctrl_vec_info_type;
|
|
|
|
/* CHECKME: May want to keep it around it in the future. */
|
|
if (inner_loop_vinfo)
|
|
destroy_loop_vec_info (inner_loop_vinfo, false);
|
|
|
|
gcc_assert (!loop->aux);
|
|
loop->aux = loop_vinfo;
|
|
return loop_vinfo;
|
|
}
|
|
|
|
/* Scan the loop stmts and dependent on whether there are any (non-)SLP
|
|
statements update the vectorization factor. */
|
|
|
|
static void
|
|
vect_update_vf_for_slp (loop_vec_info loop_vinfo)
|
|
{
|
|
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
|
basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
|
|
int nbbs = loop->num_nodes;
|
|
unsigned int vectorization_factor;
|
|
int i;
|
|
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"=== vect_update_vf_for_slp ===\n");
|
|
|
|
vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
|
|
gcc_assert (vectorization_factor != 0);
|
|
|
|
/* If all the stmts in the loop can be SLPed, we perform only SLP, and
|
|
vectorization factor of the loop is the unrolling factor required by
|
|
the SLP instances. If that unrolling factor is 1, we say, that we
|
|
perform pure SLP on loop - cross iteration parallelism is not
|
|
exploited. */
|
|
bool only_slp_in_loop = true;
|
|
for (i = 0; i < nbbs; i++)
|
|
{
|
|
basic_block bb = bbs[i];
|
|
for (gimple_stmt_iterator si = gsi_start_bb (bb); !gsi_end_p (si);
|
|
gsi_next (&si))
|
|
{
|
|
gimple stmt = gsi_stmt (si);
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
|
if (STMT_VINFO_IN_PATTERN_P (stmt_info)
|
|
&& STMT_VINFO_RELATED_STMT (stmt_info))
|
|
{
|
|
stmt = STMT_VINFO_RELATED_STMT (stmt_info);
|
|
stmt_info = vinfo_for_stmt (stmt);
|
|
}
|
|
if ((STMT_VINFO_RELEVANT_P (stmt_info)
|
|
|| VECTORIZABLE_CYCLE_DEF (STMT_VINFO_DEF_TYPE (stmt_info)))
|
|
&& !PURE_SLP_STMT (stmt_info))
|
|
/* STMT needs both SLP and loop-based vectorization. */
|
|
only_slp_in_loop = false;
|
|
}
|
|
}
|
|
|
|
if (only_slp_in_loop)
|
|
vectorization_factor = LOOP_VINFO_SLP_UNROLLING_FACTOR (loop_vinfo);
|
|
else
|
|
vectorization_factor
|
|
= least_common_multiple (vectorization_factor,
|
|
LOOP_VINFO_SLP_UNROLLING_FACTOR (loop_vinfo));
|
|
|
|
LOOP_VINFO_VECT_FACTOR (loop_vinfo) = vectorization_factor;
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"Updating vectorization factor to %d\n",
|
|
vectorization_factor);
|
|
}
|
|
|
|
/* Function vect_analyze_loop_operations.
|
|
|
|
Scan the loop stmts and make sure they are all vectorizable. */
|
|
|
|
static bool
|
|
vect_analyze_loop_operations (loop_vec_info loop_vinfo)
|
|
{
|
|
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
|
basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
|
|
int nbbs = loop->num_nodes;
|
|
unsigned int vectorization_factor;
|
|
int i;
|
|
stmt_vec_info stmt_info;
|
|
bool need_to_vectorize = false;
|
|
int min_profitable_iters;
|
|
int min_scalar_loop_bound;
|
|
unsigned int th;
|
|
bool ok;
|
|
HOST_WIDE_INT max_niter;
|
|
HOST_WIDE_INT estimated_niter;
|
|
int min_profitable_estimate;
|
|
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"=== vect_analyze_loop_operations ===\n");
|
|
|
|
for (i = 0; i < nbbs; i++)
|
|
{
|
|
basic_block bb = bbs[i];
|
|
|
|
for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si);
|
|
gsi_next (&si))
|
|
{
|
|
gphi *phi = si.phi ();
|
|
ok = true;
|
|
|
|
stmt_info = vinfo_for_stmt (phi);
|
|
if (dump_enabled_p ())
|
|
{
|
|
dump_printf_loc (MSG_NOTE, vect_location, "examining phi: ");
|
|
dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
|
|
dump_printf (MSG_NOTE, "\n");
|
|
}
|
|
|
|
/* Inner-loop loop-closed exit phi in outer-loop vectorization
|
|
(i.e., a phi in the tail of the outer-loop). */
|
|
if (! is_loop_header_bb_p (bb))
|
|
{
|
|
/* FORNOW: we currently don't support the case that these phis
|
|
are not used in the outerloop (unless it is double reduction,
|
|
i.e., this phi is vect_reduction_def), cause this case
|
|
requires to actually do something here. */
|
|
if ((!STMT_VINFO_RELEVANT_P (stmt_info)
|
|
|| STMT_VINFO_LIVE_P (stmt_info))
|
|
&& STMT_VINFO_DEF_TYPE (stmt_info)
|
|
!= vect_double_reduction_def)
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"Unsupported loop-closed phi in "
|
|
"outer-loop.\n");
|
|
return false;
|
|
}
|
|
|
|
/* If PHI is used in the outer loop, we check that its operand
|
|
is defined in the inner loop. */
|
|
if (STMT_VINFO_RELEVANT_P (stmt_info))
|
|
{
|
|
tree phi_op;
|
|
gimple op_def_stmt;
|
|
|
|
if (gimple_phi_num_args (phi) != 1)
|
|
return false;
|
|
|
|
phi_op = PHI_ARG_DEF (phi, 0);
|
|
if (TREE_CODE (phi_op) != SSA_NAME)
|
|
return false;
|
|
|
|
op_def_stmt = SSA_NAME_DEF_STMT (phi_op);
|
|
if (gimple_nop_p (op_def_stmt)
|
|
|| !flow_bb_inside_loop_p (loop, gimple_bb (op_def_stmt))
|
|
|| !vinfo_for_stmt (op_def_stmt))
|
|
return false;
|
|
|
|
if (STMT_VINFO_RELEVANT (vinfo_for_stmt (op_def_stmt))
|
|
!= vect_used_in_outer
|
|
&& STMT_VINFO_RELEVANT (vinfo_for_stmt (op_def_stmt))
|
|
!= vect_used_in_outer_by_reduction)
|
|
return false;
|
|
}
|
|
|
|
continue;
|
|
}
|
|
|
|
gcc_assert (stmt_info);
|
|
|
|
if (STMT_VINFO_LIVE_P (stmt_info))
|
|
{
|
|
/* FORNOW: not yet supported. */
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"not vectorized: value used after loop.\n");
|
|
return false;
|
|
}
|
|
|
|
if (STMT_VINFO_RELEVANT (stmt_info) == vect_used_in_scope
|
|
&& STMT_VINFO_DEF_TYPE (stmt_info) != vect_induction_def)
|
|
{
|
|
/* A scalar-dependence cycle that we don't support. */
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"not vectorized: scalar dependence cycle.\n");
|
|
return false;
|
|
}
|
|
|
|
if (STMT_VINFO_RELEVANT_P (stmt_info))
|
|
{
|
|
need_to_vectorize = true;
|
|
if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_induction_def)
|
|
ok = vectorizable_induction (phi, NULL, NULL);
|
|
}
|
|
|
|
if (!ok)
|
|
{
|
|
if (dump_enabled_p ())
|
|
{
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"not vectorized: relevant phi not "
|
|
"supported: ");
|
|
dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, phi, 0);
|
|
dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
|
|
}
|
|
return false;
|
|
}
|
|
}
|
|
|
|
for (gimple_stmt_iterator si = gsi_start_bb (bb); !gsi_end_p (si);
|
|
gsi_next (&si))
|
|
{
|
|
gimple stmt = gsi_stmt (si);
|
|
if (!gimple_clobber_p (stmt)
|
|
&& !vect_analyze_stmt (stmt, &need_to_vectorize, NULL))
|
|
return false;
|
|
}
|
|
} /* bbs */
|
|
|
|
/* All operations in the loop are either irrelevant (deal with loop
|
|
control, or dead), or only used outside the loop and can be moved
|
|
out of the loop (e.g. invariants, inductions). The loop can be
|
|
optimized away by scalar optimizations. We're better off not
|
|
touching this loop. */
|
|
if (!need_to_vectorize)
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"All the computation can be taken out of the loop.\n");
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"not vectorized: redundant loop. no profit to "
|
|
"vectorize.\n");
|
|
return false;
|
|
}
|
|
|
|
vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
|
|
gcc_assert (vectorization_factor != 0);
|
|
|
|
if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo) && dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"vectorization_factor = %d, niters = "
|
|
HOST_WIDE_INT_PRINT_DEC "\n", vectorization_factor,
|
|
LOOP_VINFO_INT_NITERS (loop_vinfo));
|
|
|
|
if ((LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
|
|
&& (LOOP_VINFO_INT_NITERS (loop_vinfo) < vectorization_factor))
|
|
|| ((max_niter = max_stmt_executions_int (loop)) != -1
|
|
&& (unsigned HOST_WIDE_INT) max_niter < vectorization_factor))
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"not vectorized: iteration count too small.\n");
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"not vectorized: iteration count smaller than "
|
|
"vectorization factor.\n");
|
|
return false;
|
|
}
|
|
|
|
/* Analyze cost. Decide if worth while to vectorize. */
|
|
|
|
vect_estimate_min_profitable_iters (loop_vinfo, &min_profitable_iters,
|
|
&min_profitable_estimate);
|
|
LOOP_VINFO_COST_MODEL_MIN_ITERS (loop_vinfo) = min_profitable_iters;
|
|
|
|
if (min_profitable_iters < 0)
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"not vectorized: vectorization not profitable.\n");
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"not vectorized: vector version will never be "
|
|
"profitable.\n");
|
|
return false;
|
|
}
|
|
|
|
min_scalar_loop_bound = ((PARAM_VALUE (PARAM_MIN_VECT_LOOP_BOUND)
|
|
* vectorization_factor) - 1);
|
|
|
|
|
|
/* Use the cost model only if it is more conservative than user specified
|
|
threshold. */
|
|
|
|
th = (unsigned) min_scalar_loop_bound;
|
|
if (min_profitable_iters
|
|
&& (!min_scalar_loop_bound
|
|
|| min_profitable_iters > min_scalar_loop_bound))
|
|
th = (unsigned) min_profitable_iters;
|
|
|
|
LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo) = th;
|
|
|
|
if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
|
|
&& LOOP_VINFO_INT_NITERS (loop_vinfo) <= th)
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"not vectorized: vectorization not profitable.\n");
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"not vectorized: iteration count smaller than user "
|
|
"specified loop bound parameter or minimum profitable "
|
|
"iterations (whichever is more conservative).\n");
|
|
return false;
|
|
}
|
|
|
|
if ((estimated_niter = estimated_stmt_executions_int (loop)) != -1
|
|
&& ((unsigned HOST_WIDE_INT) estimated_niter
|
|
<= MAX (th, (unsigned)min_profitable_estimate)))
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"not vectorized: estimated iteration count too "
|
|
"small.\n");
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"not vectorized: estimated iteration count smaller "
|
|
"than specified loop bound parameter or minimum "
|
|
"profitable iterations (whichever is more "
|
|
"conservative).\n");
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
/* Function vect_analyze_loop_2.
|
|
|
|
Apply a set of analyses on LOOP, and create a loop_vec_info struct
|
|
for it. The different analyses will record information in the
|
|
loop_vec_info struct. */
|
|
static bool
|
|
vect_analyze_loop_2 (loop_vec_info loop_vinfo)
|
|
{
|
|
bool ok;
|
|
int max_vf = MAX_VECTORIZATION_FACTOR;
|
|
int min_vf = 2;
|
|
unsigned int th;
|
|
unsigned int n_stmts = 0;
|
|
|
|
/* Find all data references in the loop (which correspond to vdefs/vuses)
|
|
and analyze their evolution in the loop. Also adjust the minimal
|
|
vectorization factor according to the loads and stores.
|
|
|
|
FORNOW: Handle only simple, array references, which
|
|
alignment can be forced, and aligned pointer-references. */
|
|
|
|
ok = vect_analyze_data_refs (loop_vinfo, NULL, &min_vf, &n_stmts);
|
|
if (!ok)
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"bad data references.\n");
|
|
return false;
|
|
}
|
|
|
|
/* Classify all cross-iteration scalar data-flow cycles.
|
|
Cross-iteration cycles caused by virtual phis are analyzed separately. */
|
|
|
|
vect_analyze_scalar_cycles (loop_vinfo);
|
|
|
|
vect_pattern_recog (loop_vinfo, NULL);
|
|
|
|
vect_fixup_scalar_cycles_with_patterns (loop_vinfo);
|
|
|
|
/* Analyze the access patterns of the data-refs in the loop (consecutive,
|
|
complex, etc.). FORNOW: Only handle consecutive access pattern. */
|
|
|
|
ok = vect_analyze_data_ref_accesses (loop_vinfo, NULL);
|
|
if (!ok)
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"bad data access.\n");
|
|
return false;
|
|
}
|
|
|
|
/* Data-flow analysis to detect stmts that do not need to be vectorized. */
|
|
|
|
ok = vect_mark_stmts_to_be_vectorized (loop_vinfo);
|
|
if (!ok)
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"unexpected pattern.\n");
|
|
return false;
|
|
}
|
|
|
|
/* Analyze data dependences between the data-refs in the loop
|
|
and adjust the maximum vectorization factor according to
|
|
the dependences.
|
|
FORNOW: fail at the first data dependence that we encounter. */
|
|
|
|
ok = vect_analyze_data_ref_dependences (loop_vinfo, &max_vf);
|
|
if (!ok
|
|
|| max_vf < min_vf)
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"bad data dependence.\n");
|
|
return false;
|
|
}
|
|
|
|
ok = vect_determine_vectorization_factor (loop_vinfo);
|
|
if (!ok)
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"can't determine vectorization factor.\n");
|
|
return false;
|
|
}
|
|
if (max_vf < LOOP_VINFO_VECT_FACTOR (loop_vinfo))
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"bad data dependence.\n");
|
|
return false;
|
|
}
|
|
|
|
/* Check the SLP opportunities in the loop, analyze and build SLP trees. */
|
|
ok = vect_analyze_slp (loop_vinfo, NULL, n_stmts);
|
|
if (!ok)
|
|
return false;
|
|
|
|
/* If there are any SLP instances mark them as pure_slp. */
|
|
bool slp = vect_make_slp_decision (loop_vinfo);
|
|
if (slp)
|
|
{
|
|
/* Find stmts that need to be both vectorized and SLPed. */
|
|
vect_detect_hybrid_slp (loop_vinfo);
|
|
|
|
/* Update the vectorization factor based on the SLP decision. */
|
|
vect_update_vf_for_slp (loop_vinfo);
|
|
}
|
|
|
|
/* Analyze the alignment of the data-refs in the loop.
|
|
Fail if a data reference is found that cannot be vectorized. */
|
|
|
|
ok = vect_analyze_data_refs_alignment (loop_vinfo, NULL);
|
|
if (!ok)
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"bad data alignment.\n");
|
|
return false;
|
|
}
|
|
|
|
/* Prune the list of ddrs to be tested at run-time by versioning for alias.
|
|
It is important to call pruning after vect_analyze_data_ref_accesses,
|
|
since we use grouping information gathered by interleaving analysis. */
|
|
ok = vect_prune_runtime_alias_test_list (loop_vinfo);
|
|
if (!ok)
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"number of versioning for alias "
|
|
"run-time tests exceeds %d "
|
|
"(--param vect-max-version-for-alias-checks)\n",
|
|
PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIAS_CHECKS));
|
|
return false;
|
|
}
|
|
|
|
/* Compute the scalar iteration cost. */
|
|
vect_get_single_scalar_iteration_cost (loop_vinfo);
|
|
|
|
/* This pass will decide on using loop versioning and/or loop peeling in
|
|
order to enhance the alignment of data references in the loop. */
|
|
|
|
ok = vect_enhance_data_refs_alignment (loop_vinfo);
|
|
if (!ok)
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"bad data alignment.\n");
|
|
return false;
|
|
}
|
|
|
|
if (slp)
|
|
{
|
|
/* Analyze operations in the SLP instances. Note this may
|
|
remove unsupported SLP instances which makes the above
|
|
SLP kind detection invalid. */
|
|
unsigned old_size = LOOP_VINFO_SLP_INSTANCES (loop_vinfo).length ();
|
|
vect_slp_analyze_operations (LOOP_VINFO_SLP_INSTANCES (loop_vinfo),
|
|
LOOP_VINFO_TARGET_COST_DATA (loop_vinfo));
|
|
if (LOOP_VINFO_SLP_INSTANCES (loop_vinfo).length () != old_size)
|
|
return false;
|
|
}
|
|
|
|
/* Scan all the remaining operations in the loop that are not subject
|
|
to SLP and make sure they are vectorizable. */
|
|
ok = vect_analyze_loop_operations (loop_vinfo);
|
|
if (!ok)
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"bad operation or unsupported loop bound.\n");
|
|
return false;
|
|
}
|
|
|
|
/* Decide whether we need to create an epilogue loop to handle
|
|
remaining scalar iterations. */
|
|
th = ((LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo) + 1)
|
|
/ LOOP_VINFO_VECT_FACTOR (loop_vinfo))
|
|
* LOOP_VINFO_VECT_FACTOR (loop_vinfo);
|
|
|
|
if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
|
|
&& LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) > 0)
|
|
{
|
|
if (ctz_hwi (LOOP_VINFO_INT_NITERS (loop_vinfo)
|
|
- LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo))
|
|
< exact_log2 (LOOP_VINFO_VECT_FACTOR (loop_vinfo)))
|
|
LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo) = true;
|
|
}
|
|
else if (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo)
|
|
|| (tree_ctz (LOOP_VINFO_NITERS (loop_vinfo))
|
|
< (unsigned)exact_log2 (LOOP_VINFO_VECT_FACTOR (loop_vinfo))
|
|
/* In case of versioning, check if the maximum number of
|
|
iterations is greater than th. If they are identical,
|
|
the epilogue is unnecessary. */
|
|
&& ((!LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo)
|
|
&& !LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo))
|
|
|| (unsigned HOST_WIDE_INT)max_stmt_executions_int
|
|
(LOOP_VINFO_LOOP (loop_vinfo)) > th)))
|
|
LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo) = true;
|
|
|
|
/* If an epilogue loop is required make sure we can create one. */
|
|
if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo)
|
|
|| LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo))
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location, "epilog loop required\n");
|
|
if (!vect_can_advance_ivs_p (loop_vinfo)
|
|
|| !slpeel_can_duplicate_loop_p (LOOP_VINFO_LOOP (loop_vinfo),
|
|
single_exit (LOOP_VINFO_LOOP
|
|
(loop_vinfo))))
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"not vectorized: can't create required "
|
|
"epilog loop\n");
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Function vect_analyze_loop.
|
|
|
|
Apply a set of analyses on LOOP, and create a loop_vec_info struct
|
|
for it. The different analyses will record information in the
|
|
loop_vec_info struct. */
|
|
loop_vec_info
|
|
vect_analyze_loop (struct loop *loop)
|
|
{
|
|
loop_vec_info loop_vinfo;
|
|
unsigned int vector_sizes;
|
|
|
|
/* Autodetect first vector size we try. */
|
|
current_vector_size = 0;
|
|
vector_sizes = targetm.vectorize.autovectorize_vector_sizes ();
|
|
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"===== analyze_loop_nest =====\n");
|
|
|
|
if (loop_outer (loop)
|
|
&& loop_vec_info_for_loop (loop_outer (loop))
|
|
&& LOOP_VINFO_VECTORIZABLE_P (loop_vec_info_for_loop (loop_outer (loop))))
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"outer-loop already vectorized.\n");
|
|
return NULL;
|
|
}
|
|
|
|
while (1)
|
|
{
|
|
/* Check the CFG characteristics of the loop (nesting, entry/exit). */
|
|
loop_vinfo = vect_analyze_loop_form (loop);
|
|
if (!loop_vinfo)
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"bad loop form.\n");
|
|
return NULL;
|
|
}
|
|
|
|
if (vect_analyze_loop_2 (loop_vinfo))
|
|
{
|
|
LOOP_VINFO_VECTORIZABLE_P (loop_vinfo) = 1;
|
|
|
|
return loop_vinfo;
|
|
}
|
|
|
|
destroy_loop_vec_info (loop_vinfo, true);
|
|
|
|
vector_sizes &= ~current_vector_size;
|
|
if (vector_sizes == 0
|
|
|| current_vector_size == 0)
|
|
return NULL;
|
|
|
|
/* Try the next biggest vector size. */
|
|
current_vector_size = 1 << floor_log2 (vector_sizes);
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"***** Re-trying analysis with "
|
|
"vector size %d\n", current_vector_size);
|
|
}
|
|
}
|
|
|
|
|
|
/* Function reduction_code_for_scalar_code
|
|
|
|
Input:
|
|
CODE - tree_code of a reduction operations.
|
|
|
|
Output:
|
|
REDUC_CODE - the corresponding tree-code to be used to reduce the
|
|
vector of partial results into a single scalar result, or ERROR_MARK
|
|
if the operation is a supported reduction operation, but does not have
|
|
such a tree-code.
|
|
|
|
Return FALSE if CODE currently cannot be vectorized as reduction. */
|
|
|
|
static bool
|
|
reduction_code_for_scalar_code (enum tree_code code,
|
|
enum tree_code *reduc_code)
|
|
{
|
|
switch (code)
|
|
{
|
|
case MAX_EXPR:
|
|
*reduc_code = REDUC_MAX_EXPR;
|
|
return true;
|
|
|
|
case MIN_EXPR:
|
|
*reduc_code = REDUC_MIN_EXPR;
|
|
return true;
|
|
|
|
case PLUS_EXPR:
|
|
*reduc_code = REDUC_PLUS_EXPR;
|
|
return true;
|
|
|
|
case MULT_EXPR:
|
|
case MINUS_EXPR:
|
|
case BIT_IOR_EXPR:
|
|
case BIT_XOR_EXPR:
|
|
case BIT_AND_EXPR:
|
|
*reduc_code = ERROR_MARK;
|
|
return true;
|
|
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
|
|
/* Error reporting helper for vect_is_simple_reduction below. GIMPLE statement
|
|
STMT is printed with a message MSG. */
|
|
|
|
static void
|
|
report_vect_op (int msg_type, gimple stmt, const char *msg)
|
|
{
|
|
dump_printf_loc (msg_type, vect_location, "%s", msg);
|
|
dump_gimple_stmt (msg_type, TDF_SLIM, stmt, 0);
|
|
dump_printf (msg_type, "\n");
|
|
}
|
|
|
|
|
|
/* Detect SLP reduction of the form:
|
|
|
|
#a1 = phi <a5, a0>
|
|
a2 = operation (a1)
|
|
a3 = operation (a2)
|
|
a4 = operation (a3)
|
|
a5 = operation (a4)
|
|
|
|
#a = phi <a5>
|
|
|
|
PHI is the reduction phi node (#a1 = phi <a5, a0> above)
|
|
FIRST_STMT is the first reduction stmt in the chain
|
|
(a2 = operation (a1)).
|
|
|
|
Return TRUE if a reduction chain was detected. */
|
|
|
|
static bool
|
|
vect_is_slp_reduction (loop_vec_info loop_info, gimple phi, gimple first_stmt)
|
|
{
|
|
struct loop *loop = (gimple_bb (phi))->loop_father;
|
|
struct loop *vect_loop = LOOP_VINFO_LOOP (loop_info);
|
|
enum tree_code code;
|
|
gimple current_stmt = NULL, loop_use_stmt = NULL, first, next_stmt;
|
|
stmt_vec_info use_stmt_info, current_stmt_info;
|
|
tree lhs;
|
|
imm_use_iterator imm_iter;
|
|
use_operand_p use_p;
|
|
int nloop_uses, size = 0, n_out_of_loop_uses;
|
|
bool found = false;
|
|
|
|
if (loop != vect_loop)
|
|
return false;
|
|
|
|
lhs = PHI_RESULT (phi);
|
|
code = gimple_assign_rhs_code (first_stmt);
|
|
while (1)
|
|
{
|
|
nloop_uses = 0;
|
|
n_out_of_loop_uses = 0;
|
|
FOR_EACH_IMM_USE_FAST (use_p, imm_iter, lhs)
|
|
{
|
|
gimple use_stmt = USE_STMT (use_p);
|
|
if (is_gimple_debug (use_stmt))
|
|
continue;
|
|
|
|
/* Check if we got back to the reduction phi. */
|
|
if (use_stmt == phi)
|
|
{
|
|
loop_use_stmt = use_stmt;
|
|
found = true;
|
|
break;
|
|
}
|
|
|
|
if (flow_bb_inside_loop_p (loop, gimple_bb (use_stmt)))
|
|
{
|
|
loop_use_stmt = use_stmt;
|
|
nloop_uses++;
|
|
}
|
|
else
|
|
n_out_of_loop_uses++;
|
|
|
|
/* There are can be either a single use in the loop or two uses in
|
|
phi nodes. */
|
|
if (nloop_uses > 1 || (n_out_of_loop_uses && nloop_uses))
|
|
return false;
|
|
}
|
|
|
|
if (found)
|
|
break;
|
|
|
|
/* We reached a statement with no loop uses. */
|
|
if (nloop_uses == 0)
|
|
return false;
|
|
|
|
/* This is a loop exit phi, and we haven't reached the reduction phi. */
|
|
if (gimple_code (loop_use_stmt) == GIMPLE_PHI)
|
|
return false;
|
|
|
|
if (!is_gimple_assign (loop_use_stmt)
|
|
|| code != gimple_assign_rhs_code (loop_use_stmt)
|
|
|| !flow_bb_inside_loop_p (loop, gimple_bb (loop_use_stmt)))
|
|
return false;
|
|
|
|
/* Insert USE_STMT into reduction chain. */
|
|
use_stmt_info = vinfo_for_stmt (loop_use_stmt);
|
|
if (current_stmt)
|
|
{
|
|
current_stmt_info = vinfo_for_stmt (current_stmt);
|
|
GROUP_NEXT_ELEMENT (current_stmt_info) = loop_use_stmt;
|
|
GROUP_FIRST_ELEMENT (use_stmt_info)
|
|
= GROUP_FIRST_ELEMENT (current_stmt_info);
|
|
}
|
|
else
|
|
GROUP_FIRST_ELEMENT (use_stmt_info) = loop_use_stmt;
|
|
|
|
lhs = gimple_assign_lhs (loop_use_stmt);
|
|
current_stmt = loop_use_stmt;
|
|
size++;
|
|
}
|
|
|
|
if (!found || loop_use_stmt != phi || size < 2)
|
|
return false;
|
|
|
|
/* Swap the operands, if needed, to make the reduction operand be the second
|
|
operand. */
|
|
lhs = PHI_RESULT (phi);
|
|
next_stmt = GROUP_FIRST_ELEMENT (vinfo_for_stmt (current_stmt));
|
|
while (next_stmt)
|
|
{
|
|
if (gimple_assign_rhs2 (next_stmt) == lhs)
|
|
{
|
|
tree op = gimple_assign_rhs1 (next_stmt);
|
|
gimple def_stmt = NULL;
|
|
|
|
if (TREE_CODE (op) == SSA_NAME)
|
|
def_stmt = SSA_NAME_DEF_STMT (op);
|
|
|
|
/* Check that the other def is either defined in the loop
|
|
("vect_internal_def"), or it's an induction (defined by a
|
|
loop-header phi-node). */
|
|
if (def_stmt
|
|
&& gimple_bb (def_stmt)
|
|
&& flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
|
|
&& (is_gimple_assign (def_stmt)
|
|
|| is_gimple_call (def_stmt)
|
|
|| STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
|
|
== vect_induction_def
|
|
|| (gimple_code (def_stmt) == GIMPLE_PHI
|
|
&& STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
|
|
== vect_internal_def
|
|
&& !is_loop_header_bb_p (gimple_bb (def_stmt)))))
|
|
{
|
|
lhs = gimple_assign_lhs (next_stmt);
|
|
next_stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next_stmt));
|
|
continue;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
else
|
|
{
|
|
tree op = gimple_assign_rhs2 (next_stmt);
|
|
gimple def_stmt = NULL;
|
|
|
|
if (TREE_CODE (op) == SSA_NAME)
|
|
def_stmt = SSA_NAME_DEF_STMT (op);
|
|
|
|
/* Check that the other def is either defined in the loop
|
|
("vect_internal_def"), or it's an induction (defined by a
|
|
loop-header phi-node). */
|
|
if (def_stmt
|
|
&& gimple_bb (def_stmt)
|
|
&& flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
|
|
&& (is_gimple_assign (def_stmt)
|
|
|| is_gimple_call (def_stmt)
|
|
|| STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
|
|
== vect_induction_def
|
|
|| (gimple_code (def_stmt) == GIMPLE_PHI
|
|
&& STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
|
|
== vect_internal_def
|
|
&& !is_loop_header_bb_p (gimple_bb (def_stmt)))))
|
|
{
|
|
if (dump_enabled_p ())
|
|
{
|
|
dump_printf_loc (MSG_NOTE, vect_location, "swapping oprnds: ");
|
|
dump_gimple_stmt (MSG_NOTE, TDF_SLIM, next_stmt, 0);
|
|
dump_printf (MSG_NOTE, "\n");
|
|
}
|
|
|
|
swap_ssa_operands (next_stmt,
|
|
gimple_assign_rhs1_ptr (next_stmt),
|
|
gimple_assign_rhs2_ptr (next_stmt));
|
|
update_stmt (next_stmt);
|
|
|
|
if (CONSTANT_CLASS_P (gimple_assign_rhs1 (next_stmt)))
|
|
LOOP_VINFO_OPERANDS_SWAPPED (loop_info) = true;
|
|
}
|
|
else
|
|
return false;
|
|
}
|
|
|
|
lhs = gimple_assign_lhs (next_stmt);
|
|
next_stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next_stmt));
|
|
}
|
|
|
|
/* Save the chain for further analysis in SLP detection. */
|
|
first = GROUP_FIRST_ELEMENT (vinfo_for_stmt (current_stmt));
|
|
LOOP_VINFO_REDUCTION_CHAINS (loop_info).safe_push (first);
|
|
GROUP_SIZE (vinfo_for_stmt (first)) = size;
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
/* Function vect_is_simple_reduction_1
|
|
|
|
(1) Detect a cross-iteration def-use cycle that represents a simple
|
|
reduction computation. We look for the following pattern:
|
|
|
|
loop_header:
|
|
a1 = phi < a0, a2 >
|
|
a3 = ...
|
|
a2 = operation (a3, a1)
|
|
|
|
or
|
|
|
|
a3 = ...
|
|
loop_header:
|
|
a1 = phi < a0, a2 >
|
|
a2 = operation (a3, a1)
|
|
|
|
such that:
|
|
1. operation is commutative and associative and it is safe to
|
|
change the order of the computation (if CHECK_REDUCTION is true)
|
|
2. no uses for a2 in the loop (a2 is used out of the loop)
|
|
3. no uses of a1 in the loop besides the reduction operation
|
|
4. no uses of a1 outside the loop.
|
|
|
|
Conditions 1,4 are tested here.
|
|
Conditions 2,3 are tested in vect_mark_stmts_to_be_vectorized.
|
|
|
|
(2) Detect a cross-iteration def-use cycle in nested loops, i.e.,
|
|
nested cycles, if CHECK_REDUCTION is false.
|
|
|
|
(3) Detect cycles of phi nodes in outer-loop vectorization, i.e., double
|
|
reductions:
|
|
|
|
a1 = phi < a0, a2 >
|
|
inner loop (def of a3)
|
|
a2 = phi < a3 >
|
|
|
|
If MODIFY is true it tries also to rework the code in-place to enable
|
|
detection of more reduction patterns. For the time being we rewrite
|
|
"res -= RHS" into "rhs += -RHS" when it seems worthwhile.
|
|
*/
|
|
|
|
static gimple
|
|
vect_is_simple_reduction_1 (loop_vec_info loop_info, gimple phi,
|
|
bool check_reduction, bool *double_reduc,
|
|
bool modify, bool need_wrapping_integral_overflow)
|
|
{
|
|
struct loop *loop = (gimple_bb (phi))->loop_father;
|
|
struct loop *vect_loop = LOOP_VINFO_LOOP (loop_info);
|
|
edge latch_e = loop_latch_edge (loop);
|
|
tree loop_arg = PHI_ARG_DEF_FROM_EDGE (phi, latch_e);
|
|
gimple def_stmt, def1 = NULL, def2 = NULL;
|
|
enum tree_code orig_code, code;
|
|
tree op1, op2, op3 = NULL_TREE, op4 = NULL_TREE;
|
|
tree type;
|
|
int nloop_uses;
|
|
tree name;
|
|
imm_use_iterator imm_iter;
|
|
use_operand_p use_p;
|
|
bool phi_def;
|
|
|
|
*double_reduc = false;
|
|
|
|
/* If CHECK_REDUCTION is true, we assume inner-most loop vectorization,
|
|
otherwise, we assume outer loop vectorization. */
|
|
gcc_assert ((check_reduction && loop == vect_loop)
|
|
|| (!check_reduction && flow_loop_nested_p (vect_loop, loop)));
|
|
|
|
name = PHI_RESULT (phi);
|
|
/* ??? If there are no uses of the PHI result the inner loop reduction
|
|
won't be detected as possibly double-reduction by vectorizable_reduction
|
|
because that tries to walk the PHI arg from the preheader edge which
|
|
can be constant. See PR60382. */
|
|
if (has_zero_uses (name))
|
|
return NULL;
|
|
nloop_uses = 0;
|
|
FOR_EACH_IMM_USE_FAST (use_p, imm_iter, name)
|
|
{
|
|
gimple use_stmt = USE_STMT (use_p);
|
|
if (is_gimple_debug (use_stmt))
|
|
continue;
|
|
|
|
if (!flow_bb_inside_loop_p (loop, gimple_bb (use_stmt)))
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"intermediate value used outside loop.\n");
|
|
|
|
return NULL;
|
|
}
|
|
|
|
nloop_uses++;
|
|
if (nloop_uses > 1)
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"reduction used in loop.\n");
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
if (TREE_CODE (loop_arg) != SSA_NAME)
|
|
{
|
|
if (dump_enabled_p ())
|
|
{
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"reduction: not ssa_name: ");
|
|
dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, loop_arg);
|
|
dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
def_stmt = SSA_NAME_DEF_STMT (loop_arg);
|
|
if (!def_stmt)
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"reduction: no def_stmt.\n");
|
|
return NULL;
|
|
}
|
|
|
|
if (!is_gimple_assign (def_stmt) && gimple_code (def_stmt) != GIMPLE_PHI)
|
|
{
|
|
if (dump_enabled_p ())
|
|
{
|
|
dump_gimple_stmt (MSG_NOTE, TDF_SLIM, def_stmt, 0);
|
|
dump_printf (MSG_NOTE, "\n");
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
if (is_gimple_assign (def_stmt))
|
|
{
|
|
name = gimple_assign_lhs (def_stmt);
|
|
phi_def = false;
|
|
}
|
|
else
|
|
{
|
|
name = PHI_RESULT (def_stmt);
|
|
phi_def = true;
|
|
}
|
|
|
|
nloop_uses = 0;
|
|
FOR_EACH_IMM_USE_FAST (use_p, imm_iter, name)
|
|
{
|
|
gimple use_stmt = USE_STMT (use_p);
|
|
if (is_gimple_debug (use_stmt))
|
|
continue;
|
|
if (flow_bb_inside_loop_p (loop, gimple_bb (use_stmt)))
|
|
nloop_uses++;
|
|
if (nloop_uses > 1)
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"reduction used in loop.\n");
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
/* If DEF_STMT is a phi node itself, we expect it to have a single argument
|
|
defined in the inner loop. */
|
|
if (phi_def)
|
|
{
|
|
op1 = PHI_ARG_DEF (def_stmt, 0);
|
|
|
|
if (gimple_phi_num_args (def_stmt) != 1
|
|
|| TREE_CODE (op1) != SSA_NAME)
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"unsupported phi node definition.\n");
|
|
|
|
return NULL;
|
|
}
|
|
|
|
def1 = SSA_NAME_DEF_STMT (op1);
|
|
if (gimple_bb (def1)
|
|
&& flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
|
|
&& loop->inner
|
|
&& flow_bb_inside_loop_p (loop->inner, gimple_bb (def1))
|
|
&& is_gimple_assign (def1))
|
|
{
|
|
if (dump_enabled_p ())
|
|
report_vect_op (MSG_NOTE, def_stmt,
|
|
"detected double reduction: ");
|
|
|
|
*double_reduc = true;
|
|
return def_stmt;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
code = orig_code = gimple_assign_rhs_code (def_stmt);
|
|
|
|
/* We can handle "res -= x[i]", which is non-associative by
|
|
simply rewriting this into "res += -x[i]". Avoid changing
|
|
gimple instruction for the first simple tests and only do this
|
|
if we're allowed to change code at all. */
|
|
if (code == MINUS_EXPR
|
|
&& modify
|
|
&& (op1 = gimple_assign_rhs1 (def_stmt))
|
|
&& TREE_CODE (op1) == SSA_NAME
|
|
&& SSA_NAME_DEF_STMT (op1) == phi)
|
|
code = PLUS_EXPR;
|
|
|
|
if (check_reduction
|
|
&& (!commutative_tree_code (code) || !associative_tree_code (code)))
|
|
{
|
|
if (dump_enabled_p ())
|
|
report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
|
|
"reduction: not commutative/associative: ");
|
|
return NULL;
|
|
}
|
|
|
|
if (get_gimple_rhs_class (code) != GIMPLE_BINARY_RHS)
|
|
{
|
|
if (code != COND_EXPR)
|
|
{
|
|
if (dump_enabled_p ())
|
|
report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
|
|
"reduction: not binary operation: ");
|
|
|
|
return NULL;
|
|
}
|
|
|
|
op3 = gimple_assign_rhs1 (def_stmt);
|
|
if (COMPARISON_CLASS_P (op3))
|
|
{
|
|
op4 = TREE_OPERAND (op3, 1);
|
|
op3 = TREE_OPERAND (op3, 0);
|
|
}
|
|
|
|
op1 = gimple_assign_rhs2 (def_stmt);
|
|
op2 = gimple_assign_rhs3 (def_stmt);
|
|
|
|
if (TREE_CODE (op1) != SSA_NAME && TREE_CODE (op2) != SSA_NAME)
|
|
{
|
|
if (dump_enabled_p ())
|
|
report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
|
|
"reduction: uses not ssa_names: ");
|
|
|
|
return NULL;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
op1 = gimple_assign_rhs1 (def_stmt);
|
|
op2 = gimple_assign_rhs2 (def_stmt);
|
|
|
|
if (TREE_CODE (op1) != SSA_NAME && TREE_CODE (op2) != SSA_NAME)
|
|
{
|
|
if (dump_enabled_p ())
|
|
report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
|
|
"reduction: uses not ssa_names: ");
|
|
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
type = TREE_TYPE (gimple_assign_lhs (def_stmt));
|
|
if ((TREE_CODE (op1) == SSA_NAME
|
|
&& !types_compatible_p (type,TREE_TYPE (op1)))
|
|
|| (TREE_CODE (op2) == SSA_NAME
|
|
&& !types_compatible_p (type, TREE_TYPE (op2)))
|
|
|| (op3 && TREE_CODE (op3) == SSA_NAME
|
|
&& !types_compatible_p (type, TREE_TYPE (op3)))
|
|
|| (op4 && TREE_CODE (op4) == SSA_NAME
|
|
&& !types_compatible_p (type, TREE_TYPE (op4))))
|
|
{
|
|
if (dump_enabled_p ())
|
|
{
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"reduction: multiple types: operation type: ");
|
|
dump_generic_expr (MSG_NOTE, TDF_SLIM, type);
|
|
dump_printf (MSG_NOTE, ", operands types: ");
|
|
dump_generic_expr (MSG_NOTE, TDF_SLIM,
|
|
TREE_TYPE (op1));
|
|
dump_printf (MSG_NOTE, ",");
|
|
dump_generic_expr (MSG_NOTE, TDF_SLIM,
|
|
TREE_TYPE (op2));
|
|
if (op3)
|
|
{
|
|
dump_printf (MSG_NOTE, ",");
|
|
dump_generic_expr (MSG_NOTE, TDF_SLIM,
|
|
TREE_TYPE (op3));
|
|
}
|
|
|
|
if (op4)
|
|
{
|
|
dump_printf (MSG_NOTE, ",");
|
|
dump_generic_expr (MSG_NOTE, TDF_SLIM,
|
|
TREE_TYPE (op4));
|
|
}
|
|
dump_printf (MSG_NOTE, "\n");
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* Check that it's ok to change the order of the computation.
|
|
Generally, when vectorizing a reduction we change the order of the
|
|
computation. This may change the behavior of the program in some
|
|
cases, so we need to check that this is ok. One exception is when
|
|
vectorizing an outer-loop: the inner-loop is executed sequentially,
|
|
and therefore vectorizing reductions in the inner-loop during
|
|
outer-loop vectorization is safe. */
|
|
|
|
/* CHECKME: check for !flag_finite_math_only too? */
|
|
if (SCALAR_FLOAT_TYPE_P (type) && !flag_associative_math
|
|
&& check_reduction)
|
|
{
|
|
/* Changing the order of operations changes the semantics. */
|
|
if (dump_enabled_p ())
|
|
report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
|
|
"reduction: unsafe fp math optimization: ");
|
|
return NULL;
|
|
}
|
|
else if (INTEGRAL_TYPE_P (type) && check_reduction)
|
|
{
|
|
if (!operation_no_trapping_overflow (type, code))
|
|
{
|
|
/* Changing the order of operations changes the semantics. */
|
|
if (dump_enabled_p ())
|
|
report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
|
|
"reduction: unsafe int math optimization"
|
|
" (overflow traps): ");
|
|
return NULL;
|
|
}
|
|
if (need_wrapping_integral_overflow
|
|
&& !TYPE_OVERFLOW_WRAPS (type)
|
|
&& operation_can_overflow (code))
|
|
{
|
|
/* Changing the order of operations changes the semantics. */
|
|
if (dump_enabled_p ())
|
|
report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
|
|
"reduction: unsafe int math optimization"
|
|
" (overflow doesn't wrap): ");
|
|
return NULL;
|
|
}
|
|
}
|
|
else if (SAT_FIXED_POINT_TYPE_P (type) && check_reduction)
|
|
{
|
|
/* Changing the order of operations changes the semantics. */
|
|
if (dump_enabled_p ())
|
|
report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
|
|
"reduction: unsafe fixed-point math optimization: ");
|
|
return NULL;
|
|
}
|
|
|
|
/* If we detected "res -= x[i]" earlier, rewrite it into
|
|
"res += -x[i]" now. If this turns out to be useless reassoc
|
|
will clean it up again. */
|
|
if (orig_code == MINUS_EXPR)
|
|
{
|
|
tree rhs = gimple_assign_rhs2 (def_stmt);
|
|
tree negrhs = make_ssa_name (TREE_TYPE (rhs));
|
|
gimple negate_stmt = gimple_build_assign (negrhs, NEGATE_EXPR, rhs);
|
|
gimple_stmt_iterator gsi = gsi_for_stmt (def_stmt);
|
|
set_vinfo_for_stmt (negate_stmt, new_stmt_vec_info (negate_stmt,
|
|
loop_info, NULL));
|
|
gsi_insert_before (&gsi, negate_stmt, GSI_NEW_STMT);
|
|
gimple_assign_set_rhs2 (def_stmt, negrhs);
|
|
gimple_assign_set_rhs_code (def_stmt, PLUS_EXPR);
|
|
update_stmt (def_stmt);
|
|
}
|
|
|
|
/* Reduction is safe. We're dealing with one of the following:
|
|
1) integer arithmetic and no trapv
|
|
2) floating point arithmetic, and special flags permit this optimization
|
|
3) nested cycle (i.e., outer loop vectorization). */
|
|
if (TREE_CODE (op1) == SSA_NAME)
|
|
def1 = SSA_NAME_DEF_STMT (op1);
|
|
|
|
if (TREE_CODE (op2) == SSA_NAME)
|
|
def2 = SSA_NAME_DEF_STMT (op2);
|
|
|
|
if (code != COND_EXPR
|
|
&& ((!def1 || gimple_nop_p (def1)) && (!def2 || gimple_nop_p (def2))))
|
|
{
|
|
if (dump_enabled_p ())
|
|
report_vect_op (MSG_NOTE, def_stmt, "reduction: no defs for operands: ");
|
|
return NULL;
|
|
}
|
|
|
|
/* Check that one def is the reduction def, defined by PHI,
|
|
the other def is either defined in the loop ("vect_internal_def"),
|
|
or it's an induction (defined by a loop-header phi-node). */
|
|
|
|
if (def2 && def2 == phi
|
|
&& (code == COND_EXPR
|
|
|| !def1 || gimple_nop_p (def1)
|
|
|| !flow_bb_inside_loop_p (loop, gimple_bb (def1))
|
|
|| (def1 && flow_bb_inside_loop_p (loop, gimple_bb (def1))
|
|
&& (is_gimple_assign (def1)
|
|
|| is_gimple_call (def1)
|
|
|| STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def1))
|
|
== vect_induction_def
|
|
|| (gimple_code (def1) == GIMPLE_PHI
|
|
&& STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def1))
|
|
== vect_internal_def
|
|
&& !is_loop_header_bb_p (gimple_bb (def1)))))))
|
|
{
|
|
if (dump_enabled_p ())
|
|
report_vect_op (MSG_NOTE, def_stmt, "detected reduction: ");
|
|
return def_stmt;
|
|
}
|
|
|
|
if (def1 && def1 == phi
|
|
&& (code == COND_EXPR
|
|
|| !def2 || gimple_nop_p (def2)
|
|
|| !flow_bb_inside_loop_p (loop, gimple_bb (def2))
|
|
|| (def2 && flow_bb_inside_loop_p (loop, gimple_bb (def2))
|
|
&& (is_gimple_assign (def2)
|
|
|| is_gimple_call (def2)
|
|
|| STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def2))
|
|
== vect_induction_def
|
|
|| (gimple_code (def2) == GIMPLE_PHI
|
|
&& STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def2))
|
|
== vect_internal_def
|
|
&& !is_loop_header_bb_p (gimple_bb (def2)))))))
|
|
{
|
|
if (check_reduction)
|
|
{
|
|
/* Swap operands (just for simplicity - so that the rest of the code
|
|
can assume that the reduction variable is always the last (second)
|
|
argument). */
|
|
if (dump_enabled_p ())
|
|
report_vect_op (MSG_NOTE, def_stmt,
|
|
"detected reduction: need to swap operands: ");
|
|
|
|
swap_ssa_operands (def_stmt, gimple_assign_rhs1_ptr (def_stmt),
|
|
gimple_assign_rhs2_ptr (def_stmt));
|
|
|
|
if (CONSTANT_CLASS_P (gimple_assign_rhs1 (def_stmt)))
|
|
LOOP_VINFO_OPERANDS_SWAPPED (loop_info) = true;
|
|
}
|
|
else
|
|
{
|
|
if (dump_enabled_p ())
|
|
report_vect_op (MSG_NOTE, def_stmt, "detected reduction: ");
|
|
}
|
|
|
|
return def_stmt;
|
|
}
|
|
|
|
/* Try to find SLP reduction chain. */
|
|
if (check_reduction && vect_is_slp_reduction (loop_info, phi, def_stmt))
|
|
{
|
|
if (dump_enabled_p ())
|
|
report_vect_op (MSG_NOTE, def_stmt,
|
|
"reduction: detected reduction chain: ");
|
|
|
|
return def_stmt;
|
|
}
|
|
|
|
if (dump_enabled_p ())
|
|
report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
|
|
"reduction: unknown pattern: ");
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* Wrapper around vect_is_simple_reduction_1, that won't modify code
|
|
in-place. Arguments as there. */
|
|
|
|
static gimple
|
|
vect_is_simple_reduction (loop_vec_info loop_info, gimple phi,
|
|
bool check_reduction, bool *double_reduc,
|
|
bool need_wrapping_integral_overflow)
|
|
{
|
|
return vect_is_simple_reduction_1 (loop_info, phi, check_reduction,
|
|
double_reduc, false,
|
|
need_wrapping_integral_overflow);
|
|
}
|
|
|
|
/* Wrapper around vect_is_simple_reduction_1, which will modify code
|
|
in-place if it enables detection of more reductions. Arguments
|
|
as there. */
|
|
|
|
gimple
|
|
vect_force_simple_reduction (loop_vec_info loop_info, gimple phi,
|
|
bool check_reduction, bool *double_reduc,
|
|
bool need_wrapping_integral_overflow)
|
|
{
|
|
return vect_is_simple_reduction_1 (loop_info, phi, check_reduction,
|
|
double_reduc, true,
|
|
need_wrapping_integral_overflow);
|
|
}
|
|
|
|
/* Calculate cost of peeling the loop PEEL_ITERS_PROLOGUE times. */
|
|
int
|
|
vect_get_known_peeling_cost (loop_vec_info loop_vinfo, int peel_iters_prologue,
|
|
int *peel_iters_epilogue,
|
|
stmt_vector_for_cost *scalar_cost_vec,
|
|
stmt_vector_for_cost *prologue_cost_vec,
|
|
stmt_vector_for_cost *epilogue_cost_vec)
|
|
{
|
|
int retval = 0;
|
|
int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
|
|
|
|
if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
|
|
{
|
|
*peel_iters_epilogue = vf/2;
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"cost model: epilogue peel iters set to vf/2 "
|
|
"because loop iterations are unknown .\n");
|
|
|
|
/* If peeled iterations are known but number of scalar loop
|
|
iterations are unknown, count a taken branch per peeled loop. */
|
|
retval = record_stmt_cost (prologue_cost_vec, 1, cond_branch_taken,
|
|
NULL, 0, vect_prologue);
|
|
retval = record_stmt_cost (prologue_cost_vec, 1, cond_branch_taken,
|
|
NULL, 0, vect_epilogue);
|
|
}
|
|
else
|
|
{
|
|
int niters = LOOP_VINFO_INT_NITERS (loop_vinfo);
|
|
peel_iters_prologue = niters < peel_iters_prologue ?
|
|
niters : peel_iters_prologue;
|
|
*peel_iters_epilogue = (niters - peel_iters_prologue) % vf;
|
|
/* If we need to peel for gaps, but no peeling is required, we have to
|
|
peel VF iterations. */
|
|
if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo) && !*peel_iters_epilogue)
|
|
*peel_iters_epilogue = vf;
|
|
}
|
|
|
|
stmt_info_for_cost *si;
|
|
int j;
|
|
if (peel_iters_prologue)
|
|
FOR_EACH_VEC_ELT (*scalar_cost_vec, j, si)
|
|
retval += record_stmt_cost (prologue_cost_vec,
|
|
si->count * peel_iters_prologue,
|
|
si->kind, NULL, si->misalign,
|
|
vect_prologue);
|
|
if (*peel_iters_epilogue)
|
|
FOR_EACH_VEC_ELT (*scalar_cost_vec, j, si)
|
|
retval += record_stmt_cost (epilogue_cost_vec,
|
|
si->count * *peel_iters_epilogue,
|
|
si->kind, NULL, si->misalign,
|
|
vect_epilogue);
|
|
|
|
return retval;
|
|
}
|
|
|
|
/* Function vect_estimate_min_profitable_iters
|
|
|
|
Return the number of iterations required for the vector version of the
|
|
loop to be profitable relative to the cost of the scalar version of the
|
|
loop. */
|
|
|
|
static void
|
|
vect_estimate_min_profitable_iters (loop_vec_info loop_vinfo,
|
|
int *ret_min_profitable_niters,
|
|
int *ret_min_profitable_estimate)
|
|
{
|
|
int min_profitable_iters;
|
|
int min_profitable_estimate;
|
|
int peel_iters_prologue;
|
|
int peel_iters_epilogue;
|
|
unsigned vec_inside_cost = 0;
|
|
int vec_outside_cost = 0;
|
|
unsigned vec_prologue_cost = 0;
|
|
unsigned vec_epilogue_cost = 0;
|
|
int scalar_single_iter_cost = 0;
|
|
int scalar_outside_cost = 0;
|
|
int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
|
|
int npeel = LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
|
|
void *target_cost_data = LOOP_VINFO_TARGET_COST_DATA (loop_vinfo);
|
|
|
|
/* Cost model disabled. */
|
|
if (unlimited_cost_model (LOOP_VINFO_LOOP (loop_vinfo)))
|
|
{
|
|
dump_printf_loc (MSG_NOTE, vect_location, "cost model disabled.\n");
|
|
*ret_min_profitable_niters = 0;
|
|
*ret_min_profitable_estimate = 0;
|
|
return;
|
|
}
|
|
|
|
/* Requires loop versioning tests to handle misalignment. */
|
|
if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo))
|
|
{
|
|
/* FIXME: Make cost depend on complexity of individual check. */
|
|
unsigned len = LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).length ();
|
|
(void) add_stmt_cost (target_cost_data, len, vector_stmt, NULL, 0,
|
|
vect_prologue);
|
|
dump_printf (MSG_NOTE,
|
|
"cost model: Adding cost of checks for loop "
|
|
"versioning to treat misalignment.\n");
|
|
}
|
|
|
|
/* Requires loop versioning with alias checks. */
|
|
if (LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
|
|
{
|
|
/* FIXME: Make cost depend on complexity of individual check. */
|
|
unsigned len = LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo).length ();
|
|
(void) add_stmt_cost (target_cost_data, len, vector_stmt, NULL, 0,
|
|
vect_prologue);
|
|
dump_printf (MSG_NOTE,
|
|
"cost model: Adding cost of checks for loop "
|
|
"versioning aliasing.\n");
|
|
}
|
|
|
|
if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo)
|
|
|| LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
|
|
(void) add_stmt_cost (target_cost_data, 1, cond_branch_taken, NULL, 0,
|
|
vect_prologue);
|
|
|
|
/* Count statements in scalar loop. Using this as scalar cost for a single
|
|
iteration for now.
|
|
|
|
TODO: Add outer loop support.
|
|
|
|
TODO: Consider assigning different costs to different scalar
|
|
statements. */
|
|
|
|
scalar_single_iter_cost
|
|
= LOOP_VINFO_SINGLE_SCALAR_ITERATION_COST (loop_vinfo);
|
|
|
|
/* Add additional cost for the peeled instructions in prologue and epilogue
|
|
loop.
|
|
|
|
FORNOW: If we don't know the value of peel_iters for prologue or epilogue
|
|
at compile-time - we assume it's vf/2 (the worst would be vf-1).
|
|
|
|
TODO: Build an expression that represents peel_iters for prologue and
|
|
epilogue to be used in a run-time test. */
|
|
|
|
if (npeel < 0)
|
|
{
|
|
peel_iters_prologue = vf/2;
|
|
dump_printf (MSG_NOTE, "cost model: "
|
|
"prologue peel iters set to vf/2.\n");
|
|
|
|
/* If peeling for alignment is unknown, loop bound of main loop becomes
|
|
unknown. */
|
|
peel_iters_epilogue = vf/2;
|
|
dump_printf (MSG_NOTE, "cost model: "
|
|
"epilogue peel iters set to vf/2 because "
|
|
"peeling for alignment is unknown.\n");
|
|
|
|
/* If peeled iterations are unknown, count a taken branch and a not taken
|
|
branch per peeled loop. Even if scalar loop iterations are known,
|
|
vector iterations are not known since peeled prologue iterations are
|
|
not known. Hence guards remain the same. */
|
|
(void) add_stmt_cost (target_cost_data, 1, cond_branch_taken,
|
|
NULL, 0, vect_prologue);
|
|
(void) add_stmt_cost (target_cost_data, 1, cond_branch_not_taken,
|
|
NULL, 0, vect_prologue);
|
|
(void) add_stmt_cost (target_cost_data, 1, cond_branch_taken,
|
|
NULL, 0, vect_epilogue);
|
|
(void) add_stmt_cost (target_cost_data, 1, cond_branch_not_taken,
|
|
NULL, 0, vect_epilogue);
|
|
stmt_info_for_cost *si;
|
|
int j;
|
|
FOR_EACH_VEC_ELT (LOOP_VINFO_SCALAR_ITERATION_COST (loop_vinfo), j, si)
|
|
{
|
|
struct _stmt_vec_info *stmt_info
|
|
= si->stmt ? vinfo_for_stmt (si->stmt) : NULL;
|
|
(void) add_stmt_cost (target_cost_data,
|
|
si->count * peel_iters_prologue,
|
|
si->kind, stmt_info, si->misalign,
|
|
vect_prologue);
|
|
(void) add_stmt_cost (target_cost_data,
|
|
si->count * peel_iters_epilogue,
|
|
si->kind, stmt_info, si->misalign,
|
|
vect_epilogue);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
stmt_vector_for_cost prologue_cost_vec, epilogue_cost_vec;
|
|
stmt_info_for_cost *si;
|
|
int j;
|
|
void *data = LOOP_VINFO_TARGET_COST_DATA (loop_vinfo);
|
|
|
|
prologue_cost_vec.create (2);
|
|
epilogue_cost_vec.create (2);
|
|
peel_iters_prologue = npeel;
|
|
|
|
(void) vect_get_known_peeling_cost (loop_vinfo, peel_iters_prologue,
|
|
&peel_iters_epilogue,
|
|
&LOOP_VINFO_SCALAR_ITERATION_COST
|
|
(loop_vinfo),
|
|
&prologue_cost_vec,
|
|
&epilogue_cost_vec);
|
|
|
|
FOR_EACH_VEC_ELT (prologue_cost_vec, j, si)
|
|
{
|
|
struct _stmt_vec_info *stmt_info
|
|
= si->stmt ? vinfo_for_stmt (si->stmt) : NULL;
|
|
(void) add_stmt_cost (data, si->count, si->kind, stmt_info,
|
|
si->misalign, vect_prologue);
|
|
}
|
|
|
|
FOR_EACH_VEC_ELT (epilogue_cost_vec, j, si)
|
|
{
|
|
struct _stmt_vec_info *stmt_info
|
|
= si->stmt ? vinfo_for_stmt (si->stmt) : NULL;
|
|
(void) add_stmt_cost (data, si->count, si->kind, stmt_info,
|
|
si->misalign, vect_epilogue);
|
|
}
|
|
|
|
prologue_cost_vec.release ();
|
|
epilogue_cost_vec.release ();
|
|
}
|
|
|
|
/* FORNOW: The scalar outside cost is incremented in one of the
|
|
following ways:
|
|
|
|
1. The vectorizer checks for alignment and aliasing and generates
|
|
a condition that allows dynamic vectorization. A cost model
|
|
check is ANDED with the versioning condition. Hence scalar code
|
|
path now has the added cost of the versioning check.
|
|
|
|
if (cost > th & versioning_check)
|
|
jmp to vector code
|
|
|
|
Hence run-time scalar is incremented by not-taken branch cost.
|
|
|
|
2. The vectorizer then checks if a prologue is required. If the
|
|
cost model check was not done before during versioning, it has to
|
|
be done before the prologue check.
|
|
|
|
if (cost <= th)
|
|
prologue = scalar_iters
|
|
if (prologue == 0)
|
|
jmp to vector code
|
|
else
|
|
execute prologue
|
|
if (prologue == num_iters)
|
|
go to exit
|
|
|
|
Hence the run-time scalar cost is incremented by a taken branch,
|
|
plus a not-taken branch, plus a taken branch cost.
|
|
|
|
3. The vectorizer then checks if an epilogue is required. If the
|
|
cost model check was not done before during prologue check, it
|
|
has to be done with the epilogue check.
|
|
|
|
if (prologue == 0)
|
|
jmp to vector code
|
|
else
|
|
execute prologue
|
|
if (prologue == num_iters)
|
|
go to exit
|
|
vector code:
|
|
if ((cost <= th) | (scalar_iters-prologue-epilogue == 0))
|
|
jmp to epilogue
|
|
|
|
Hence the run-time scalar cost should be incremented by 2 taken
|
|
branches.
|
|
|
|
TODO: The back end may reorder the BBS's differently and reverse
|
|
conditions/branch directions. Change the estimates below to
|
|
something more reasonable. */
|
|
|
|
/* If the number of iterations is known and we do not do versioning, we can
|
|
decide whether to vectorize at compile time. Hence the scalar version
|
|
do not carry cost model guard costs. */
|
|
if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
|
|
|| LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo)
|
|
|| LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
|
|
{
|
|
/* Cost model check occurs at versioning. */
|
|
if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo)
|
|
|| LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
|
|
scalar_outside_cost += vect_get_stmt_cost (cond_branch_not_taken);
|
|
else
|
|
{
|
|
/* Cost model check occurs at prologue generation. */
|
|
if (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) < 0)
|
|
scalar_outside_cost += 2 * vect_get_stmt_cost (cond_branch_taken)
|
|
+ vect_get_stmt_cost (cond_branch_not_taken);
|
|
/* Cost model check occurs at epilogue generation. */
|
|
else
|
|
scalar_outside_cost += 2 * vect_get_stmt_cost (cond_branch_taken);
|
|
}
|
|
}
|
|
|
|
/* Complete the target-specific cost calculations. */
|
|
finish_cost (LOOP_VINFO_TARGET_COST_DATA (loop_vinfo), &vec_prologue_cost,
|
|
&vec_inside_cost, &vec_epilogue_cost);
|
|
|
|
vec_outside_cost = (int)(vec_prologue_cost + vec_epilogue_cost);
|
|
|
|
if (dump_enabled_p ())
|
|
{
|
|
dump_printf_loc (MSG_NOTE, vect_location, "Cost model analysis: \n");
|
|
dump_printf (MSG_NOTE, " Vector inside of loop cost: %d\n",
|
|
vec_inside_cost);
|
|
dump_printf (MSG_NOTE, " Vector prologue cost: %d\n",
|
|
vec_prologue_cost);
|
|
dump_printf (MSG_NOTE, " Vector epilogue cost: %d\n",
|
|
vec_epilogue_cost);
|
|
dump_printf (MSG_NOTE, " Scalar iteration cost: %d\n",
|
|
scalar_single_iter_cost);
|
|
dump_printf (MSG_NOTE, " Scalar outside cost: %d\n",
|
|
scalar_outside_cost);
|
|
dump_printf (MSG_NOTE, " Vector outside cost: %d\n",
|
|
vec_outside_cost);
|
|
dump_printf (MSG_NOTE, " prologue iterations: %d\n",
|
|
peel_iters_prologue);
|
|
dump_printf (MSG_NOTE, " epilogue iterations: %d\n",
|
|
peel_iters_epilogue);
|
|
}
|
|
|
|
/* Calculate number of iterations required to make the vector version
|
|
profitable, relative to the loop bodies only. The following condition
|
|
must hold true:
|
|
SIC * niters + SOC > VIC * ((niters-PL_ITERS-EP_ITERS)/VF) + VOC
|
|
where
|
|
SIC = scalar iteration cost, VIC = vector iteration cost,
|
|
VOC = vector outside cost, VF = vectorization factor,
|
|
PL_ITERS = prologue iterations, EP_ITERS= epilogue iterations
|
|
SOC = scalar outside cost for run time cost model check. */
|
|
|
|
if ((scalar_single_iter_cost * vf) > (int) vec_inside_cost)
|
|
{
|
|
if (vec_outside_cost <= 0)
|
|
min_profitable_iters = 1;
|
|
else
|
|
{
|
|
min_profitable_iters = ((vec_outside_cost - scalar_outside_cost) * vf
|
|
- vec_inside_cost * peel_iters_prologue
|
|
- vec_inside_cost * peel_iters_epilogue)
|
|
/ ((scalar_single_iter_cost * vf)
|
|
- vec_inside_cost);
|
|
|
|
if ((scalar_single_iter_cost * vf * min_profitable_iters)
|
|
<= (((int) vec_inside_cost * min_profitable_iters)
|
|
+ (((int) vec_outside_cost - scalar_outside_cost) * vf)))
|
|
min_profitable_iters++;
|
|
}
|
|
}
|
|
/* vector version will never be profitable. */
|
|
else
|
|
{
|
|
if (LOOP_VINFO_LOOP (loop_vinfo)->force_vectorize)
|
|
warning_at (vect_location, OPT_Wopenmp_simd, "vectorization "
|
|
"did not happen for a simd loop");
|
|
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"cost model: the vector iteration cost = %d "
|
|
"divided by the scalar iteration cost = %d "
|
|
"is greater or equal to the vectorization factor = %d"
|
|
".\n",
|
|
vec_inside_cost, scalar_single_iter_cost, vf);
|
|
*ret_min_profitable_niters = -1;
|
|
*ret_min_profitable_estimate = -1;
|
|
return;
|
|
}
|
|
|
|
dump_printf (MSG_NOTE,
|
|
" Calculated minimum iters for profitability: %d\n",
|
|
min_profitable_iters);
|
|
|
|
min_profitable_iters =
|
|
min_profitable_iters < vf ? vf : min_profitable_iters;
|
|
|
|
/* Because the condition we create is:
|
|
if (niters <= min_profitable_iters)
|
|
then skip the vectorized loop. */
|
|
min_profitable_iters--;
|
|
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
" Runtime profitability threshold = %d\n",
|
|
min_profitable_iters);
|
|
|
|
*ret_min_profitable_niters = min_profitable_iters;
|
|
|
|
/* Calculate number of iterations required to make the vector version
|
|
profitable, relative to the loop bodies only.
|
|
|
|
Non-vectorized variant is SIC * niters and it must win over vector
|
|
variant on the expected loop trip count. The following condition must hold true:
|
|
SIC * niters > VIC * ((niters-PL_ITERS-EP_ITERS)/VF) + VOC + SOC */
|
|
|
|
if (vec_outside_cost <= 0)
|
|
min_profitable_estimate = 1;
|
|
else
|
|
{
|
|
min_profitable_estimate = ((vec_outside_cost + scalar_outside_cost) * vf
|
|
- vec_inside_cost * peel_iters_prologue
|
|
- vec_inside_cost * peel_iters_epilogue)
|
|
/ ((scalar_single_iter_cost * vf)
|
|
- vec_inside_cost);
|
|
}
|
|
min_profitable_estimate --;
|
|
min_profitable_estimate = MAX (min_profitable_estimate, min_profitable_iters);
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
" Static estimate profitability threshold = %d\n",
|
|
min_profitable_iters);
|
|
|
|
*ret_min_profitable_estimate = min_profitable_estimate;
|
|
}
|
|
|
|
/* Writes into SEL a mask for a vec_perm, equivalent to a vec_shr by OFFSET
|
|
vector elements (not bits) for a vector of mode MODE. */
|
|
static void
|
|
calc_vec_perm_mask_for_shift (enum machine_mode mode, unsigned int offset,
|
|
unsigned char *sel)
|
|
{
|
|
unsigned int i, nelt = GET_MODE_NUNITS (mode);
|
|
|
|
for (i = 0; i < nelt; i++)
|
|
sel[i] = (i + offset) & (2*nelt - 1);
|
|
}
|
|
|
|
/* Checks whether the target supports whole-vector shifts for vectors of mode
|
|
MODE. This is the case if _either_ the platform handles vec_shr_optab, _or_
|
|
it supports vec_perm_const with masks for all necessary shift amounts. */
|
|
static bool
|
|
have_whole_vector_shift (enum machine_mode mode)
|
|
{
|
|
if (optab_handler (vec_shr_optab, mode) != CODE_FOR_nothing)
|
|
return true;
|
|
|
|
if (direct_optab_handler (vec_perm_const_optab, mode) == CODE_FOR_nothing)
|
|
return false;
|
|
|
|
unsigned int i, nelt = GET_MODE_NUNITS (mode);
|
|
unsigned char *sel = XALLOCAVEC (unsigned char, nelt);
|
|
|
|
for (i = nelt/2; i >= 1; i/=2)
|
|
{
|
|
calc_vec_perm_mask_for_shift (mode, i, sel);
|
|
if (!can_vec_perm_p (mode, false, sel))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/* Return the reduction operand (with index REDUC_INDEX) of STMT. */
|
|
|
|
static tree
|
|
get_reduction_op (gimple stmt, int reduc_index)
|
|
{
|
|
switch (get_gimple_rhs_class (gimple_assign_rhs_code (stmt)))
|
|
{
|
|
case GIMPLE_SINGLE_RHS:
|
|
gcc_assert (TREE_OPERAND_LENGTH (gimple_assign_rhs1 (stmt))
|
|
== ternary_op);
|
|
return TREE_OPERAND (gimple_assign_rhs1 (stmt), reduc_index);
|
|
case GIMPLE_UNARY_RHS:
|
|
return gimple_assign_rhs1 (stmt);
|
|
case GIMPLE_BINARY_RHS:
|
|
return (reduc_index
|
|
? gimple_assign_rhs2 (stmt) : gimple_assign_rhs1 (stmt));
|
|
case GIMPLE_TERNARY_RHS:
|
|
return gimple_op (stmt, reduc_index + 1);
|
|
default:
|
|
gcc_unreachable ();
|
|
}
|
|
}
|
|
|
|
/* TODO: Close dependency between vect_model_*_cost and vectorizable_*
|
|
functions. Design better to avoid maintenance issues. */
|
|
|
|
/* Function vect_model_reduction_cost.
|
|
|
|
Models cost for a reduction operation, including the vector ops
|
|
generated within the strip-mine loop, the initial definition before
|
|
the loop, and the epilogue code that must be generated. */
|
|
|
|
static bool
|
|
vect_model_reduction_cost (stmt_vec_info stmt_info, enum tree_code reduc_code,
|
|
int ncopies, int reduc_index)
|
|
{
|
|
int prologue_cost = 0, epilogue_cost = 0;
|
|
enum tree_code code;
|
|
optab optab;
|
|
tree vectype;
|
|
gimple stmt, orig_stmt;
|
|
tree reduction_op;
|
|
machine_mode mode;
|
|
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
|
|
struct loop *loop = NULL;
|
|
void *target_cost_data;
|
|
|
|
if (loop_vinfo)
|
|
{
|
|
loop = LOOP_VINFO_LOOP (loop_vinfo);
|
|
target_cost_data = LOOP_VINFO_TARGET_COST_DATA (loop_vinfo);
|
|
}
|
|
else
|
|
target_cost_data = BB_VINFO_TARGET_COST_DATA (STMT_VINFO_BB_VINFO (stmt_info));
|
|
|
|
/* Cost of reduction op inside loop. */
|
|
unsigned inside_cost = add_stmt_cost (target_cost_data, ncopies, vector_stmt,
|
|
stmt_info, 0, vect_body);
|
|
stmt = STMT_VINFO_STMT (stmt_info);
|
|
|
|
reduction_op = get_reduction_op (stmt, reduc_index);
|
|
|
|
vectype = get_vectype_for_scalar_type (TREE_TYPE (reduction_op));
|
|
if (!vectype)
|
|
{
|
|
if (dump_enabled_p ())
|
|
{
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"unsupported data-type ");
|
|
dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
|
|
TREE_TYPE (reduction_op));
|
|
dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
|
|
}
|
|
return false;
|
|
}
|
|
|
|
mode = TYPE_MODE (vectype);
|
|
orig_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
|
|
|
|
if (!orig_stmt)
|
|
orig_stmt = STMT_VINFO_STMT (stmt_info);
|
|
|
|
code = gimple_assign_rhs_code (orig_stmt);
|
|
|
|
/* Add in cost for initial definition. */
|
|
prologue_cost += add_stmt_cost (target_cost_data, 1, scalar_to_vec,
|
|
stmt_info, 0, vect_prologue);
|
|
|
|
/* Determine cost of epilogue code.
|
|
|
|
We have a reduction operator that will reduce the vector in one statement.
|
|
Also requires scalar extract. */
|
|
|
|
if (!loop || !nested_in_vect_loop_p (loop, orig_stmt))
|
|
{
|
|
if (reduc_code != ERROR_MARK)
|
|
{
|
|
epilogue_cost += add_stmt_cost (target_cost_data, 1, vector_stmt,
|
|
stmt_info, 0, vect_epilogue);
|
|
epilogue_cost += add_stmt_cost (target_cost_data, 1, vec_to_scalar,
|
|
stmt_info, 0, vect_epilogue);
|
|
}
|
|
else
|
|
{
|
|
int vec_size_in_bits = tree_to_uhwi (TYPE_SIZE (vectype));
|
|
tree bitsize =
|
|
TYPE_SIZE (TREE_TYPE (gimple_assign_lhs (orig_stmt)));
|
|
int element_bitsize = tree_to_uhwi (bitsize);
|
|
int nelements = vec_size_in_bits / element_bitsize;
|
|
|
|
optab = optab_for_tree_code (code, vectype, optab_default);
|
|
|
|
/* We have a whole vector shift available. */
|
|
if (VECTOR_MODE_P (mode)
|
|
&& optab_handler (optab, mode) != CODE_FOR_nothing
|
|
&& have_whole_vector_shift (mode))
|
|
{
|
|
/* Final reduction via vector shifts and the reduction operator.
|
|
Also requires scalar extract. */
|
|
epilogue_cost += add_stmt_cost (target_cost_data,
|
|
exact_log2 (nelements) * 2,
|
|
vector_stmt, stmt_info, 0,
|
|
vect_epilogue);
|
|
epilogue_cost += add_stmt_cost (target_cost_data, 1,
|
|
vec_to_scalar, stmt_info, 0,
|
|
vect_epilogue);
|
|
}
|
|
else
|
|
/* Use extracts and reduction op for final reduction. For N
|
|
elements, we have N extracts and N-1 reduction ops. */
|
|
epilogue_cost += add_stmt_cost (target_cost_data,
|
|
nelements + nelements - 1,
|
|
vector_stmt, stmt_info, 0,
|
|
vect_epilogue);
|
|
}
|
|
}
|
|
|
|
if (dump_enabled_p ())
|
|
dump_printf (MSG_NOTE,
|
|
"vect_model_reduction_cost: inside_cost = %d, "
|
|
"prologue_cost = %d, epilogue_cost = %d .\n", inside_cost,
|
|
prologue_cost, epilogue_cost);
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
/* Function vect_model_induction_cost.
|
|
|
|
Models cost for induction operations. */
|
|
|
|
static void
|
|
vect_model_induction_cost (stmt_vec_info stmt_info, int ncopies)
|
|
{
|
|
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
|
|
void *target_cost_data = LOOP_VINFO_TARGET_COST_DATA (loop_vinfo);
|
|
unsigned inside_cost, prologue_cost;
|
|
|
|
/* loop cost for vec_loop. */
|
|
inside_cost = add_stmt_cost (target_cost_data, ncopies, vector_stmt,
|
|
stmt_info, 0, vect_body);
|
|
|
|
/* prologue cost for vec_init and vec_step. */
|
|
prologue_cost = add_stmt_cost (target_cost_data, 2, scalar_to_vec,
|
|
stmt_info, 0, vect_prologue);
|
|
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"vect_model_induction_cost: inside_cost = %d, "
|
|
"prologue_cost = %d .\n", inside_cost, prologue_cost);
|
|
}
|
|
|
|
|
|
/* Function get_initial_def_for_induction
|
|
|
|
Input:
|
|
STMT - a stmt that performs an induction operation in the loop.
|
|
IV_PHI - the initial value of the induction variable
|
|
|
|
Output:
|
|
Return a vector variable, initialized with the first VF values of
|
|
the induction variable. E.g., for an iv with IV_PHI='X' and
|
|
evolution S, for a vector of 4 units, we want to return:
|
|
[X, X + S, X + 2*S, X + 3*S]. */
|
|
|
|
static tree
|
|
get_initial_def_for_induction (gimple iv_phi)
|
|
{
|
|
stmt_vec_info stmt_vinfo = vinfo_for_stmt (iv_phi);
|
|
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
|
|
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
|
tree vectype;
|
|
int nunits;
|
|
edge pe = loop_preheader_edge (loop);
|
|
struct loop *iv_loop;
|
|
basic_block new_bb;
|
|
tree new_vec, vec_init, vec_step, t;
|
|
tree new_var;
|
|
tree new_name;
|
|
gimple init_stmt, new_stmt;
|
|
gphi *induction_phi;
|
|
tree induc_def, vec_def, vec_dest;
|
|
tree init_expr, step_expr;
|
|
int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
|
|
int i;
|
|
int ncopies;
|
|
tree expr;
|
|
stmt_vec_info phi_info = vinfo_for_stmt (iv_phi);
|
|
bool nested_in_vect_loop = false;
|
|
gimple_seq stmts = NULL;
|
|
imm_use_iterator imm_iter;
|
|
use_operand_p use_p;
|
|
gimple exit_phi;
|
|
edge latch_e;
|
|
tree loop_arg;
|
|
gimple_stmt_iterator si;
|
|
basic_block bb = gimple_bb (iv_phi);
|
|
tree stepvectype;
|
|
tree resvectype;
|
|
|
|
/* Is phi in an inner-loop, while vectorizing an enclosing outer-loop? */
|
|
if (nested_in_vect_loop_p (loop, iv_phi))
|
|
{
|
|
nested_in_vect_loop = true;
|
|
iv_loop = loop->inner;
|
|
}
|
|
else
|
|
iv_loop = loop;
|
|
gcc_assert (iv_loop == (gimple_bb (iv_phi))->loop_father);
|
|
|
|
latch_e = loop_latch_edge (iv_loop);
|
|
loop_arg = PHI_ARG_DEF_FROM_EDGE (iv_phi, latch_e);
|
|
|
|
step_expr = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (phi_info);
|
|
gcc_assert (step_expr != NULL_TREE);
|
|
|
|
pe = loop_preheader_edge (iv_loop);
|
|
init_expr = PHI_ARG_DEF_FROM_EDGE (iv_phi,
|
|
loop_preheader_edge (iv_loop));
|
|
|
|
vectype = get_vectype_for_scalar_type (TREE_TYPE (init_expr));
|
|
resvectype = get_vectype_for_scalar_type (TREE_TYPE (PHI_RESULT (iv_phi)));
|
|
gcc_assert (vectype);
|
|
nunits = TYPE_VECTOR_SUBPARTS (vectype);
|
|
ncopies = vf / nunits;
|
|
|
|
gcc_assert (phi_info);
|
|
gcc_assert (ncopies >= 1);
|
|
|
|
/* Convert the step to the desired type. */
|
|
step_expr = force_gimple_operand (fold_convert (TREE_TYPE (vectype),
|
|
step_expr),
|
|
&stmts, true, NULL_TREE);
|
|
if (stmts)
|
|
{
|
|
new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
|
|
gcc_assert (!new_bb);
|
|
}
|
|
|
|
/* Find the first insertion point in the BB. */
|
|
si = gsi_after_labels (bb);
|
|
|
|
/* Create the vector that holds the initial_value of the induction. */
|
|
if (nested_in_vect_loop)
|
|
{
|
|
/* iv_loop is nested in the loop to be vectorized. init_expr had already
|
|
been created during vectorization of previous stmts. We obtain it
|
|
from the STMT_VINFO_VEC_STMT of the defining stmt. */
|
|
vec_init = vect_get_vec_def_for_operand (init_expr, iv_phi, NULL);
|
|
/* If the initial value is not of proper type, convert it. */
|
|
if (!useless_type_conversion_p (vectype, TREE_TYPE (vec_init)))
|
|
{
|
|
new_stmt
|
|
= gimple_build_assign (vect_get_new_vect_var (vectype,
|
|
vect_simple_var,
|
|
"vec_iv_"),
|
|
VIEW_CONVERT_EXPR,
|
|
build1 (VIEW_CONVERT_EXPR, vectype,
|
|
vec_init));
|
|
vec_init = make_ssa_name (gimple_assign_lhs (new_stmt), new_stmt);
|
|
gimple_assign_set_lhs (new_stmt, vec_init);
|
|
new_bb = gsi_insert_on_edge_immediate (loop_preheader_edge (iv_loop),
|
|
new_stmt);
|
|
gcc_assert (!new_bb);
|
|
set_vinfo_for_stmt (new_stmt,
|
|
new_stmt_vec_info (new_stmt, loop_vinfo, NULL));
|
|
}
|
|
}
|
|
else
|
|
{
|
|
vec<constructor_elt, va_gc> *v;
|
|
|
|
/* iv_loop is the loop to be vectorized. Create:
|
|
vec_init = [X, X+S, X+2*S, X+3*S] (S = step_expr, X = init_expr) */
|
|
new_var = vect_get_new_vect_var (TREE_TYPE (vectype),
|
|
vect_scalar_var, "var_");
|
|
new_name = force_gimple_operand (fold_convert (TREE_TYPE (vectype),
|
|
init_expr),
|
|
&stmts, false, new_var);
|
|
if (stmts)
|
|
{
|
|
new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
|
|
gcc_assert (!new_bb);
|
|
}
|
|
|
|
vec_alloc (v, nunits);
|
|
bool constant_p = is_gimple_min_invariant (new_name);
|
|
CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, new_name);
|
|
for (i = 1; i < nunits; i++)
|
|
{
|
|
/* Create: new_name_i = new_name + step_expr */
|
|
new_name = fold_build2 (PLUS_EXPR, TREE_TYPE (new_name),
|
|
new_name, step_expr);
|
|
if (!is_gimple_min_invariant (new_name))
|
|
{
|
|
init_stmt = gimple_build_assign (new_var, new_name);
|
|
new_name = make_ssa_name (new_var, init_stmt);
|
|
gimple_assign_set_lhs (init_stmt, new_name);
|
|
new_bb = gsi_insert_on_edge_immediate (pe, init_stmt);
|
|
gcc_assert (!new_bb);
|
|
if (dump_enabled_p ())
|
|
{
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"created new init_stmt: ");
|
|
dump_gimple_stmt (MSG_NOTE, TDF_SLIM, init_stmt, 0);
|
|
dump_printf (MSG_NOTE, "\n");
|
|
}
|
|
constant_p = false;
|
|
}
|
|
CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, new_name);
|
|
}
|
|
/* Create a vector from [new_name_0, new_name_1, ..., new_name_nunits-1] */
|
|
if (constant_p)
|
|
new_vec = build_vector_from_ctor (vectype, v);
|
|
else
|
|
new_vec = build_constructor (vectype, v);
|
|
vec_init = vect_init_vector (iv_phi, new_vec, vectype, NULL);
|
|
}
|
|
|
|
|
|
/* Create the vector that holds the step of the induction. */
|
|
if (nested_in_vect_loop)
|
|
/* iv_loop is nested in the loop to be vectorized. Generate:
|
|
vec_step = [S, S, S, S] */
|
|
new_name = step_expr;
|
|
else
|
|
{
|
|
/* iv_loop is the loop to be vectorized. Generate:
|
|
vec_step = [VF*S, VF*S, VF*S, VF*S] */
|
|
if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (step_expr)))
|
|
{
|
|
expr = build_int_cst (integer_type_node, vf);
|
|
expr = fold_convert (TREE_TYPE (step_expr), expr);
|
|
}
|
|
else
|
|
expr = build_int_cst (TREE_TYPE (step_expr), vf);
|
|
new_name = fold_build2 (MULT_EXPR, TREE_TYPE (step_expr),
|
|
expr, step_expr);
|
|
if (TREE_CODE (step_expr) == SSA_NAME)
|
|
new_name = vect_init_vector (iv_phi, new_name,
|
|
TREE_TYPE (step_expr), NULL);
|
|
}
|
|
|
|
t = unshare_expr (new_name);
|
|
gcc_assert (CONSTANT_CLASS_P (new_name)
|
|
|| TREE_CODE (new_name) == SSA_NAME);
|
|
stepvectype = get_vectype_for_scalar_type (TREE_TYPE (new_name));
|
|
gcc_assert (stepvectype);
|
|
new_vec = build_vector_from_val (stepvectype, t);
|
|
vec_step = vect_init_vector (iv_phi, new_vec, stepvectype, NULL);
|
|
|
|
|
|
/* Create the following def-use cycle:
|
|
loop prolog:
|
|
vec_init = ...
|
|
vec_step = ...
|
|
loop:
|
|
vec_iv = PHI <vec_init, vec_loop>
|
|
...
|
|
STMT
|
|
...
|
|
vec_loop = vec_iv + vec_step; */
|
|
|
|
/* Create the induction-phi that defines the induction-operand. */
|
|
vec_dest = vect_get_new_vect_var (vectype, vect_simple_var, "vec_iv_");
|
|
induction_phi = create_phi_node (vec_dest, iv_loop->header);
|
|
set_vinfo_for_stmt (induction_phi,
|
|
new_stmt_vec_info (induction_phi, loop_vinfo, NULL));
|
|
induc_def = PHI_RESULT (induction_phi);
|
|
|
|
/* Create the iv update inside the loop */
|
|
new_stmt = gimple_build_assign (vec_dest, PLUS_EXPR, induc_def, vec_step);
|
|
vec_def = make_ssa_name (vec_dest, new_stmt);
|
|
gimple_assign_set_lhs (new_stmt, vec_def);
|
|
gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
|
|
set_vinfo_for_stmt (new_stmt, new_stmt_vec_info (new_stmt, loop_vinfo,
|
|
NULL));
|
|
|
|
/* Set the arguments of the phi node: */
|
|
add_phi_arg (induction_phi, vec_init, pe, UNKNOWN_LOCATION);
|
|
add_phi_arg (induction_phi, vec_def, loop_latch_edge (iv_loop),
|
|
UNKNOWN_LOCATION);
|
|
|
|
|
|
/* In case that vectorization factor (VF) is bigger than the number
|
|
of elements that we can fit in a vectype (nunits), we have to generate
|
|
more than one vector stmt - i.e - we need to "unroll" the
|
|
vector stmt by a factor VF/nunits. For more details see documentation
|
|
in vectorizable_operation. */
|
|
|
|
if (ncopies > 1)
|
|
{
|
|
stmt_vec_info prev_stmt_vinfo;
|
|
/* FORNOW. This restriction should be relaxed. */
|
|
gcc_assert (!nested_in_vect_loop);
|
|
|
|
/* Create the vector that holds the step of the induction. */
|
|
if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (step_expr)))
|
|
{
|
|
expr = build_int_cst (integer_type_node, nunits);
|
|
expr = fold_convert (TREE_TYPE (step_expr), expr);
|
|
}
|
|
else
|
|
expr = build_int_cst (TREE_TYPE (step_expr), nunits);
|
|
new_name = fold_build2 (MULT_EXPR, TREE_TYPE (step_expr),
|
|
expr, step_expr);
|
|
if (TREE_CODE (step_expr) == SSA_NAME)
|
|
new_name = vect_init_vector (iv_phi, new_name,
|
|
TREE_TYPE (step_expr), NULL);
|
|
t = unshare_expr (new_name);
|
|
gcc_assert (CONSTANT_CLASS_P (new_name)
|
|
|| TREE_CODE (new_name) == SSA_NAME);
|
|
new_vec = build_vector_from_val (stepvectype, t);
|
|
vec_step = vect_init_vector (iv_phi, new_vec, stepvectype, NULL);
|
|
|
|
vec_def = induc_def;
|
|
prev_stmt_vinfo = vinfo_for_stmt (induction_phi);
|
|
for (i = 1; i < ncopies; i++)
|
|
{
|
|
/* vec_i = vec_prev + vec_step */
|
|
new_stmt = gimple_build_assign (vec_dest, PLUS_EXPR,
|
|
vec_def, vec_step);
|
|
vec_def = make_ssa_name (vec_dest, new_stmt);
|
|
gimple_assign_set_lhs (new_stmt, vec_def);
|
|
|
|
gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
|
|
if (!useless_type_conversion_p (resvectype, vectype))
|
|
{
|
|
new_stmt
|
|
= gimple_build_assign
|
|
(vect_get_new_vect_var (resvectype, vect_simple_var,
|
|
"vec_iv_"),
|
|
VIEW_CONVERT_EXPR,
|
|
build1 (VIEW_CONVERT_EXPR, resvectype,
|
|
gimple_assign_lhs (new_stmt)));
|
|
gimple_assign_set_lhs (new_stmt,
|
|
make_ssa_name
|
|
(gimple_assign_lhs (new_stmt), new_stmt));
|
|
gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
|
|
}
|
|
set_vinfo_for_stmt (new_stmt,
|
|
new_stmt_vec_info (new_stmt, loop_vinfo, NULL));
|
|
STMT_VINFO_RELATED_STMT (prev_stmt_vinfo) = new_stmt;
|
|
prev_stmt_vinfo = vinfo_for_stmt (new_stmt);
|
|
}
|
|
}
|
|
|
|
if (nested_in_vect_loop)
|
|
{
|
|
/* Find the loop-closed exit-phi of the induction, and record
|
|
the final vector of induction results: */
|
|
exit_phi = NULL;
|
|
FOR_EACH_IMM_USE_FAST (use_p, imm_iter, loop_arg)
|
|
{
|
|
gimple use_stmt = USE_STMT (use_p);
|
|
if (is_gimple_debug (use_stmt))
|
|
continue;
|
|
|
|
if (!flow_bb_inside_loop_p (iv_loop, gimple_bb (use_stmt)))
|
|
{
|
|
exit_phi = use_stmt;
|
|
break;
|
|
}
|
|
}
|
|
if (exit_phi)
|
|
{
|
|
stmt_vec_info stmt_vinfo = vinfo_for_stmt (exit_phi);
|
|
/* FORNOW. Currently not supporting the case that an inner-loop induction
|
|
is not used in the outer-loop (i.e. only outside the outer-loop). */
|
|
gcc_assert (STMT_VINFO_RELEVANT_P (stmt_vinfo)
|
|
&& !STMT_VINFO_LIVE_P (stmt_vinfo));
|
|
|
|
STMT_VINFO_VEC_STMT (stmt_vinfo) = new_stmt;
|
|
if (dump_enabled_p ())
|
|
{
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"vector of inductions after inner-loop:");
|
|
dump_gimple_stmt (MSG_NOTE, TDF_SLIM, new_stmt, 0);
|
|
dump_printf (MSG_NOTE, "\n");
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
if (dump_enabled_p ())
|
|
{
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"transform induction: created def-use cycle: ");
|
|
dump_gimple_stmt (MSG_NOTE, TDF_SLIM, induction_phi, 0);
|
|
dump_printf (MSG_NOTE, "\n");
|
|
dump_gimple_stmt (MSG_NOTE, TDF_SLIM,
|
|
SSA_NAME_DEF_STMT (vec_def), 0);
|
|
dump_printf (MSG_NOTE, "\n");
|
|
}
|
|
|
|
STMT_VINFO_VEC_STMT (phi_info) = induction_phi;
|
|
if (!useless_type_conversion_p (resvectype, vectype))
|
|
{
|
|
new_stmt = gimple_build_assign (vect_get_new_vect_var (resvectype,
|
|
vect_simple_var,
|
|
"vec_iv_"),
|
|
VIEW_CONVERT_EXPR,
|
|
build1 (VIEW_CONVERT_EXPR, resvectype,
|
|
induc_def));
|
|
induc_def = make_ssa_name (gimple_assign_lhs (new_stmt), new_stmt);
|
|
gimple_assign_set_lhs (new_stmt, induc_def);
|
|
si = gsi_after_labels (bb);
|
|
gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
|
|
set_vinfo_for_stmt (new_stmt,
|
|
new_stmt_vec_info (new_stmt, loop_vinfo, NULL));
|
|
STMT_VINFO_RELATED_STMT (vinfo_for_stmt (new_stmt))
|
|
= STMT_VINFO_RELATED_STMT (vinfo_for_stmt (induction_phi));
|
|
}
|
|
|
|
return induc_def;
|
|
}
|
|
|
|
|
|
/* Function get_initial_def_for_reduction
|
|
|
|
Input:
|
|
STMT - a stmt that performs a reduction operation in the loop.
|
|
INIT_VAL - the initial value of the reduction variable
|
|
|
|
Output:
|
|
ADJUSTMENT_DEF - a tree that holds a value to be added to the final result
|
|
of the reduction (used for adjusting the epilog - see below).
|
|
Return a vector variable, initialized according to the operation that STMT
|
|
performs. This vector will be used as the initial value of the
|
|
vector of partial results.
|
|
|
|
Option1 (adjust in epilog): Initialize the vector as follows:
|
|
add/bit or/xor: [0,0,...,0,0]
|
|
mult/bit and: [1,1,...,1,1]
|
|
min/max/cond_expr: [init_val,init_val,..,init_val,init_val]
|
|
and when necessary (e.g. add/mult case) let the caller know
|
|
that it needs to adjust the result by init_val.
|
|
|
|
Option2: Initialize the vector as follows:
|
|
add/bit or/xor: [init_val,0,0,...,0]
|
|
mult/bit and: [init_val,1,1,...,1]
|
|
min/max/cond_expr: [init_val,init_val,...,init_val]
|
|
and no adjustments are needed.
|
|
|
|
For example, for the following code:
|
|
|
|
s = init_val;
|
|
for (i=0;i<n;i++)
|
|
s = s + a[i];
|
|
|
|
STMT is 's = s + a[i]', and the reduction variable is 's'.
|
|
For a vector of 4 units, we want to return either [0,0,0,init_val],
|
|
or [0,0,0,0] and let the caller know that it needs to adjust
|
|
the result at the end by 'init_val'.
|
|
|
|
FORNOW, we are using the 'adjust in epilog' scheme, because this way the
|
|
initialization vector is simpler (same element in all entries), if
|
|
ADJUSTMENT_DEF is not NULL, and Option2 otherwise.
|
|
|
|
A cost model should help decide between these two schemes. */
|
|
|
|
tree
|
|
get_initial_def_for_reduction (gimple stmt, tree init_val,
|
|
tree *adjustment_def)
|
|
{
|
|
stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
|
|
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
|
|
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
|
tree scalar_type = TREE_TYPE (init_val);
|
|
tree vectype = get_vectype_for_scalar_type (scalar_type);
|
|
int nunits;
|
|
enum tree_code code = gimple_assign_rhs_code (stmt);
|
|
tree def_for_init;
|
|
tree init_def;
|
|
tree *elts;
|
|
int i;
|
|
bool nested_in_vect_loop = false;
|
|
tree init_value;
|
|
REAL_VALUE_TYPE real_init_val = dconst0;
|
|
int int_init_val = 0;
|
|
gimple def_stmt = NULL;
|
|
|
|
gcc_assert (vectype);
|
|
nunits = TYPE_VECTOR_SUBPARTS (vectype);
|
|
|
|
gcc_assert (POINTER_TYPE_P (scalar_type) || INTEGRAL_TYPE_P (scalar_type)
|
|
|| SCALAR_FLOAT_TYPE_P (scalar_type));
|
|
|
|
if (nested_in_vect_loop_p (loop, stmt))
|
|
nested_in_vect_loop = true;
|
|
else
|
|
gcc_assert (loop == (gimple_bb (stmt))->loop_father);
|
|
|
|
/* In case of double reduction we only create a vector variable to be put
|
|
in the reduction phi node. The actual statement creation is done in
|
|
vect_create_epilog_for_reduction. */
|
|
if (adjustment_def && nested_in_vect_loop
|
|
&& TREE_CODE (init_val) == SSA_NAME
|
|
&& (def_stmt = SSA_NAME_DEF_STMT (init_val))
|
|
&& gimple_code (def_stmt) == GIMPLE_PHI
|
|
&& flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
|
|
&& vinfo_for_stmt (def_stmt)
|
|
&& STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
|
|
== vect_double_reduction_def)
|
|
{
|
|
*adjustment_def = NULL;
|
|
return vect_create_destination_var (init_val, vectype);
|
|
}
|
|
|
|
if (TREE_CONSTANT (init_val))
|
|
{
|
|
if (SCALAR_FLOAT_TYPE_P (scalar_type))
|
|
init_value = build_real (scalar_type, TREE_REAL_CST (init_val));
|
|
else
|
|
init_value = build_int_cst (scalar_type, TREE_INT_CST_LOW (init_val));
|
|
}
|
|
else
|
|
init_value = init_val;
|
|
|
|
switch (code)
|
|
{
|
|
case WIDEN_SUM_EXPR:
|
|
case DOT_PROD_EXPR:
|
|
case SAD_EXPR:
|
|
case PLUS_EXPR:
|
|
case MINUS_EXPR:
|
|
case BIT_IOR_EXPR:
|
|
case BIT_XOR_EXPR:
|
|
case MULT_EXPR:
|
|
case BIT_AND_EXPR:
|
|
/* ADJUSMENT_DEF is NULL when called from
|
|
vect_create_epilog_for_reduction to vectorize double reduction. */
|
|
if (adjustment_def)
|
|
{
|
|
if (nested_in_vect_loop)
|
|
*adjustment_def = vect_get_vec_def_for_operand (init_val, stmt,
|
|
NULL);
|
|
else
|
|
*adjustment_def = init_val;
|
|
}
|
|
|
|
if (code == MULT_EXPR)
|
|
{
|
|
real_init_val = dconst1;
|
|
int_init_val = 1;
|
|
}
|
|
|
|
if (code == BIT_AND_EXPR)
|
|
int_init_val = -1;
|
|
|
|
if (SCALAR_FLOAT_TYPE_P (scalar_type))
|
|
def_for_init = build_real (scalar_type, real_init_val);
|
|
else
|
|
def_for_init = build_int_cst (scalar_type, int_init_val);
|
|
|
|
/* Create a vector of '0' or '1' except the first element. */
|
|
elts = XALLOCAVEC (tree, nunits);
|
|
for (i = nunits - 2; i >= 0; --i)
|
|
elts[i + 1] = def_for_init;
|
|
|
|
/* Option1: the first element is '0' or '1' as well. */
|
|
if (adjustment_def)
|
|
{
|
|
elts[0] = def_for_init;
|
|
init_def = build_vector (vectype, elts);
|
|
break;
|
|
}
|
|
|
|
/* Option2: the first element is INIT_VAL. */
|
|
elts[0] = init_val;
|
|
if (TREE_CONSTANT (init_val))
|
|
init_def = build_vector (vectype, elts);
|
|
else
|
|
{
|
|
vec<constructor_elt, va_gc> *v;
|
|
vec_alloc (v, nunits);
|
|
CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, init_val);
|
|
for (i = 1; i < nunits; ++i)
|
|
CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, elts[i]);
|
|
init_def = build_constructor (vectype, v);
|
|
}
|
|
|
|
break;
|
|
|
|
case MIN_EXPR:
|
|
case MAX_EXPR:
|
|
case COND_EXPR:
|
|
if (adjustment_def)
|
|
{
|
|
*adjustment_def = NULL_TREE;
|
|
init_def = vect_get_vec_def_for_operand (init_val, stmt, NULL);
|
|
break;
|
|
}
|
|
|
|
init_def = build_vector_from_val (vectype, init_value);
|
|
break;
|
|
|
|
default:
|
|
gcc_unreachable ();
|
|
}
|
|
|
|
return init_def;
|
|
}
|
|
|
|
/* Function vect_create_epilog_for_reduction
|
|
|
|
Create code at the loop-epilog to finalize the result of a reduction
|
|
computation.
|
|
|
|
VECT_DEFS is list of vector of partial results, i.e., the lhs's of vector
|
|
reduction statements.
|
|
STMT is the scalar reduction stmt that is being vectorized.
|
|
NCOPIES is > 1 in case the vectorization factor (VF) is bigger than the
|
|
number of elements that we can fit in a vectype (nunits). In this case
|
|
we have to generate more than one vector stmt - i.e - we need to "unroll"
|
|
the vector stmt by a factor VF/nunits. For more details see documentation
|
|
in vectorizable_operation.
|
|
REDUC_CODE is the tree-code for the epilog reduction.
|
|
REDUCTION_PHIS is a list of the phi-nodes that carry the reduction
|
|
computation.
|
|
REDUC_INDEX is the index of the operand in the right hand side of the
|
|
statement that is defined by REDUCTION_PHI.
|
|
DOUBLE_REDUC is TRUE if double reduction phi nodes should be handled.
|
|
SLP_NODE is an SLP node containing a group of reduction statements. The
|
|
first one in this group is STMT.
|
|
|
|
This function:
|
|
1. Creates the reduction def-use cycles: sets the arguments for
|
|
REDUCTION_PHIS:
|
|
The loop-entry argument is the vectorized initial-value of the reduction.
|
|
The loop-latch argument is taken from VECT_DEFS - the vector of partial
|
|
sums.
|
|
2. "Reduces" each vector of partial results VECT_DEFS into a single result,
|
|
by applying the operation specified by REDUC_CODE if available, or by
|
|
other means (whole-vector shifts or a scalar loop).
|
|
The function also creates a new phi node at the loop exit to preserve
|
|
loop-closed form, as illustrated below.
|
|
|
|
The flow at the entry to this function:
|
|
|
|
loop:
|
|
vec_def = phi <null, null> # REDUCTION_PHI
|
|
VECT_DEF = vector_stmt # vectorized form of STMT
|
|
s_loop = scalar_stmt # (scalar) STMT
|
|
loop_exit:
|
|
s_out0 = phi <s_loop> # (scalar) EXIT_PHI
|
|
use <s_out0>
|
|
use <s_out0>
|
|
|
|
The above is transformed by this function into:
|
|
|
|
loop:
|
|
vec_def = phi <vec_init, VECT_DEF> # REDUCTION_PHI
|
|
VECT_DEF = vector_stmt # vectorized form of STMT
|
|
s_loop = scalar_stmt # (scalar) STMT
|
|
loop_exit:
|
|
s_out0 = phi <s_loop> # (scalar) EXIT_PHI
|
|
v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
|
|
v_out2 = reduce <v_out1>
|
|
s_out3 = extract_field <v_out2, 0>
|
|
s_out4 = adjust_result <s_out3>
|
|
use <s_out4>
|
|
use <s_out4>
|
|
*/
|
|
|
|
static void
|
|
vect_create_epilog_for_reduction (vec<tree> vect_defs, gimple stmt,
|
|
int ncopies, enum tree_code reduc_code,
|
|
vec<gimple> reduction_phis,
|
|
int reduc_index, bool double_reduc,
|
|
slp_tree slp_node)
|
|
{
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
|
stmt_vec_info prev_phi_info;
|
|
tree vectype;
|
|
machine_mode mode;
|
|
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
|
|
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo), *outer_loop = NULL;
|
|
basic_block exit_bb;
|
|
tree scalar_dest;
|
|
tree scalar_type;
|
|
gimple new_phi = NULL, phi;
|
|
gimple_stmt_iterator exit_gsi;
|
|
tree vec_dest;
|
|
tree new_temp = NULL_TREE, new_dest, new_name, new_scalar_dest;
|
|
gimple epilog_stmt = NULL;
|
|
enum tree_code code = gimple_assign_rhs_code (stmt);
|
|
gimple exit_phi;
|
|
tree bitsize;
|
|
tree adjustment_def = NULL;
|
|
tree vec_initial_def = NULL;
|
|
tree reduction_op, expr, def;
|
|
tree orig_name, scalar_result;
|
|
imm_use_iterator imm_iter, phi_imm_iter;
|
|
use_operand_p use_p, phi_use_p;
|
|
gimple use_stmt, orig_stmt, reduction_phi = NULL;
|
|
bool nested_in_vect_loop = false;
|
|
auto_vec<gimple> new_phis;
|
|
auto_vec<gimple> inner_phis;
|
|
enum vect_def_type dt = vect_unknown_def_type;
|
|
int j, i;
|
|
auto_vec<tree> scalar_results;
|
|
unsigned int group_size = 1, k, ratio;
|
|
auto_vec<tree> vec_initial_defs;
|
|
auto_vec<gimple> phis;
|
|
bool slp_reduc = false;
|
|
tree new_phi_result;
|
|
gimple inner_phi = NULL;
|
|
|
|
if (slp_node)
|
|
group_size = SLP_TREE_SCALAR_STMTS (slp_node).length ();
|
|
|
|
if (nested_in_vect_loop_p (loop, stmt))
|
|
{
|
|
outer_loop = loop;
|
|
loop = loop->inner;
|
|
nested_in_vect_loop = true;
|
|
gcc_assert (!slp_node);
|
|
}
|
|
|
|
reduction_op = get_reduction_op (stmt, reduc_index);
|
|
|
|
vectype = get_vectype_for_scalar_type (TREE_TYPE (reduction_op));
|
|
gcc_assert (vectype);
|
|
mode = TYPE_MODE (vectype);
|
|
|
|
/* 1. Create the reduction def-use cycle:
|
|
Set the arguments of REDUCTION_PHIS, i.e., transform
|
|
|
|
loop:
|
|
vec_def = phi <null, null> # REDUCTION_PHI
|
|
VECT_DEF = vector_stmt # vectorized form of STMT
|
|
...
|
|
|
|
into:
|
|
|
|
loop:
|
|
vec_def = phi <vec_init, VECT_DEF> # REDUCTION_PHI
|
|
VECT_DEF = vector_stmt # vectorized form of STMT
|
|
...
|
|
|
|
(in case of SLP, do it for all the phis). */
|
|
|
|
/* Get the loop-entry arguments. */
|
|
if (slp_node)
|
|
vect_get_vec_defs (reduction_op, NULL_TREE, stmt, &vec_initial_defs,
|
|
NULL, slp_node, reduc_index);
|
|
else
|
|
{
|
|
vec_initial_defs.create (1);
|
|
/* For the case of reduction, vect_get_vec_def_for_operand returns
|
|
the scalar def before the loop, that defines the initial value
|
|
of the reduction variable. */
|
|
vec_initial_def = vect_get_vec_def_for_operand (reduction_op, stmt,
|
|
&adjustment_def);
|
|
vec_initial_defs.quick_push (vec_initial_def);
|
|
}
|
|
|
|
/* Set phi nodes arguments. */
|
|
FOR_EACH_VEC_ELT (reduction_phis, i, phi)
|
|
{
|
|
tree vec_init_def, def;
|
|
gimple_seq stmts;
|
|
vec_init_def = force_gimple_operand (vec_initial_defs[i], &stmts,
|
|
true, NULL_TREE);
|
|
gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
|
|
def = vect_defs[i];
|
|
for (j = 0; j < ncopies; j++)
|
|
{
|
|
/* Set the loop-entry arg of the reduction-phi. */
|
|
add_phi_arg (as_a <gphi *> (phi), vec_init_def,
|
|
loop_preheader_edge (loop), UNKNOWN_LOCATION);
|
|
|
|
/* Set the loop-latch arg for the reduction-phi. */
|
|
if (j > 0)
|
|
def = vect_get_vec_def_for_stmt_copy (vect_unknown_def_type, def);
|
|
|
|
add_phi_arg (as_a <gphi *> (phi), def, loop_latch_edge (loop),
|
|
UNKNOWN_LOCATION);
|
|
|
|
if (dump_enabled_p ())
|
|
{
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"transform reduction: created def-use cycle: ");
|
|
dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
|
|
dump_printf (MSG_NOTE, "\n");
|
|
dump_gimple_stmt (MSG_NOTE, TDF_SLIM, SSA_NAME_DEF_STMT (def), 0);
|
|
dump_printf (MSG_NOTE, "\n");
|
|
}
|
|
|
|
phi = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (phi));
|
|
}
|
|
}
|
|
|
|
/* 2. Create epilog code.
|
|
The reduction epilog code operates across the elements of the vector
|
|
of partial results computed by the vectorized loop.
|
|
The reduction epilog code consists of:
|
|
|
|
step 1: compute the scalar result in a vector (v_out2)
|
|
step 2: extract the scalar result (s_out3) from the vector (v_out2)
|
|
step 3: adjust the scalar result (s_out3) if needed.
|
|
|
|
Step 1 can be accomplished using one the following three schemes:
|
|
(scheme 1) using reduc_code, if available.
|
|
(scheme 2) using whole-vector shifts, if available.
|
|
(scheme 3) using a scalar loop. In this case steps 1+2 above are
|
|
combined.
|
|
|
|
The overall epilog code looks like this:
|
|
|
|
s_out0 = phi <s_loop> # original EXIT_PHI
|
|
v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
|
|
v_out2 = reduce <v_out1> # step 1
|
|
s_out3 = extract_field <v_out2, 0> # step 2
|
|
s_out4 = adjust_result <s_out3> # step 3
|
|
|
|
(step 3 is optional, and steps 1 and 2 may be combined).
|
|
Lastly, the uses of s_out0 are replaced by s_out4. */
|
|
|
|
|
|
/* 2.1 Create new loop-exit-phis to preserve loop-closed form:
|
|
v_out1 = phi <VECT_DEF>
|
|
Store them in NEW_PHIS. */
|
|
|
|
exit_bb = single_exit (loop)->dest;
|
|
prev_phi_info = NULL;
|
|
new_phis.create (vect_defs.length ());
|
|
FOR_EACH_VEC_ELT (vect_defs, i, def)
|
|
{
|
|
for (j = 0; j < ncopies; j++)
|
|
{
|
|
tree new_def = copy_ssa_name (def);
|
|
phi = create_phi_node (new_def, exit_bb);
|
|
set_vinfo_for_stmt (phi, new_stmt_vec_info (phi, loop_vinfo, NULL));
|
|
if (j == 0)
|
|
new_phis.quick_push (phi);
|
|
else
|
|
{
|
|
def = vect_get_vec_def_for_stmt_copy (dt, def);
|
|
STMT_VINFO_RELATED_STMT (prev_phi_info) = phi;
|
|
}
|
|
|
|
SET_PHI_ARG_DEF (phi, single_exit (loop)->dest_idx, def);
|
|
prev_phi_info = vinfo_for_stmt (phi);
|
|
}
|
|
}
|
|
|
|
/* The epilogue is created for the outer-loop, i.e., for the loop being
|
|
vectorized. Create exit phis for the outer loop. */
|
|
if (double_reduc)
|
|
{
|
|
loop = outer_loop;
|
|
exit_bb = single_exit (loop)->dest;
|
|
inner_phis.create (vect_defs.length ());
|
|
FOR_EACH_VEC_ELT (new_phis, i, phi)
|
|
{
|
|
tree new_result = copy_ssa_name (PHI_RESULT (phi));
|
|
gphi *outer_phi = create_phi_node (new_result, exit_bb);
|
|
SET_PHI_ARG_DEF (outer_phi, single_exit (loop)->dest_idx,
|
|
PHI_RESULT (phi));
|
|
set_vinfo_for_stmt (outer_phi, new_stmt_vec_info (outer_phi,
|
|
loop_vinfo, NULL));
|
|
inner_phis.quick_push (phi);
|
|
new_phis[i] = outer_phi;
|
|
prev_phi_info = vinfo_for_stmt (outer_phi);
|
|
while (STMT_VINFO_RELATED_STMT (vinfo_for_stmt (phi)))
|
|
{
|
|
phi = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (phi));
|
|
new_result = copy_ssa_name (PHI_RESULT (phi));
|
|
outer_phi = create_phi_node (new_result, exit_bb);
|
|
SET_PHI_ARG_DEF (outer_phi, single_exit (loop)->dest_idx,
|
|
PHI_RESULT (phi));
|
|
set_vinfo_for_stmt (outer_phi, new_stmt_vec_info (outer_phi,
|
|
loop_vinfo, NULL));
|
|
STMT_VINFO_RELATED_STMT (prev_phi_info) = outer_phi;
|
|
prev_phi_info = vinfo_for_stmt (outer_phi);
|
|
}
|
|
}
|
|
}
|
|
|
|
exit_gsi = gsi_after_labels (exit_bb);
|
|
|
|
/* 2.2 Get the relevant tree-code to use in the epilog for schemes 2,3
|
|
(i.e. when reduc_code is not available) and in the final adjustment
|
|
code (if needed). Also get the original scalar reduction variable as
|
|
defined in the loop. In case STMT is a "pattern-stmt" (i.e. - it
|
|
represents a reduction pattern), the tree-code and scalar-def are
|
|
taken from the original stmt that the pattern-stmt (STMT) replaces.
|
|
Otherwise (it is a regular reduction) - the tree-code and scalar-def
|
|
are taken from STMT. */
|
|
|
|
orig_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
|
|
if (!orig_stmt)
|
|
{
|
|
/* Regular reduction */
|
|
orig_stmt = stmt;
|
|
}
|
|
else
|
|
{
|
|
/* Reduction pattern */
|
|
stmt_vec_info stmt_vinfo = vinfo_for_stmt (orig_stmt);
|
|
gcc_assert (STMT_VINFO_IN_PATTERN_P (stmt_vinfo));
|
|
gcc_assert (STMT_VINFO_RELATED_STMT (stmt_vinfo) == stmt);
|
|
}
|
|
|
|
code = gimple_assign_rhs_code (orig_stmt);
|
|
/* For MINUS_EXPR the initial vector is [init_val,0,...,0], therefore,
|
|
partial results are added and not subtracted. */
|
|
if (code == MINUS_EXPR)
|
|
code = PLUS_EXPR;
|
|
|
|
scalar_dest = gimple_assign_lhs (orig_stmt);
|
|
scalar_type = TREE_TYPE (scalar_dest);
|
|
scalar_results.create (group_size);
|
|
new_scalar_dest = vect_create_destination_var (scalar_dest, NULL);
|
|
bitsize = TYPE_SIZE (scalar_type);
|
|
|
|
/* In case this is a reduction in an inner-loop while vectorizing an outer
|
|
loop - we don't need to extract a single scalar result at the end of the
|
|
inner-loop (unless it is double reduction, i.e., the use of reduction is
|
|
outside the outer-loop). The final vector of partial results will be used
|
|
in the vectorized outer-loop, or reduced to a scalar result at the end of
|
|
the outer-loop. */
|
|
if (nested_in_vect_loop && !double_reduc)
|
|
goto vect_finalize_reduction;
|
|
|
|
/* SLP reduction without reduction chain, e.g.,
|
|
# a1 = phi <a2, a0>
|
|
# b1 = phi <b2, b0>
|
|
a2 = operation (a1)
|
|
b2 = operation (b1) */
|
|
slp_reduc = (slp_node && !GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)));
|
|
|
|
/* In case of reduction chain, e.g.,
|
|
# a1 = phi <a3, a0>
|
|
a2 = operation (a1)
|
|
a3 = operation (a2),
|
|
|
|
we may end up with more than one vector result. Here we reduce them to
|
|
one vector. */
|
|
if (GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)))
|
|
{
|
|
tree first_vect = PHI_RESULT (new_phis[0]);
|
|
tree tmp;
|
|
gassign *new_vec_stmt = NULL;
|
|
|
|
vec_dest = vect_create_destination_var (scalar_dest, vectype);
|
|
for (k = 1; k < new_phis.length (); k++)
|
|
{
|
|
gimple next_phi = new_phis[k];
|
|
tree second_vect = PHI_RESULT (next_phi);
|
|
|
|
tmp = build2 (code, vectype, first_vect, second_vect);
|
|
new_vec_stmt = gimple_build_assign (vec_dest, tmp);
|
|
first_vect = make_ssa_name (vec_dest, new_vec_stmt);
|
|
gimple_assign_set_lhs (new_vec_stmt, first_vect);
|
|
gsi_insert_before (&exit_gsi, new_vec_stmt, GSI_SAME_STMT);
|
|
}
|
|
|
|
new_phi_result = first_vect;
|
|
if (new_vec_stmt)
|
|
{
|
|
new_phis.truncate (0);
|
|
new_phis.safe_push (new_vec_stmt);
|
|
}
|
|
}
|
|
else
|
|
new_phi_result = PHI_RESULT (new_phis[0]);
|
|
|
|
/* 2.3 Create the reduction code, using one of the three schemes described
|
|
above. In SLP we simply need to extract all the elements from the
|
|
vector (without reducing them), so we use scalar shifts. */
|
|
if (reduc_code != ERROR_MARK && !slp_reduc)
|
|
{
|
|
tree tmp;
|
|
tree vec_elem_type;
|
|
|
|
/*** Case 1: Create:
|
|
v_out2 = reduc_expr <v_out1> */
|
|
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"Reduce using direct vector reduction.\n");
|
|
|
|
vec_elem_type = TREE_TYPE (TREE_TYPE (new_phi_result));
|
|
if (!useless_type_conversion_p (scalar_type, vec_elem_type))
|
|
{
|
|
tree tmp_dest =
|
|
vect_create_destination_var (scalar_dest, vec_elem_type);
|
|
tmp = build1 (reduc_code, vec_elem_type, new_phi_result);
|
|
epilog_stmt = gimple_build_assign (tmp_dest, tmp);
|
|
new_temp = make_ssa_name (tmp_dest, epilog_stmt);
|
|
gimple_assign_set_lhs (epilog_stmt, new_temp);
|
|
gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
|
|
|
|
tmp = build1 (NOP_EXPR, scalar_type, new_temp);
|
|
}
|
|
else
|
|
tmp = build1 (reduc_code, scalar_type, new_phi_result);
|
|
epilog_stmt = gimple_build_assign (new_scalar_dest, tmp);
|
|
new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
|
|
gimple_assign_set_lhs (epilog_stmt, new_temp);
|
|
gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
|
|
scalar_results.safe_push (new_temp);
|
|
}
|
|
else
|
|
{
|
|
bool reduce_with_shift = have_whole_vector_shift (mode);
|
|
int element_bitsize = tree_to_uhwi (bitsize);
|
|
int vec_size_in_bits = tree_to_uhwi (TYPE_SIZE (vectype));
|
|
tree vec_temp;
|
|
|
|
/* Regardless of whether we have a whole vector shift, if we're
|
|
emulating the operation via tree-vect-generic, we don't want
|
|
to use it. Only the first round of the reduction is likely
|
|
to still be profitable via emulation. */
|
|
/* ??? It might be better to emit a reduction tree code here, so that
|
|
tree-vect-generic can expand the first round via bit tricks. */
|
|
if (!VECTOR_MODE_P (mode))
|
|
reduce_with_shift = false;
|
|
else
|
|
{
|
|
optab optab = optab_for_tree_code (code, vectype, optab_default);
|
|
if (optab_handler (optab, mode) == CODE_FOR_nothing)
|
|
reduce_with_shift = false;
|
|
}
|
|
|
|
if (reduce_with_shift && !slp_reduc)
|
|
{
|
|
int nelements = vec_size_in_bits / element_bitsize;
|
|
unsigned char *sel = XALLOCAVEC (unsigned char, nelements);
|
|
|
|
int elt_offset;
|
|
|
|
tree zero_vec = build_zero_cst (vectype);
|
|
/*** Case 2: Create:
|
|
for (offset = nelements/2; offset >= 1; offset/=2)
|
|
{
|
|
Create: va' = vec_shift <va, offset>
|
|
Create: va = vop <va, va'>
|
|
} */
|
|
|
|
tree rhs;
|
|
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"Reduce using vector shifts\n");
|
|
|
|
vec_dest = vect_create_destination_var (scalar_dest, vectype);
|
|
new_temp = new_phi_result;
|
|
for (elt_offset = nelements / 2;
|
|
elt_offset >= 1;
|
|
elt_offset /= 2)
|
|
{
|
|
calc_vec_perm_mask_for_shift (mode, elt_offset, sel);
|
|
tree mask = vect_gen_perm_mask_any (vectype, sel);
|
|
epilog_stmt = gimple_build_assign (vec_dest, VEC_PERM_EXPR,
|
|
new_temp, zero_vec, mask);
|
|
new_name = make_ssa_name (vec_dest, epilog_stmt);
|
|
gimple_assign_set_lhs (epilog_stmt, new_name);
|
|
gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
|
|
|
|
epilog_stmt = gimple_build_assign (vec_dest, code, new_name,
|
|
new_temp);
|
|
new_temp = make_ssa_name (vec_dest, epilog_stmt);
|
|
gimple_assign_set_lhs (epilog_stmt, new_temp);
|
|
gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
|
|
}
|
|
|
|
/* 2.4 Extract the final scalar result. Create:
|
|
s_out3 = extract_field <v_out2, bitpos> */
|
|
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"extract scalar result\n");
|
|
|
|
rhs = build3 (BIT_FIELD_REF, scalar_type, new_temp,
|
|
bitsize, bitsize_zero_node);
|
|
epilog_stmt = gimple_build_assign (new_scalar_dest, rhs);
|
|
new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
|
|
gimple_assign_set_lhs (epilog_stmt, new_temp);
|
|
gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
|
|
scalar_results.safe_push (new_temp);
|
|
}
|
|
else
|
|
{
|
|
/*** Case 3: Create:
|
|
s = extract_field <v_out2, 0>
|
|
for (offset = element_size;
|
|
offset < vector_size;
|
|
offset += element_size;)
|
|
{
|
|
Create: s' = extract_field <v_out2, offset>
|
|
Create: s = op <s, s'> // For non SLP cases
|
|
} */
|
|
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"Reduce using scalar code.\n");
|
|
|
|
vec_size_in_bits = tree_to_uhwi (TYPE_SIZE (vectype));
|
|
FOR_EACH_VEC_ELT (new_phis, i, new_phi)
|
|
{
|
|
int bit_offset;
|
|
if (gimple_code (new_phi) == GIMPLE_PHI)
|
|
vec_temp = PHI_RESULT (new_phi);
|
|
else
|
|
vec_temp = gimple_assign_lhs (new_phi);
|
|
tree rhs = build3 (BIT_FIELD_REF, scalar_type, vec_temp, bitsize,
|
|
bitsize_zero_node);
|
|
epilog_stmt = gimple_build_assign (new_scalar_dest, rhs);
|
|
new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
|
|
gimple_assign_set_lhs (epilog_stmt, new_temp);
|
|
gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
|
|
|
|
/* In SLP we don't need to apply reduction operation, so we just
|
|
collect s' values in SCALAR_RESULTS. */
|
|
if (slp_reduc)
|
|
scalar_results.safe_push (new_temp);
|
|
|
|
for (bit_offset = element_bitsize;
|
|
bit_offset < vec_size_in_bits;
|
|
bit_offset += element_bitsize)
|
|
{
|
|
tree bitpos = bitsize_int (bit_offset);
|
|
tree rhs = build3 (BIT_FIELD_REF, scalar_type, vec_temp,
|
|
bitsize, bitpos);
|
|
|
|
epilog_stmt = gimple_build_assign (new_scalar_dest, rhs);
|
|
new_name = make_ssa_name (new_scalar_dest, epilog_stmt);
|
|
gimple_assign_set_lhs (epilog_stmt, new_name);
|
|
gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
|
|
|
|
if (slp_reduc)
|
|
{
|
|
/* In SLP we don't need to apply reduction operation, so
|
|
we just collect s' values in SCALAR_RESULTS. */
|
|
new_temp = new_name;
|
|
scalar_results.safe_push (new_name);
|
|
}
|
|
else
|
|
{
|
|
epilog_stmt = gimple_build_assign (new_scalar_dest, code,
|
|
new_name, new_temp);
|
|
new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
|
|
gimple_assign_set_lhs (epilog_stmt, new_temp);
|
|
gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* The only case where we need to reduce scalar results in SLP, is
|
|
unrolling. If the size of SCALAR_RESULTS is greater than
|
|
GROUP_SIZE, we reduce them combining elements modulo
|
|
GROUP_SIZE. */
|
|
if (slp_reduc)
|
|
{
|
|
tree res, first_res, new_res;
|
|
gimple new_stmt;
|
|
|
|
/* Reduce multiple scalar results in case of SLP unrolling. */
|
|
for (j = group_size; scalar_results.iterate (j, &res);
|
|
j++)
|
|
{
|
|
first_res = scalar_results[j % group_size];
|
|
new_stmt = gimple_build_assign (new_scalar_dest, code,
|
|
first_res, res);
|
|
new_res = make_ssa_name (new_scalar_dest, new_stmt);
|
|
gimple_assign_set_lhs (new_stmt, new_res);
|
|
gsi_insert_before (&exit_gsi, new_stmt, GSI_SAME_STMT);
|
|
scalar_results[j % group_size] = new_res;
|
|
}
|
|
}
|
|
else
|
|
/* Not SLP - we have one scalar to keep in SCALAR_RESULTS. */
|
|
scalar_results.safe_push (new_temp);
|
|
}
|
|
}
|
|
|
|
vect_finalize_reduction:
|
|
|
|
if (double_reduc)
|
|
loop = loop->inner;
|
|
|
|
/* 2.5 Adjust the final result by the initial value of the reduction
|
|
variable. (When such adjustment is not needed, then
|
|
'adjustment_def' is zero). For example, if code is PLUS we create:
|
|
new_temp = loop_exit_def + adjustment_def */
|
|
|
|
if (adjustment_def)
|
|
{
|
|
gcc_assert (!slp_reduc);
|
|
if (nested_in_vect_loop)
|
|
{
|
|
new_phi = new_phis[0];
|
|
gcc_assert (TREE_CODE (TREE_TYPE (adjustment_def)) == VECTOR_TYPE);
|
|
expr = build2 (code, vectype, PHI_RESULT (new_phi), adjustment_def);
|
|
new_dest = vect_create_destination_var (scalar_dest, vectype);
|
|
}
|
|
else
|
|
{
|
|
new_temp = scalar_results[0];
|
|
gcc_assert (TREE_CODE (TREE_TYPE (adjustment_def)) != VECTOR_TYPE);
|
|
expr = build2 (code, scalar_type, new_temp, adjustment_def);
|
|
new_dest = vect_create_destination_var (scalar_dest, scalar_type);
|
|
}
|
|
|
|
epilog_stmt = gimple_build_assign (new_dest, expr);
|
|
new_temp = make_ssa_name (new_dest, epilog_stmt);
|
|
gimple_assign_set_lhs (epilog_stmt, new_temp);
|
|
gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
|
|
if (nested_in_vect_loop)
|
|
{
|
|
set_vinfo_for_stmt (epilog_stmt,
|
|
new_stmt_vec_info (epilog_stmt, loop_vinfo,
|
|
NULL));
|
|
STMT_VINFO_RELATED_STMT (vinfo_for_stmt (epilog_stmt)) =
|
|
STMT_VINFO_RELATED_STMT (vinfo_for_stmt (new_phi));
|
|
|
|
if (!double_reduc)
|
|
scalar_results.quick_push (new_temp);
|
|
else
|
|
scalar_results[0] = new_temp;
|
|
}
|
|
else
|
|
scalar_results[0] = new_temp;
|
|
|
|
new_phis[0] = epilog_stmt;
|
|
}
|
|
|
|
/* 2.6 Handle the loop-exit phis. Replace the uses of scalar loop-exit
|
|
phis with new adjusted scalar results, i.e., replace use <s_out0>
|
|
with use <s_out4>.
|
|
|
|
Transform:
|
|
loop_exit:
|
|
s_out0 = phi <s_loop> # (scalar) EXIT_PHI
|
|
v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
|
|
v_out2 = reduce <v_out1>
|
|
s_out3 = extract_field <v_out2, 0>
|
|
s_out4 = adjust_result <s_out3>
|
|
use <s_out0>
|
|
use <s_out0>
|
|
|
|
into:
|
|
|
|
loop_exit:
|
|
s_out0 = phi <s_loop> # (scalar) EXIT_PHI
|
|
v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
|
|
v_out2 = reduce <v_out1>
|
|
s_out3 = extract_field <v_out2, 0>
|
|
s_out4 = adjust_result <s_out3>
|
|
use <s_out4>
|
|
use <s_out4> */
|
|
|
|
|
|
/* In SLP reduction chain we reduce vector results into one vector if
|
|
necessary, hence we set here GROUP_SIZE to 1. SCALAR_DEST is the LHS of
|
|
the last stmt in the reduction chain, since we are looking for the loop
|
|
exit phi node. */
|
|
if (GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)))
|
|
{
|
|
gimple dest_stmt = SLP_TREE_SCALAR_STMTS (slp_node)[group_size - 1];
|
|
/* Handle reduction patterns. */
|
|
if (STMT_VINFO_RELATED_STMT (vinfo_for_stmt (dest_stmt)))
|
|
dest_stmt = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (dest_stmt));
|
|
|
|
scalar_dest = gimple_assign_lhs (dest_stmt);
|
|
group_size = 1;
|
|
}
|
|
|
|
/* In SLP we may have several statements in NEW_PHIS and REDUCTION_PHIS (in
|
|
case that GROUP_SIZE is greater than vectorization factor). Therefore, we
|
|
need to match SCALAR_RESULTS with corresponding statements. The first
|
|
(GROUP_SIZE / number of new vector stmts) scalar results correspond to
|
|
the first vector stmt, etc.
|
|
(RATIO is equal to (GROUP_SIZE / number of new vector stmts)). */
|
|
if (group_size > new_phis.length ())
|
|
{
|
|
ratio = group_size / new_phis.length ();
|
|
gcc_assert (!(group_size % new_phis.length ()));
|
|
}
|
|
else
|
|
ratio = 1;
|
|
|
|
for (k = 0; k < group_size; k++)
|
|
{
|
|
if (k % ratio == 0)
|
|
{
|
|
epilog_stmt = new_phis[k / ratio];
|
|
reduction_phi = reduction_phis[k / ratio];
|
|
if (double_reduc)
|
|
inner_phi = inner_phis[k / ratio];
|
|
}
|
|
|
|
if (slp_reduc)
|
|
{
|
|
gimple current_stmt = SLP_TREE_SCALAR_STMTS (slp_node)[k];
|
|
|
|
orig_stmt = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (current_stmt));
|
|
/* SLP statements can't participate in patterns. */
|
|
gcc_assert (!orig_stmt);
|
|
scalar_dest = gimple_assign_lhs (current_stmt);
|
|
}
|
|
|
|
phis.create (3);
|
|
/* Find the loop-closed-use at the loop exit of the original scalar
|
|
result. (The reduction result is expected to have two immediate uses -
|
|
one at the latch block, and one at the loop exit). */
|
|
FOR_EACH_IMM_USE_FAST (use_p, imm_iter, scalar_dest)
|
|
if (!flow_bb_inside_loop_p (loop, gimple_bb (USE_STMT (use_p)))
|
|
&& !is_gimple_debug (USE_STMT (use_p)))
|
|
phis.safe_push (USE_STMT (use_p));
|
|
|
|
/* While we expect to have found an exit_phi because of loop-closed-ssa
|
|
form we can end up without one if the scalar cycle is dead. */
|
|
|
|
FOR_EACH_VEC_ELT (phis, i, exit_phi)
|
|
{
|
|
if (outer_loop)
|
|
{
|
|
stmt_vec_info exit_phi_vinfo = vinfo_for_stmt (exit_phi);
|
|
gphi *vect_phi;
|
|
|
|
/* FORNOW. Currently not supporting the case that an inner-loop
|
|
reduction is not used in the outer-loop (but only outside the
|
|
outer-loop), unless it is double reduction. */
|
|
gcc_assert ((STMT_VINFO_RELEVANT_P (exit_phi_vinfo)
|
|
&& !STMT_VINFO_LIVE_P (exit_phi_vinfo))
|
|
|| double_reduc);
|
|
|
|
if (double_reduc)
|
|
STMT_VINFO_VEC_STMT (exit_phi_vinfo) = inner_phi;
|
|
else
|
|
STMT_VINFO_VEC_STMT (exit_phi_vinfo) = epilog_stmt;
|
|
if (!double_reduc
|
|
|| STMT_VINFO_DEF_TYPE (exit_phi_vinfo)
|
|
!= vect_double_reduction_def)
|
|
continue;
|
|
|
|
/* Handle double reduction:
|
|
|
|
stmt1: s1 = phi <s0, s2> - double reduction phi (outer loop)
|
|
stmt2: s3 = phi <s1, s4> - (regular) reduc phi (inner loop)
|
|
stmt3: s4 = use (s3) - (regular) reduc stmt (inner loop)
|
|
stmt4: s2 = phi <s4> - double reduction stmt (outer loop)
|
|
|
|
At that point the regular reduction (stmt2 and stmt3) is
|
|
already vectorized, as well as the exit phi node, stmt4.
|
|
Here we vectorize the phi node of double reduction, stmt1, and
|
|
update all relevant statements. */
|
|
|
|
/* Go through all the uses of s2 to find double reduction phi
|
|
node, i.e., stmt1 above. */
|
|
orig_name = PHI_RESULT (exit_phi);
|
|
FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, orig_name)
|
|
{
|
|
stmt_vec_info use_stmt_vinfo;
|
|
stmt_vec_info new_phi_vinfo;
|
|
tree vect_phi_init, preheader_arg, vect_phi_res, init_def;
|
|
basic_block bb = gimple_bb (use_stmt);
|
|
gimple use;
|
|
|
|
/* Check that USE_STMT is really double reduction phi
|
|
node. */
|
|
if (gimple_code (use_stmt) != GIMPLE_PHI
|
|
|| gimple_phi_num_args (use_stmt) != 2
|
|
|| bb->loop_father != outer_loop)
|
|
continue;
|
|
use_stmt_vinfo = vinfo_for_stmt (use_stmt);
|
|
if (!use_stmt_vinfo
|
|
|| STMT_VINFO_DEF_TYPE (use_stmt_vinfo)
|
|
!= vect_double_reduction_def)
|
|
continue;
|
|
|
|
/* Create vector phi node for double reduction:
|
|
vs1 = phi <vs0, vs2>
|
|
vs1 was created previously in this function by a call to
|
|
vect_get_vec_def_for_operand and is stored in
|
|
vec_initial_def;
|
|
vs2 is defined by INNER_PHI, the vectorized EXIT_PHI;
|
|
vs0 is created here. */
|
|
|
|
/* Create vector phi node. */
|
|
vect_phi = create_phi_node (vec_initial_def, bb);
|
|
new_phi_vinfo = new_stmt_vec_info (vect_phi,
|
|
loop_vec_info_for_loop (outer_loop), NULL);
|
|
set_vinfo_for_stmt (vect_phi, new_phi_vinfo);
|
|
|
|
/* Create vs0 - initial def of the double reduction phi. */
|
|
preheader_arg = PHI_ARG_DEF_FROM_EDGE (use_stmt,
|
|
loop_preheader_edge (outer_loop));
|
|
init_def = get_initial_def_for_reduction (stmt,
|
|
preheader_arg, NULL);
|
|
vect_phi_init = vect_init_vector (use_stmt, init_def,
|
|
vectype, NULL);
|
|
|
|
/* Update phi node arguments with vs0 and vs2. */
|
|
add_phi_arg (vect_phi, vect_phi_init,
|
|
loop_preheader_edge (outer_loop),
|
|
UNKNOWN_LOCATION);
|
|
add_phi_arg (vect_phi, PHI_RESULT (inner_phi),
|
|
loop_latch_edge (outer_loop), UNKNOWN_LOCATION);
|
|
if (dump_enabled_p ())
|
|
{
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"created double reduction phi node: ");
|
|
dump_gimple_stmt (MSG_NOTE, TDF_SLIM, vect_phi, 0);
|
|
dump_printf (MSG_NOTE, "\n");
|
|
}
|
|
|
|
vect_phi_res = PHI_RESULT (vect_phi);
|
|
|
|
/* Replace the use, i.e., set the correct vs1 in the regular
|
|
reduction phi node. FORNOW, NCOPIES is always 1, so the
|
|
loop is redundant. */
|
|
use = reduction_phi;
|
|
for (j = 0; j < ncopies; j++)
|
|
{
|
|
edge pr_edge = loop_preheader_edge (loop);
|
|
SET_PHI_ARG_DEF (use, pr_edge->dest_idx, vect_phi_res);
|
|
use = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (use));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
phis.release ();
|
|
if (nested_in_vect_loop)
|
|
{
|
|
if (double_reduc)
|
|
loop = outer_loop;
|
|
else
|
|
continue;
|
|
}
|
|
|
|
phis.create (3);
|
|
/* Find the loop-closed-use at the loop exit of the original scalar
|
|
result. (The reduction result is expected to have two immediate uses,
|
|
one at the latch block, and one at the loop exit). For double
|
|
reductions we are looking for exit phis of the outer loop. */
|
|
FOR_EACH_IMM_USE_FAST (use_p, imm_iter, scalar_dest)
|
|
{
|
|
if (!flow_bb_inside_loop_p (loop, gimple_bb (USE_STMT (use_p))))
|
|
{
|
|
if (!is_gimple_debug (USE_STMT (use_p)))
|
|
phis.safe_push (USE_STMT (use_p));
|
|
}
|
|
else
|
|
{
|
|
if (double_reduc && gimple_code (USE_STMT (use_p)) == GIMPLE_PHI)
|
|
{
|
|
tree phi_res = PHI_RESULT (USE_STMT (use_p));
|
|
|
|
FOR_EACH_IMM_USE_FAST (phi_use_p, phi_imm_iter, phi_res)
|
|
{
|
|
if (!flow_bb_inside_loop_p (loop,
|
|
gimple_bb (USE_STMT (phi_use_p)))
|
|
&& !is_gimple_debug (USE_STMT (phi_use_p)))
|
|
phis.safe_push (USE_STMT (phi_use_p));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
FOR_EACH_VEC_ELT (phis, i, exit_phi)
|
|
{
|
|
/* Replace the uses: */
|
|
orig_name = PHI_RESULT (exit_phi);
|
|
scalar_result = scalar_results[k];
|
|
FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, orig_name)
|
|
FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
|
|
SET_USE (use_p, scalar_result);
|
|
}
|
|
|
|
phis.release ();
|
|
}
|
|
}
|
|
|
|
|
|
/* Function vectorizable_reduction.
|
|
|
|
Check if STMT performs a reduction operation that can be vectorized.
|
|
If VEC_STMT is also passed, vectorize the STMT: create a vectorized
|
|
stmt to replace it, put it in VEC_STMT, and insert it at GSI.
|
|
Return FALSE if not a vectorizable STMT, TRUE otherwise.
|
|
|
|
This function also handles reduction idioms (patterns) that have been
|
|
recognized in advance during vect_pattern_recog. In this case, STMT may be
|
|
of this form:
|
|
X = pattern_expr (arg0, arg1, ..., X)
|
|
and it's STMT_VINFO_RELATED_STMT points to the last stmt in the original
|
|
sequence that had been detected and replaced by the pattern-stmt (STMT).
|
|
|
|
In some cases of reduction patterns, the type of the reduction variable X is
|
|
different than the type of the other arguments of STMT.
|
|
In such cases, the vectype that is used when transforming STMT into a vector
|
|
stmt is different than the vectype that is used to determine the
|
|
vectorization factor, because it consists of a different number of elements
|
|
than the actual number of elements that are being operated upon in parallel.
|
|
|
|
For example, consider an accumulation of shorts into an int accumulator.
|
|
On some targets it's possible to vectorize this pattern operating on 8
|
|
shorts at a time (hence, the vectype for purposes of determining the
|
|
vectorization factor should be V8HI); on the other hand, the vectype that
|
|
is used to create the vector form is actually V4SI (the type of the result).
|
|
|
|
Upon entry to this function, STMT_VINFO_VECTYPE records the vectype that
|
|
indicates what is the actual level of parallelism (V8HI in the example), so
|
|
that the right vectorization factor would be derived. This vectype
|
|
corresponds to the type of arguments to the reduction stmt, and should *NOT*
|
|
be used to create the vectorized stmt. The right vectype for the vectorized
|
|
stmt is obtained from the type of the result X:
|
|
get_vectype_for_scalar_type (TREE_TYPE (X))
|
|
|
|
This means that, contrary to "regular" reductions (or "regular" stmts in
|
|
general), the following equation:
|
|
STMT_VINFO_VECTYPE == get_vectype_for_scalar_type (TREE_TYPE (X))
|
|
does *NOT* necessarily hold for reduction patterns. */
|
|
|
|
bool
|
|
vectorizable_reduction (gimple stmt, gimple_stmt_iterator *gsi,
|
|
gimple *vec_stmt, slp_tree slp_node)
|
|
{
|
|
tree vec_dest;
|
|
tree scalar_dest;
|
|
tree loop_vec_def0 = NULL_TREE, loop_vec_def1 = NULL_TREE;
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
|
tree vectype_out = STMT_VINFO_VECTYPE (stmt_info);
|
|
tree vectype_in = NULL_TREE;
|
|
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
|
|
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
|
enum tree_code code, orig_code, epilog_reduc_code;
|
|
machine_mode vec_mode;
|
|
int op_type;
|
|
optab optab, reduc_optab;
|
|
tree new_temp = NULL_TREE;
|
|
tree def;
|
|
gimple def_stmt;
|
|
enum vect_def_type dt;
|
|
gphi *new_phi = NULL;
|
|
tree scalar_type;
|
|
bool is_simple_use;
|
|
gimple orig_stmt;
|
|
stmt_vec_info orig_stmt_info;
|
|
tree expr = NULL_TREE;
|
|
int i;
|
|
int ncopies;
|
|
int epilog_copies;
|
|
stmt_vec_info prev_stmt_info, prev_phi_info;
|
|
bool single_defuse_cycle = false;
|
|
tree reduc_def = NULL_TREE;
|
|
gimple new_stmt = NULL;
|
|
int j;
|
|
tree ops[3];
|
|
bool nested_cycle = false, found_nested_cycle_def = false;
|
|
gimple reduc_def_stmt = NULL;
|
|
bool double_reduc = false, dummy;
|
|
basic_block def_bb;
|
|
struct loop * def_stmt_loop, *outer_loop = NULL;
|
|
tree def_arg;
|
|
gimple def_arg_stmt;
|
|
auto_vec<tree> vec_oprnds0;
|
|
auto_vec<tree> vec_oprnds1;
|
|
auto_vec<tree> vect_defs;
|
|
auto_vec<gimple> phis;
|
|
int vec_num;
|
|
tree def0, def1, tem, op0, op1 = NULL_TREE;
|
|
bool first_p = true;
|
|
|
|
/* In case of reduction chain we switch to the first stmt in the chain, but
|
|
we don't update STMT_INFO, since only the last stmt is marked as reduction
|
|
and has reduction properties. */
|
|
if (GROUP_FIRST_ELEMENT (stmt_info)
|
|
&& GROUP_FIRST_ELEMENT (stmt_info) != stmt)
|
|
{
|
|
stmt = GROUP_FIRST_ELEMENT (stmt_info);
|
|
first_p = false;
|
|
}
|
|
|
|
if (nested_in_vect_loop_p (loop, stmt))
|
|
{
|
|
outer_loop = loop;
|
|
loop = loop->inner;
|
|
nested_cycle = true;
|
|
}
|
|
|
|
/* 1. Is vectorizable reduction? */
|
|
/* Not supportable if the reduction variable is used in the loop, unless
|
|
it's a reduction chain. */
|
|
if (STMT_VINFO_RELEVANT (stmt_info) > vect_used_in_outer
|
|
&& !GROUP_FIRST_ELEMENT (stmt_info))
|
|
return false;
|
|
|
|
/* Reductions that are not used even in an enclosing outer-loop,
|
|
are expected to be "live" (used out of the loop). */
|
|
if (STMT_VINFO_RELEVANT (stmt_info) == vect_unused_in_scope
|
|
&& !STMT_VINFO_LIVE_P (stmt_info))
|
|
return false;
|
|
|
|
/* Make sure it was already recognized as a reduction computation. */
|
|
if (STMT_VINFO_DEF_TYPE (vinfo_for_stmt (stmt)) != vect_reduction_def
|
|
&& STMT_VINFO_DEF_TYPE (vinfo_for_stmt (stmt)) != vect_nested_cycle)
|
|
return false;
|
|
|
|
/* 2. Has this been recognized as a reduction pattern?
|
|
|
|
Check if STMT represents a pattern that has been recognized
|
|
in earlier analysis stages. For stmts that represent a pattern,
|
|
the STMT_VINFO_RELATED_STMT field records the last stmt in
|
|
the original sequence that constitutes the pattern. */
|
|
|
|
orig_stmt = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (stmt));
|
|
if (orig_stmt)
|
|
{
|
|
orig_stmt_info = vinfo_for_stmt (orig_stmt);
|
|
gcc_assert (STMT_VINFO_IN_PATTERN_P (orig_stmt_info));
|
|
gcc_assert (!STMT_VINFO_IN_PATTERN_P (stmt_info));
|
|
}
|
|
|
|
/* 3. Check the operands of the operation. The first operands are defined
|
|
inside the loop body. The last operand is the reduction variable,
|
|
which is defined by the loop-header-phi. */
|
|
|
|
gcc_assert (is_gimple_assign (stmt));
|
|
|
|
/* Flatten RHS. */
|
|
switch (get_gimple_rhs_class (gimple_assign_rhs_code (stmt)))
|
|
{
|
|
case GIMPLE_SINGLE_RHS:
|
|
op_type = TREE_OPERAND_LENGTH (gimple_assign_rhs1 (stmt));
|
|
if (op_type == ternary_op)
|
|
{
|
|
tree rhs = gimple_assign_rhs1 (stmt);
|
|
ops[0] = TREE_OPERAND (rhs, 0);
|
|
ops[1] = TREE_OPERAND (rhs, 1);
|
|
ops[2] = TREE_OPERAND (rhs, 2);
|
|
code = TREE_CODE (rhs);
|
|
}
|
|
else
|
|
return false;
|
|
break;
|
|
|
|
case GIMPLE_BINARY_RHS:
|
|
code = gimple_assign_rhs_code (stmt);
|
|
op_type = TREE_CODE_LENGTH (code);
|
|
gcc_assert (op_type == binary_op);
|
|
ops[0] = gimple_assign_rhs1 (stmt);
|
|
ops[1] = gimple_assign_rhs2 (stmt);
|
|
break;
|
|
|
|
case GIMPLE_TERNARY_RHS:
|
|
code = gimple_assign_rhs_code (stmt);
|
|
op_type = TREE_CODE_LENGTH (code);
|
|
gcc_assert (op_type == ternary_op);
|
|
ops[0] = gimple_assign_rhs1 (stmt);
|
|
ops[1] = gimple_assign_rhs2 (stmt);
|
|
ops[2] = gimple_assign_rhs3 (stmt);
|
|
break;
|
|
|
|
case GIMPLE_UNARY_RHS:
|
|
return false;
|
|
|
|
default:
|
|
gcc_unreachable ();
|
|
}
|
|
/* The default is that the reduction variable is the last in statement. */
|
|
int reduc_index = op_type - 1;
|
|
|
|
if (code == COND_EXPR && slp_node)
|
|
return false;
|
|
|
|
scalar_dest = gimple_assign_lhs (stmt);
|
|
scalar_type = TREE_TYPE (scalar_dest);
|
|
if (!POINTER_TYPE_P (scalar_type) && !INTEGRAL_TYPE_P (scalar_type)
|
|
&& !SCALAR_FLOAT_TYPE_P (scalar_type))
|
|
return false;
|
|
|
|
/* Do not try to vectorize bit-precision reductions. */
|
|
if ((TYPE_PRECISION (scalar_type)
|
|
!= GET_MODE_PRECISION (TYPE_MODE (scalar_type))))
|
|
return false;
|
|
|
|
/* All uses but the last are expected to be defined in the loop.
|
|
The last use is the reduction variable. In case of nested cycle this
|
|
assumption is not true: we use reduc_index to record the index of the
|
|
reduction variable. */
|
|
for (i = 0; i < op_type - 1; i++)
|
|
{
|
|
/* The condition of COND_EXPR is checked in vectorizable_condition(). */
|
|
if (i == 0 && code == COND_EXPR)
|
|
continue;
|
|
|
|
is_simple_use = vect_is_simple_use_1 (ops[i], stmt, loop_vinfo, NULL,
|
|
&def_stmt, &def, &dt, &tem);
|
|
if (!vectype_in)
|
|
vectype_in = tem;
|
|
gcc_assert (is_simple_use);
|
|
|
|
if (dt != vect_internal_def
|
|
&& dt != vect_external_def
|
|
&& dt != vect_constant_def
|
|
&& dt != vect_induction_def
|
|
&& !(dt == vect_nested_cycle && nested_cycle))
|
|
return false;
|
|
|
|
if (dt == vect_nested_cycle)
|
|
{
|
|
found_nested_cycle_def = true;
|
|
reduc_def_stmt = def_stmt;
|
|
reduc_index = i;
|
|
}
|
|
}
|
|
|
|
is_simple_use = vect_is_simple_use_1 (ops[i], stmt, loop_vinfo, NULL,
|
|
&def_stmt, &def, &dt, &tem);
|
|
if (!vectype_in)
|
|
vectype_in = tem;
|
|
gcc_assert (is_simple_use);
|
|
if (!found_nested_cycle_def)
|
|
reduc_def_stmt = def_stmt;
|
|
|
|
if (reduc_def_stmt && gimple_code (reduc_def_stmt) != GIMPLE_PHI)
|
|
return false;
|
|
|
|
if (!(dt == vect_reduction_def
|
|
|| dt == vect_nested_cycle
|
|
|| ((dt == vect_internal_def || dt == vect_external_def
|
|
|| dt == vect_constant_def || dt == vect_induction_def)
|
|
&& nested_cycle && found_nested_cycle_def)))
|
|
{
|
|
/* For pattern recognized stmts, orig_stmt might be a reduction,
|
|
but some helper statements for the pattern might not, or
|
|
might be COND_EXPRs with reduction uses in the condition. */
|
|
gcc_assert (orig_stmt);
|
|
return false;
|
|
}
|
|
|
|
gimple tmp = vect_is_simple_reduction (loop_vinfo, reduc_def_stmt,
|
|
!nested_cycle, &dummy, false);
|
|
if (orig_stmt)
|
|
gcc_assert (tmp == orig_stmt
|
|
|| GROUP_FIRST_ELEMENT (vinfo_for_stmt (tmp)) == orig_stmt);
|
|
else
|
|
/* We changed STMT to be the first stmt in reduction chain, hence we
|
|
check that in this case the first element in the chain is STMT. */
|
|
gcc_assert (stmt == tmp
|
|
|| GROUP_FIRST_ELEMENT (vinfo_for_stmt (tmp)) == stmt);
|
|
|
|
if (STMT_VINFO_LIVE_P (vinfo_for_stmt (reduc_def_stmt)))
|
|
return false;
|
|
|
|
if (slp_node || PURE_SLP_STMT (stmt_info))
|
|
ncopies = 1;
|
|
else
|
|
ncopies = (LOOP_VINFO_VECT_FACTOR (loop_vinfo)
|
|
/ TYPE_VECTOR_SUBPARTS (vectype_in));
|
|
|
|
gcc_assert (ncopies >= 1);
|
|
|
|
vec_mode = TYPE_MODE (vectype_in);
|
|
|
|
if (code == COND_EXPR)
|
|
{
|
|
if (!vectorizable_condition (stmt, gsi, NULL, ops[reduc_index], 0, NULL))
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"unsupported condition in reduction\n");
|
|
|
|
return false;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* 4. Supportable by target? */
|
|
|
|
if (code == LSHIFT_EXPR || code == RSHIFT_EXPR
|
|
|| code == LROTATE_EXPR || code == RROTATE_EXPR)
|
|
{
|
|
/* Shifts and rotates are only supported by vectorizable_shifts,
|
|
not vectorizable_reduction. */
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"unsupported shift or rotation.\n");
|
|
return false;
|
|
}
|
|
|
|
/* 4.1. check support for the operation in the loop */
|
|
optab = optab_for_tree_code (code, vectype_in, optab_default);
|
|
if (!optab)
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"no optab.\n");
|
|
|
|
return false;
|
|
}
|
|
|
|
if (optab_handler (optab, vec_mode) == CODE_FOR_nothing)
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf (MSG_NOTE, "op not supported by target.\n");
|
|
|
|
if (GET_MODE_SIZE (vec_mode) != UNITS_PER_WORD
|
|
|| LOOP_VINFO_VECT_FACTOR (loop_vinfo)
|
|
< vect_min_worthwhile_factor (code))
|
|
return false;
|
|
|
|
if (dump_enabled_p ())
|
|
dump_printf (MSG_NOTE, "proceeding using word mode.\n");
|
|
}
|
|
|
|
/* Worthwhile without SIMD support? */
|
|
if (!VECTOR_MODE_P (TYPE_MODE (vectype_in))
|
|
&& LOOP_VINFO_VECT_FACTOR (loop_vinfo)
|
|
< vect_min_worthwhile_factor (code))
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"not worthwhile without SIMD support.\n");
|
|
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/* 4.2. Check support for the epilog operation.
|
|
|
|
If STMT represents a reduction pattern, then the type of the
|
|
reduction variable may be different than the type of the rest
|
|
of the arguments. For example, consider the case of accumulation
|
|
of shorts into an int accumulator; The original code:
|
|
S1: int_a = (int) short_a;
|
|
orig_stmt-> S2: int_acc = plus <int_a ,int_acc>;
|
|
|
|
was replaced with:
|
|
STMT: int_acc = widen_sum <short_a, int_acc>
|
|
|
|
This means that:
|
|
1. The tree-code that is used to create the vector operation in the
|
|
epilog code (that reduces the partial results) is not the
|
|
tree-code of STMT, but is rather the tree-code of the original
|
|
stmt from the pattern that STMT is replacing. I.e, in the example
|
|
above we want to use 'widen_sum' in the loop, but 'plus' in the
|
|
epilog.
|
|
2. The type (mode) we use to check available target support
|
|
for the vector operation to be created in the *epilog*, is
|
|
determined by the type of the reduction variable (in the example
|
|
above we'd check this: optab_handler (plus_optab, vect_int_mode])).
|
|
However the type (mode) we use to check available target support
|
|
for the vector operation to be created *inside the loop*, is
|
|
determined by the type of the other arguments to STMT (in the
|
|
example we'd check this: optab_handler (widen_sum_optab,
|
|
vect_short_mode)).
|
|
|
|
This is contrary to "regular" reductions, in which the types of all
|
|
the arguments are the same as the type of the reduction variable.
|
|
For "regular" reductions we can therefore use the same vector type
|
|
(and also the same tree-code) when generating the epilog code and
|
|
when generating the code inside the loop. */
|
|
|
|
if (orig_stmt)
|
|
{
|
|
/* This is a reduction pattern: get the vectype from the type of the
|
|
reduction variable, and get the tree-code from orig_stmt. */
|
|
orig_code = gimple_assign_rhs_code (orig_stmt);
|
|
gcc_assert (vectype_out);
|
|
vec_mode = TYPE_MODE (vectype_out);
|
|
}
|
|
else
|
|
{
|
|
/* Regular reduction: use the same vectype and tree-code as used for
|
|
the vector code inside the loop can be used for the epilog code. */
|
|
orig_code = code;
|
|
}
|
|
|
|
if (nested_cycle)
|
|
{
|
|
def_bb = gimple_bb (reduc_def_stmt);
|
|
def_stmt_loop = def_bb->loop_father;
|
|
def_arg = PHI_ARG_DEF_FROM_EDGE (reduc_def_stmt,
|
|
loop_preheader_edge (def_stmt_loop));
|
|
if (TREE_CODE (def_arg) == SSA_NAME
|
|
&& (def_arg_stmt = SSA_NAME_DEF_STMT (def_arg))
|
|
&& gimple_code (def_arg_stmt) == GIMPLE_PHI
|
|
&& flow_bb_inside_loop_p (outer_loop, gimple_bb (def_arg_stmt))
|
|
&& vinfo_for_stmt (def_arg_stmt)
|
|
&& STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_arg_stmt))
|
|
== vect_double_reduction_def)
|
|
double_reduc = true;
|
|
}
|
|
|
|
epilog_reduc_code = ERROR_MARK;
|
|
if (reduction_code_for_scalar_code (orig_code, &epilog_reduc_code))
|
|
{
|
|
reduc_optab = optab_for_tree_code (epilog_reduc_code, vectype_out,
|
|
optab_default);
|
|
if (!reduc_optab)
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"no optab for reduction.\n");
|
|
|
|
epilog_reduc_code = ERROR_MARK;
|
|
}
|
|
else if (optab_handler (reduc_optab, vec_mode) == CODE_FOR_nothing)
|
|
{
|
|
optab = scalar_reduc_to_vector (reduc_optab, vectype_out);
|
|
if (optab_handler (optab, vec_mode) == CODE_FOR_nothing)
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"reduc op not supported by target.\n");
|
|
|
|
epilog_reduc_code = ERROR_MARK;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (!nested_cycle || double_reduc)
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"no reduc code for scalar code.\n");
|
|
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (double_reduc && ncopies > 1)
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"multiple types in double reduction\n");
|
|
|
|
return false;
|
|
}
|
|
|
|
/* In case of widenning multiplication by a constant, we update the type
|
|
of the constant to be the type of the other operand. We check that the
|
|
constant fits the type in the pattern recognition pass. */
|
|
if (code == DOT_PROD_EXPR
|
|
&& !types_compatible_p (TREE_TYPE (ops[0]), TREE_TYPE (ops[1])))
|
|
{
|
|
if (TREE_CODE (ops[0]) == INTEGER_CST)
|
|
ops[0] = fold_convert (TREE_TYPE (ops[1]), ops[0]);
|
|
else if (TREE_CODE (ops[1]) == INTEGER_CST)
|
|
ops[1] = fold_convert (TREE_TYPE (ops[0]), ops[1]);
|
|
else
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"invalid types in dot-prod\n");
|
|
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (!vec_stmt) /* transformation not required. */
|
|
{
|
|
if (first_p
|
|
&& !vect_model_reduction_cost (stmt_info, epilog_reduc_code, ncopies,
|
|
reduc_index))
|
|
return false;
|
|
STMT_VINFO_TYPE (stmt_info) = reduc_vec_info_type;
|
|
return true;
|
|
}
|
|
|
|
/** Transform. **/
|
|
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location, "transform reduction.\n");
|
|
|
|
/* FORNOW: Multiple types are not supported for condition. */
|
|
if (code == COND_EXPR)
|
|
gcc_assert (ncopies == 1);
|
|
|
|
/* Create the destination vector */
|
|
vec_dest = vect_create_destination_var (scalar_dest, vectype_out);
|
|
|
|
/* In case the vectorization factor (VF) is bigger than the number
|
|
of elements that we can fit in a vectype (nunits), we have to generate
|
|
more than one vector stmt - i.e - we need to "unroll" the
|
|
vector stmt by a factor VF/nunits. For more details see documentation
|
|
in vectorizable_operation. */
|
|
|
|
/* If the reduction is used in an outer loop we need to generate
|
|
VF intermediate results, like so (e.g. for ncopies=2):
|
|
r0 = phi (init, r0)
|
|
r1 = phi (init, r1)
|
|
r0 = x0 + r0;
|
|
r1 = x1 + r1;
|
|
(i.e. we generate VF results in 2 registers).
|
|
In this case we have a separate def-use cycle for each copy, and therefore
|
|
for each copy we get the vector def for the reduction variable from the
|
|
respective phi node created for this copy.
|
|
|
|
Otherwise (the reduction is unused in the loop nest), we can combine
|
|
together intermediate results, like so (e.g. for ncopies=2):
|
|
r = phi (init, r)
|
|
r = x0 + r;
|
|
r = x1 + r;
|
|
(i.e. we generate VF/2 results in a single register).
|
|
In this case for each copy we get the vector def for the reduction variable
|
|
from the vectorized reduction operation generated in the previous iteration.
|
|
*/
|
|
|
|
if (STMT_VINFO_RELEVANT (stmt_info) == vect_unused_in_scope)
|
|
{
|
|
single_defuse_cycle = true;
|
|
epilog_copies = 1;
|
|
}
|
|
else
|
|
epilog_copies = ncopies;
|
|
|
|
prev_stmt_info = NULL;
|
|
prev_phi_info = NULL;
|
|
if (slp_node)
|
|
vec_num = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);
|
|
else
|
|
{
|
|
vec_num = 1;
|
|
vec_oprnds0.create (1);
|
|
if (op_type == ternary_op)
|
|
vec_oprnds1.create (1);
|
|
}
|
|
|
|
phis.create (vec_num);
|
|
vect_defs.create (vec_num);
|
|
if (!slp_node)
|
|
vect_defs.quick_push (NULL_TREE);
|
|
|
|
for (j = 0; j < ncopies; j++)
|
|
{
|
|
if (j == 0 || !single_defuse_cycle)
|
|
{
|
|
for (i = 0; i < vec_num; i++)
|
|
{
|
|
/* Create the reduction-phi that defines the reduction
|
|
operand. */
|
|
new_phi = create_phi_node (vec_dest, loop->header);
|
|
set_vinfo_for_stmt (new_phi,
|
|
new_stmt_vec_info (new_phi, loop_vinfo,
|
|
NULL));
|
|
if (j == 0 || slp_node)
|
|
phis.quick_push (new_phi);
|
|
}
|
|
}
|
|
|
|
if (code == COND_EXPR)
|
|
{
|
|
gcc_assert (!slp_node);
|
|
vectorizable_condition (stmt, gsi, vec_stmt,
|
|
PHI_RESULT (phis[0]),
|
|
reduc_index, NULL);
|
|
/* Multiple types are not supported for condition. */
|
|
break;
|
|
}
|
|
|
|
/* Handle uses. */
|
|
if (j == 0)
|
|
{
|
|
op0 = ops[!reduc_index];
|
|
if (op_type == ternary_op)
|
|
{
|
|
if (reduc_index == 0)
|
|
op1 = ops[2];
|
|
else
|
|
op1 = ops[1];
|
|
}
|
|
|
|
if (slp_node)
|
|
vect_get_vec_defs (op0, op1, stmt, &vec_oprnds0, &vec_oprnds1,
|
|
slp_node, -1);
|
|
else
|
|
{
|
|
loop_vec_def0 = vect_get_vec_def_for_operand (ops[!reduc_index],
|
|
stmt, NULL);
|
|
vec_oprnds0.quick_push (loop_vec_def0);
|
|
if (op_type == ternary_op)
|
|
{
|
|
loop_vec_def1 = vect_get_vec_def_for_operand (op1, stmt,
|
|
NULL);
|
|
vec_oprnds1.quick_push (loop_vec_def1);
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (!slp_node)
|
|
{
|
|
enum vect_def_type dt;
|
|
gimple dummy_stmt;
|
|
tree dummy;
|
|
|
|
vect_is_simple_use (ops[!reduc_index], stmt, loop_vinfo, NULL,
|
|
&dummy_stmt, &dummy, &dt);
|
|
loop_vec_def0 = vect_get_vec_def_for_stmt_copy (dt,
|
|
loop_vec_def0);
|
|
vec_oprnds0[0] = loop_vec_def0;
|
|
if (op_type == ternary_op)
|
|
{
|
|
vect_is_simple_use (op1, stmt, loop_vinfo, NULL, &dummy_stmt,
|
|
&dummy, &dt);
|
|
loop_vec_def1 = vect_get_vec_def_for_stmt_copy (dt,
|
|
loop_vec_def1);
|
|
vec_oprnds1[0] = loop_vec_def1;
|
|
}
|
|
}
|
|
|
|
if (single_defuse_cycle)
|
|
reduc_def = gimple_assign_lhs (new_stmt);
|
|
|
|
STMT_VINFO_RELATED_STMT (prev_phi_info) = new_phi;
|
|
}
|
|
|
|
FOR_EACH_VEC_ELT (vec_oprnds0, i, def0)
|
|
{
|
|
if (slp_node)
|
|
reduc_def = PHI_RESULT (phis[i]);
|
|
else
|
|
{
|
|
if (!single_defuse_cycle || j == 0)
|
|
reduc_def = PHI_RESULT (new_phi);
|
|
}
|
|
|
|
def1 = ((op_type == ternary_op)
|
|
? vec_oprnds1[i] : NULL);
|
|
if (op_type == binary_op)
|
|
{
|
|
if (reduc_index == 0)
|
|
expr = build2 (code, vectype_out, reduc_def, def0);
|
|
else
|
|
expr = build2 (code, vectype_out, def0, reduc_def);
|
|
}
|
|
else
|
|
{
|
|
if (reduc_index == 0)
|
|
expr = build3 (code, vectype_out, reduc_def, def0, def1);
|
|
else
|
|
{
|
|
if (reduc_index == 1)
|
|
expr = build3 (code, vectype_out, def0, reduc_def, def1);
|
|
else
|
|
expr = build3 (code, vectype_out, def0, def1, reduc_def);
|
|
}
|
|
}
|
|
|
|
new_stmt = gimple_build_assign (vec_dest, expr);
|
|
new_temp = make_ssa_name (vec_dest, new_stmt);
|
|
gimple_assign_set_lhs (new_stmt, new_temp);
|
|
vect_finish_stmt_generation (stmt, new_stmt, gsi);
|
|
|
|
if (slp_node)
|
|
{
|
|
SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt);
|
|
vect_defs.quick_push (new_temp);
|
|
}
|
|
else
|
|
vect_defs[0] = new_temp;
|
|
}
|
|
|
|
if (slp_node)
|
|
continue;
|
|
|
|
if (j == 0)
|
|
STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
|
|
else
|
|
STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
|
|
|
|
prev_stmt_info = vinfo_for_stmt (new_stmt);
|
|
prev_phi_info = vinfo_for_stmt (new_phi);
|
|
}
|
|
|
|
/* Finalize the reduction-phi (set its arguments) and create the
|
|
epilog reduction code. */
|
|
if ((!single_defuse_cycle || code == COND_EXPR) && !slp_node)
|
|
{
|
|
new_temp = gimple_assign_lhs (*vec_stmt);
|
|
vect_defs[0] = new_temp;
|
|
}
|
|
|
|
vect_create_epilog_for_reduction (vect_defs, stmt, epilog_copies,
|
|
epilog_reduc_code, phis, reduc_index,
|
|
double_reduc, slp_node);
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Function vect_min_worthwhile_factor.
|
|
|
|
For a loop where we could vectorize the operation indicated by CODE,
|
|
return the minimum vectorization factor that makes it worthwhile
|
|
to use generic vectors. */
|
|
int
|
|
vect_min_worthwhile_factor (enum tree_code code)
|
|
{
|
|
switch (code)
|
|
{
|
|
case PLUS_EXPR:
|
|
case MINUS_EXPR:
|
|
case NEGATE_EXPR:
|
|
return 4;
|
|
|
|
case BIT_AND_EXPR:
|
|
case BIT_IOR_EXPR:
|
|
case BIT_XOR_EXPR:
|
|
case BIT_NOT_EXPR:
|
|
return 2;
|
|
|
|
default:
|
|
return INT_MAX;
|
|
}
|
|
}
|
|
|
|
|
|
/* Function vectorizable_induction
|
|
|
|
Check if PHI performs an induction computation that can be vectorized.
|
|
If VEC_STMT is also passed, vectorize the induction PHI: create a vectorized
|
|
phi to replace it, put it in VEC_STMT, and add it to the same basic block.
|
|
Return FALSE if not a vectorizable STMT, TRUE otherwise. */
|
|
|
|
bool
|
|
vectorizable_induction (gimple phi, gimple_stmt_iterator *gsi ATTRIBUTE_UNUSED,
|
|
gimple *vec_stmt)
|
|
{
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (phi);
|
|
tree vectype = STMT_VINFO_VECTYPE (stmt_info);
|
|
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
|
|
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
|
int nunits = TYPE_VECTOR_SUBPARTS (vectype);
|
|
int ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits;
|
|
tree vec_def;
|
|
|
|
gcc_assert (ncopies >= 1);
|
|
/* FORNOW. These restrictions should be relaxed. */
|
|
if (nested_in_vect_loop_p (loop, phi))
|
|
{
|
|
imm_use_iterator imm_iter;
|
|
use_operand_p use_p;
|
|
gimple exit_phi;
|
|
edge latch_e;
|
|
tree loop_arg;
|
|
|
|
if (ncopies > 1)
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"multiple types in nested loop.\n");
|
|
return false;
|
|
}
|
|
|
|
exit_phi = NULL;
|
|
latch_e = loop_latch_edge (loop->inner);
|
|
loop_arg = PHI_ARG_DEF_FROM_EDGE (phi, latch_e);
|
|
FOR_EACH_IMM_USE_FAST (use_p, imm_iter, loop_arg)
|
|
{
|
|
gimple use_stmt = USE_STMT (use_p);
|
|
if (is_gimple_debug (use_stmt))
|
|
continue;
|
|
|
|
if (!flow_bb_inside_loop_p (loop->inner, gimple_bb (use_stmt)))
|
|
{
|
|
exit_phi = use_stmt;
|
|
break;
|
|
}
|
|
}
|
|
if (exit_phi)
|
|
{
|
|
stmt_vec_info exit_phi_vinfo = vinfo_for_stmt (exit_phi);
|
|
if (!(STMT_VINFO_RELEVANT_P (exit_phi_vinfo)
|
|
&& !STMT_VINFO_LIVE_P (exit_phi_vinfo)))
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"inner-loop induction only used outside "
|
|
"of the outer vectorized loop.\n");
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!STMT_VINFO_RELEVANT_P (stmt_info))
|
|
return false;
|
|
|
|
/* FORNOW: SLP not supported. */
|
|
if (STMT_SLP_TYPE (stmt_info))
|
|
return false;
|
|
|
|
gcc_assert (STMT_VINFO_DEF_TYPE (stmt_info) == vect_induction_def);
|
|
|
|
if (gimple_code (phi) != GIMPLE_PHI)
|
|
return false;
|
|
|
|
if (!vec_stmt) /* transformation not required. */
|
|
{
|
|
STMT_VINFO_TYPE (stmt_info) = induc_vec_info_type;
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"=== vectorizable_induction ===\n");
|
|
vect_model_induction_cost (stmt_info, ncopies);
|
|
return true;
|
|
}
|
|
|
|
/** Transform. **/
|
|
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location, "transform induction phi.\n");
|
|
|
|
vec_def = get_initial_def_for_induction (phi);
|
|
*vec_stmt = SSA_NAME_DEF_STMT (vec_def);
|
|
return true;
|
|
}
|
|
|
|
/* Function vectorizable_live_operation.
|
|
|
|
STMT computes a value that is used outside the loop. Check if
|
|
it can be supported. */
|
|
|
|
bool
|
|
vectorizable_live_operation (gimple stmt,
|
|
gimple_stmt_iterator *gsi ATTRIBUTE_UNUSED,
|
|
gimple *vec_stmt)
|
|
{
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
|
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
|
|
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
|
int i;
|
|
int op_type;
|
|
tree op;
|
|
tree def;
|
|
gimple def_stmt;
|
|
enum vect_def_type dt;
|
|
enum tree_code code;
|
|
enum gimple_rhs_class rhs_class;
|
|
|
|
gcc_assert (STMT_VINFO_LIVE_P (stmt_info));
|
|
|
|
if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def)
|
|
return false;
|
|
|
|
if (!is_gimple_assign (stmt))
|
|
{
|
|
if (gimple_call_internal_p (stmt)
|
|
&& gimple_call_internal_fn (stmt) == IFN_GOMP_SIMD_LANE
|
|
&& gimple_call_lhs (stmt)
|
|
&& loop->simduid
|
|
&& TREE_CODE (gimple_call_arg (stmt, 0)) == SSA_NAME
|
|
&& loop->simduid
|
|
== SSA_NAME_VAR (gimple_call_arg (stmt, 0)))
|
|
{
|
|
edge e = single_exit (loop);
|
|
basic_block merge_bb = e->dest;
|
|
imm_use_iterator imm_iter;
|
|
use_operand_p use_p;
|
|
tree lhs = gimple_call_lhs (stmt);
|
|
|
|
FOR_EACH_IMM_USE_FAST (use_p, imm_iter, lhs)
|
|
{
|
|
gimple use_stmt = USE_STMT (use_p);
|
|
if (gimple_code (use_stmt) == GIMPLE_PHI
|
|
&& gimple_bb (use_stmt) == merge_bb)
|
|
{
|
|
if (vec_stmt)
|
|
{
|
|
tree vfm1
|
|
= build_int_cst (unsigned_type_node,
|
|
loop_vinfo->vectorization_factor - 1);
|
|
SET_PHI_ARG_DEF (use_stmt, e->dest_idx, vfm1);
|
|
}
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
if (TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
|
|
return false;
|
|
|
|
/* FORNOW. CHECKME. */
|
|
if (nested_in_vect_loop_p (loop, stmt))
|
|
return false;
|
|
|
|
code = gimple_assign_rhs_code (stmt);
|
|
op_type = TREE_CODE_LENGTH (code);
|
|
rhs_class = get_gimple_rhs_class (code);
|
|
gcc_assert (rhs_class != GIMPLE_UNARY_RHS || op_type == unary_op);
|
|
gcc_assert (rhs_class != GIMPLE_BINARY_RHS || op_type == binary_op);
|
|
|
|
/* FORNOW: support only if all uses are invariant. This means
|
|
that the scalar operations can remain in place, unvectorized.
|
|
The original last scalar value that they compute will be used. */
|
|
|
|
for (i = 0; i < op_type; i++)
|
|
{
|
|
if (rhs_class == GIMPLE_SINGLE_RHS)
|
|
op = TREE_OPERAND (gimple_op (stmt, 1), i);
|
|
else
|
|
op = gimple_op (stmt, i + 1);
|
|
if (op
|
|
&& !vect_is_simple_use (op, stmt, loop_vinfo, NULL, &def_stmt, &def,
|
|
&dt))
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"use not simple.\n");
|
|
return false;
|
|
}
|
|
|
|
if (dt != vect_external_def && dt != vect_constant_def)
|
|
return false;
|
|
}
|
|
|
|
/* No transformation is required for the cases we currently support. */
|
|
return true;
|
|
}
|
|
|
|
/* Kill any debug uses outside LOOP of SSA names defined in STMT. */
|
|
|
|
static void
|
|
vect_loop_kill_debug_uses (struct loop *loop, gimple stmt)
|
|
{
|
|
ssa_op_iter op_iter;
|
|
imm_use_iterator imm_iter;
|
|
def_operand_p def_p;
|
|
gimple ustmt;
|
|
|
|
FOR_EACH_PHI_OR_STMT_DEF (def_p, stmt, op_iter, SSA_OP_DEF)
|
|
{
|
|
FOR_EACH_IMM_USE_STMT (ustmt, imm_iter, DEF_FROM_PTR (def_p))
|
|
{
|
|
basic_block bb;
|
|
|
|
if (!is_gimple_debug (ustmt))
|
|
continue;
|
|
|
|
bb = gimple_bb (ustmt);
|
|
|
|
if (!flow_bb_inside_loop_p (loop, bb))
|
|
{
|
|
if (gimple_debug_bind_p (ustmt))
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"killing debug use\n");
|
|
|
|
gimple_debug_bind_reset_value (ustmt);
|
|
update_stmt (ustmt);
|
|
}
|
|
else
|
|
gcc_unreachable ();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/* This function builds ni_name = number of iterations. Statements
|
|
are emitted on the loop preheader edge. */
|
|
|
|
static tree
|
|
vect_build_loop_niters (loop_vec_info loop_vinfo)
|
|
{
|
|
tree ni = unshare_expr (LOOP_VINFO_NITERS (loop_vinfo));
|
|
if (TREE_CODE (ni) == INTEGER_CST)
|
|
return ni;
|
|
else
|
|
{
|
|
tree ni_name, var;
|
|
gimple_seq stmts = NULL;
|
|
edge pe = loop_preheader_edge (LOOP_VINFO_LOOP (loop_vinfo));
|
|
|
|
var = create_tmp_var (TREE_TYPE (ni), "niters");
|
|
ni_name = force_gimple_operand (ni, &stmts, false, var);
|
|
if (stmts)
|
|
gsi_insert_seq_on_edge_immediate (pe, stmts);
|
|
|
|
return ni_name;
|
|
}
|
|
}
|
|
|
|
|
|
/* This function generates the following statements:
|
|
|
|
ni_name = number of iterations loop executes
|
|
ratio = ni_name / vf
|
|
ratio_mult_vf_name = ratio * vf
|
|
|
|
and places them on the loop preheader edge. */
|
|
|
|
static void
|
|
vect_generate_tmps_on_preheader (loop_vec_info loop_vinfo,
|
|
tree ni_name,
|
|
tree *ratio_mult_vf_name_ptr,
|
|
tree *ratio_name_ptr)
|
|
{
|
|
tree ni_minus_gap_name;
|
|
tree var;
|
|
tree ratio_name;
|
|
tree ratio_mult_vf_name;
|
|
int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
|
|
edge pe = loop_preheader_edge (LOOP_VINFO_LOOP (loop_vinfo));
|
|
tree log_vf;
|
|
|
|
log_vf = build_int_cst (TREE_TYPE (ni_name), exact_log2 (vf));
|
|
|
|
/* If epilogue loop is required because of data accesses with gaps, we
|
|
subtract one iteration from the total number of iterations here for
|
|
correct calculation of RATIO. */
|
|
if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo))
|
|
{
|
|
ni_minus_gap_name = fold_build2 (MINUS_EXPR, TREE_TYPE (ni_name),
|
|
ni_name,
|
|
build_one_cst (TREE_TYPE (ni_name)));
|
|
if (!is_gimple_val (ni_minus_gap_name))
|
|
{
|
|
var = create_tmp_var (TREE_TYPE (ni_name), "ni_gap");
|
|
gimple stmts = NULL;
|
|
ni_minus_gap_name = force_gimple_operand (ni_minus_gap_name, &stmts,
|
|
true, var);
|
|
gsi_insert_seq_on_edge_immediate (pe, stmts);
|
|
}
|
|
}
|
|
else
|
|
ni_minus_gap_name = ni_name;
|
|
|
|
/* Create: ratio = ni >> log2(vf) */
|
|
/* ??? As we have ni == number of latch executions + 1, ni could
|
|
have overflown to zero. So avoid computing ratio based on ni
|
|
but compute it using the fact that we know ratio will be at least
|
|
one, thus via (ni - vf) >> log2(vf) + 1. */
|
|
ratio_name
|
|
= fold_build2 (PLUS_EXPR, TREE_TYPE (ni_name),
|
|
fold_build2 (RSHIFT_EXPR, TREE_TYPE (ni_name),
|
|
fold_build2 (MINUS_EXPR, TREE_TYPE (ni_name),
|
|
ni_minus_gap_name,
|
|
build_int_cst
|
|
(TREE_TYPE (ni_name), vf)),
|
|
log_vf),
|
|
build_int_cst (TREE_TYPE (ni_name), 1));
|
|
if (!is_gimple_val (ratio_name))
|
|
{
|
|
var = create_tmp_var (TREE_TYPE (ni_name), "bnd");
|
|
gimple stmts = NULL;
|
|
ratio_name = force_gimple_operand (ratio_name, &stmts, true, var);
|
|
gsi_insert_seq_on_edge_immediate (pe, stmts);
|
|
}
|
|
*ratio_name_ptr = ratio_name;
|
|
|
|
/* Create: ratio_mult_vf = ratio << log2 (vf). */
|
|
|
|
if (ratio_mult_vf_name_ptr)
|
|
{
|
|
ratio_mult_vf_name = fold_build2 (LSHIFT_EXPR, TREE_TYPE (ratio_name),
|
|
ratio_name, log_vf);
|
|
if (!is_gimple_val (ratio_mult_vf_name))
|
|
{
|
|
var = create_tmp_var (TREE_TYPE (ni_name), "ratio_mult_vf");
|
|
gimple stmts = NULL;
|
|
ratio_mult_vf_name = force_gimple_operand (ratio_mult_vf_name, &stmts,
|
|
true, var);
|
|
gsi_insert_seq_on_edge_immediate (pe, stmts);
|
|
}
|
|
*ratio_mult_vf_name_ptr = ratio_mult_vf_name;
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
|
|
/* Function vect_transform_loop.
|
|
|
|
The analysis phase has determined that the loop is vectorizable.
|
|
Vectorize the loop - created vectorized stmts to replace the scalar
|
|
stmts in the loop, and update the loop exit condition. */
|
|
|
|
void
|
|
vect_transform_loop (loop_vec_info loop_vinfo)
|
|
{
|
|
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
|
basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
|
|
int nbbs = loop->num_nodes;
|
|
int i;
|
|
tree ratio = NULL;
|
|
int vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
|
|
bool grouped_store;
|
|
bool slp_scheduled = false;
|
|
gimple stmt, pattern_stmt;
|
|
gimple_seq pattern_def_seq = NULL;
|
|
gimple_stmt_iterator pattern_def_si = gsi_none ();
|
|
bool transform_pattern_stmt = false;
|
|
bool check_profitability = false;
|
|
int th;
|
|
/* Record number of iterations before we started tampering with the profile. */
|
|
gcov_type expected_iterations = expected_loop_iterations_unbounded (loop);
|
|
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location, "=== vec_transform_loop ===\n");
|
|
|
|
/* If profile is inprecise, we have chance to fix it up. */
|
|
if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
|
|
expected_iterations = LOOP_VINFO_INT_NITERS (loop_vinfo);
|
|
|
|
/* Use the more conservative vectorization threshold. If the number
|
|
of iterations is constant assume the cost check has been performed
|
|
by our caller. If the threshold makes all loops profitable that
|
|
run at least the vectorization factor number of times checking
|
|
is pointless, too. */
|
|
th = LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo);
|
|
if (th >= LOOP_VINFO_VECT_FACTOR (loop_vinfo) - 1
|
|
&& !LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"Profitability threshold is %d loop iterations.\n",
|
|
th);
|
|
check_profitability = true;
|
|
}
|
|
|
|
/* Version the loop first, if required, so the profitability check
|
|
comes first. */
|
|
|
|
if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo)
|
|
|| LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
|
|
{
|
|
vect_loop_versioning (loop_vinfo, th, check_profitability);
|
|
check_profitability = false;
|
|
}
|
|
|
|
tree ni_name = vect_build_loop_niters (loop_vinfo);
|
|
LOOP_VINFO_NITERS_UNCHANGED (loop_vinfo) = ni_name;
|
|
|
|
/* Peel the loop if there are data refs with unknown alignment.
|
|
Only one data ref with unknown store is allowed. */
|
|
|
|
if (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo))
|
|
{
|
|
vect_do_peeling_for_alignment (loop_vinfo, ni_name,
|
|
th, check_profitability);
|
|
check_profitability = false;
|
|
/* The above adjusts LOOP_VINFO_NITERS, so cause ni_name to
|
|
be re-computed. */
|
|
ni_name = NULL_TREE;
|
|
}
|
|
|
|
/* If the loop has a symbolic number of iterations 'n' (i.e. it's not a
|
|
compile time constant), or it is a constant that doesn't divide by the
|
|
vectorization factor, then an epilog loop needs to be created.
|
|
We therefore duplicate the loop: the original loop will be vectorized,
|
|
and will compute the first (n/VF) iterations. The second copy of the loop
|
|
will remain scalar and will compute the remaining (n%VF) iterations.
|
|
(VF is the vectorization factor). */
|
|
|
|
if (LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo)
|
|
|| LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo))
|
|
{
|
|
tree ratio_mult_vf;
|
|
if (!ni_name)
|
|
ni_name = vect_build_loop_niters (loop_vinfo);
|
|
vect_generate_tmps_on_preheader (loop_vinfo, ni_name, &ratio_mult_vf,
|
|
&ratio);
|
|
vect_do_peeling_for_loop_bound (loop_vinfo, ni_name, ratio_mult_vf,
|
|
th, check_profitability);
|
|
}
|
|
else if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
|
|
ratio = build_int_cst (TREE_TYPE (LOOP_VINFO_NITERS (loop_vinfo)),
|
|
LOOP_VINFO_INT_NITERS (loop_vinfo) / vectorization_factor);
|
|
else
|
|
{
|
|
if (!ni_name)
|
|
ni_name = vect_build_loop_niters (loop_vinfo);
|
|
vect_generate_tmps_on_preheader (loop_vinfo, ni_name, NULL, &ratio);
|
|
}
|
|
|
|
/* 1) Make sure the loop header has exactly two entries
|
|
2) Make sure we have a preheader basic block. */
|
|
|
|
gcc_assert (EDGE_COUNT (loop->header->preds) == 2);
|
|
|
|
split_edge (loop_preheader_edge (loop));
|
|
|
|
/* FORNOW: the vectorizer supports only loops which body consist
|
|
of one basic block (header + empty latch). When the vectorizer will
|
|
support more involved loop forms, the order by which the BBs are
|
|
traversed need to be reconsidered. */
|
|
|
|
for (i = 0; i < nbbs; i++)
|
|
{
|
|
basic_block bb = bbs[i];
|
|
stmt_vec_info stmt_info;
|
|
|
|
for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si);
|
|
gsi_next (&si))
|
|
{
|
|
gphi *phi = si.phi ();
|
|
if (dump_enabled_p ())
|
|
{
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"------>vectorizing phi: ");
|
|
dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
|
|
dump_printf (MSG_NOTE, "\n");
|
|
}
|
|
stmt_info = vinfo_for_stmt (phi);
|
|
if (!stmt_info)
|
|
continue;
|
|
|
|
if (MAY_HAVE_DEBUG_STMTS && !STMT_VINFO_LIVE_P (stmt_info))
|
|
vect_loop_kill_debug_uses (loop, phi);
|
|
|
|
if (!STMT_VINFO_RELEVANT_P (stmt_info)
|
|
&& !STMT_VINFO_LIVE_P (stmt_info))
|
|
continue;
|
|
|
|
if (STMT_VINFO_VECTYPE (stmt_info)
|
|
&& (TYPE_VECTOR_SUBPARTS (STMT_VINFO_VECTYPE (stmt_info))
|
|
!= (unsigned HOST_WIDE_INT) vectorization_factor)
|
|
&& dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location, "multiple-types.\n");
|
|
|
|
if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_induction_def)
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location, "transform phi.\n");
|
|
vect_transform_stmt (phi, NULL, NULL, NULL, NULL);
|
|
}
|
|
}
|
|
|
|
pattern_stmt = NULL;
|
|
for (gimple_stmt_iterator si = gsi_start_bb (bb);
|
|
!gsi_end_p (si) || transform_pattern_stmt;)
|
|
{
|
|
bool is_store;
|
|
|
|
if (transform_pattern_stmt)
|
|
stmt = pattern_stmt;
|
|
else
|
|
{
|
|
stmt = gsi_stmt (si);
|
|
/* During vectorization remove existing clobber stmts. */
|
|
if (gimple_clobber_p (stmt))
|
|
{
|
|
unlink_stmt_vdef (stmt);
|
|
gsi_remove (&si, true);
|
|
release_defs (stmt);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
if (dump_enabled_p ())
|
|
{
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"------>vectorizing statement: ");
|
|
dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
|
|
dump_printf (MSG_NOTE, "\n");
|
|
}
|
|
|
|
stmt_info = vinfo_for_stmt (stmt);
|
|
|
|
/* vector stmts created in the outer-loop during vectorization of
|
|
stmts in an inner-loop may not have a stmt_info, and do not
|
|
need to be vectorized. */
|
|
if (!stmt_info)
|
|
{
|
|
gsi_next (&si);
|
|
continue;
|
|
}
|
|
|
|
if (MAY_HAVE_DEBUG_STMTS && !STMT_VINFO_LIVE_P (stmt_info))
|
|
vect_loop_kill_debug_uses (loop, stmt);
|
|
|
|
if (!STMT_VINFO_RELEVANT_P (stmt_info)
|
|
&& !STMT_VINFO_LIVE_P (stmt_info))
|
|
{
|
|
if (STMT_VINFO_IN_PATTERN_P (stmt_info)
|
|
&& (pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info))
|
|
&& (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt))
|
|
|| STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt))))
|
|
{
|
|
stmt = pattern_stmt;
|
|
stmt_info = vinfo_for_stmt (stmt);
|
|
}
|
|
else
|
|
{
|
|
gsi_next (&si);
|
|
continue;
|
|
}
|
|
}
|
|
else if (STMT_VINFO_IN_PATTERN_P (stmt_info)
|
|
&& (pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info))
|
|
&& (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt))
|
|
|| STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt))))
|
|
transform_pattern_stmt = true;
|
|
|
|
/* If pattern statement has def stmts, vectorize them too. */
|
|
if (is_pattern_stmt_p (stmt_info))
|
|
{
|
|
if (pattern_def_seq == NULL)
|
|
{
|
|
pattern_def_seq = STMT_VINFO_PATTERN_DEF_SEQ (stmt_info);
|
|
pattern_def_si = gsi_start (pattern_def_seq);
|
|
}
|
|
else if (!gsi_end_p (pattern_def_si))
|
|
gsi_next (&pattern_def_si);
|
|
if (pattern_def_seq != NULL)
|
|
{
|
|
gimple pattern_def_stmt = NULL;
|
|
stmt_vec_info pattern_def_stmt_info = NULL;
|
|
|
|
while (!gsi_end_p (pattern_def_si))
|
|
{
|
|
pattern_def_stmt = gsi_stmt (pattern_def_si);
|
|
pattern_def_stmt_info
|
|
= vinfo_for_stmt (pattern_def_stmt);
|
|
if (STMT_VINFO_RELEVANT_P (pattern_def_stmt_info)
|
|
|| STMT_VINFO_LIVE_P (pattern_def_stmt_info))
|
|
break;
|
|
gsi_next (&pattern_def_si);
|
|
}
|
|
|
|
if (!gsi_end_p (pattern_def_si))
|
|
{
|
|
if (dump_enabled_p ())
|
|
{
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"==> vectorizing pattern def "
|
|
"stmt: ");
|
|
dump_gimple_stmt (MSG_NOTE, TDF_SLIM,
|
|
pattern_def_stmt, 0);
|
|
dump_printf (MSG_NOTE, "\n");
|
|
}
|
|
|
|
stmt = pattern_def_stmt;
|
|
stmt_info = pattern_def_stmt_info;
|
|
}
|
|
else
|
|
{
|
|
pattern_def_si = gsi_none ();
|
|
transform_pattern_stmt = false;
|
|
}
|
|
}
|
|
else
|
|
transform_pattern_stmt = false;
|
|
}
|
|
|
|
if (STMT_VINFO_VECTYPE (stmt_info))
|
|
{
|
|
unsigned int nunits
|
|
= (unsigned int)
|
|
TYPE_VECTOR_SUBPARTS (STMT_VINFO_VECTYPE (stmt_info));
|
|
if (!STMT_SLP_TYPE (stmt_info)
|
|
&& nunits != (unsigned int) vectorization_factor
|
|
&& dump_enabled_p ())
|
|
/* For SLP VF is set according to unrolling factor, and not
|
|
to vector size, hence for SLP this print is not valid. */
|
|
dump_printf_loc (MSG_NOTE, vect_location, "multiple-types.\n");
|
|
}
|
|
|
|
/* SLP. Schedule all the SLP instances when the first SLP stmt is
|
|
reached. */
|
|
if (STMT_SLP_TYPE (stmt_info))
|
|
{
|
|
if (!slp_scheduled)
|
|
{
|
|
slp_scheduled = true;
|
|
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"=== scheduling SLP instances ===\n");
|
|
|
|
vect_schedule_slp (loop_vinfo, NULL);
|
|
}
|
|
|
|
/* Hybrid SLP stmts must be vectorized in addition to SLP. */
|
|
if (!vinfo_for_stmt (stmt) || PURE_SLP_STMT (stmt_info))
|
|
{
|
|
if (!transform_pattern_stmt && gsi_end_p (pattern_def_si))
|
|
{
|
|
pattern_def_seq = NULL;
|
|
gsi_next (&si);
|
|
}
|
|
continue;
|
|
}
|
|
}
|
|
|
|
/* -------- vectorize statement ------------ */
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location, "transform statement.\n");
|
|
|
|
grouped_store = false;
|
|
is_store = vect_transform_stmt (stmt, &si, &grouped_store, NULL, NULL);
|
|
if (is_store)
|
|
{
|
|
if (STMT_VINFO_GROUPED_ACCESS (stmt_info))
|
|
{
|
|
/* Interleaving. If IS_STORE is TRUE, the vectorization of the
|
|
interleaving chain was completed - free all the stores in
|
|
the chain. */
|
|
gsi_next (&si);
|
|
vect_remove_stores (GROUP_FIRST_ELEMENT (stmt_info));
|
|
}
|
|
else
|
|
{
|
|
/* Free the attached stmt_vec_info and remove the stmt. */
|
|
gimple store = gsi_stmt (si);
|
|
free_stmt_vec_info (store);
|
|
unlink_stmt_vdef (store);
|
|
gsi_remove (&si, true);
|
|
release_defs (store);
|
|
}
|
|
|
|
/* Stores can only appear at the end of pattern statements. */
|
|
gcc_assert (!transform_pattern_stmt);
|
|
pattern_def_seq = NULL;
|
|
}
|
|
else if (!transform_pattern_stmt && gsi_end_p (pattern_def_si))
|
|
{
|
|
pattern_def_seq = NULL;
|
|
gsi_next (&si);
|
|
}
|
|
} /* stmts in BB */
|
|
} /* BBs in loop */
|
|
|
|
slpeel_make_loop_iterate_ntimes (loop, ratio);
|
|
|
|
/* Reduce loop iterations by the vectorization factor. */
|
|
scale_loop_profile (loop, GCOV_COMPUTE_SCALE (1, vectorization_factor),
|
|
expected_iterations / vectorization_factor);
|
|
loop->nb_iterations_upper_bound
|
|
= wi::udiv_floor (loop->nb_iterations_upper_bound, vectorization_factor);
|
|
if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo)
|
|
&& loop->nb_iterations_upper_bound != 0)
|
|
loop->nb_iterations_upper_bound = loop->nb_iterations_upper_bound - 1;
|
|
if (loop->any_estimate)
|
|
{
|
|
loop->nb_iterations_estimate
|
|
= wi::udiv_floor (loop->nb_iterations_estimate, vectorization_factor);
|
|
if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo)
|
|
&& loop->nb_iterations_estimate != 0)
|
|
loop->nb_iterations_estimate = loop->nb_iterations_estimate - 1;
|
|
}
|
|
|
|
if (dump_enabled_p ())
|
|
{
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"LOOP VECTORIZED\n");
|
|
if (loop->inner)
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"OUTER LOOP VECTORIZED\n");
|
|
dump_printf (MSG_NOTE, "\n");
|
|
}
|
|
}
|