cbe34bb5ed
From-SVN: r243994
841 lines
27 KiB
C
841 lines
27 KiB
C
/* Generic partial redundancy elimination with lazy code motion support.
|
||
Copyright (C) 1998-2017 Free Software Foundation, Inc.
|
||
|
||
This file is part of GCC.
|
||
|
||
GCC is free software; you can redistribute it and/or modify it under
|
||
the terms of the GNU General Public License as published by the Free
|
||
Software Foundation; either version 3, or (at your option) any later
|
||
version.
|
||
|
||
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
||
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||
for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GCC; see the file COPYING3. If not see
|
||
<http://www.gnu.org/licenses/>. */
|
||
|
||
/* These routines are meant to be used by various optimization
|
||
passes which can be modeled as lazy code motion problems.
|
||
Including, but not limited to:
|
||
|
||
* Traditional partial redundancy elimination.
|
||
|
||
* Placement of caller/caller register save/restores.
|
||
|
||
* Load/store motion.
|
||
|
||
* Copy motion.
|
||
|
||
* Conversion of flat register files to a stacked register
|
||
model.
|
||
|
||
* Dead load/store elimination.
|
||
|
||
These routines accept as input:
|
||
|
||
* Basic block information (number of blocks, lists of
|
||
predecessors and successors). Note the granularity
|
||
does not need to be basic block, they could be statements
|
||
or functions.
|
||
|
||
* Bitmaps of local properties (computed, transparent and
|
||
anticipatable expressions).
|
||
|
||
The output of these routines is bitmap of redundant computations
|
||
and a bitmap of optimal placement points. */
|
||
|
||
|
||
#include "config.h"
|
||
#include "system.h"
|
||
#include "coretypes.h"
|
||
#include "backend.h"
|
||
#include "cfganal.h"
|
||
#include "lcm.h"
|
||
|
||
/* Edge based LCM routines. */
|
||
static void compute_antinout_edge (sbitmap *, sbitmap *, sbitmap *, sbitmap *);
|
||
static void compute_earliest (struct edge_list *, int, sbitmap *, sbitmap *,
|
||
sbitmap *, sbitmap *, sbitmap *);
|
||
static void compute_laterin (struct edge_list *, sbitmap *, sbitmap *,
|
||
sbitmap *, sbitmap *);
|
||
static void compute_insert_delete (struct edge_list *edge_list, sbitmap *,
|
||
sbitmap *, sbitmap *, sbitmap *, sbitmap *);
|
||
|
||
/* Edge based LCM routines on a reverse flowgraph. */
|
||
static void compute_farthest (struct edge_list *, int, sbitmap *, sbitmap *,
|
||
sbitmap*, sbitmap *, sbitmap *);
|
||
static void compute_nearerout (struct edge_list *, sbitmap *, sbitmap *,
|
||
sbitmap *, sbitmap *);
|
||
static void compute_rev_insert_delete (struct edge_list *edge_list, sbitmap *,
|
||
sbitmap *, sbitmap *, sbitmap *,
|
||
sbitmap *);
|
||
|
||
/* Edge based lcm routines. */
|
||
|
||
/* Compute expression anticipatability at entrance and exit of each block.
|
||
This is done based on the flow graph, and not on the pred-succ lists.
|
||
Other than that, its pretty much identical to compute_antinout. */
|
||
|
||
static void
|
||
compute_antinout_edge (sbitmap *antloc, sbitmap *transp, sbitmap *antin,
|
||
sbitmap *antout)
|
||
{
|
||
basic_block bb;
|
||
edge e;
|
||
basic_block *worklist, *qin, *qout, *qend;
|
||
unsigned int qlen;
|
||
edge_iterator ei;
|
||
|
||
/* Allocate a worklist array/queue. Entries are only added to the
|
||
list if they were not already on the list. So the size is
|
||
bounded by the number of basic blocks. */
|
||
qin = qout = worklist = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
|
||
|
||
/* We want a maximal solution, so make an optimistic initialization of
|
||
ANTIN. */
|
||
bitmap_vector_ones (antin, last_basic_block_for_fn (cfun));
|
||
|
||
/* Put every block on the worklist; this is necessary because of the
|
||
optimistic initialization of ANTIN above. */
|
||
int *postorder = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
|
||
int postorder_num = post_order_compute (postorder, false, false);
|
||
for (int i = 0; i < postorder_num; ++i)
|
||
{
|
||
bb = BASIC_BLOCK_FOR_FN (cfun, postorder[i]);
|
||
*qin++ = bb;
|
||
bb->aux = bb;
|
||
}
|
||
free (postorder);
|
||
|
||
qin = worklist;
|
||
qend = &worklist[n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS];
|
||
qlen = n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS;
|
||
|
||
/* Mark blocks which are predecessors of the exit block so that we
|
||
can easily identify them below. */
|
||
FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
|
||
e->src->aux = EXIT_BLOCK_PTR_FOR_FN (cfun);
|
||
|
||
/* Iterate until the worklist is empty. */
|
||
while (qlen)
|
||
{
|
||
/* Take the first entry off the worklist. */
|
||
bb = *qout++;
|
||
qlen--;
|
||
|
||
if (qout >= qend)
|
||
qout = worklist;
|
||
|
||
if (bb->aux == EXIT_BLOCK_PTR_FOR_FN (cfun))
|
||
/* Do not clear the aux field for blocks which are predecessors of
|
||
the EXIT block. That way we never add then to the worklist
|
||
again. */
|
||
bitmap_clear (antout[bb->index]);
|
||
else
|
||
{
|
||
/* Clear the aux field of this block so that it can be added to
|
||
the worklist again if necessary. */
|
||
bb->aux = NULL;
|
||
bitmap_intersection_of_succs (antout[bb->index], antin, bb);
|
||
}
|
||
|
||
if (bitmap_or_and (antin[bb->index], antloc[bb->index],
|
||
transp[bb->index], antout[bb->index]))
|
||
/* If the in state of this block changed, then we need
|
||
to add the predecessors of this block to the worklist
|
||
if they are not already on the worklist. */
|
||
FOR_EACH_EDGE (e, ei, bb->preds)
|
||
if (!e->src->aux && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
|
||
{
|
||
*qin++ = e->src;
|
||
e->src->aux = e;
|
||
qlen++;
|
||
if (qin >= qend)
|
||
qin = worklist;
|
||
}
|
||
}
|
||
|
||
clear_aux_for_edges ();
|
||
clear_aux_for_blocks ();
|
||
free (worklist);
|
||
}
|
||
|
||
/* Compute the earliest vector for edge based lcm. */
|
||
|
||
static void
|
||
compute_earliest (struct edge_list *edge_list, int n_exprs, sbitmap *antin,
|
||
sbitmap *antout, sbitmap *avout, sbitmap *kill,
|
||
sbitmap *earliest)
|
||
{
|
||
int x, num_edges;
|
||
basic_block pred, succ;
|
||
|
||
num_edges = NUM_EDGES (edge_list);
|
||
|
||
auto_sbitmap difference (n_exprs), temp_bitmap (n_exprs);
|
||
for (x = 0; x < num_edges; x++)
|
||
{
|
||
pred = INDEX_EDGE_PRED_BB (edge_list, x);
|
||
succ = INDEX_EDGE_SUCC_BB (edge_list, x);
|
||
if (pred == ENTRY_BLOCK_PTR_FOR_FN (cfun))
|
||
bitmap_copy (earliest[x], antin[succ->index]);
|
||
else
|
||
{
|
||
if (succ == EXIT_BLOCK_PTR_FOR_FN (cfun))
|
||
bitmap_clear (earliest[x]);
|
||
else
|
||
{
|
||
bitmap_and_compl (difference, antin[succ->index],
|
||
avout[pred->index]);
|
||
bitmap_not (temp_bitmap, antout[pred->index]);
|
||
bitmap_and_or (earliest[x], difference,
|
||
kill[pred->index], temp_bitmap);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* later(p,s) is dependent on the calculation of laterin(p).
|
||
laterin(p) is dependent on the calculation of later(p2,p).
|
||
|
||
laterin(ENTRY) is defined as all 0's
|
||
later(ENTRY, succs(ENTRY)) are defined using laterin(ENTRY)
|
||
laterin(succs(ENTRY)) is defined by later(ENTRY, succs(ENTRY)).
|
||
|
||
If we progress in this manner, starting with all basic blocks
|
||
in the work list, anytime we change later(bb), we need to add
|
||
succs(bb) to the worklist if they are not already on the worklist.
|
||
|
||
Boundary conditions:
|
||
|
||
We prime the worklist all the normal basic blocks. The ENTRY block can
|
||
never be added to the worklist since it is never the successor of any
|
||
block. We explicitly prevent the EXIT block from being added to the
|
||
worklist.
|
||
|
||
We optimistically initialize LATER. That is the only time this routine
|
||
will compute LATER for an edge out of the entry block since the entry
|
||
block is never on the worklist. Thus, LATERIN is neither used nor
|
||
computed for the ENTRY block.
|
||
|
||
Since the EXIT block is never added to the worklist, we will neither
|
||
use nor compute LATERIN for the exit block. Edges which reach the
|
||
EXIT block are handled in the normal fashion inside the loop. However,
|
||
the insertion/deletion computation needs LATERIN(EXIT), so we have
|
||
to compute it. */
|
||
|
||
static void
|
||
compute_laterin (struct edge_list *edge_list, sbitmap *earliest,
|
||
sbitmap *antloc, sbitmap *later, sbitmap *laterin)
|
||
{
|
||
int num_edges, i;
|
||
edge e;
|
||
basic_block *worklist, *qin, *qout, *qend, bb;
|
||
unsigned int qlen;
|
||
edge_iterator ei;
|
||
|
||
num_edges = NUM_EDGES (edge_list);
|
||
|
||
/* Allocate a worklist array/queue. Entries are only added to the
|
||
list if they were not already on the list. So the size is
|
||
bounded by the number of basic blocks. */
|
||
qin = qout = worklist
|
||
= XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
|
||
|
||
/* Initialize a mapping from each edge to its index. */
|
||
for (i = 0; i < num_edges; i++)
|
||
INDEX_EDGE (edge_list, i)->aux = (void *) (size_t) i;
|
||
|
||
/* We want a maximal solution, so initially consider LATER true for
|
||
all edges. This allows propagation through a loop since the incoming
|
||
loop edge will have LATER set, so if all the other incoming edges
|
||
to the loop are set, then LATERIN will be set for the head of the
|
||
loop.
|
||
|
||
If the optimistic setting of LATER on that edge was incorrect (for
|
||
example the expression is ANTLOC in a block within the loop) then
|
||
this algorithm will detect it when we process the block at the head
|
||
of the optimistic edge. That will requeue the affected blocks. */
|
||
bitmap_vector_ones (later, num_edges);
|
||
|
||
/* Note that even though we want an optimistic setting of LATER, we
|
||
do not want to be overly optimistic. Consider an outgoing edge from
|
||
the entry block. That edge should always have a LATER value the
|
||
same as EARLIEST for that edge. */
|
||
FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs)
|
||
bitmap_copy (later[(size_t) e->aux], earliest[(size_t) e->aux]);
|
||
|
||
/* Add all the blocks to the worklist. This prevents an early exit from
|
||
the loop given our optimistic initialization of LATER above. */
|
||
int *postorder = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
|
||
int postorder_num = inverted_post_order_compute (postorder);
|
||
for (int i = 0; i < postorder_num; ++i)
|
||
{
|
||
bb = BASIC_BLOCK_FOR_FN (cfun, postorder[i]);
|
||
if (bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
|
||
|| bb == ENTRY_BLOCK_PTR_FOR_FN (cfun))
|
||
continue;
|
||
*qin++ = bb;
|
||
bb->aux = bb;
|
||
}
|
||
free (postorder);
|
||
|
||
/* Note that we do not use the last allocated element for our queue,
|
||
as EXIT_BLOCK is never inserted into it. */
|
||
qin = worklist;
|
||
qend = &worklist[n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS];
|
||
qlen = n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS;
|
||
|
||
/* Iterate until the worklist is empty. */
|
||
while (qlen)
|
||
{
|
||
/* Take the first entry off the worklist. */
|
||
bb = *qout++;
|
||
bb->aux = NULL;
|
||
qlen--;
|
||
if (qout >= qend)
|
||
qout = worklist;
|
||
|
||
/* Compute the intersection of LATERIN for each incoming edge to B. */
|
||
bitmap_ones (laterin[bb->index]);
|
||
FOR_EACH_EDGE (e, ei, bb->preds)
|
||
bitmap_and (laterin[bb->index], laterin[bb->index],
|
||
later[(size_t)e->aux]);
|
||
|
||
/* Calculate LATER for all outgoing edges. */
|
||
FOR_EACH_EDGE (e, ei, bb->succs)
|
||
if (bitmap_ior_and_compl (later[(size_t) e->aux],
|
||
earliest[(size_t) e->aux],
|
||
laterin[bb->index],
|
||
antloc[bb->index])
|
||
/* If LATER for an outgoing edge was changed, then we need
|
||
to add the target of the outgoing edge to the worklist. */
|
||
&& e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun) && e->dest->aux == 0)
|
||
{
|
||
*qin++ = e->dest;
|
||
e->dest->aux = e;
|
||
qlen++;
|
||
if (qin >= qend)
|
||
qin = worklist;
|
||
}
|
||
}
|
||
|
||
/* Computation of insertion and deletion points requires computing LATERIN
|
||
for the EXIT block. We allocated an extra entry in the LATERIN array
|
||
for just this purpose. */
|
||
bitmap_ones (laterin[last_basic_block_for_fn (cfun)]);
|
||
FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
|
||
bitmap_and (laterin[last_basic_block_for_fn (cfun)],
|
||
laterin[last_basic_block_for_fn (cfun)],
|
||
later[(size_t) e->aux]);
|
||
|
||
clear_aux_for_edges ();
|
||
free (worklist);
|
||
}
|
||
|
||
/* Compute the insertion and deletion points for edge based LCM. */
|
||
|
||
static void
|
||
compute_insert_delete (struct edge_list *edge_list, sbitmap *antloc,
|
||
sbitmap *later, sbitmap *laterin, sbitmap *insert,
|
||
sbitmap *del)
|
||
{
|
||
int x;
|
||
basic_block bb;
|
||
|
||
FOR_EACH_BB_FN (bb, cfun)
|
||
bitmap_and_compl (del[bb->index], antloc[bb->index],
|
||
laterin[bb->index]);
|
||
|
||
for (x = 0; x < NUM_EDGES (edge_list); x++)
|
||
{
|
||
basic_block b = INDEX_EDGE_SUCC_BB (edge_list, x);
|
||
|
||
if (b == EXIT_BLOCK_PTR_FOR_FN (cfun))
|
||
bitmap_and_compl (insert[x], later[x],
|
||
laterin[last_basic_block_for_fn (cfun)]);
|
||
else
|
||
bitmap_and_compl (insert[x], later[x], laterin[b->index]);
|
||
}
|
||
}
|
||
|
||
/* Given local properties TRANSP, ANTLOC, AVLOC, KILL return the insert and
|
||
delete vectors for edge based LCM and return the AVIN, AVOUT bitmap.
|
||
map the insert vector to what edge an expression should be inserted on. */
|
||
|
||
struct edge_list *
|
||
pre_edge_lcm_avs (int n_exprs, sbitmap *transp,
|
||
sbitmap *avloc, sbitmap *antloc, sbitmap *kill,
|
||
sbitmap *avin, sbitmap *avout,
|
||
sbitmap **insert, sbitmap **del)
|
||
{
|
||
sbitmap *antin, *antout, *earliest;
|
||
sbitmap *later, *laterin;
|
||
struct edge_list *edge_list;
|
||
int num_edges;
|
||
|
||
edge_list = create_edge_list ();
|
||
num_edges = NUM_EDGES (edge_list);
|
||
|
||
#ifdef LCM_DEBUG_INFO
|
||
if (dump_file)
|
||
{
|
||
fprintf (dump_file, "Edge List:\n");
|
||
verify_edge_list (dump_file, edge_list);
|
||
print_edge_list (dump_file, edge_list);
|
||
dump_bitmap_vector (dump_file, "transp", "", transp,
|
||
last_basic_block_for_fn (cfun));
|
||
dump_bitmap_vector (dump_file, "antloc", "", antloc,
|
||
last_basic_block_for_fn (cfun));
|
||
dump_bitmap_vector (dump_file, "avloc", "", avloc,
|
||
last_basic_block_for_fn (cfun));
|
||
dump_bitmap_vector (dump_file, "kill", "", kill,
|
||
last_basic_block_for_fn (cfun));
|
||
}
|
||
#endif
|
||
|
||
/* Compute global availability. */
|
||
compute_available (avloc, kill, avout, avin);
|
||
|
||
/* Compute global anticipatability. */
|
||
antin = sbitmap_vector_alloc (last_basic_block_for_fn (cfun), n_exprs);
|
||
antout = sbitmap_vector_alloc (last_basic_block_for_fn (cfun), n_exprs);
|
||
compute_antinout_edge (antloc, transp, antin, antout);
|
||
|
||
#ifdef LCM_DEBUG_INFO
|
||
if (dump_file)
|
||
{
|
||
dump_bitmap_vector (dump_file, "antin", "", antin,
|
||
last_basic_block_for_fn (cfun));
|
||
dump_bitmap_vector (dump_file, "antout", "", antout,
|
||
last_basic_block_for_fn (cfun));
|
||
}
|
||
#endif
|
||
|
||
/* Compute earliestness. */
|
||
earliest = sbitmap_vector_alloc (num_edges, n_exprs);
|
||
compute_earliest (edge_list, n_exprs, antin, antout, avout, kill, earliest);
|
||
|
||
#ifdef LCM_DEBUG_INFO
|
||
if (dump_file)
|
||
dump_bitmap_vector (dump_file, "earliest", "", earliest, num_edges);
|
||
#endif
|
||
|
||
sbitmap_vector_free (antout);
|
||
sbitmap_vector_free (antin);
|
||
|
||
later = sbitmap_vector_alloc (num_edges, n_exprs);
|
||
|
||
/* Allocate an extra element for the exit block in the laterin vector. */
|
||
laterin = sbitmap_vector_alloc (last_basic_block_for_fn (cfun) + 1,
|
||
n_exprs);
|
||
compute_laterin (edge_list, earliest, antloc, later, laterin);
|
||
|
||
#ifdef LCM_DEBUG_INFO
|
||
if (dump_file)
|
||
{
|
||
dump_bitmap_vector (dump_file, "laterin", "", laterin,
|
||
last_basic_block_for_fn (cfun) + 1);
|
||
dump_bitmap_vector (dump_file, "later", "", later, num_edges);
|
||
}
|
||
#endif
|
||
|
||
sbitmap_vector_free (earliest);
|
||
|
||
*insert = sbitmap_vector_alloc (num_edges, n_exprs);
|
||
*del = sbitmap_vector_alloc (last_basic_block_for_fn (cfun), n_exprs);
|
||
bitmap_vector_clear (*insert, num_edges);
|
||
bitmap_vector_clear (*del, last_basic_block_for_fn (cfun));
|
||
compute_insert_delete (edge_list, antloc, later, laterin, *insert, *del);
|
||
|
||
sbitmap_vector_free (laterin);
|
||
sbitmap_vector_free (later);
|
||
|
||
#ifdef LCM_DEBUG_INFO
|
||
if (dump_file)
|
||
{
|
||
dump_bitmap_vector (dump_file, "pre_insert_map", "", *insert, num_edges);
|
||
dump_bitmap_vector (dump_file, "pre_delete_map", "", *del,
|
||
last_basic_block_for_fn (cfun));
|
||
}
|
||
#endif
|
||
|
||
return edge_list;
|
||
}
|
||
|
||
/* Wrapper to allocate avin/avout and call pre_edge_lcm_avs. */
|
||
|
||
struct edge_list *
|
||
pre_edge_lcm (int n_exprs, sbitmap *transp,
|
||
sbitmap *avloc, sbitmap *antloc, sbitmap *kill,
|
||
sbitmap **insert, sbitmap **del)
|
||
{
|
||
struct edge_list *edge_list;
|
||
sbitmap *avin, *avout;
|
||
|
||
avin = sbitmap_vector_alloc (last_basic_block_for_fn (cfun), n_exprs);
|
||
avout = sbitmap_vector_alloc (last_basic_block_for_fn (cfun), n_exprs);
|
||
|
||
edge_list = pre_edge_lcm_avs (n_exprs, transp, avloc, antloc, kill,
|
||
avin, avout, insert, del);
|
||
|
||
sbitmap_vector_free (avout);
|
||
sbitmap_vector_free (avin);
|
||
|
||
return edge_list;
|
||
}
|
||
|
||
/* Compute the AVIN and AVOUT vectors from the AVLOC and KILL vectors.
|
||
Return the number of passes we performed to iterate to a solution. */
|
||
|
||
void
|
||
compute_available (sbitmap *avloc, sbitmap *kill, sbitmap *avout,
|
||
sbitmap *avin)
|
||
{
|
||
edge e;
|
||
basic_block *worklist, *qin, *qout, *qend, bb;
|
||
unsigned int qlen;
|
||
edge_iterator ei;
|
||
|
||
/* Allocate a worklist array/queue. Entries are only added to the
|
||
list if they were not already on the list. So the size is
|
||
bounded by the number of basic blocks. */
|
||
qin = qout = worklist =
|
||
XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS);
|
||
|
||
/* We want a maximal solution. */
|
||
bitmap_vector_ones (avout, last_basic_block_for_fn (cfun));
|
||
|
||
/* Put every block on the worklist; this is necessary because of the
|
||
optimistic initialization of AVOUT above. Use inverted postorder
|
||
to make the dataflow problem require less iterations. */
|
||
int *postorder = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
|
||
int postorder_num = inverted_post_order_compute (postorder);
|
||
for (int i = 0; i < postorder_num; ++i)
|
||
{
|
||
bb = BASIC_BLOCK_FOR_FN (cfun, postorder[i]);
|
||
if (bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
|
||
|| bb == ENTRY_BLOCK_PTR_FOR_FN (cfun))
|
||
continue;
|
||
*qin++ = bb;
|
||
bb->aux = bb;
|
||
}
|
||
free (postorder);
|
||
|
||
qin = worklist;
|
||
qend = &worklist[n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS];
|
||
qlen = n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS;
|
||
|
||
/* Mark blocks which are successors of the entry block so that we
|
||
can easily identify them below. */
|
||
FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs)
|
||
e->dest->aux = ENTRY_BLOCK_PTR_FOR_FN (cfun);
|
||
|
||
/* Iterate until the worklist is empty. */
|
||
while (qlen)
|
||
{
|
||
/* Take the first entry off the worklist. */
|
||
bb = *qout++;
|
||
qlen--;
|
||
|
||
if (qout >= qend)
|
||
qout = worklist;
|
||
|
||
/* If one of the predecessor blocks is the ENTRY block, then the
|
||
intersection of avouts is the null set. We can identify such blocks
|
||
by the special value in the AUX field in the block structure. */
|
||
if (bb->aux == ENTRY_BLOCK_PTR_FOR_FN (cfun))
|
||
/* Do not clear the aux field for blocks which are successors of the
|
||
ENTRY block. That way we never add then to the worklist again. */
|
||
bitmap_clear (avin[bb->index]);
|
||
else
|
||
{
|
||
/* Clear the aux field of this block so that it can be added to
|
||
the worklist again if necessary. */
|
||
bb->aux = NULL;
|
||
bitmap_intersection_of_preds (avin[bb->index], avout, bb);
|
||
}
|
||
|
||
if (bitmap_ior_and_compl (avout[bb->index], avloc[bb->index],
|
||
avin[bb->index], kill[bb->index]))
|
||
/* If the out state of this block changed, then we need
|
||
to add the successors of this block to the worklist
|
||
if they are not already on the worklist. */
|
||
FOR_EACH_EDGE (e, ei, bb->succs)
|
||
if (!e->dest->aux && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
|
||
{
|
||
*qin++ = e->dest;
|
||
e->dest->aux = e;
|
||
qlen++;
|
||
|
||
if (qin >= qend)
|
||
qin = worklist;
|
||
}
|
||
}
|
||
|
||
clear_aux_for_edges ();
|
||
clear_aux_for_blocks ();
|
||
free (worklist);
|
||
}
|
||
|
||
/* Compute the farthest vector for edge based lcm. */
|
||
|
||
static void
|
||
compute_farthest (struct edge_list *edge_list, int n_exprs,
|
||
sbitmap *st_avout, sbitmap *st_avin, sbitmap *st_antin,
|
||
sbitmap *kill, sbitmap *farthest)
|
||
{
|
||
int x, num_edges;
|
||
basic_block pred, succ;
|
||
|
||
num_edges = NUM_EDGES (edge_list);
|
||
|
||
auto_sbitmap difference (n_exprs), temp_bitmap (n_exprs);
|
||
for (x = 0; x < num_edges; x++)
|
||
{
|
||
pred = INDEX_EDGE_PRED_BB (edge_list, x);
|
||
succ = INDEX_EDGE_SUCC_BB (edge_list, x);
|
||
if (succ == EXIT_BLOCK_PTR_FOR_FN (cfun))
|
||
bitmap_copy (farthest[x], st_avout[pred->index]);
|
||
else
|
||
{
|
||
if (pred == ENTRY_BLOCK_PTR_FOR_FN (cfun))
|
||
bitmap_clear (farthest[x]);
|
||
else
|
||
{
|
||
bitmap_and_compl (difference, st_avout[pred->index],
|
||
st_antin[succ->index]);
|
||
bitmap_not (temp_bitmap, st_avin[succ->index]);
|
||
bitmap_and_or (farthest[x], difference,
|
||
kill[succ->index], temp_bitmap);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Compute nearer and nearerout vectors for edge based lcm.
|
||
|
||
This is the mirror of compute_laterin, additional comments on the
|
||
implementation can be found before compute_laterin. */
|
||
|
||
static void
|
||
compute_nearerout (struct edge_list *edge_list, sbitmap *farthest,
|
||
sbitmap *st_avloc, sbitmap *nearer, sbitmap *nearerout)
|
||
{
|
||
int num_edges, i;
|
||
edge e;
|
||
basic_block *worklist, *tos, bb;
|
||
edge_iterator ei;
|
||
|
||
num_edges = NUM_EDGES (edge_list);
|
||
|
||
/* Allocate a worklist array/queue. Entries are only added to the
|
||
list if they were not already on the list. So the size is
|
||
bounded by the number of basic blocks. */
|
||
tos = worklist = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun) + 1);
|
||
|
||
/* Initialize NEARER for each edge and build a mapping from an edge to
|
||
its index. */
|
||
for (i = 0; i < num_edges; i++)
|
||
INDEX_EDGE (edge_list, i)->aux = (void *) (size_t) i;
|
||
|
||
/* We want a maximal solution. */
|
||
bitmap_vector_ones (nearer, num_edges);
|
||
|
||
/* Note that even though we want an optimistic setting of NEARER, we
|
||
do not want to be overly optimistic. Consider an incoming edge to
|
||
the exit block. That edge should always have a NEARER value the
|
||
same as FARTHEST for that edge. */
|
||
FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
|
||
bitmap_copy (nearer[(size_t)e->aux], farthest[(size_t)e->aux]);
|
||
|
||
/* Add all the blocks to the worklist. This prevents an early exit
|
||
from the loop given our optimistic initialization of NEARER. */
|
||
FOR_EACH_BB_FN (bb, cfun)
|
||
{
|
||
*tos++ = bb;
|
||
bb->aux = bb;
|
||
}
|
||
|
||
/* Iterate until the worklist is empty. */
|
||
while (tos != worklist)
|
||
{
|
||
/* Take the first entry off the worklist. */
|
||
bb = *--tos;
|
||
bb->aux = NULL;
|
||
|
||
/* Compute the intersection of NEARER for each outgoing edge from B. */
|
||
bitmap_ones (nearerout[bb->index]);
|
||
FOR_EACH_EDGE (e, ei, bb->succs)
|
||
bitmap_and (nearerout[bb->index], nearerout[bb->index],
|
||
nearer[(size_t) e->aux]);
|
||
|
||
/* Calculate NEARER for all incoming edges. */
|
||
FOR_EACH_EDGE (e, ei, bb->preds)
|
||
if (bitmap_ior_and_compl (nearer[(size_t) e->aux],
|
||
farthest[(size_t) e->aux],
|
||
nearerout[e->dest->index],
|
||
st_avloc[e->dest->index])
|
||
/* If NEARER for an incoming edge was changed, then we need
|
||
to add the source of the incoming edge to the worklist. */
|
||
&& e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun) && e->src->aux == 0)
|
||
{
|
||
*tos++ = e->src;
|
||
e->src->aux = e;
|
||
}
|
||
}
|
||
|
||
/* Computation of insertion and deletion points requires computing NEAREROUT
|
||
for the ENTRY block. We allocated an extra entry in the NEAREROUT array
|
||
for just this purpose. */
|
||
bitmap_ones (nearerout[last_basic_block_for_fn (cfun)]);
|
||
FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs)
|
||
bitmap_and (nearerout[last_basic_block_for_fn (cfun)],
|
||
nearerout[last_basic_block_for_fn (cfun)],
|
||
nearer[(size_t) e->aux]);
|
||
|
||
clear_aux_for_edges ();
|
||
free (tos);
|
||
}
|
||
|
||
/* Compute the insertion and deletion points for edge based LCM. */
|
||
|
||
static void
|
||
compute_rev_insert_delete (struct edge_list *edge_list, sbitmap *st_avloc,
|
||
sbitmap *nearer, sbitmap *nearerout,
|
||
sbitmap *insert, sbitmap *del)
|
||
{
|
||
int x;
|
||
basic_block bb;
|
||
|
||
FOR_EACH_BB_FN (bb, cfun)
|
||
bitmap_and_compl (del[bb->index], st_avloc[bb->index],
|
||
nearerout[bb->index]);
|
||
|
||
for (x = 0; x < NUM_EDGES (edge_list); x++)
|
||
{
|
||
basic_block b = INDEX_EDGE_PRED_BB (edge_list, x);
|
||
if (b == ENTRY_BLOCK_PTR_FOR_FN (cfun))
|
||
bitmap_and_compl (insert[x], nearer[x],
|
||
nearerout[last_basic_block_for_fn (cfun)]);
|
||
else
|
||
bitmap_and_compl (insert[x], nearer[x], nearerout[b->index]);
|
||
}
|
||
}
|
||
|
||
/* Given local properties TRANSP, ST_AVLOC, ST_ANTLOC, KILL return the
|
||
insert and delete vectors for edge based reverse LCM. Returns an
|
||
edgelist which is used to map the insert vector to what edge
|
||
an expression should be inserted on. */
|
||
|
||
struct edge_list *
|
||
pre_edge_rev_lcm (int n_exprs, sbitmap *transp,
|
||
sbitmap *st_avloc, sbitmap *st_antloc, sbitmap *kill,
|
||
sbitmap **insert, sbitmap **del)
|
||
{
|
||
sbitmap *st_antin, *st_antout;
|
||
sbitmap *st_avout, *st_avin, *farthest;
|
||
sbitmap *nearer, *nearerout;
|
||
struct edge_list *edge_list;
|
||
int num_edges;
|
||
|
||
edge_list = create_edge_list ();
|
||
num_edges = NUM_EDGES (edge_list);
|
||
|
||
st_antin = sbitmap_vector_alloc (last_basic_block_for_fn (cfun), n_exprs);
|
||
st_antout = sbitmap_vector_alloc (last_basic_block_for_fn (cfun), n_exprs);
|
||
bitmap_vector_clear (st_antin, last_basic_block_for_fn (cfun));
|
||
bitmap_vector_clear (st_antout, last_basic_block_for_fn (cfun));
|
||
compute_antinout_edge (st_antloc, transp, st_antin, st_antout);
|
||
|
||
/* Compute global anticipatability. */
|
||
st_avout = sbitmap_vector_alloc (last_basic_block_for_fn (cfun), n_exprs);
|
||
st_avin = sbitmap_vector_alloc (last_basic_block_for_fn (cfun), n_exprs);
|
||
compute_available (st_avloc, kill, st_avout, st_avin);
|
||
|
||
#ifdef LCM_DEBUG_INFO
|
||
if (dump_file)
|
||
{
|
||
fprintf (dump_file, "Edge List:\n");
|
||
verify_edge_list (dump_file, edge_list);
|
||
print_edge_list (dump_file, edge_list);
|
||
dump_bitmap_vector (dump_file, "transp", "", transp,
|
||
last_basic_block_for_fn (cfun));
|
||
dump_bitmap_vector (dump_file, "st_avloc", "", st_avloc,
|
||
last_basic_block_for_fn (cfun));
|
||
dump_bitmap_vector (dump_file, "st_antloc", "", st_antloc,
|
||
last_basic_block_for_fn (cfun));
|
||
dump_bitmap_vector (dump_file, "st_antin", "", st_antin,
|
||
last_basic_block_for_fn (cfun));
|
||
dump_bitmap_vector (dump_file, "st_antout", "", st_antout,
|
||
last_basic_block_for_fn (cfun));
|
||
dump_bitmap_vector (dump_file, "st_kill", "", kill,
|
||
last_basic_block_for_fn (cfun));
|
||
}
|
||
#endif
|
||
|
||
#ifdef LCM_DEBUG_INFO
|
||
if (dump_file)
|
||
{
|
||
dump_bitmap_vector (dump_file, "st_avout", "", st_avout, last_basic_block_for_fn (cfun));
|
||
dump_bitmap_vector (dump_file, "st_avin", "", st_avin, last_basic_block_for_fn (cfun));
|
||
}
|
||
#endif
|
||
|
||
/* Compute farthestness. */
|
||
farthest = sbitmap_vector_alloc (num_edges, n_exprs);
|
||
compute_farthest (edge_list, n_exprs, st_avout, st_avin, st_antin,
|
||
kill, farthest);
|
||
|
||
#ifdef LCM_DEBUG_INFO
|
||
if (dump_file)
|
||
dump_bitmap_vector (dump_file, "farthest", "", farthest, num_edges);
|
||
#endif
|
||
|
||
sbitmap_vector_free (st_antin);
|
||
sbitmap_vector_free (st_antout);
|
||
|
||
sbitmap_vector_free (st_avin);
|
||
sbitmap_vector_free (st_avout);
|
||
|
||
nearer = sbitmap_vector_alloc (num_edges, n_exprs);
|
||
|
||
/* Allocate an extra element for the entry block. */
|
||
nearerout = sbitmap_vector_alloc (last_basic_block_for_fn (cfun) + 1,
|
||
n_exprs);
|
||
compute_nearerout (edge_list, farthest, st_avloc, nearer, nearerout);
|
||
|
||
#ifdef LCM_DEBUG_INFO
|
||
if (dump_file)
|
||
{
|
||
dump_bitmap_vector (dump_file, "nearerout", "", nearerout,
|
||
last_basic_block_for_fn (cfun) + 1);
|
||
dump_bitmap_vector (dump_file, "nearer", "", nearer, num_edges);
|
||
}
|
||
#endif
|
||
|
||
sbitmap_vector_free (farthest);
|
||
|
||
*insert = sbitmap_vector_alloc (num_edges, n_exprs);
|
||
*del = sbitmap_vector_alloc (last_basic_block_for_fn (cfun), n_exprs);
|
||
compute_rev_insert_delete (edge_list, st_avloc, nearer, nearerout,
|
||
*insert, *del);
|
||
|
||
sbitmap_vector_free (nearerout);
|
||
sbitmap_vector_free (nearer);
|
||
|
||
#ifdef LCM_DEBUG_INFO
|
||
if (dump_file)
|
||
{
|
||
dump_bitmap_vector (dump_file, "pre_insert_map", "", *insert, num_edges);
|
||
dump_bitmap_vector (dump_file, "pre_delete_map", "", *del,
|
||
last_basic_block_for_fn (cfun));
|
||
}
|
||
#endif
|
||
return edge_list;
|
||
}
|
||
|