9845b52bfb
* decl2.c (add_function): Reorganize. (arg_assoc): Do not consider function template decls. From-SVN: r35653
5535 lines
160 KiB
C
5535 lines
160 KiB
C
/* Process declarations and variables for C compiler.
|
||
Copyright (C) 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
|
||
1999, 2000 Free Software Foundation, Inc.
|
||
Hacked by Michael Tiemann (tiemann@cygnus.com)
|
||
|
||
This file is part of GNU CC.
|
||
|
||
GNU CC is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2, or (at your option)
|
||
any later version.
|
||
|
||
GNU CC is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GNU CC; see the file COPYING. If not, write to
|
||
the Free Software Foundation, 59 Temple Place - Suite 330,
|
||
Boston, MA 02111-1307, USA. */
|
||
|
||
|
||
/* Process declarations and symbol lookup for C front end.
|
||
Also constructs types; the standard scalar types at initialization,
|
||
and structure, union, array and enum types when they are declared. */
|
||
|
||
/* ??? not all decl nodes are given the most useful possible
|
||
line numbers. For example, the CONST_DECLs for enum values. */
|
||
|
||
#include "config.h"
|
||
#include "system.h"
|
||
#include "tree.h"
|
||
#include "rtl.h"
|
||
#include "flags.h"
|
||
#include "cp-tree.h"
|
||
#include "decl.h"
|
||
#include "lex.h"
|
||
#include "output.h"
|
||
#include "except.h"
|
||
#include "expr.h"
|
||
#include "defaults.h"
|
||
#include "toplev.h"
|
||
#include "dwarf2out.h"
|
||
#include "dwarfout.h"
|
||
#include "ggc.h"
|
||
#include "timevar.h"
|
||
|
||
#if USE_CPPLIB
|
||
#include "cpplib.h"
|
||
extern cpp_reader parse_in;
|
||
#endif
|
||
|
||
/* This structure contains information about the initializations
|
||
and/or destructions required for a particular priority level. */
|
||
typedef struct priority_info_s {
|
||
/* Non-zero if there have been any initializations at this priority
|
||
throughout the translation unit. */
|
||
int initializations_p;
|
||
/* Non-zero if there have been any destructions at this priority
|
||
throughout the translation unit. */
|
||
int destructions_p;
|
||
} *priority_info;
|
||
|
||
static void mark_vtable_entries PARAMS ((tree));
|
||
static void grok_function_init PARAMS ((tree, tree));
|
||
static int finish_vtable_vardecl PARAMS ((tree *, void *));
|
||
static int prune_vtable_vardecl PARAMS ((tree *, void *));
|
||
static int is_namespace_ancestor PARAMS ((tree, tree));
|
||
static void add_using_namespace PARAMS ((tree, tree, int));
|
||
static tree ambiguous_decl PARAMS ((tree, tree, tree,int));
|
||
static tree build_anon_union_vars PARAMS ((tree, tree*, int, int));
|
||
static int acceptable_java_type PARAMS ((tree));
|
||
static void output_vtable_inherit PARAMS ((tree));
|
||
static tree start_objects PARAMS ((int, int));
|
||
static void finish_objects PARAMS ((int, int, tree));
|
||
static tree merge_functions PARAMS ((tree, tree));
|
||
static tree decl_namespace PARAMS ((tree));
|
||
static tree validate_nonmember_using_decl PARAMS ((tree, tree *, tree *));
|
||
static void do_nonmember_using_decl PARAMS ((tree, tree, tree, tree,
|
||
tree *, tree *));
|
||
static tree start_static_storage_duration_function PARAMS ((void));
|
||
static void finish_static_storage_duration_function PARAMS ((tree));
|
||
static priority_info get_priority_info PARAMS ((int));
|
||
static void do_static_initialization PARAMS ((tree, tree));
|
||
static void do_static_destruction PARAMS ((tree));
|
||
static tree start_static_initialization_or_destruction PARAMS ((tree, int));
|
||
static void finish_static_initialization_or_destruction PARAMS ((tree));
|
||
static void generate_ctor_or_dtor_function PARAMS ((int, int));
|
||
static int generate_ctor_and_dtor_functions_for_priority
|
||
PARAMS ((splay_tree_node, void *));
|
||
static tree prune_vars_needing_no_initialization PARAMS ((tree));
|
||
static void write_out_vars PARAMS ((tree));
|
||
static void import_export_class PARAMS ((tree));
|
||
static tree key_method PARAMS ((tree));
|
||
static int compare_options PARAMS ((const PTR, const PTR));
|
||
static tree get_guard_bits PARAMS ((tree));
|
||
|
||
extern int current_class_depth;
|
||
|
||
/* A list of virtual function tables we must make sure to write out. */
|
||
tree pending_vtables;
|
||
|
||
/* A list of static class variables. This is needed, because a
|
||
static class variable can be declared inside the class without
|
||
an initializer, and then initialized, staticly, outside the class. */
|
||
static varray_type pending_statics;
|
||
#define pending_statics_used \
|
||
(pending_statics ? pending_statics->elements_used : 0)
|
||
|
||
/* A list of functions which were declared inline, but which we
|
||
may need to emit outline anyway. */
|
||
static varray_type deferred_fns;
|
||
#define deferred_fns_used \
|
||
(deferred_fns ? deferred_fns->elements_used : 0)
|
||
|
||
/* Same, but not reset. Local temp variables and global temp variables
|
||
can have the same name. */
|
||
static int global_temp_name_counter;
|
||
|
||
/* Flag used when debugging spew.c */
|
||
|
||
extern int spew_debug;
|
||
|
||
/* Nonzero if we're done parsing and into end-of-file activities. */
|
||
|
||
int at_eof;
|
||
|
||
/* Functions called along with real static constructors and destructors. */
|
||
|
||
tree static_ctors, static_dtors;
|
||
|
||
/* The :: namespace. */
|
||
|
||
tree global_namespace;
|
||
|
||
/* The stack for namespaces of current declarations. */
|
||
|
||
static tree decl_namespace_list;
|
||
|
||
|
||
/* C (and C++) language-specific option variables. */
|
||
|
||
/* Nonzero means allow type mismatches in conditional expressions;
|
||
just make their values `void'. */
|
||
|
||
int flag_cond_mismatch;
|
||
|
||
/* Nonzero means give `double' the same size as `float'. */
|
||
|
||
int flag_short_double;
|
||
|
||
/* Nonzero means don't recognize the keyword `asm'. */
|
||
|
||
int flag_no_asm;
|
||
|
||
/* Nonzero means don't recognize any extension keywords. */
|
||
|
||
int flag_no_gnu_keywords;
|
||
|
||
/* Nonzero means don't recognize the non-ANSI builtin functions. */
|
||
|
||
int flag_no_builtin;
|
||
|
||
/* Nonzero means don't recognize the non-ANSI builtin functions.
|
||
-ansi sets this. */
|
||
|
||
int flag_no_nonansi_builtin;
|
||
|
||
/* Nonzero means do some things the same way PCC does. Only provided so
|
||
the compiler will link. */
|
||
|
||
int flag_traditional;
|
||
|
||
/* Nonzero means to treat bitfields as unsigned unless they say `signed'. */
|
||
|
||
int flag_signed_bitfields = 1;
|
||
|
||
/* Nonzero means enable obscure standard features and disable GNU
|
||
extensions that might cause standard-compliant code to be
|
||
miscompiled. */
|
||
|
||
int flag_ansi;
|
||
|
||
/* Nonzero means do emit exported implementations of functions even if
|
||
they can be inlined. */
|
||
|
||
int flag_implement_inlines = 1;
|
||
|
||
/* Nonzero means do emit exported implementations of templates, instead of
|
||
multiple static copies in each file that needs a definition. */
|
||
|
||
int flag_external_templates;
|
||
|
||
/* Nonzero means that the decision to emit or not emit the implementation of a
|
||
template depends on where the template is instantiated, rather than where
|
||
it is defined. */
|
||
|
||
int flag_alt_external_templates;
|
||
|
||
/* Nonzero means that implicit instantiations will be emitted if needed. */
|
||
|
||
int flag_implicit_templates = 1;
|
||
|
||
/* Nonzero means that implicit instantiations of inline templates will be
|
||
emitted if needed, even if instantiations of non-inline templates
|
||
aren't. */
|
||
|
||
int flag_implicit_inline_templates = 1;
|
||
|
||
/* Nonzero means warn about implicit declarations. */
|
||
|
||
int warn_implicit = 1;
|
||
|
||
/* Nonzero means warn about usage of long long when `-pedantic'. */
|
||
|
||
int warn_long_long = 1;
|
||
|
||
/* Nonzero means warn when all ctors or dtors are private, and the class
|
||
has no friends. */
|
||
|
||
int warn_ctor_dtor_privacy = 1;
|
||
|
||
/* True if we want to implement vtables using "thunks".
|
||
The default is off. */
|
||
|
||
#ifndef DEFAULT_VTABLE_THUNKS
|
||
#define DEFAULT_VTABLE_THUNKS 0
|
||
#endif
|
||
int flag_vtable_thunks = DEFAULT_VTABLE_THUNKS;
|
||
|
||
/* Nonzero means generate separate instantiation control files and juggle
|
||
them at link time. */
|
||
|
||
int flag_use_repository;
|
||
|
||
/* Nonzero if we want to issue diagnostics that the standard says are not
|
||
required. */
|
||
|
||
int flag_optional_diags = 1;
|
||
|
||
/* Nonzero means give string constants the type `const char *', as mandated
|
||
by the standard. */
|
||
|
||
int flag_const_strings = 1;
|
||
|
||
/* If non-NULL, dump the tree structure for the entire translation
|
||
unit to this file. */
|
||
|
||
const char *flag_dump_translation_unit = 0;
|
||
|
||
/* Nonzero means warn about deprecated conversion from string constant to
|
||
`char *'. */
|
||
|
||
int warn_write_strings;
|
||
|
||
/* Nonzero means warn about pointer casts that can drop a type qualifier
|
||
from the pointer target type. */
|
||
|
||
int warn_cast_qual;
|
||
|
||
/* Nonzero means warn about sizeof(function) or addition/subtraction
|
||
of function pointers. */
|
||
|
||
int warn_pointer_arith = 1;
|
||
|
||
/* Nonzero means warn for any function def without prototype decl. */
|
||
|
||
int warn_missing_prototypes;
|
||
|
||
/* Nonzero means warn about multiple (redundant) decls for the same single
|
||
variable or function. */
|
||
|
||
int warn_redundant_decls;
|
||
|
||
/* Warn if initializer is not completely bracketed. */
|
||
|
||
int warn_missing_braces;
|
||
|
||
/* Warn about comparison of signed and unsigned values. */
|
||
|
||
int warn_sign_compare;
|
||
|
||
/* Warn about testing equality of floating point numbers. */
|
||
|
||
int warn_float_equal = 0;
|
||
|
||
/* Warn about *printf or *scanf format/argument anomalies. */
|
||
|
||
int warn_format;
|
||
|
||
/* Warn about a subscript that has type char. */
|
||
|
||
int warn_char_subscripts;
|
||
|
||
/* Warn if a type conversion is done that might have confusing results. */
|
||
|
||
int warn_conversion;
|
||
|
||
/* Warn if adding () is suggested. */
|
||
|
||
int warn_parentheses;
|
||
|
||
/* Non-zero means warn in function declared in derived class has the
|
||
same name as a virtual in the base class, but fails to match the
|
||
type signature of any virtual function in the base class. */
|
||
int warn_overloaded_virtual;
|
||
|
||
/* Non-zero means warn when declaring a class that has a non virtual
|
||
destructor, when it really ought to have a virtual one. */
|
||
int warn_nonvdtor;
|
||
|
||
/* Non-zero means warn when a function is declared extern and later inline. */
|
||
int warn_extern_inline;
|
||
|
||
/* Non-zero means warn when the compiler will reorder code. */
|
||
int warn_reorder;
|
||
|
||
/* Non-zero means warn when synthesis behavior differs from Cfront's. */
|
||
int warn_synth;
|
||
|
||
/* Non-zero means warn when we convert a pointer to member function
|
||
into a pointer to (void or function). */
|
||
int warn_pmf2ptr = 1;
|
||
|
||
/* Nonzero means warn about violation of some Effective C++ style rules. */
|
||
|
||
int warn_ecpp;
|
||
|
||
/* Nonzero means warn where overload resolution chooses a promotion from
|
||
unsigned to signed over a conversion to an unsigned of the same size. */
|
||
|
||
int warn_sign_promo;
|
||
|
||
/* Nonzero means warn when an old-style cast is used. */
|
||
|
||
int warn_old_style_cast;
|
||
|
||
/* Warn about #pragma directives that are not recognised. */
|
||
|
||
int warn_unknown_pragmas; /* Tri state variable. */
|
||
|
||
/* Nonzero means warn about use of multicharacter literals. */
|
||
|
||
int warn_multichar = 1;
|
||
|
||
/* Nonzero means warn when non-templatized friend functions are
|
||
declared within a template */
|
||
|
||
int warn_nontemplate_friend = 1;
|
||
|
||
/* Nonzero means complain about deprecated features. */
|
||
|
||
int warn_deprecated = 1;
|
||
|
||
/* Nonzero means `$' can be in an identifier. */
|
||
|
||
#ifndef DOLLARS_IN_IDENTIFIERS
|
||
#define DOLLARS_IN_IDENTIFIERS 1
|
||
#endif
|
||
int dollars_in_ident = DOLLARS_IN_IDENTIFIERS;
|
||
|
||
/* Nonzero means that labels can be used as first-class objects */
|
||
|
||
int flag_labels_ok;
|
||
|
||
/* Nonzero means allow Microsoft extensions without a pedwarn. */
|
||
|
||
int flag_ms_extensions;
|
||
|
||
/* Non-zero means to collect statistics which might be expensive
|
||
and to print them when we are done. */
|
||
int flag_detailed_statistics;
|
||
|
||
/* C++ specific flags. */
|
||
/* Zero means that `this' is a *const. This gives nice behavior in the
|
||
2.0 world. 1 gives 1.2-compatible behavior. 2 gives Spring behavior.
|
||
-2 means we're constructing an object and it has fixed type. */
|
||
|
||
int flag_this_is_variable;
|
||
|
||
/* Nonzero means we should attempt to elide constructors when possible. */
|
||
|
||
int flag_elide_constructors = 1;
|
||
|
||
/* Nonzero means that member functions defined in class scope are
|
||
inline by default. */
|
||
|
||
int flag_default_inline = 1;
|
||
|
||
/* Controls whether compiler generates 'type descriptor' that give
|
||
run-time type information. */
|
||
int flag_rtti = 1;
|
||
|
||
/* Nonzero if we wish to output cross-referencing information
|
||
for the GNU class browser. */
|
||
extern int flag_gnu_xref;
|
||
|
||
/* Nonzero if we want to support huge (> 2^(sizeof(short)*8-1) bytes)
|
||
objects. */
|
||
|
||
int flag_huge_objects;
|
||
|
||
/* Nonzero if we want to conserve space in the .o files. We do this
|
||
by putting uninitialized data and runtime initialized data into
|
||
.common instead of .data at the expense of not flagging multiple
|
||
definitions. */
|
||
|
||
int flag_conserve_space;
|
||
|
||
/* Nonzero if we want to obey access control semantics. */
|
||
|
||
int flag_access_control = 1;
|
||
|
||
/* Nonzero if we want to understand the operator names, i.e. 'bitand'. */
|
||
|
||
int flag_operator_names = 1;
|
||
|
||
/* Nonzero if we want to check the return value of new and avoid calling
|
||
constructors if it is a null pointer. */
|
||
|
||
int flag_check_new;
|
||
|
||
/* Nonzero if we want the new ISO rules for pushing a new scope for `for'
|
||
initialization variables.
|
||
0: Old rules, set by -fno-for-scope.
|
||
2: New ISO rules, set by -ffor-scope.
|
||
1: Try to implement new ISO rules, but with backup compatibility
|
||
(and warnings). This is the default, for now. */
|
||
|
||
int flag_new_for_scope = 1;
|
||
|
||
/* Nonzero if we want to emit defined symbols with common-like linkage as
|
||
weak symbols where possible, in order to conform to C++ semantics.
|
||
Otherwise, emit them as local symbols. */
|
||
|
||
int flag_weak = 1;
|
||
|
||
/* Nonzero to enable experimental ABI changes. */
|
||
|
||
int flag_new_abi;
|
||
|
||
/* Nonzero to use __cxa_atexit, rather than atexit, to register
|
||
destructors for local statics and global objects. */
|
||
|
||
int flag_use_cxa_atexit;
|
||
|
||
/* Nonzero to not ignore namespace std. */
|
||
|
||
int flag_honor_std = ENABLE_STD_NAMESPACE;
|
||
|
||
/* Nonzero if we should expand functions calls inline at the tree
|
||
level, rather than at the RTL level. */
|
||
|
||
int flag_inline_trees = 0;
|
||
|
||
/* Maximum template instantiation depth. Must be at least 17 for ISO
|
||
compliance. */
|
||
|
||
int max_tinst_depth = 17;
|
||
|
||
/* The name-mangling scheme to use. Must be 1 or greater to support
|
||
template functions with identical types, but different template
|
||
arguments. */
|
||
int name_mangling_version = 2;
|
||
|
||
/* Nonzero if wchar_t should be `unsigned short' instead of whatever it
|
||
would normally be, for use with WINE. */
|
||
int flag_short_wchar;
|
||
|
||
/* Nonzero if squashed mangling is to be performed.
|
||
This uses the B and K codes to reference previously seen class types
|
||
and class qualifiers. */
|
||
int flag_do_squangling;
|
||
|
||
/* Nonzero means output .vtable_{entry,inherit} for use in doing vtable gc. */
|
||
|
||
int flag_vtable_gc;
|
||
|
||
/* Nonzero means make the default pedwarns warnings instead of errors.
|
||
The value of this flag is ignored if -pedantic is specified. */
|
||
|
||
int flag_permissive;
|
||
|
||
/* Nonzero means to implement standard semantics for exception
|
||
specifications, calling unexpected if an exception is thrown that
|
||
doesn't match the specification. Zero means to treat them as
|
||
assertions and optimize accordingly, but not check them. */
|
||
|
||
int flag_enforce_eh_specs = 1;
|
||
|
||
/* If this variable is defined to a non-NULL value, it will be called
|
||
after the file has been completely parsed. */
|
||
|
||
void (*back_end_hook) PARAMS ((tree));
|
||
|
||
/* The variant of the C language being processed. */
|
||
|
||
c_language_kind c_language = clk_cplusplus;
|
||
|
||
/* Table of language-dependent -f options.
|
||
STRING is the option name. VARIABLE is the address of the variable.
|
||
ON_VALUE is the value to store in VARIABLE
|
||
if `-fSTRING' is seen as an option.
|
||
(If `-fno-STRING' is seen as an option, the opposite value is stored.) */
|
||
|
||
static struct { const char *string; int *variable; int on_value;}
|
||
lang_f_options[] =
|
||
{
|
||
/* C/C++ options. */
|
||
{"signed-char", &flag_signed_char, 1},
|
||
{"unsigned-char", &flag_signed_char, 0},
|
||
{"signed-bitfields", &flag_signed_bitfields, 1},
|
||
{"unsigned-bitfields", &flag_signed_bitfields, 0},
|
||
{"short-enums", &flag_short_enums, 1},
|
||
{"short-double", &flag_short_double, 1},
|
||
{"short-wchar", &flag_short_wchar, 1},
|
||
{"cond-mismatch", &flag_cond_mismatch, 1},
|
||
{"asm", &flag_no_asm, 0},
|
||
{"builtin", &flag_no_builtin, 0},
|
||
|
||
/* C++-only options. */
|
||
{"access-control", &flag_access_control, 1},
|
||
{"check-new", &flag_check_new, 1},
|
||
{"conserve-space", &flag_conserve_space, 1},
|
||
{"const-strings", &flag_const_strings, 1},
|
||
{"default-inline", &flag_default_inline, 1},
|
||
{"dollars-in-identifiers", &dollars_in_ident, 1},
|
||
{"elide-constructors", &flag_elide_constructors, 1},
|
||
{"enforce-eh-specs", &flag_enforce_eh_specs, 1},
|
||
{"external-templates", &flag_external_templates, 1},
|
||
{"for-scope", &flag_new_for_scope, 2},
|
||
{"gnu-keywords", &flag_no_gnu_keywords, 0},
|
||
{"handle-exceptions", &flag_exceptions, 1},
|
||
{"honor-std", &flag_honor_std, 1},
|
||
{"huge-objects", &flag_huge_objects, 1},
|
||
{"implement-inlines", &flag_implement_inlines, 1},
|
||
{"implicit-inline-templates", &flag_implicit_inline_templates, 1},
|
||
{"implicit-templates", &flag_implicit_templates, 1},
|
||
{"labels-ok", &flag_labels_ok, 1},
|
||
{"ms-extensions", &flag_ms_extensions, 1},
|
||
{"nonansi-builtins", &flag_no_nonansi_builtin, 0},
|
||
{"operator-names", &flag_operator_names, 1},
|
||
{"optional-diags", &flag_optional_diags, 1},
|
||
{"permissive", &flag_permissive, 1},
|
||
{"repo", &flag_use_repository, 1},
|
||
{"rtti", &flag_rtti, 1},
|
||
{"squangle", &flag_do_squangling, 1},
|
||
{"stats", &flag_detailed_statistics, 1},
|
||
{"use-cxa-atexit", &flag_use_cxa_atexit, 1},
|
||
{"vtable-gc", &flag_vtable_gc, 1},
|
||
{"vtable-thunks", &flag_vtable_thunks, 1},
|
||
{"weak", &flag_weak, 1},
|
||
{"xref", &flag_gnu_xref, 1}
|
||
};
|
||
|
||
/* The list of `-f' options that we no longer support. The `-f'
|
||
prefix is not given in this table. The `-fno-' variants are not
|
||
listed here. This table must be kept in alphabetical order. */
|
||
static const char * const unsupported_options[] = {
|
||
"all-virtual",
|
||
"enum-int-equiv",
|
||
"guiding-decls",
|
||
"nonnull-objects",
|
||
"this-is-variable",
|
||
"strict-prototype",
|
||
};
|
||
|
||
/* Compare two option strings, pointed two by P1 and P2, for use with
|
||
bsearch. */
|
||
|
||
static int
|
||
compare_options (p1, p2)
|
||
const PTR p1;
|
||
const PTR p2;
|
||
{
|
||
return strcmp (*((const char *const *) p1), *((const char *const *) p2));
|
||
}
|
||
|
||
/* Decode the string P as a language-specific option.
|
||
Return the number of strings consumed for a valid option.
|
||
Otherwise return 0. Should not complain if it does not
|
||
recognise the option. */
|
||
|
||
int
|
||
lang_decode_option (argc, argv)
|
||
int argc
|
||
#if !USE_CPPLIB
|
||
ATTRIBUTE_UNUSED
|
||
#endif
|
||
;
|
||
char **argv;
|
||
{
|
||
int strings_processed;
|
||
const char *p = argv[0];
|
||
#if USE_CPPLIB
|
||
strings_processed = cpp_handle_option (&parse_in, argc, argv);
|
||
#else
|
||
strings_processed = 0;
|
||
#endif /* ! USE_CPPLIB */
|
||
|
||
if (!strcmp (p, "-ftraditional") || !strcmp (p, "-traditional"))
|
||
/* ignore */;
|
||
else if (p[0] == '-' && p[1] == 'f')
|
||
{
|
||
/* Some kind of -f option.
|
||
P's value is the option sans `-f'.
|
||
Search for it in the table of options. */
|
||
const char *option_value = NULL;
|
||
const char *positive_option;
|
||
size_t j;
|
||
|
||
p += 2;
|
||
/* Try special -f options. */
|
||
|
||
/* See if this is one of the options no longer supported. We
|
||
used to support these options, so we continue to accept them,
|
||
with a warning. */
|
||
if (strncmp (p, "no-", strlen ("no-")) == 0)
|
||
positive_option = p + strlen ("no-");
|
||
else
|
||
positive_option = p;
|
||
|
||
/* If the option is present, issue a warning. Indicate to our
|
||
caller that the option was processed successfully. */
|
||
if (bsearch (&positive_option,
|
||
unsupported_options,
|
||
(sizeof (unsupported_options)
|
||
/ sizeof (unsupported_options[0])),
|
||
sizeof (unsupported_options[0]),
|
||
compare_options))
|
||
{
|
||
warning ("-f%s is no longer supported", p);
|
||
return 1;
|
||
}
|
||
|
||
if (!strcmp (p, "handle-exceptions")
|
||
|| !strcmp (p, "no-handle-exceptions"))
|
||
warning ("-fhandle-exceptions has been renamed to -fexceptions (and is now on by default)");
|
||
else if (! strcmp (p, "alt-external-templates"))
|
||
{
|
||
flag_external_templates = 1;
|
||
flag_alt_external_templates = 1;
|
||
cp_deprecated ("-falt-external-templates");
|
||
}
|
||
else if (! strcmp (p, "no-alt-external-templates"))
|
||
flag_alt_external_templates = 0;
|
||
else if (!strcmp (p, "repo"))
|
||
{
|
||
flag_use_repository = 1;
|
||
flag_implicit_templates = 0;
|
||
}
|
||
else if (!strcmp (p, "external-templates"))
|
||
{
|
||
flag_external_templates = 1;
|
||
cp_deprecated ("-fexternal-templates");
|
||
}
|
||
else if (!strcmp (p, "new-abi"))
|
||
{
|
||
flag_new_abi = 1;
|
||
flag_do_squangling = 1;
|
||
flag_vtable_thunks = 1;
|
||
}
|
||
else if (!strcmp (p, "no-new-abi"))
|
||
{
|
||
flag_new_abi = 0;
|
||
flag_do_squangling = 0;
|
||
}
|
||
else if ((option_value
|
||
= skip_leading_substring (p, "template-depth-")))
|
||
max_tinst_depth
|
||
= read_integral_parameter (option_value, p - 2, max_tinst_depth);
|
||
else if ((option_value
|
||
= skip_leading_substring (p, "name-mangling-version-")))
|
||
name_mangling_version
|
||
= read_integral_parameter (option_value, p - 2, name_mangling_version);
|
||
else if ((option_value
|
||
= skip_leading_substring (p, "dump-translation-unit-")))
|
||
{
|
||
if (p[22] == '\0')
|
||
error ("no file specified with -fdump-translation-unit");
|
||
else
|
||
flag_dump_translation_unit = option_value;
|
||
}
|
||
else
|
||
{
|
||
int found = 0;
|
||
|
||
for (j = 0;
|
||
!found && j < (sizeof (lang_f_options)
|
||
/ sizeof (lang_f_options[0]));
|
||
j++)
|
||
{
|
||
if (!strcmp (p, lang_f_options[j].string))
|
||
{
|
||
*lang_f_options[j].variable = lang_f_options[j].on_value;
|
||
/* A goto here would be cleaner,
|
||
but breaks the vax pcc. */
|
||
found = 1;
|
||
}
|
||
if (p[0] == 'n' && p[1] == 'o' && p[2] == '-'
|
||
&& ! strcmp (p+3, lang_f_options[j].string))
|
||
{
|
||
*lang_f_options[j].variable = ! lang_f_options[j].on_value;
|
||
found = 1;
|
||
}
|
||
}
|
||
|
||
return found;
|
||
}
|
||
}
|
||
else if (p[0] == '-' && p[1] == 'W')
|
||
{
|
||
int setting = 1;
|
||
|
||
/* The -W options control the warning behavior of the compiler. */
|
||
p += 2;
|
||
|
||
if (p[0] == 'n' && p[1] == 'o' && p[2] == '-')
|
||
setting = 0, p += 3;
|
||
|
||
if (!strcmp (p, "implicit"))
|
||
warn_implicit = setting;
|
||
else if (!strcmp (p, "long-long"))
|
||
warn_long_long = setting;
|
||
else if (!strcmp (p, "return-type"))
|
||
warn_return_type = setting;
|
||
else if (!strcmp (p, "ctor-dtor-privacy"))
|
||
warn_ctor_dtor_privacy = setting;
|
||
else if (!strcmp (p, "write-strings"))
|
||
warn_write_strings = setting;
|
||
else if (!strcmp (p, "cast-qual"))
|
||
warn_cast_qual = setting;
|
||
else if (!strcmp (p, "char-subscripts"))
|
||
warn_char_subscripts = setting;
|
||
else if (!strcmp (p, "pointer-arith"))
|
||
warn_pointer_arith = setting;
|
||
else if (!strcmp (p, "missing-prototypes"))
|
||
warn_missing_prototypes = setting;
|
||
else if (!strcmp (p, "strict-prototypes"))
|
||
{
|
||
if (setting == 0)
|
||
warning ("-Wno-strict-prototypes is not supported in C++");
|
||
}
|
||
else if (!strcmp (p, "redundant-decls"))
|
||
warn_redundant_decls = setting;
|
||
else if (!strcmp (p, "missing-braces"))
|
||
warn_missing_braces = setting;
|
||
else if (!strcmp (p, "sign-compare"))
|
||
warn_sign_compare = setting;
|
||
else if (!strcmp (p, "float-equal"))
|
||
warn_float_equal = setting;
|
||
else if (!strcmp (p, "format"))
|
||
warn_format = setting;
|
||
else if (!strcmp (p, "conversion"))
|
||
warn_conversion = setting;
|
||
else if (!strcmp (p, "parentheses"))
|
||
warn_parentheses = setting;
|
||
else if (!strcmp (p, "non-virtual-dtor"))
|
||
warn_nonvdtor = setting;
|
||
else if (!strcmp (p, "extern-inline"))
|
||
warn_extern_inline = setting;
|
||
else if (!strcmp (p, "reorder"))
|
||
warn_reorder = setting;
|
||
else if (!strcmp (p, "synth"))
|
||
warn_synth = setting;
|
||
else if (!strcmp (p, "pmf-conversions"))
|
||
warn_pmf2ptr = setting;
|
||
else if (!strcmp (p, "effc++"))
|
||
warn_ecpp = setting;
|
||
else if (!strcmp (p, "sign-promo"))
|
||
warn_sign_promo = setting;
|
||
else if (!strcmp (p, "old-style-cast"))
|
||
warn_old_style_cast = setting;
|
||
else if (!strcmp (p, "overloaded-virtual"))
|
||
warn_overloaded_virtual = setting;
|
||
else if (!strcmp (p, "multichar"))
|
||
warn_multichar = setting;
|
||
else if (!strcmp (p, "unknown-pragmas"))
|
||
/* Set to greater than 1, so that even unknown pragmas in
|
||
system headers will be warned about. */
|
||
warn_unknown_pragmas = setting * 2;
|
||
else if (!strcmp (p, "non-template-friend"))
|
||
warn_nontemplate_friend = setting;
|
||
else if (!strcmp (p, "deprecated"))
|
||
warn_deprecated = setting;
|
||
else if (!strcmp (p, "comment"))
|
||
; /* cpp handles this one. */
|
||
else if (!strcmp (p, "comments"))
|
||
; /* cpp handles this one. */
|
||
else if (!strcmp (p, "trigraphs"))
|
||
; /* cpp handles this one. */
|
||
else if (!strcmp (p, "import"))
|
||
; /* cpp handles this one. */
|
||
else if (!strcmp (p, "all"))
|
||
{
|
||
warn_return_type = setting;
|
||
set_Wunused (setting);
|
||
warn_implicit = setting;
|
||
warn_switch = setting;
|
||
warn_format = setting;
|
||
warn_parentheses = setting;
|
||
warn_missing_braces = setting;
|
||
warn_sign_compare = setting;
|
||
warn_multichar = setting;
|
||
/* We save the value of warn_uninitialized, since if they put
|
||
-Wuninitialized on the command line, we need to generate a
|
||
warning about not using it without also specifying -O. */
|
||
if (warn_uninitialized != 1)
|
||
warn_uninitialized = (setting ? 2 : 0);
|
||
/* Only warn about unknown pragmas that are not in system
|
||
headers. */
|
||
warn_unknown_pragmas = 1;
|
||
|
||
/* C++-specific warnings. */
|
||
warn_ctor_dtor_privacy = setting;
|
||
warn_nonvdtor = setting;
|
||
warn_reorder = setting;
|
||
warn_nontemplate_friend = setting;
|
||
}
|
||
else return strings_processed;
|
||
}
|
||
else if (!strcmp (p, "-ansi"))
|
||
flag_no_nonansi_builtin = 1, flag_ansi = 1,
|
||
flag_no_gnu_keywords = 1;
|
||
#ifdef SPEW_DEBUG
|
||
/* Undocumented, only ever used when you're invoking cc1plus by hand, since
|
||
it's probably safe to assume no sane person would ever want to use this
|
||
under normal circumstances. */
|
||
else if (!strcmp (p, "-spew-debug"))
|
||
spew_debug = 1;
|
||
#endif
|
||
else
|
||
return strings_processed;
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Incorporate `const' and `volatile' qualifiers for member functions.
|
||
FUNCTION is a TYPE_DECL or a FUNCTION_DECL.
|
||
QUALS is a list of qualifiers. Returns any explicit
|
||
top-level qualifiers of the method's this pointer, anything other than
|
||
TYPE_UNQUALIFIED will be an extension. */
|
||
|
||
int
|
||
grok_method_quals (ctype, function, quals)
|
||
tree ctype, function, quals;
|
||
{
|
||
tree fntype = TREE_TYPE (function);
|
||
tree raises = TYPE_RAISES_EXCEPTIONS (fntype);
|
||
int type_quals = TYPE_UNQUALIFIED;
|
||
int dup_quals = TYPE_UNQUALIFIED;
|
||
int this_quals = TYPE_UNQUALIFIED;
|
||
|
||
do
|
||
{
|
||
int tq = cp_type_qual_from_rid (TREE_VALUE (quals));
|
||
|
||
if ((type_quals | this_quals) & tq)
|
||
dup_quals |= tq;
|
||
else if (tq & TYPE_QUAL_RESTRICT)
|
||
this_quals |= tq;
|
||
else
|
||
type_quals |= tq;
|
||
quals = TREE_CHAIN (quals);
|
||
}
|
||
while (quals);
|
||
|
||
if (dup_quals != TYPE_UNQUALIFIED)
|
||
cp_error ("duplicate type qualifiers in %s declaration",
|
||
TREE_CODE (function) == FUNCTION_DECL
|
||
? "member function" : "type");
|
||
|
||
ctype = cp_build_qualified_type (ctype, type_quals);
|
||
fntype = build_cplus_method_type (ctype, TREE_TYPE (fntype),
|
||
(TREE_CODE (fntype) == METHOD_TYPE
|
||
? TREE_CHAIN (TYPE_ARG_TYPES (fntype))
|
||
: TYPE_ARG_TYPES (fntype)));
|
||
if (raises)
|
||
fntype = build_exception_variant (fntype, raises);
|
||
|
||
TREE_TYPE (function) = fntype;
|
||
return this_quals;
|
||
}
|
||
|
||
/* Warn when -fexternal-templates is used and #pragma
|
||
interface/implementation is not used all the times it should be,
|
||
inform the user. */
|
||
|
||
void
|
||
warn_if_unknown_interface (decl)
|
||
tree decl;
|
||
{
|
||
static int already_warned = 0;
|
||
if (already_warned++)
|
||
return;
|
||
|
||
if (flag_alt_external_templates)
|
||
{
|
||
tree til = tinst_for_decl ();
|
||
int sl = lineno;
|
||
const char *sf = input_filename;
|
||
|
||
if (til)
|
||
{
|
||
lineno = TINST_LINE (til);
|
||
input_filename = TINST_FILE (til);
|
||
}
|
||
cp_warning ("template `%#D' instantiated in file without #pragma interface",
|
||
decl);
|
||
lineno = sl;
|
||
input_filename = sf;
|
||
}
|
||
else
|
||
cp_warning_at ("template `%#D' defined in file without #pragma interface",
|
||
decl);
|
||
}
|
||
|
||
/* A subroutine of the parser, to handle a component list. */
|
||
|
||
void
|
||
grok_x_components (specs)
|
||
tree specs;
|
||
{
|
||
struct pending_inline **p;
|
||
tree t;
|
||
|
||
specs = strip_attrs (specs);
|
||
|
||
check_tag_decl (specs);
|
||
t = groktypename (build_decl_list (specs, NULL_TREE));
|
||
|
||
/* The only case where we need to do anything additional here is an
|
||
anonymous union field, e.g.: `struct S { union { int i; }; };'. */
|
||
if (t == NULL_TREE || !ANON_AGGR_TYPE_P (t))
|
||
return;
|
||
|
||
fixup_anonymous_aggr (t);
|
||
finish_member_declaration (build_decl (FIELD_DECL, NULL_TREE, t));
|
||
|
||
/* Ignore any inline function definitions in the anonymous union
|
||
since an anonymous union may not have function members. */
|
||
p = &pending_inlines;
|
||
for (; *p; *p = (*p)->next)
|
||
if (DECL_CONTEXT ((*p)->fndecl) != t)
|
||
break;
|
||
}
|
||
|
||
/* Returns a PARM_DECL for a parameter of the indicated TYPE, with the
|
||
indicated NAME. */
|
||
|
||
tree
|
||
build_artificial_parm (name, type)
|
||
tree name;
|
||
tree type;
|
||
{
|
||
tree parm;
|
||
|
||
parm = build_decl (PARM_DECL, name, type);
|
||
DECL_ARTIFICIAL (parm) = 1;
|
||
DECL_ARG_TYPE (parm) = type;
|
||
return parm;
|
||
}
|
||
|
||
/* Constructors for types with virtual baseclasses need an "in-charge" flag
|
||
saying whether this constructor is responsible for initialization of
|
||
virtual baseclasses or not. All destructors also need this "in-charge"
|
||
flag, which additionally determines whether or not the destructor should
|
||
free the memory for the object.
|
||
|
||
This function adds the "in-charge" flag to member function FN if
|
||
appropriate. It is called from grokclassfn and tsubst.
|
||
FN must be either a constructor or destructor. */
|
||
|
||
void
|
||
maybe_retrofit_in_chrg (fn)
|
||
tree fn;
|
||
{
|
||
tree basetype, arg_types, parms, parm, fntype;
|
||
|
||
/* If we've already add the in-charge parameter don't do it again. */
|
||
if (DECL_HAS_IN_CHARGE_PARM_P (fn))
|
||
return;
|
||
|
||
/* When processing templates we can't know, in general, whether or
|
||
not we're going to have virtual baseclasses. */
|
||
if (uses_template_parms (fn))
|
||
return;
|
||
|
||
/* We don't need an in-charge parameter for constructors that don't
|
||
have virtual bases. */
|
||
if (DECL_CONSTRUCTOR_P (fn)
|
||
&& !TYPE_USES_VIRTUAL_BASECLASSES (DECL_CONTEXT (fn)))
|
||
return;
|
||
|
||
/* First add it to DECL_ARGUMENTS... */
|
||
parm = build_artificial_parm (in_charge_identifier, integer_type_node);
|
||
TREE_READONLY (parm) = 1;
|
||
parms = DECL_ARGUMENTS (fn);
|
||
TREE_CHAIN (parm) = TREE_CHAIN (parms);
|
||
TREE_CHAIN (parms) = parm;
|
||
|
||
/* ...and then to TYPE_ARG_TYPES. */
|
||
arg_types = TYPE_ARG_TYPES (TREE_TYPE (fn));
|
||
basetype = TREE_TYPE (TREE_VALUE (arg_types));
|
||
arg_types = hash_tree_chain (integer_type_node, TREE_CHAIN (arg_types));
|
||
fntype = build_cplus_method_type (basetype, TREE_TYPE (TREE_TYPE (fn)),
|
||
arg_types);
|
||
if (TYPE_RAISES_EXCEPTIONS (TREE_TYPE (fn)))
|
||
fntype = build_exception_variant (fntype,
|
||
TYPE_RAISES_EXCEPTIONS (TREE_TYPE (fn)));
|
||
TREE_TYPE (fn) = fntype;
|
||
|
||
/* Now we've got the in-charge parameter. */
|
||
DECL_HAS_IN_CHARGE_PARM_P (fn) = 1;
|
||
|
||
/* If this is a subobject constructor or destructor, our caller will
|
||
pass us a pointer to our VTT. */
|
||
if (flag_new_abi && TYPE_USES_VIRTUAL_BASECLASSES (DECL_CONTEXT (fn)))
|
||
{
|
||
DECL_VTT_PARM (fn) = build_artificial_parm (vtt_parm_identifier,
|
||
vtt_parm_type);
|
||
DECL_CONTEXT (DECL_VTT_PARM (fn)) = fn;
|
||
DECL_USE_VTT_PARM (fn) = build_artificial_parm (NULL_TREE,
|
||
boolean_type_node);
|
||
DECL_CONTEXT (DECL_USE_VTT_PARM (fn)) = fn;
|
||
}
|
||
}
|
||
|
||
/* Classes overload their constituent function names automatically.
|
||
When a function name is declared in a record structure,
|
||
its name is changed to it overloaded name. Since names for
|
||
constructors and destructors can conflict, we place a leading
|
||
'$' for destructors.
|
||
|
||
CNAME is the name of the class we are grokking for.
|
||
|
||
FUNCTION is a FUNCTION_DECL. It was created by `grokdeclarator'.
|
||
|
||
FLAGS contains bits saying what's special about today's
|
||
arguments. 1 == DESTRUCTOR. 2 == OPERATOR.
|
||
|
||
If FUNCTION is a destructor, then we must add the `auto-delete' field
|
||
as a second parameter. There is some hair associated with the fact
|
||
that we must "declare" this variable in the manner consistent with the
|
||
way the rest of the arguments were declared.
|
||
|
||
QUALS are the qualifiers for the this pointer. */
|
||
|
||
void
|
||
grokclassfn (ctype, function, flags, quals)
|
||
tree ctype, function;
|
||
enum overload_flags flags;
|
||
tree quals;
|
||
{
|
||
tree fn_name = DECL_NAME (function);
|
||
int this_quals = TYPE_UNQUALIFIED;
|
||
|
||
/* Even within an `extern "C"' block, members get C++ linkage. See
|
||
[dcl.link] for details. */
|
||
DECL_LANGUAGE (function) = lang_cplusplus;
|
||
|
||
if (fn_name == NULL_TREE)
|
||
{
|
||
error ("name missing for member function");
|
||
fn_name = get_identifier ("<anonymous>");
|
||
DECL_NAME (function) = fn_name;
|
||
}
|
||
|
||
if (quals)
|
||
this_quals = grok_method_quals (ctype, function, quals);
|
||
|
||
if (TREE_CODE (TREE_TYPE (function)) == METHOD_TYPE)
|
||
{
|
||
/* Must add the class instance variable up front. */
|
||
/* Right now we just make this a pointer. But later
|
||
we may wish to make it special. */
|
||
tree type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (function)));
|
||
tree qual_type;
|
||
tree parm;
|
||
|
||
/* The `this' parameter is implicitly `const'; it cannot be
|
||
assigned to. */
|
||
this_quals |= TYPE_QUAL_CONST;
|
||
qual_type = cp_build_qualified_type (type, this_quals);
|
||
parm = build_artificial_parm (this_identifier, qual_type);
|
||
c_apply_type_quals_to_decl (this_quals, parm);
|
||
|
||
/* We can make this a register, so long as we don't
|
||
accidentally complain if someone tries to take its address. */
|
||
DECL_REGISTER (parm) = 1;
|
||
TREE_CHAIN (parm) = last_function_parms;
|
||
last_function_parms = parm;
|
||
}
|
||
|
||
DECL_ARGUMENTS (function) = last_function_parms;
|
||
DECL_CONTEXT (function) = ctype;
|
||
|
||
if (flags == DTOR_FLAG || DECL_CONSTRUCTOR_P (function))
|
||
maybe_retrofit_in_chrg (function);
|
||
|
||
if (flags == DTOR_FLAG)
|
||
{
|
||
DECL_DESTRUCTOR_P (function) = 1;
|
||
|
||
if (flag_new_abi)
|
||
set_mangled_name_for_decl (function);
|
||
else
|
||
DECL_ASSEMBLER_NAME (function) = build_destructor_name (ctype);
|
||
|
||
TYPE_HAS_DESTRUCTOR (ctype) = 1;
|
||
}
|
||
else
|
||
set_mangled_name_for_decl (function);
|
||
}
|
||
|
||
/* Work on the expr used by alignof (this is only called by the parser). */
|
||
|
||
tree
|
||
grok_alignof (expr)
|
||
tree expr;
|
||
{
|
||
tree best, t;
|
||
int bestalign;
|
||
|
||
if (processing_template_decl)
|
||
return build_min (ALIGNOF_EXPR, sizetype, expr);
|
||
|
||
if (TREE_CODE (expr) == COMPONENT_REF
|
||
&& DECL_C_BIT_FIELD (TREE_OPERAND (expr, 1)))
|
||
error ("`__alignof__' applied to a bit-field");
|
||
|
||
if (TREE_CODE (expr) == INDIRECT_REF)
|
||
{
|
||
best = t = TREE_OPERAND (expr, 0);
|
||
bestalign = TYPE_ALIGN (TREE_TYPE (TREE_TYPE (t)));
|
||
|
||
while (TREE_CODE (t) == NOP_EXPR
|
||
&& TREE_CODE (TREE_TYPE (TREE_OPERAND (t, 0))) == POINTER_TYPE)
|
||
{
|
||
int thisalign;
|
||
t = TREE_OPERAND (t, 0);
|
||
thisalign = TYPE_ALIGN (TREE_TYPE (TREE_TYPE (t)));
|
||
if (thisalign > bestalign)
|
||
best = t, bestalign = thisalign;
|
||
}
|
||
return c_alignof (TREE_TYPE (TREE_TYPE (best)));
|
||
}
|
||
else
|
||
return c_alignof (TREE_TYPE (expr));
|
||
}
|
||
|
||
/* Create an ARRAY_REF, checking for the user doing things backwards
|
||
along the way. */
|
||
|
||
tree
|
||
grok_array_decl (array_expr, index_exp)
|
||
tree array_expr, index_exp;
|
||
{
|
||
tree type = TREE_TYPE (array_expr);
|
||
tree p1, p2, i1, i2;
|
||
|
||
if (type == error_mark_node || index_exp == error_mark_node)
|
||
return error_mark_node;
|
||
if (processing_template_decl)
|
||
return build_min (ARRAY_REF, type ? TREE_TYPE (type) : NULL_TREE,
|
||
array_expr, index_exp);
|
||
|
||
if (type == NULL_TREE)
|
||
{
|
||
/* Something has gone very wrong. Assume we are mistakenly reducing
|
||
an expression instead of a declaration. */
|
||
error ("parser may be lost: is there a '{' missing somewhere?");
|
||
return NULL_TREE;
|
||
}
|
||
|
||
if (TREE_CODE (type) == OFFSET_TYPE
|
||
|| TREE_CODE (type) == REFERENCE_TYPE)
|
||
type = TREE_TYPE (type);
|
||
|
||
/* If they have an `operator[]', use that. */
|
||
if (IS_AGGR_TYPE (type) || IS_AGGR_TYPE (TREE_TYPE (index_exp)))
|
||
return build_opfncall (ARRAY_REF, LOOKUP_NORMAL,
|
||
array_expr, index_exp, NULL_TREE);
|
||
|
||
/* Otherwise, create an ARRAY_REF for a pointer or array type. It
|
||
is a little-known fact that, if `a' is an array and `i' is an
|
||
int, you can write `i[a]', which means the same thing as `a[i]'. */
|
||
|
||
if (TREE_CODE (type) == ARRAY_TYPE)
|
||
p1 = array_expr;
|
||
else
|
||
p1 = build_expr_type_conversion (WANT_POINTER, array_expr, 0);
|
||
|
||
if (TREE_CODE (TREE_TYPE (index_exp)) == ARRAY_TYPE)
|
||
p2 = index_exp;
|
||
else
|
||
p2 = build_expr_type_conversion (WANT_POINTER, index_exp, 0);
|
||
|
||
i1 = build_expr_type_conversion (WANT_INT | WANT_ENUM, array_expr, 0);
|
||
i2 = build_expr_type_conversion (WANT_INT | WANT_ENUM, index_exp, 0);
|
||
|
||
if ((p1 && i2) && (i1 && p2))
|
||
error ("ambiguous conversion for array subscript");
|
||
|
||
if (p1 && i2)
|
||
array_expr = p1, index_exp = i2;
|
||
else if (i1 && p2)
|
||
array_expr = p2, index_exp = i1;
|
||
else
|
||
{
|
||
cp_error ("invalid types `%T[%T]' for array subscript",
|
||
type, TREE_TYPE (index_exp));
|
||
return error_mark_node;
|
||
}
|
||
|
||
if (array_expr == error_mark_node || index_exp == error_mark_node)
|
||
error ("ambiguous conversion for array subscript");
|
||
|
||
return build_array_ref (array_expr, index_exp);
|
||
}
|
||
|
||
/* Given the cast expression EXP, checking out its validity. Either return
|
||
an error_mark_node if there was an unavoidable error, return a cast to
|
||
void for trying to delete a pointer w/ the value 0, or return the
|
||
call to delete. If DOING_VEC is 1, we handle things differently
|
||
for doing an array delete. If DOING_VEC is 2, they gave us the
|
||
array size as an argument to delete.
|
||
Implements ARM $5.3.4. This is called from the parser. */
|
||
|
||
tree
|
||
delete_sanity (exp, size, doing_vec, use_global_delete)
|
||
tree exp, size;
|
||
int doing_vec, use_global_delete;
|
||
{
|
||
tree t, type;
|
||
/* For a regular vector delete (aka, no size argument) we will pass
|
||
this down as a NULL_TREE into build_vec_delete. */
|
||
tree maxindex = NULL_TREE;
|
||
|
||
if (exp == error_mark_node)
|
||
return exp;
|
||
|
||
if (processing_template_decl)
|
||
{
|
||
t = build_min (DELETE_EXPR, void_type_node, exp, size);
|
||
DELETE_EXPR_USE_GLOBAL (t) = use_global_delete;
|
||
DELETE_EXPR_USE_VEC (t) = doing_vec;
|
||
return t;
|
||
}
|
||
|
||
if (TREE_CODE (exp) == OFFSET_REF)
|
||
exp = resolve_offset_ref (exp);
|
||
exp = convert_from_reference (exp);
|
||
t = stabilize_reference (exp);
|
||
t = build_expr_type_conversion (WANT_POINTER, t, 1);
|
||
|
||
if (t == NULL_TREE || t == error_mark_node)
|
||
{
|
||
cp_error ("type `%#T' argument given to `delete', expected pointer",
|
||
TREE_TYPE (exp));
|
||
return error_mark_node;
|
||
}
|
||
|
||
if (doing_vec == 2)
|
||
{
|
||
maxindex = cp_build_binary_op (MINUS_EXPR, size, integer_one_node);
|
||
pedwarn ("anachronistic use of array size in vector delete");
|
||
}
|
||
|
||
type = TREE_TYPE (t);
|
||
|
||
/* As of Valley Forge, you can delete a pointer to const. */
|
||
|
||
/* You can't delete functions. */
|
||
if (TREE_CODE (TREE_TYPE (type)) == FUNCTION_TYPE)
|
||
{
|
||
error ("cannot delete a function. Only pointer-to-objects are valid arguments to `delete'");
|
||
return error_mark_node;
|
||
}
|
||
|
||
/* Deleting ptr to void is undefined behaviour [expr.delete/3]. */
|
||
if (TREE_CODE (TREE_TYPE (type)) == VOID_TYPE)
|
||
{
|
||
cp_warning ("deleting `%T' is undefined", type);
|
||
doing_vec = 0;
|
||
}
|
||
|
||
/* An array can't have been allocated by new, so complain. */
|
||
if (TREE_CODE (t) == ADDR_EXPR
|
||
&& TREE_CODE (TREE_OPERAND (t, 0)) == VAR_DECL
|
||
&& TREE_CODE (TREE_TYPE (TREE_OPERAND (t, 0))) == ARRAY_TYPE)
|
||
cp_warning ("deleting array `%#D'", TREE_OPERAND (t, 0));
|
||
|
||
/* Deleting a pointer with the value zero is valid and has no effect. */
|
||
if (integer_zerop (t))
|
||
return build1 (NOP_EXPR, void_type_node, t);
|
||
|
||
if (doing_vec)
|
||
return build_vec_delete (t, maxindex, sfk_deleting_destructor,
|
||
use_global_delete);
|
||
else
|
||
{
|
||
if (IS_AGGR_TYPE (TREE_TYPE (type))
|
||
&& TYPE_GETS_REG_DELETE (TREE_TYPE (type)))
|
||
{
|
||
/* Only do access checking here; we'll be calling op delete
|
||
from the destructor. */
|
||
tree tmp = build_op_delete_call (DELETE_EXPR, t, size_zero_node,
|
||
LOOKUP_NORMAL, NULL_TREE);
|
||
if (tmp == error_mark_node)
|
||
return error_mark_node;
|
||
}
|
||
|
||
return build_delete (type, t, sfk_deleting_destructor,
|
||
LOOKUP_NORMAL, use_global_delete);
|
||
}
|
||
}
|
||
|
||
/* Report an error if the indicated template declaration is not the
|
||
sort of thing that should be a member template. */
|
||
|
||
void
|
||
check_member_template (tmpl)
|
||
tree tmpl;
|
||
{
|
||
tree decl;
|
||
|
||
my_friendly_assert (TREE_CODE (tmpl) == TEMPLATE_DECL, 0);
|
||
decl = DECL_TEMPLATE_RESULT (tmpl);
|
||
|
||
if (TREE_CODE (decl) == FUNCTION_DECL
|
||
|| (TREE_CODE (decl) == TYPE_DECL
|
||
&& IS_AGGR_TYPE (TREE_TYPE (decl))))
|
||
{
|
||
if (current_function_decl)
|
||
/* 14.5.2.2 [temp.mem]
|
||
|
||
A local class shall not have member templates. */
|
||
cp_error ("invalid declaration of member template `%#D' in local class",
|
||
decl);
|
||
|
||
if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VIRTUAL_P (decl))
|
||
{
|
||
/* 14.5.2.3 [temp.mem]
|
||
|
||
A member function template shall not be virtual. */
|
||
cp_error
|
||
("invalid use of `virtual' in template declaration of `%#D'",
|
||
decl);
|
||
DECL_VIRTUAL_P (decl) = 0;
|
||
}
|
||
|
||
/* The debug-information generating code doesn't know what to do
|
||
with member templates. */
|
||
DECL_IGNORED_P (tmpl) = 1;
|
||
}
|
||
else
|
||
cp_error ("template declaration of `%#D'", decl);
|
||
}
|
||
|
||
/* Return true iff TYPE is a valid Java parameter or return type. */
|
||
|
||
static int
|
||
acceptable_java_type (type)
|
||
tree type;
|
||
{
|
||
if (TREE_CODE (type) == VOID_TYPE || TYPE_FOR_JAVA (type))
|
||
return 1;
|
||
if (TREE_CODE (type) == POINTER_TYPE)
|
||
{
|
||
type = TREE_TYPE (type);
|
||
if (TREE_CODE (type) == RECORD_TYPE)
|
||
{
|
||
tree args; int i;
|
||
if (! TYPE_FOR_JAVA (type))
|
||
return 0;
|
||
if (! CLASSTYPE_TEMPLATE_INFO (type))
|
||
return 1;
|
||
args = CLASSTYPE_TI_ARGS (type);
|
||
i = TREE_VEC_LENGTH (args);
|
||
while (--i >= 0)
|
||
{
|
||
type = TREE_VEC_ELT (args, i);
|
||
if (TREE_CODE (type) == POINTER_TYPE)
|
||
type = TREE_TYPE (type);
|
||
if (! TYPE_FOR_JAVA (type))
|
||
return 0;
|
||
}
|
||
return 1;
|
||
}
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
/* For a METHOD in a Java class CTYPE, return 1 if
|
||
the parameter and return types are valid Java types.
|
||
Otherwise, print appropriate error messages, and return 0. */
|
||
|
||
int
|
||
check_java_method (method)
|
||
tree method;
|
||
{
|
||
int jerr = 0;
|
||
tree arg_types = TYPE_ARG_TYPES (TREE_TYPE (method));
|
||
tree ret_type = TREE_TYPE (TREE_TYPE (method));
|
||
if (! acceptable_java_type (ret_type))
|
||
{
|
||
cp_error ("Java method '%D' has non-Java return type `%T'",
|
||
method, ret_type);
|
||
jerr++;
|
||
}
|
||
for (; arg_types != NULL_TREE; arg_types = TREE_CHAIN (arg_types))
|
||
{
|
||
tree type = TREE_VALUE (arg_types);
|
||
if (! acceptable_java_type (type))
|
||
{
|
||
cp_error ("Java method '%D' has non-Java parameter type `%T'",
|
||
method, type);
|
||
jerr++;
|
||
}
|
||
}
|
||
return jerr ? 0 : 1;
|
||
}
|
||
|
||
/* Sanity check: report error if this function FUNCTION is not
|
||
really a member of the class (CTYPE) it is supposed to belong to.
|
||
CNAME is the same here as it is for grokclassfn above. */
|
||
|
||
tree
|
||
check_classfn (ctype, function)
|
||
tree ctype, function;
|
||
{
|
||
tree fn_name = DECL_NAME (function);
|
||
tree fndecl, fndecls;
|
||
tree method_vec = CLASSTYPE_METHOD_VEC (complete_type (ctype));
|
||
tree *methods = 0;
|
||
tree *end = 0;
|
||
|
||
if (DECL_USE_TEMPLATE (function)
|
||
&& !(TREE_CODE (function) == TEMPLATE_DECL
|
||
&& DECL_TEMPLATE_SPECIALIZATION (function))
|
||
&& is_member_template (DECL_TI_TEMPLATE (function)))
|
||
/* Since this is a specialization of a member template,
|
||
we're not going to find the declaration in the class.
|
||
For example, in:
|
||
|
||
struct S { template <typename T> void f(T); };
|
||
template <> void S::f(int);
|
||
|
||
we're not going to find `S::f(int)', but there's no
|
||
reason we should, either. We let our callers know we didn't
|
||
find the method, but we don't complain. */
|
||
return NULL_TREE;
|
||
|
||
if (method_vec != 0)
|
||
{
|
||
methods = &TREE_VEC_ELT (method_vec, 0);
|
||
end = TREE_VEC_END (method_vec);
|
||
|
||
/* First suss out ctors and dtors. */
|
||
if (*methods && fn_name == DECL_NAME (OVL_CURRENT (*methods))
|
||
&& DECL_CONSTRUCTOR_P (function))
|
||
goto got_it;
|
||
if (*++methods && fn_name == DECL_NAME (OVL_CURRENT (*methods))
|
||
&& DECL_DESTRUCTOR_P (function))
|
||
goto got_it;
|
||
|
||
while (++methods != end && *methods)
|
||
{
|
||
fndecl = *methods;
|
||
if (fn_name == DECL_NAME (OVL_CURRENT (*methods)))
|
||
{
|
||
got_it:
|
||
for (fndecls = *methods; fndecls != NULL_TREE;
|
||
fndecls = OVL_NEXT (fndecls))
|
||
{
|
||
fndecl = OVL_CURRENT (fndecls);
|
||
/* The DECL_ASSEMBLER_NAME for a TEMPLATE_DECL, or
|
||
for a for member function of a template class, is
|
||
not mangled, so the check below does not work
|
||
correctly in that case. Since mangled destructor
|
||
names do not include the type of the arguments,
|
||
we can't use this short-cut for them, either.
|
||
(It's not legal to declare arguments for a
|
||
destructor, but some people try.) */
|
||
if (!DECL_DESTRUCTOR_P (function)
|
||
&& (DECL_ASSEMBLER_NAME (function)
|
||
!= DECL_NAME (function))
|
||
&& (DECL_ASSEMBLER_NAME (fndecl)
|
||
!= DECL_NAME (fndecl))
|
||
&& (DECL_ASSEMBLER_NAME (function)
|
||
== DECL_ASSEMBLER_NAME (fndecl)))
|
||
return fndecl;
|
||
|
||
/* We cannot simply call decls_match because this
|
||
doesn't work for static member functions that are
|
||
pretending to be methods, and because the name
|
||
may have been changed by asm("new_name"). */
|
||
if (DECL_NAME (function) == DECL_NAME (fndecl))
|
||
{
|
||
tree p1 = TYPE_ARG_TYPES (TREE_TYPE (function));
|
||
tree p2 = TYPE_ARG_TYPES (TREE_TYPE (fndecl));
|
||
|
||
/* Get rid of the this parameter on functions that become
|
||
static. */
|
||
if (DECL_STATIC_FUNCTION_P (fndecl)
|
||
&& TREE_CODE (TREE_TYPE (function)) == METHOD_TYPE)
|
||
p1 = TREE_CHAIN (p1);
|
||
|
||
if (same_type_p (TREE_TYPE (TREE_TYPE (function)),
|
||
TREE_TYPE (TREE_TYPE (fndecl)))
|
||
&& compparms (p1, p2)
|
||
&& (DECL_TEMPLATE_SPECIALIZATION (function)
|
||
== DECL_TEMPLATE_SPECIALIZATION (fndecl))
|
||
&& (!DECL_TEMPLATE_SPECIALIZATION (function)
|
||
|| (DECL_TI_TEMPLATE (function)
|
||
== DECL_TI_TEMPLATE (fndecl))))
|
||
return fndecl;
|
||
}
|
||
}
|
||
break; /* loser */
|
||
}
|
||
}
|
||
}
|
||
|
||
if (methods != end && *methods)
|
||
{
|
||
tree fndecl = *methods;
|
||
cp_error ("prototype for `%#D' does not match any in class `%T'",
|
||
function, ctype);
|
||
cp_error_at ("candidate%s: %+#D", OVL_NEXT (fndecl) ? "s are" : " is",
|
||
OVL_CURRENT (fndecl));
|
||
while (fndecl = OVL_NEXT (fndecl), fndecl)
|
||
cp_error_at (" %#D", OVL_CURRENT(fndecl));
|
||
}
|
||
else
|
||
{
|
||
methods = 0;
|
||
if (!COMPLETE_TYPE_P (ctype))
|
||
incomplete_type_error (function, ctype);
|
||
else
|
||
cp_error ("no `%#D' member function declared in class `%T'",
|
||
function, ctype);
|
||
}
|
||
|
||
/* If we did not find the method in the class, add it to avoid
|
||
spurious errors (unless the CTYPE is not yet defined, in which
|
||
case we'll only confuse ourselves when the function is declared
|
||
properly within the class. */
|
||
if (COMPLETE_TYPE_P (ctype))
|
||
add_method (ctype, function, /*error_p=*/1);
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* We have just processed the DECL, which is a static data member.
|
||
Its initializer, if present, is INIT. The ASMSPEC_TREE, if
|
||
present, is the assembly-language name for the data member.
|
||
FLAGS is as for cp_finish_decl. */
|
||
|
||
void
|
||
finish_static_data_member_decl (decl, init, asmspec_tree, flags)
|
||
tree decl;
|
||
tree init;
|
||
tree asmspec_tree;
|
||
int flags;
|
||
{
|
||
const char *asmspec = 0;
|
||
|
||
if (asmspec_tree)
|
||
asmspec = TREE_STRING_POINTER (asmspec_tree);
|
||
|
||
my_friendly_assert (TREE_PUBLIC (decl), 0);
|
||
|
||
DECL_CONTEXT (decl) = current_class_type;
|
||
|
||
/* We cannot call pushdecl here, because that would fill in the
|
||
decl of our TREE_CHAIN. Instead, we modify cp_finish_decl to do
|
||
the right thing, namely, to put this decl out straight away. */
|
||
/* current_class_type can be NULL_TREE in case of error. */
|
||
if (!asmspec && current_class_type)
|
||
{
|
||
DECL_INITIAL (decl) = error_mark_node;
|
||
if (flag_new_abi)
|
||
DECL_ASSEMBLER_NAME (decl) = mangle_decl (decl);
|
||
else
|
||
DECL_ASSEMBLER_NAME (decl)
|
||
= build_static_name (current_class_type, DECL_NAME (decl));
|
||
}
|
||
if (! processing_template_decl)
|
||
{
|
||
if (!pending_statics)
|
||
VARRAY_TREE_INIT (pending_statics, 32, "pending_statics");
|
||
VARRAY_PUSH_TREE (pending_statics, decl);
|
||
}
|
||
|
||
/* Static consts need not be initialized in the class definition. */
|
||
if (init != NULL_TREE && TYPE_NEEDS_CONSTRUCTING (TREE_TYPE (decl)))
|
||
{
|
||
static int explanation = 0;
|
||
|
||
error ("initializer invalid for static member with constructor");
|
||
if (explanation++ == 0)
|
||
error ("(you really want to initialize it separately)");
|
||
init = 0;
|
||
}
|
||
/* Force the compiler to know when an uninitialized static const
|
||
member is being used. */
|
||
if (CP_TYPE_CONST_P (TREE_TYPE (decl)) && init == 0)
|
||
TREE_USED (decl) = 1;
|
||
DECL_INITIAL (decl) = init;
|
||
DECL_IN_AGGR_P (decl) = 1;
|
||
|
||
cp_finish_decl (decl, init, asmspec_tree, flags);
|
||
}
|
||
|
||
/* Process the specs, declarator (NULL if omitted) and width (NULL if omitted)
|
||
of a structure component, returning a _DECL node.
|
||
QUALS is a list of type qualifiers for this decl (such as for declaring
|
||
const member functions).
|
||
|
||
This is done during the parsing of the struct declaration.
|
||
The _DECL nodes are chained together and the lot of them
|
||
are ultimately passed to `build_struct' to make the RECORD_TYPE node.
|
||
|
||
If class A defines that certain functions in class B are friends, then
|
||
the way I have set things up, it is B who is interested in permission
|
||
granted by A. However, it is in A's context that these declarations
|
||
are parsed. By returning a void_type_node, class A does not attempt
|
||
to incorporate the declarations of the friends within its structure.
|
||
|
||
DO NOT MAKE ANY CHANGES TO THIS CODE WITHOUT MAKING CORRESPONDING
|
||
CHANGES TO CODE IN `start_method'. */
|
||
|
||
tree
|
||
grokfield (declarator, declspecs, init, asmspec_tree, attrlist)
|
||
tree declarator, declspecs, init, asmspec_tree, attrlist;
|
||
{
|
||
register tree value;
|
||
const char *asmspec = 0;
|
||
int flags = LOOKUP_ONLYCONVERTING;
|
||
|
||
/* Convert () initializers to = initializers. */
|
||
if (init == NULL_TREE && declarator != NULL_TREE
|
||
&& TREE_CODE (declarator) == CALL_EXPR
|
||
&& TREE_OPERAND (declarator, 0)
|
||
&& (TREE_CODE (TREE_OPERAND (declarator, 0)) == IDENTIFIER_NODE
|
||
|| TREE_CODE (TREE_OPERAND (declarator, 0)) == SCOPE_REF)
|
||
&& parmlist_is_exprlist (CALL_DECLARATOR_PARMS (declarator)))
|
||
{
|
||
/* It's invalid to try to initialize a data member using a
|
||
functional notation, e.g.:
|
||
|
||
struct S {
|
||
static int i (3);
|
||
};
|
||
|
||
Explain that to the user. */
|
||
static int explained_p;
|
||
|
||
cp_error ("invalid data member initiailization");
|
||
if (!explained_p)
|
||
{
|
||
cp_error ("use `=' to initialize static data members");
|
||
explained_p = 1;
|
||
}
|
||
|
||
declarator = TREE_OPERAND (declarator, 0);
|
||
flags = 0;
|
||
}
|
||
|
||
if (declspecs == NULL_TREE
|
||
&& TREE_CODE (declarator) == SCOPE_REF
|
||
&& TREE_CODE (TREE_OPERAND (declarator, 1)) == IDENTIFIER_NODE)
|
||
{
|
||
/* Access declaration */
|
||
if (! IS_AGGR_TYPE_CODE (TREE_CODE (TREE_OPERAND (declarator, 0))))
|
||
;
|
||
else if (TREE_COMPLEXITY (declarator) == current_class_depth)
|
||
pop_nested_class ();
|
||
return do_class_using_decl (declarator);
|
||
}
|
||
|
||
if (init
|
||
&& TREE_CODE (init) == TREE_LIST
|
||
&& TREE_VALUE (init) == error_mark_node
|
||
&& TREE_CHAIN (init) == NULL_TREE)
|
||
init = NULL_TREE;
|
||
|
||
value = grokdeclarator (declarator, declspecs, FIELD, init != 0, attrlist);
|
||
if (! value || value == error_mark_node)
|
||
/* friend or constructor went bad. */
|
||
return value;
|
||
if (TREE_TYPE (value) == error_mark_node)
|
||
return error_mark_node;
|
||
|
||
/* Pass friendly classes back. */
|
||
if (TREE_CODE (value) == VOID_TYPE)
|
||
return void_type_node;
|
||
|
||
if (DECL_NAME (value) != NULL_TREE
|
||
&& IDENTIFIER_POINTER (DECL_NAME (value))[0] == '_'
|
||
&& ! strcmp (IDENTIFIER_POINTER (DECL_NAME (value)), "_vptr"))
|
||
cp_error ("member `%D' conflicts with virtual function table field name",
|
||
value);
|
||
|
||
/* Stash away type declarations. */
|
||
if (TREE_CODE (value) == TYPE_DECL)
|
||
{
|
||
DECL_NONLOCAL (value) = 1;
|
||
DECL_CONTEXT (value) = current_class_type;
|
||
|
||
/* Now that we've updated the context, we need to remangle the
|
||
name for this TYPE_DECL. */
|
||
DECL_ASSEMBLER_NAME (value) = DECL_NAME (value);
|
||
if (!uses_template_parms (value))
|
||
{
|
||
if (flag_new_abi)
|
||
DECL_ASSEMBLER_NAME (value) = mangle_type (TREE_TYPE (value));
|
||
else
|
||
DECL_ASSEMBLER_NAME (value) =
|
||
get_identifier (build_overload_name (TREE_TYPE (value), 1, 1));
|
||
}
|
||
|
||
if (processing_template_decl)
|
||
value = push_template_decl (value);
|
||
|
||
return value;
|
||
}
|
||
|
||
if (DECL_IN_AGGR_P (value))
|
||
{
|
||
cp_error ("`%D' is already defined in `%T'", value,
|
||
DECL_CONTEXT (value));
|
||
return void_type_node;
|
||
}
|
||
|
||
if (asmspec_tree)
|
||
asmspec = TREE_STRING_POINTER (asmspec_tree);
|
||
|
||
if (init)
|
||
{
|
||
if (TREE_CODE (value) == FUNCTION_DECL)
|
||
{
|
||
grok_function_init (value, init);
|
||
init = NULL_TREE;
|
||
}
|
||
else if (pedantic && TREE_CODE (value) != VAR_DECL)
|
||
/* Already complained in grokdeclarator. */
|
||
init = NULL_TREE;
|
||
else
|
||
{
|
||
/* We allow initializers to become parameters to base
|
||
initializers. */
|
||
if (TREE_CODE (init) == TREE_LIST)
|
||
{
|
||
if (TREE_CHAIN (init) == NULL_TREE)
|
||
init = TREE_VALUE (init);
|
||
else
|
||
init = digest_init (TREE_TYPE (value), init, (tree *)0);
|
||
}
|
||
|
||
if (TREE_CODE (init) == CONST_DECL)
|
||
init = DECL_INITIAL (init);
|
||
else if (TREE_READONLY_DECL_P (init))
|
||
init = decl_constant_value (init);
|
||
else if (TREE_CODE (init) == CONSTRUCTOR)
|
||
init = digest_init (TREE_TYPE (value), init, (tree *)0);
|
||
if (init == error_mark_node)
|
||
/* We must make this look different than `error_mark_node'
|
||
because `decl_const_value' would mis-interpret it
|
||
as only meaning that this VAR_DECL is defined. */
|
||
init = build1 (NOP_EXPR, TREE_TYPE (value), init);
|
||
else if (processing_template_decl)
|
||
;
|
||
else if (! TREE_CONSTANT (init))
|
||
{
|
||
/* We can allow references to things that are effectively
|
||
static, since references are initialized with the address. */
|
||
if (TREE_CODE (TREE_TYPE (value)) != REFERENCE_TYPE
|
||
|| (TREE_STATIC (init) == 0
|
||
&& (!DECL_P (init) || DECL_EXTERNAL (init) == 0)))
|
||
{
|
||
error ("field initializer is not constant");
|
||
init = error_mark_node;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
if (processing_template_decl && ! current_function_decl
|
||
&& (TREE_CODE (value) == VAR_DECL || TREE_CODE (value) == FUNCTION_DECL))
|
||
value = push_template_decl (value);
|
||
|
||
if (attrlist)
|
||
cplus_decl_attributes (value, TREE_PURPOSE (attrlist),
|
||
TREE_VALUE (attrlist));
|
||
|
||
if (TREE_CODE (value) == VAR_DECL)
|
||
{
|
||
finish_static_data_member_decl (value, init, asmspec_tree,
|
||
flags);
|
||
return value;
|
||
}
|
||
if (TREE_CODE (value) == FIELD_DECL)
|
||
{
|
||
if (asmspec)
|
||
{
|
||
/* This must override the asm specifier which was placed
|
||
by grokclassfn. Lay this out fresh. */
|
||
DECL_RTL (value) = NULL_RTX;
|
||
DECL_ASSEMBLER_NAME (value) = get_identifier (asmspec);
|
||
}
|
||
if (DECL_INITIAL (value) == error_mark_node)
|
||
init = error_mark_node;
|
||
cp_finish_decl (value, init, asmspec_tree, flags);
|
||
DECL_INITIAL (value) = init;
|
||
DECL_IN_AGGR_P (value) = 1;
|
||
return value;
|
||
}
|
||
if (TREE_CODE (value) == FUNCTION_DECL)
|
||
{
|
||
if (asmspec)
|
||
{
|
||
/* This must override the asm specifier which was placed
|
||
by grokclassfn. Lay this out fresh. */
|
||
DECL_RTL (value) = NULL_RTX;
|
||
DECL_ASSEMBLER_NAME (value) = get_identifier (asmspec);
|
||
}
|
||
cp_finish_decl (value, init, asmspec_tree, flags);
|
||
|
||
/* Pass friends back this way. */
|
||
if (DECL_FRIEND_P (value))
|
||
return void_type_node;
|
||
|
||
DECL_IN_AGGR_P (value) = 1;
|
||
return value;
|
||
}
|
||
my_friendly_abort (21);
|
||
/* NOTREACHED */
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Like `grokfield', but for bitfields.
|
||
WIDTH is non-NULL for bit fields only, and is an INTEGER_CST node. */
|
||
|
||
tree
|
||
grokbitfield (declarator, declspecs, width)
|
||
tree declarator, declspecs, width;
|
||
{
|
||
register tree value = grokdeclarator (declarator, declspecs, BITFIELD,
|
||
0, NULL_TREE);
|
||
|
||
if (! value) return NULL_TREE; /* friends went bad. */
|
||
|
||
/* Pass friendly classes back. */
|
||
if (TREE_CODE (value) == VOID_TYPE)
|
||
return void_type_node;
|
||
|
||
if (TREE_CODE (value) == TYPE_DECL)
|
||
{
|
||
cp_error ("cannot declare `%D' to be a bitfield type", value);
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Usually, finish_struct_1 catches bitifields with invalid types.
|
||
But, in the case of bitfields with function type, we confuse
|
||
ourselves into thinking they are member functions, so we must
|
||
check here. */
|
||
if (TREE_CODE (value) == FUNCTION_DECL)
|
||
{
|
||
cp_error ("cannot declare bitfield `%D' with funcion type",
|
||
DECL_NAME (value));
|
||
return NULL_TREE;
|
||
}
|
||
|
||
if (DECL_IN_AGGR_P (value))
|
||
{
|
||
cp_error ("`%D' is already defined in the class %T", value,
|
||
DECL_CONTEXT (value));
|
||
return void_type_node;
|
||
}
|
||
|
||
GNU_xref_member (current_class_name, value);
|
||
|
||
if (TREE_STATIC (value))
|
||
{
|
||
cp_error ("static member `%D' cannot be a bitfield", value);
|
||
return NULL_TREE;
|
||
}
|
||
cp_finish_decl (value, NULL_TREE, NULL_TREE, 0);
|
||
|
||
if (width != error_mark_node)
|
||
{
|
||
constant_expression_warning (width);
|
||
DECL_INITIAL (value) = width;
|
||
SET_DECL_C_BIT_FIELD (value);
|
||
}
|
||
|
||
DECL_IN_AGGR_P (value) = 1;
|
||
return value;
|
||
}
|
||
|
||
tree
|
||
grokoptypename (declspecs, declarator)
|
||
tree declspecs, declarator;
|
||
{
|
||
tree t = grokdeclarator (declarator, declspecs, TYPENAME, 0, NULL_TREE);
|
||
if (flag_new_abi)
|
||
return mangle_conv_op_name_for_type (t);
|
||
else
|
||
return build_typename_overload (t);
|
||
}
|
||
|
||
/* When a function is declared with an initializer,
|
||
do the right thing. Currently, there are two possibilities:
|
||
|
||
class B
|
||
{
|
||
public:
|
||
// initialization possibility #1.
|
||
virtual void f () = 0;
|
||
int g ();
|
||
};
|
||
|
||
class D1 : B
|
||
{
|
||
public:
|
||
int d1;
|
||
// error, no f ();
|
||
};
|
||
|
||
class D2 : B
|
||
{
|
||
public:
|
||
int d2;
|
||
void f ();
|
||
};
|
||
|
||
class D3 : B
|
||
{
|
||
public:
|
||
int d3;
|
||
// initialization possibility #2
|
||
void f () = B::f;
|
||
};
|
||
|
||
*/
|
||
|
||
int
|
||
copy_assignment_arg_p (parmtype, virtualp)
|
||
tree parmtype;
|
||
int virtualp ATTRIBUTE_UNUSED;
|
||
{
|
||
if (current_class_type == NULL_TREE)
|
||
return 0;
|
||
|
||
if (TREE_CODE (parmtype) == REFERENCE_TYPE)
|
||
parmtype = TREE_TYPE (parmtype);
|
||
|
||
if ((TYPE_MAIN_VARIANT (parmtype) == current_class_type)
|
||
#if 0
|
||
/* Non-standard hack to support old Booch components. */
|
||
|| (! virtualp && DERIVED_FROM_P (parmtype, current_class_type))
|
||
#endif
|
||
)
|
||
return 1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
static void
|
||
grok_function_init (decl, init)
|
||
tree decl;
|
||
tree init;
|
||
{
|
||
/* An initializer for a function tells how this function should
|
||
be inherited. */
|
||
tree type = TREE_TYPE (decl);
|
||
|
||
if (TREE_CODE (type) == FUNCTION_TYPE)
|
||
cp_error ("initializer specified for non-member function `%D'", decl);
|
||
#if 0
|
||
/* We'll check for this in finish_struct_1. */
|
||
else if (DECL_VINDEX (decl) == NULL_TREE)
|
||
cp_error ("initializer specified for non-virtual member function `%D'", decl);
|
||
#endif
|
||
else if (integer_zerop (init))
|
||
{
|
||
#if 0
|
||
/* Mark this function as being "defined". */
|
||
DECL_INITIAL (decl) = error_mark_node;
|
||
/* pure virtual destructors must be defined. */
|
||
/* pure virtual needs to be defined (as abort) only when put in
|
||
vtbl. For wellformed call, it should be itself. pr4737 */
|
||
if (!DECL_DESTRUCTOR_P (decl)))
|
||
{
|
||
/* Give this node rtl from `abort'. */
|
||
DECL_RTL (decl) = DECL_RTL (abort_fndecl);
|
||
}
|
||
#endif
|
||
DECL_PURE_VIRTUAL_P (decl) = 1;
|
||
if (DECL_OVERLOADED_OPERATOR_P (decl) == NOP_EXPR)
|
||
{
|
||
tree parmtype
|
||
= TREE_VALUE (TREE_CHAIN (TYPE_ARG_TYPES (TREE_TYPE (decl))));
|
||
|
||
if (copy_assignment_arg_p (parmtype, 1))
|
||
TYPE_HAS_ABSTRACT_ASSIGN_REF (current_class_type) = 1;
|
||
}
|
||
}
|
||
else
|
||
cp_error ("invalid initializer for virtual method `%D'", decl);
|
||
}
|
||
|
||
void
|
||
cplus_decl_attributes (decl, attributes, prefix_attributes)
|
||
tree decl, attributes, prefix_attributes;
|
||
{
|
||
if (decl == NULL_TREE || decl == void_type_node)
|
||
return;
|
||
|
||
if (TREE_CODE (decl) == TEMPLATE_DECL)
|
||
decl = DECL_TEMPLATE_RESULT (decl);
|
||
|
||
decl_attributes (decl, attributes, prefix_attributes);
|
||
|
||
if (TREE_CODE (decl) == TYPE_DECL)
|
||
SET_IDENTIFIER_TYPE_VALUE (DECL_NAME (decl), TREE_TYPE (decl));
|
||
}
|
||
|
||
/* CONSTRUCTOR_NAME:
|
||
Return the name for the constructor (or destructor) for the
|
||
specified class. Argument can be RECORD_TYPE, TYPE_DECL, or
|
||
IDENTIFIER_NODE. When given a template, this routine doesn't
|
||
lose the specialization. */
|
||
|
||
tree
|
||
constructor_name_full (thing)
|
||
tree thing;
|
||
{
|
||
if (TREE_CODE (thing) == TEMPLATE_TYPE_PARM
|
||
|| TREE_CODE (thing) == TEMPLATE_TEMPLATE_PARM
|
||
|| TREE_CODE (thing) == TYPENAME_TYPE)
|
||
thing = TYPE_NAME (thing);
|
||
else if (IS_AGGR_TYPE_CODE (TREE_CODE (thing)))
|
||
{
|
||
if (TYPE_WAS_ANONYMOUS (thing) && TYPE_HAS_CONSTRUCTOR (thing))
|
||
thing = DECL_NAME (OVL_CURRENT (TREE_VEC_ELT (CLASSTYPE_METHOD_VEC (thing), 0)));
|
||
else
|
||
thing = TYPE_NAME (thing);
|
||
}
|
||
if (TREE_CODE (thing) == TYPE_DECL
|
||
|| (TREE_CODE (thing) == TEMPLATE_DECL
|
||
&& TREE_CODE (DECL_TEMPLATE_RESULT (thing)) == TYPE_DECL))
|
||
thing = DECL_NAME (thing);
|
||
my_friendly_assert (TREE_CODE (thing) == IDENTIFIER_NODE, 197);
|
||
return thing;
|
||
}
|
||
|
||
/* CONSTRUCTOR_NAME:
|
||
Return the name for the constructor (or destructor) for the
|
||
specified class. Argument can be RECORD_TYPE, TYPE_DECL, or
|
||
IDENTIFIER_NODE. When given a template, return the plain
|
||
unspecialized name. */
|
||
|
||
tree
|
||
constructor_name (thing)
|
||
tree thing;
|
||
{
|
||
tree t;
|
||
thing = constructor_name_full (thing);
|
||
t = IDENTIFIER_TEMPLATE (thing);
|
||
if (!t)
|
||
return thing;
|
||
return t;
|
||
}
|
||
|
||
/* Defer the compilation of the FN until the end of compilation. */
|
||
|
||
void
|
||
defer_fn (fn)
|
||
tree fn;
|
||
{
|
||
if (DECL_DEFERRED_FN (fn))
|
||
return;
|
||
DECL_DEFERRED_FN (fn) = 1;
|
||
if (!deferred_fns)
|
||
VARRAY_TREE_INIT (deferred_fns, 32, "deferred_fns");
|
||
|
||
VARRAY_PUSH_TREE (deferred_fns, fn);
|
||
}
|
||
|
||
/* Hand off a unique name which can be used for variable we don't really
|
||
want to know about anyway, for example, the anonymous variables which
|
||
are needed to make references work. Declare this thing so we can use it.
|
||
The variable created will be of type TYPE, and will have internal
|
||
linkage. */
|
||
|
||
tree
|
||
get_temp_name (type)
|
||
tree type;
|
||
{
|
||
char buf[sizeof (AUTO_TEMP_FORMAT) + 20];
|
||
tree decl;
|
||
int toplev = toplevel_bindings_p ();
|
||
|
||
sprintf (buf, AUTO_TEMP_FORMAT, global_temp_name_counter++);
|
||
decl = build_decl (VAR_DECL, get_identifier (buf), type);
|
||
DECL_ARTIFICIAL (decl) = 1;
|
||
TREE_USED (decl) = 1;
|
||
TREE_STATIC (decl) = 1;
|
||
|
||
decl = pushdecl_top_level (decl);
|
||
|
||
/* If this is a local variable, then lay out its rtl now.
|
||
Otherwise, callers of this function are responsible for dealing
|
||
with this variable's rtl. */
|
||
if (! toplev)
|
||
{
|
||
expand_decl (decl);
|
||
my_friendly_assert (DECL_INITIAL (decl) == NULL_TREE,
|
||
19990826);
|
||
}
|
||
|
||
return decl;
|
||
}
|
||
|
||
/* Hunts through the global anonymous union ANON_DECL, building
|
||
appropriate VAR_DECLs. Stores cleanups on the list of ELEMS, and
|
||
returns a VAR_DECL whose size is the same as the size of the
|
||
ANON_DECL, if one is available. */
|
||
|
||
static tree
|
||
build_anon_union_vars (anon_decl, elems, static_p, external_p)
|
||
tree anon_decl;
|
||
tree* elems;
|
||
int static_p;
|
||
int external_p;
|
||
{
|
||
tree type = TREE_TYPE (anon_decl);
|
||
tree main_decl = NULL_TREE;
|
||
tree field;
|
||
|
||
/* Rather than write the code to handle the non-union case,
|
||
just give an error. */
|
||
if (TREE_CODE (type) != UNION_TYPE)
|
||
error ("anonymous struct not inside named type");
|
||
|
||
for (field = TYPE_FIELDS (type);
|
||
field != NULL_TREE;
|
||
field = TREE_CHAIN (field))
|
||
{
|
||
tree decl;
|
||
|
||
if (DECL_ARTIFICIAL (field))
|
||
continue;
|
||
if (TREE_CODE (field) != FIELD_DECL)
|
||
{
|
||
cp_pedwarn_at ("`%#D' invalid; an anonymous union can only have non-static data members",
|
||
field);
|
||
continue;
|
||
}
|
||
|
||
if (TREE_PRIVATE (field))
|
||
cp_pedwarn_at ("private member `%#D' in anonymous union", field);
|
||
else if (TREE_PROTECTED (field))
|
||
cp_pedwarn_at ("protected member `%#D' in anonymous union", field);
|
||
|
||
if (DECL_NAME (field) == NULL_TREE
|
||
&& ANON_AGGR_TYPE_P (TREE_TYPE (field)))
|
||
{
|
||
decl = build_anon_union_vars (field, elems, static_p, external_p);
|
||
if (!decl)
|
||
continue;
|
||
}
|
||
else if (DECL_NAME (field) == NULL_TREE)
|
||
continue;
|
||
else
|
||
{
|
||
decl = build_decl (VAR_DECL, DECL_NAME (field), TREE_TYPE (field));
|
||
/* tell `pushdecl' that this is not tentative. */
|
||
DECL_INITIAL (decl) = error_mark_node;
|
||
TREE_PUBLIC (decl) = 0;
|
||
TREE_STATIC (decl) = static_p;
|
||
DECL_EXTERNAL (decl) = external_p;
|
||
decl = pushdecl (decl);
|
||
DECL_INITIAL (decl) = NULL_TREE;
|
||
}
|
||
|
||
/* Only write out one anon union element--choose the largest
|
||
one. We used to try to find one the same size as the union,
|
||
but that fails if the ABI forces us to align the union more
|
||
strictly. */
|
||
if (main_decl == NULL_TREE
|
||
|| tree_int_cst_lt (DECL_SIZE (main_decl), DECL_SIZE (decl)))
|
||
{
|
||
if (main_decl)
|
||
TREE_ASM_WRITTEN (main_decl) = 1;
|
||
main_decl = decl;
|
||
}
|
||
else
|
||
/* ??? This causes there to be no debug info written out
|
||
about this decl. */
|
||
TREE_ASM_WRITTEN (decl) = 1;
|
||
|
||
if (DECL_NAME (field) == NULL_TREE
|
||
&& ANON_AGGR_TYPE_P (TREE_TYPE (field)))
|
||
/* The remainder of the processing was already done in the
|
||
recursive call. */
|
||
continue;
|
||
|
||
/* If there's a cleanup to do, it belongs in the
|
||
TREE_PURPOSE of the following TREE_LIST. */
|
||
*elems = tree_cons (NULL_TREE, decl, *elems);
|
||
TREE_TYPE (*elems) = type;
|
||
}
|
||
|
||
return main_decl;
|
||
}
|
||
|
||
/* Finish off the processing of a UNION_TYPE structure.
|
||
If there are static members, then all members are
|
||
static, and must be laid out together. If the
|
||
union is an anonymous union, we arrange for that
|
||
as well. PUBLIC_P is nonzero if this union is
|
||
not declared static. */
|
||
|
||
void
|
||
finish_anon_union (anon_union_decl)
|
||
tree anon_union_decl;
|
||
{
|
||
tree type = TREE_TYPE (anon_union_decl);
|
||
tree main_decl;
|
||
int public_p = TREE_PUBLIC (anon_union_decl);
|
||
int static_p = TREE_STATIC (anon_union_decl);
|
||
int external_p = DECL_EXTERNAL (anon_union_decl);
|
||
|
||
if (TYPE_FIELDS (type) == NULL_TREE)
|
||
return;
|
||
|
||
if (public_p)
|
||
{
|
||
error ("namespace-scope anonymous aggregates must be static");
|
||
return;
|
||
}
|
||
|
||
main_decl = build_anon_union_vars (anon_union_decl,
|
||
&DECL_ANON_UNION_ELEMS (anon_union_decl),
|
||
static_p, external_p);
|
||
|
||
if (main_decl == NULL_TREE)
|
||
{
|
||
warning ("anonymous aggregate with no members");
|
||
return;
|
||
}
|
||
|
||
if (static_p)
|
||
{
|
||
make_decl_rtl (main_decl, 0, toplevel_bindings_p ());
|
||
DECL_RTL (anon_union_decl) = DECL_RTL (main_decl);
|
||
expand_anon_union_decl (anon_union_decl,
|
||
NULL_TREE,
|
||
DECL_ANON_UNION_ELEMS (anon_union_decl));
|
||
}
|
||
else
|
||
add_decl_stmt (anon_union_decl);
|
||
}
|
||
|
||
/* Finish processing a builtin type TYPE. It's name is NAME,
|
||
its fields are in the array FIELDS. LEN is the number of elements
|
||
in FIELDS minus one, or put another way, it is the maximum subscript
|
||
used in FIELDS.
|
||
|
||
It is given the same alignment as ALIGN_TYPE. */
|
||
|
||
void
|
||
finish_builtin_type (type, name, fields, len, align_type)
|
||
tree type;
|
||
const char *name;
|
||
tree fields[];
|
||
int len;
|
||
tree align_type;
|
||
{
|
||
register int i;
|
||
|
||
TYPE_FIELDS (type) = fields[0];
|
||
for (i = 0; i < len; i++)
|
||
{
|
||
layout_type (TREE_TYPE (fields[i]));
|
||
DECL_FIELD_CONTEXT (fields[i]) = type;
|
||
TREE_CHAIN (fields[i]) = fields[i+1];
|
||
}
|
||
DECL_FIELD_CONTEXT (fields[i]) = type;
|
||
TYPE_ALIGN (type) = TYPE_ALIGN (align_type);
|
||
TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (align_type);
|
||
layout_type (type);
|
||
#if 0 /* not yet, should get fixed properly later */
|
||
TYPE_NAME (type) = make_type_decl (get_identifier (name), type);
|
||
#else
|
||
TYPE_NAME (type) = build_decl (TYPE_DECL, get_identifier (name), type);
|
||
#endif
|
||
TYPE_STUB_DECL (type) = TYPE_NAME (type);
|
||
layout_decl (TYPE_NAME (type), 0);
|
||
}
|
||
|
||
/* Auxiliary functions to make type signatures for
|
||
`operator new' and `operator delete' correspond to
|
||
what compiler will be expecting. */
|
||
|
||
tree
|
||
coerce_new_type (type)
|
||
tree type;
|
||
{
|
||
int e1 = 0, e2 = 0;
|
||
|
||
if (TREE_CODE (type) == METHOD_TYPE)
|
||
type = build_function_type (TREE_TYPE (type), TREE_CHAIN (TYPE_ARG_TYPES (type)));
|
||
if (! same_type_p (TREE_TYPE (type), ptr_type_node))
|
||
e1 = 1, error ("`operator new' must return type `void *'");
|
||
|
||
/* Technically the type must be `size_t', but we may not know
|
||
what that is. */
|
||
if (TYPE_ARG_TYPES (type) == NULL_TREE)
|
||
e1 = 1, error ("`operator new' takes type `size_t' parameter");
|
||
else if (! same_type_p (TREE_VALUE (TYPE_ARG_TYPES (type)), sizetype))
|
||
e2 = 1, error ("`operator new' takes type `size_t' as first parameter");
|
||
if (e2)
|
||
type = build_function_type (ptr_type_node, tree_cons (NULL_TREE, sizetype, TREE_CHAIN (TYPE_ARG_TYPES (type))));
|
||
else if (e1)
|
||
type = build_function_type (ptr_type_node, TYPE_ARG_TYPES (type));
|
||
return type;
|
||
}
|
||
|
||
tree
|
||
coerce_delete_type (type)
|
||
tree type;
|
||
{
|
||
int e1 = 0, e2 = 0;
|
||
#if 0
|
||
e3 = 0;
|
||
#endif
|
||
tree arg_types = TYPE_ARG_TYPES (type);
|
||
|
||
if (TREE_CODE (type) == METHOD_TYPE)
|
||
{
|
||
type = build_function_type (TREE_TYPE (type), TREE_CHAIN (arg_types));
|
||
arg_types = TREE_CHAIN (arg_types);
|
||
}
|
||
|
||
if (TREE_TYPE (type) != void_type_node)
|
||
e1 = 1, error ("`operator delete' must return type `void'");
|
||
|
||
if (arg_types == NULL_TREE
|
||
|| ! same_type_p (TREE_VALUE (arg_types), ptr_type_node))
|
||
e2 = 1, error ("`operator delete' takes type `void *' as first parameter");
|
||
|
||
#if 0
|
||
if (arg_types
|
||
&& TREE_CHAIN (arg_types)
|
||
&& TREE_CHAIN (arg_types) != void_list_node)
|
||
{
|
||
/* Again, technically this argument must be `size_t', but again
|
||
we may not know what that is. */
|
||
tree t2 = TREE_VALUE (TREE_CHAIN (arg_types));
|
||
if (! same_type_p (t2, sizetype))
|
||
e3 = 1, error ("second argument to `operator delete' must be of type `size_t'");
|
||
else if (TREE_CHAIN (TREE_CHAIN (arg_types)) != void_list_node)
|
||
{
|
||
e3 = 1;
|
||
if (TREE_CHAIN (TREE_CHAIN (arg_types)))
|
||
error ("too many arguments in declaration of `operator delete'");
|
||
else
|
||
error ("`...' invalid in specification of `operator delete'");
|
||
}
|
||
}
|
||
|
||
if (e3)
|
||
arg_types = tree_cons (NULL_TREE, ptr_type_node,
|
||
build_tree_list (NULL_TREE, sizetype));
|
||
else if (e3 |= e2)
|
||
{
|
||
if (arg_types == NULL_TREE)
|
||
arg_types = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
|
||
else
|
||
arg_types = tree_cons (NULL_TREE, ptr_type_node, TREE_CHAIN (arg_types));
|
||
}
|
||
else e3 |= e1;
|
||
#endif
|
||
|
||
if (e2)
|
||
arg_types = tree_cons (NULL_TREE, ptr_type_node,
|
||
arg_types ? TREE_CHAIN (arg_types): NULL_TREE);
|
||
if (e2 || e1)
|
||
type = build_function_type (void_type_node, arg_types);
|
||
|
||
return type;
|
||
}
|
||
|
||
static void
|
||
mark_vtable_entries (decl)
|
||
tree decl;
|
||
{
|
||
tree entries = CONSTRUCTOR_ELTS (DECL_INITIAL (decl));
|
||
|
||
for (; entries; entries = TREE_CHAIN (entries))
|
||
{
|
||
tree fnaddr;
|
||
tree fn;
|
||
|
||
fnaddr = (flag_vtable_thunks ? TREE_VALUE (entries)
|
||
: FNADDR_FROM_VTABLE_ENTRY (TREE_VALUE (entries)));
|
||
|
||
if (TREE_CODE (fnaddr) != ADDR_EXPR)
|
||
/* This entry is an offset: a virtual base class offset, a
|
||
virtual call offset, and RTTI offset, etc. */
|
||
continue;
|
||
|
||
fn = TREE_OPERAND (fnaddr, 0);
|
||
TREE_ADDRESSABLE (fn) = 1;
|
||
/* When we don't have vcall offsets, we output thunks whenever
|
||
we output the vtables that contain them. With vcall offsets,
|
||
we know all the thunks we'll need when we emit a virtual
|
||
function, so we emit the thunks there instead. */
|
||
if (DECL_THUNK_P (fn))
|
||
use_thunk (fn, THUNK_GENERATE_WITH_VTABLE_P (fn));
|
||
mark_used (fn);
|
||
}
|
||
}
|
||
|
||
/* Set DECL up to have the closest approximation of "initialized common"
|
||
linkage available. */
|
||
|
||
void
|
||
comdat_linkage (decl)
|
||
tree decl;
|
||
{
|
||
if (flag_weak)
|
||
make_decl_one_only (decl);
|
||
else if (TREE_CODE (decl) == FUNCTION_DECL || DECL_VIRTUAL_P (decl))
|
||
/* We can just emit functions and vtables statically; it doesn't really
|
||
matter if we have multiple copies. */
|
||
TREE_PUBLIC (decl) = 0;
|
||
else
|
||
{
|
||
/* Static data member template instantiations, however, cannot
|
||
have multiple copies. */
|
||
if (DECL_INITIAL (decl) == 0
|
||
|| DECL_INITIAL (decl) == error_mark_node)
|
||
DECL_COMMON (decl) = 1;
|
||
else if (EMPTY_CONSTRUCTOR_P (DECL_INITIAL (decl)))
|
||
{
|
||
DECL_COMMON (decl) = 1;
|
||
DECL_INITIAL (decl) = error_mark_node;
|
||
}
|
||
else
|
||
{
|
||
/* We can't do anything useful; leave vars for explicit
|
||
instantiation. */
|
||
DECL_EXTERNAL (decl) = 1;
|
||
DECL_NOT_REALLY_EXTERN (decl) = 0;
|
||
}
|
||
}
|
||
|
||
if (DECL_LANG_SPECIFIC (decl))
|
||
DECL_COMDAT (decl) = 1;
|
||
}
|
||
|
||
/* For win32 we also want to put explicit instantiations in
|
||
linkonce sections, so that they will be merged with implicit
|
||
instantiations; otherwise we get duplicate symbol errors. */
|
||
|
||
void
|
||
maybe_make_one_only (decl)
|
||
tree decl;
|
||
{
|
||
/* We used to say that this was not necessary on targets that support weak
|
||
symbols, because the implicit instantiations will defer to the explicit
|
||
one. However, that's not actually the case in SVR4; a strong definition
|
||
after a weak one is an error. Also, not making explicit
|
||
instantiations one_only means that we can end up with two copies of
|
||
some template instantiations. */
|
||
if (! supports_one_only ())
|
||
return;
|
||
|
||
/* We can't set DECL_COMDAT on functions, or finish_file will think
|
||
we can get away with not emitting them if they aren't used. We need
|
||
to for variables so that cp_finish_decl will update their linkage,
|
||
because their DECL_INITIAL may not have been set properly yet. */
|
||
|
||
make_decl_one_only (decl);
|
||
|
||
if (TREE_CODE (decl) == VAR_DECL && DECL_LANG_SPECIFIC (decl))
|
||
DECL_COMDAT (decl) = 1;
|
||
}
|
||
|
||
/* Returns the virtual function with which the vtable for TYPE is
|
||
emitted, or NULL_TREE if that heuristic is not applicable to TYPE. */
|
||
|
||
static tree
|
||
key_method (type)
|
||
tree type;
|
||
{
|
||
tree method;
|
||
|
||
if (TYPE_FOR_JAVA (type)
|
||
|| CLASSTYPE_TEMPLATE_INSTANTIATION (type)
|
||
|| CLASSTYPE_INTERFACE_KNOWN (type))
|
||
return NULL_TREE;
|
||
|
||
for (method = TYPE_METHODS (type); method != NULL_TREE;
|
||
method = TREE_CHAIN (method))
|
||
if (DECL_VINDEX (method) != NULL_TREE
|
||
&& ! DECL_THIS_INLINE (method)
|
||
&& ! DECL_PURE_VIRTUAL_P (method))
|
||
return method;
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Set TREE_PUBLIC and/or DECL_EXTERN on the vtable DECL,
|
||
based on TYPE and other static flags.
|
||
|
||
Note that anything public is tagged TREE_PUBLIC, whether
|
||
it's public in this file or in another one. */
|
||
|
||
void
|
||
import_export_vtable (decl, type, final)
|
||
tree decl, type;
|
||
int final;
|
||
{
|
||
if (DECL_INTERFACE_KNOWN (decl))
|
||
return;
|
||
|
||
if (TYPE_FOR_JAVA (type))
|
||
{
|
||
TREE_PUBLIC (decl) = 1;
|
||
DECL_EXTERNAL (decl) = 1;
|
||
DECL_INTERFACE_KNOWN (decl) = 1;
|
||
}
|
||
else if (CLASSTYPE_INTERFACE_KNOWN (type))
|
||
{
|
||
TREE_PUBLIC (decl) = 1;
|
||
DECL_EXTERNAL (decl) = ! CLASSTYPE_VTABLE_NEEDS_WRITING (type);
|
||
DECL_INTERFACE_KNOWN (decl) = 1;
|
||
}
|
||
else
|
||
{
|
||
/* We can only wait to decide if we have real non-inline virtual
|
||
functions in our class, or if we come from a template. */
|
||
|
||
int found = (CLASSTYPE_TEMPLATE_INSTANTIATION (type)
|
||
|| key_method (type));
|
||
|
||
if (final || ! found)
|
||
{
|
||
comdat_linkage (decl);
|
||
DECL_EXTERNAL (decl) = 0;
|
||
}
|
||
else
|
||
{
|
||
TREE_PUBLIC (decl) = 1;
|
||
DECL_EXTERNAL (decl) = 1;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Determine whether or not we want to specifically import or export CTYPE,
|
||
using various heuristics. */
|
||
|
||
static void
|
||
import_export_class (ctype)
|
||
tree ctype;
|
||
{
|
||
/* -1 for imported, 1 for exported. */
|
||
int import_export = 0;
|
||
|
||
/* It only makes sense to call this function at EOF. The reason is
|
||
that this function looks at whether or not the first non-inline
|
||
non-abstract virtual member function has been defined in this
|
||
translation unit. But, we can't possibly know that until we've
|
||
seen the entire translation unit. */
|
||
my_friendly_assert (at_eof, 20000226);
|
||
|
||
if (CLASSTYPE_INTERFACE_KNOWN (ctype))
|
||
return;
|
||
|
||
/* If MULTIPLE_SYMBOL_SPACES is defined and we saw a #pragma interface,
|
||
we will have CLASSTYPE_INTERFACE_ONLY set but not
|
||
CLASSTYPE_INTERFACE_KNOWN. In that case, we don't want to use this
|
||
heuristic because someone will supply a #pragma implementation
|
||
elsewhere, and deducing it here would produce a conflict. */
|
||
if (CLASSTYPE_INTERFACE_ONLY (ctype))
|
||
return;
|
||
|
||
#ifdef VALID_MACHINE_TYPE_ATTRIBUTE
|
||
/* FIXME this should really use some sort of target-independent macro. */
|
||
if (lookup_attribute ("dllimport", TYPE_ATTRIBUTES (ctype)))
|
||
import_export = -1;
|
||
else if (lookup_attribute ("dllexport", TYPE_ATTRIBUTES (ctype)))
|
||
import_export = 1;
|
||
#endif
|
||
|
||
/* If we got -fno-implicit-templates, we import template classes that
|
||
weren't explicitly instantiated. */
|
||
if (import_export == 0
|
||
&& CLASSTYPE_IMPLICIT_INSTANTIATION (ctype)
|
||
&& ! flag_implicit_templates)
|
||
import_export = -1;
|
||
|
||
/* Base our import/export status on that of the first non-inline,
|
||
non-pure virtual function, if any. */
|
||
if (import_export == 0
|
||
&& TYPE_POLYMORPHIC_P (ctype))
|
||
{
|
||
tree method = key_method (ctype);
|
||
if (method)
|
||
import_export = (DECL_REALLY_EXTERN (method) ? -1 : 1);
|
||
}
|
||
|
||
#ifdef MULTIPLE_SYMBOL_SPACES
|
||
if (import_export == -1)
|
||
import_export = 0;
|
||
#endif
|
||
|
||
if (import_export)
|
||
{
|
||
SET_CLASSTYPE_INTERFACE_KNOWN (ctype);
|
||
CLASSTYPE_VTABLE_NEEDS_WRITING (ctype) = (import_export > 0);
|
||
CLASSTYPE_INTERFACE_ONLY (ctype) = (import_export < 0);
|
||
}
|
||
}
|
||
|
||
/* We need to describe to the assembler the relationship between
|
||
a vtable and the vtable of the parent class. */
|
||
|
||
static void
|
||
output_vtable_inherit (vars)
|
||
tree vars;
|
||
{
|
||
tree parent;
|
||
rtx op[2];
|
||
|
||
op[0] = XEXP (DECL_RTL (vars), 0); /* strip the mem ref */
|
||
|
||
parent = binfo_for_vtable (vars);
|
||
|
||
if (parent == TYPE_BINFO (DECL_CONTEXT (vars)))
|
||
op[1] = const0_rtx;
|
||
else if (parent)
|
||
{
|
||
parent = get_vtbl_decl_for_binfo (TYPE_BINFO (BINFO_TYPE (parent)));
|
||
op[1] = XEXP (DECL_RTL (parent), 0); /* strip the mem ref */
|
||
}
|
||
else
|
||
my_friendly_abort (980826);
|
||
|
||
output_asm_insn (".vtable_inherit %c0, %c1", op);
|
||
}
|
||
|
||
static int
|
||
finish_vtable_vardecl (t, data)
|
||
tree *t;
|
||
void *data ATTRIBUTE_UNUSED;
|
||
{
|
||
tree vars = *t;
|
||
tree ctype = DECL_CONTEXT (vars);
|
||
import_export_class (ctype);
|
||
import_export_vtable (vars, ctype, 1);
|
||
|
||
if (! DECL_EXTERNAL (vars)
|
||
&& DECL_NEEDED_P (vars)
|
||
&& ! TREE_ASM_WRITTEN (vars))
|
||
{
|
||
if (TREE_TYPE (vars) == void_type_node)
|
||
/* It is a dummy vtable made by get_vtable_decl. Ignore it. */
|
||
return 0;
|
||
|
||
/* Write it out. */
|
||
mark_vtable_entries (vars);
|
||
if (TREE_TYPE (DECL_INITIAL (vars)) == 0)
|
||
store_init_value (vars, DECL_INITIAL (vars));
|
||
|
||
if (write_symbols == DWARF_DEBUG || write_symbols == DWARF2_DEBUG)
|
||
{
|
||
/* Mark the VAR_DECL node representing the vtable itself as a
|
||
"gratuitous" one, thereby forcing dwarfout.c to ignore it.
|
||
It is rather important that such things be ignored because
|
||
any effort to actually generate DWARF for them will run
|
||
into trouble when/if we encounter code like:
|
||
|
||
#pragma interface
|
||
struct S { virtual void member (); };
|
||
|
||
because the artificial declaration of the vtable itself (as
|
||
manufactured by the g++ front end) will say that the vtable
|
||
is a static member of `S' but only *after* the debug output
|
||
for the definition of `S' has already been output. This causes
|
||
grief because the DWARF entry for the definition of the vtable
|
||
will try to refer back to an earlier *declaration* of the
|
||
vtable as a static member of `S' and there won't be one.
|
||
We might be able to arrange to have the "vtable static member"
|
||
attached to the member list for `S' before the debug info for
|
||
`S' get written (which would solve the problem) but that would
|
||
require more intrusive changes to the g++ front end. */
|
||
|
||
DECL_IGNORED_P (vars) = 1;
|
||
}
|
||
|
||
/* Always make vtables weak. */
|
||
if (flag_weak)
|
||
comdat_linkage (vars);
|
||
|
||
rest_of_decl_compilation (vars, NULL_PTR, 1, 1);
|
||
|
||
if (flag_vtable_gc)
|
||
output_vtable_inherit (vars);
|
||
|
||
/* Because we're only doing syntax-checking, we'll never end up
|
||
actually marking the variable as written. */
|
||
if (flag_syntax_only)
|
||
TREE_ASM_WRITTEN (vars) = 1;
|
||
|
||
/* Since we're writing out the vtable here, also write the debug
|
||
info. */
|
||
note_debug_info_needed (ctype);
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* If the references to this class' vtables were optimized away, still
|
||
emit the appropriate debugging information. See dfs_debug_mark. */
|
||
if (DECL_COMDAT (vars)
|
||
&& CLASSTYPE_DEBUG_REQUESTED (ctype))
|
||
note_debug_info_needed (ctype);
|
||
|
||
return 0;
|
||
}
|
||
|
||
static int
|
||
prune_vtable_vardecl (t, data)
|
||
tree *t;
|
||
void *data ATTRIBUTE_UNUSED;
|
||
{
|
||
*t = TREE_CHAIN (*t);
|
||
return 1;
|
||
}
|
||
|
||
/* Determines the proper settings of TREE_PUBLIC and DECL_EXTERNAL for an
|
||
inline function or template instantiation at end-of-file. */
|
||
|
||
void
|
||
import_export_decl (decl)
|
||
tree decl;
|
||
{
|
||
if (DECL_INTERFACE_KNOWN (decl))
|
||
return;
|
||
|
||
if (DECL_TEMPLATE_INSTANTIATION (decl)
|
||
|| DECL_FRIEND_PSEUDO_TEMPLATE_INSTANTIATION (decl))
|
||
{
|
||
DECL_NOT_REALLY_EXTERN (decl) = 1;
|
||
if ((DECL_IMPLICIT_INSTANTIATION (decl)
|
||
|| DECL_FRIEND_PSEUDO_TEMPLATE_INSTANTIATION (decl))
|
||
&& (flag_implicit_templates
|
||
|| (flag_implicit_inline_templates && DECL_THIS_INLINE (decl))))
|
||
{
|
||
if (!TREE_PUBLIC (decl))
|
||
/* Templates are allowed to have internal linkage. See
|
||
[basic.link]. */
|
||
;
|
||
else
|
||
comdat_linkage (decl);
|
||
}
|
||
else
|
||
DECL_NOT_REALLY_EXTERN (decl) = 0;
|
||
}
|
||
else if (DECL_FUNCTION_MEMBER_P (decl))
|
||
{
|
||
tree ctype = DECL_CONTEXT (decl);
|
||
import_export_class (ctype);
|
||
if (CLASSTYPE_INTERFACE_KNOWN (ctype)
|
||
&& (flag_new_abi
|
||
? (! DECL_THIS_INLINE (decl))
|
||
: (! DECL_ARTIFICIAL (decl) || DECL_VINDEX (decl))))
|
||
{
|
||
DECL_NOT_REALLY_EXTERN (decl)
|
||
= ! (CLASSTYPE_INTERFACE_ONLY (ctype)
|
||
|| (DECL_THIS_INLINE (decl) && ! flag_implement_inlines
|
||
&& !DECL_VINDEX (decl)));
|
||
|
||
/* Always make artificials weak. */
|
||
if (DECL_ARTIFICIAL (decl) && flag_weak)
|
||
comdat_linkage (decl);
|
||
else
|
||
maybe_make_one_only (decl);
|
||
}
|
||
else
|
||
comdat_linkage (decl);
|
||
}
|
||
else if (DECL_TINFO_FN_P (decl))
|
||
{
|
||
tree ctype = TREE_TYPE (DECL_NAME (decl));
|
||
|
||
if (IS_AGGR_TYPE (ctype))
|
||
import_export_class (ctype);
|
||
|
||
if (IS_AGGR_TYPE (ctype) && CLASSTYPE_INTERFACE_KNOWN (ctype)
|
||
&& TYPE_POLYMORPHIC_P (ctype)
|
||
/* If -fno-rtti, we're not necessarily emitting this stuff with
|
||
the class, so go ahead and emit it now. This can happen
|
||
when a class is used in exception handling. */
|
||
&& flag_rtti
|
||
/* If the type is a cv-qualified variant of a type, then we
|
||
must emit the tinfo function in this translation unit
|
||
since it will not be emitted when the vtable for the type
|
||
is output (which is when the unqualified version is
|
||
generated). */
|
||
&& same_type_p (ctype, TYPE_MAIN_VARIANT (ctype)))
|
||
{
|
||
DECL_NOT_REALLY_EXTERN (decl)
|
||
= ! (CLASSTYPE_INTERFACE_ONLY (ctype)
|
||
|| (DECL_THIS_INLINE (decl) && ! flag_implement_inlines
|
||
&& !DECL_VINDEX (decl)));
|
||
|
||
/* Always make artificials weak. */
|
||
if (flag_weak)
|
||
comdat_linkage (decl);
|
||
}
|
||
else if (TYPE_BUILT_IN (ctype)
|
||
&& same_type_p (ctype, TYPE_MAIN_VARIANT (ctype)))
|
||
DECL_NOT_REALLY_EXTERN (decl) = 0;
|
||
else
|
||
comdat_linkage (decl);
|
||
}
|
||
else
|
||
comdat_linkage (decl);
|
||
|
||
DECL_INTERFACE_KNOWN (decl) = 1;
|
||
}
|
||
|
||
tree
|
||
build_cleanup (decl)
|
||
tree decl;
|
||
{
|
||
tree temp;
|
||
tree type = TREE_TYPE (decl);
|
||
|
||
if (TREE_CODE (type) == ARRAY_TYPE)
|
||
temp = decl;
|
||
else
|
||
{
|
||
mark_addressable (decl);
|
||
temp = build1 (ADDR_EXPR, build_pointer_type (type), decl);
|
||
}
|
||
temp = build_delete (TREE_TYPE (temp), temp,
|
||
sfk_complete_destructor,
|
||
LOOKUP_NORMAL|LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR, 0);
|
||
return temp;
|
||
}
|
||
|
||
/* Returns the initialization guard variable for the variable DECL,
|
||
which has static storage duration. */
|
||
|
||
tree
|
||
get_guard (decl)
|
||
tree decl;
|
||
{
|
||
tree sname;
|
||
tree guard;
|
||
|
||
/* For a local variable, under the old ABI, we do not try to get a
|
||
unique mangled name for the DECL. */
|
||
if (!flag_new_abi && !DECL_NAMESPACE_SCOPE_P (decl))
|
||
{
|
||
guard = get_temp_name (integer_type_node);
|
||
cp_finish_decl (guard, NULL_TREE, NULL_TREE, 0);
|
||
return guard;
|
||
}
|
||
|
||
if (!flag_new_abi)
|
||
/* For struct X foo __attribute__((weak)), there is a counter
|
||
__snfoo. Since base is already an assembler name, sname should
|
||
be globally unique */
|
||
sname = get_id_2 ("__sn", DECL_ASSEMBLER_NAME (decl));
|
||
else
|
||
sname = mangle_guard_variable (decl);
|
||
|
||
guard = IDENTIFIER_GLOBAL_VALUE (sname);
|
||
if (! guard)
|
||
{
|
||
tree guard_type;
|
||
|
||
/* Under the new ABI, we use a type that is big enough to
|
||
contain a mutex as well as an integer counter. */
|
||
if (flag_new_abi)
|
||
guard_type = long_long_integer_type_node;
|
||
else
|
||
guard_type = integer_type_node;
|
||
|
||
guard = build_decl (VAR_DECL, sname, guard_type);
|
||
TREE_PUBLIC (guard) = 1;
|
||
DECL_ARTIFICIAL (guard) = 1;
|
||
TREE_STATIC (guard) = 1;
|
||
TREE_USED (guard) = 1;
|
||
DECL_COMMON (guard) = 1;
|
||
pushdecl_top_level (guard);
|
||
cp_finish_decl (guard, NULL_TREE, NULL_TREE, 0);
|
||
}
|
||
return guard;
|
||
}
|
||
|
||
/* Return those bits of the GUARD variable that should be set when the
|
||
guarded entity is actually initialized. */
|
||
|
||
static tree
|
||
get_guard_bits (guard)
|
||
tree guard;
|
||
{
|
||
if (!flag_new_abi)
|
||
return guard;
|
||
|
||
/* Under the new ABI, we only set the first byte of the guard,
|
||
in order to leave room for a mutex in the high-order bits. */
|
||
guard = build1 (ADDR_EXPR,
|
||
build_pointer_type (TREE_TYPE (guard)),
|
||
guard);
|
||
guard = build1 (NOP_EXPR,
|
||
build_pointer_type (char_type_node),
|
||
guard);
|
||
guard = build1 (INDIRECT_REF, char_type_node, guard);
|
||
|
||
return guard;
|
||
}
|
||
|
||
/* Return an expression which determines whether or not the GUARD
|
||
variable has already been initialized. */
|
||
|
||
tree
|
||
get_guard_cond (guard)
|
||
tree guard;
|
||
{
|
||
tree guard_value;
|
||
|
||
/* Check to see if the GUARD is zero. */
|
||
guard = get_guard_bits (guard);
|
||
guard_value = integer_zero_node;
|
||
if (!same_type_p (TREE_TYPE (guard_value), TREE_TYPE (guard)))
|
||
guard_value = convert (TREE_TYPE (guard), guard_value);
|
||
return cp_build_binary_op (EQ_EXPR, guard, guard_value);
|
||
}
|
||
|
||
/* Return an expression which sets the GUARD variable, indicating that
|
||
the variable being guarded has been initialized. */
|
||
|
||
tree
|
||
set_guard (guard)
|
||
tree guard;
|
||
{
|
||
tree guard_init;
|
||
|
||
/* Set the GUARD to one. */
|
||
guard = get_guard_bits (guard);
|
||
guard_init = integer_one_node;
|
||
if (!same_type_p (TREE_TYPE (guard_init), TREE_TYPE (guard)))
|
||
guard_init = convert (TREE_TYPE (guard), guard_init);
|
||
return build_modify_expr (guard, NOP_EXPR, guard_init);
|
||
}
|
||
|
||
/* Start the process of running a particular set of global constructors
|
||
or destructors. Subroutine of do_[cd]tors. */
|
||
|
||
static tree
|
||
start_objects (method_type, initp)
|
||
int method_type, initp;
|
||
{
|
||
tree fnname;
|
||
tree body;
|
||
char type[10];
|
||
|
||
/* Make ctor or dtor function. METHOD_TYPE may be 'I' or 'D'. */
|
||
|
||
if (initp != DEFAULT_INIT_PRIORITY)
|
||
{
|
||
char joiner;
|
||
|
||
#ifdef JOINER
|
||
joiner = JOINER;
|
||
#else
|
||
joiner = '_';
|
||
#endif
|
||
|
||
sprintf (type, "%c%c%.5u", method_type, joiner, initp);
|
||
}
|
||
else
|
||
sprintf (type, "%c", method_type);
|
||
|
||
fnname = get_file_function_name_long (type);
|
||
|
||
start_function (void_list_node,
|
||
make_call_declarator (fnname, void_list_node, NULL_TREE,
|
||
NULL_TREE),
|
||
NULL_TREE, SF_DEFAULT);
|
||
|
||
#if defined(ASM_OUTPUT_CONSTRUCTOR) && defined(ASM_OUTPUT_DESTRUCTOR)
|
||
/* It can be a static function as long as collect2 does not have
|
||
to scan the object file to find its ctor/dtor routine. */
|
||
TREE_PUBLIC (current_function_decl) = 0;
|
||
#endif
|
||
|
||
/* Mark this declaration as used to avoid spurious warnings. */
|
||
TREE_USED (current_function_decl) = 1;
|
||
|
||
/* Mark this function as a global constructor or destructor. */
|
||
if (method_type == 'I')
|
||
DECL_GLOBAL_CTOR_P (current_function_decl) = 1;
|
||
else
|
||
DECL_GLOBAL_DTOR_P (current_function_decl) = 1;
|
||
GLOBAL_INIT_PRIORITY (current_function_decl) = initp;
|
||
|
||
body = begin_compound_stmt (/*has_no_scope=*/0);
|
||
|
||
/* We cannot allow these functions to be elided, even if they do not
|
||
have external linkage. And, there's no point in deferring
|
||
copmilation of thes functions; they're all going to have to be
|
||
out anyhow. */
|
||
current_function_cannot_inline
|
||
= "static constructors and destructors cannot be inlined";
|
||
|
||
return body;
|
||
}
|
||
|
||
/* Finish the process of running a particular set of global constructors
|
||
or destructors. Subroutine of do_[cd]tors. */
|
||
|
||
static void
|
||
finish_objects (method_type, initp, body)
|
||
int method_type, initp;
|
||
tree body;
|
||
{
|
||
const char *fnname;
|
||
tree fn;
|
||
|
||
/* Finish up. */
|
||
finish_compound_stmt(/*has_no_scope=*/0, body);
|
||
fn = finish_function (0);
|
||
expand_body (fn);
|
||
|
||
/* When only doing semantic analysis, and no RTL generation, we
|
||
can't call functions that directly emit assembly code; there is
|
||
no assembly file in which to put the code. */
|
||
if (flag_syntax_only)
|
||
return;
|
||
|
||
fnname = XSTR (XEXP (DECL_RTL (fn), 0), 0);
|
||
if (initp == DEFAULT_INIT_PRIORITY)
|
||
{
|
||
if (method_type == 'I')
|
||
assemble_constructor (fnname);
|
||
else
|
||
assemble_destructor (fnname);
|
||
}
|
||
#if defined (ASM_OUTPUT_SECTION_NAME) && defined (ASM_OUTPUT_CONSTRUCTOR)
|
||
/* If we're using init priority we can't use assemble_*tor, but on ELF
|
||
targets we can stick the references into named sections for GNU ld
|
||
to collect. */
|
||
else
|
||
{
|
||
char buf[15];
|
||
sprintf (buf, ".%ctors.%.5u", method_type == 'I' ? 'c' : 'd',
|
||
/* invert the numbering so the linker puts us in the proper
|
||
order; constructors are run from right to left, and the
|
||
linker sorts in increasing order. */
|
||
MAX_INIT_PRIORITY - initp);
|
||
named_section (NULL_TREE, buf, 0);
|
||
assemble_integer (gen_rtx_SYMBOL_REF (Pmode, fnname),
|
||
POINTER_SIZE / BITS_PER_UNIT, 1);
|
||
}
|
||
#endif
|
||
}
|
||
|
||
/* The names of the parameters to the function created to handle
|
||
initializations and destructions for objects with static storage
|
||
duration. */
|
||
#define INITIALIZE_P_IDENTIFIER "__initialize_p"
|
||
#define PRIORITY_IDENTIFIER "__priority"
|
||
|
||
/* The name of the function we create to handle initializations and
|
||
destructions for objects with static storage duration. */
|
||
#define SSDF_IDENTIFIER "__static_initialization_and_destruction"
|
||
|
||
/* The declaration for the __INITIALIZE_P argument. */
|
||
static tree initialize_p_decl;
|
||
|
||
/* The declaration for the __PRIORITY argument. */
|
||
static tree priority_decl;
|
||
|
||
/* The declaration for the static storage duration function. */
|
||
static tree ssdf_decl;
|
||
|
||
/* All the static storage duration functions created in this
|
||
translation unit. */
|
||
static varray_type ssdf_decls;
|
||
|
||
/* A map from priority levels to information about that priority
|
||
level. There may be many such levels, so efficient lookup is
|
||
important. */
|
||
static splay_tree priority_info_map;
|
||
|
||
/* Begins the generation of the function that will handle all
|
||
initialization and destruction of objects with static storage
|
||
duration. The function generated takes two parameters of type
|
||
`int': __INITIALIZE_P and __PRIORITY. If __INITIALIZE_P is
|
||
non-zero, it performs initializations. Otherwise, it performs
|
||
destructions. It only performs those initializations or
|
||
destructions with the indicated __PRIORITY. The generated function
|
||
returns no value.
|
||
|
||
It is assumed that this function will only be called once per
|
||
translation unit. */
|
||
|
||
static tree
|
||
start_static_storage_duration_function ()
|
||
{
|
||
static unsigned ssdf_number;
|
||
|
||
tree parm_types;
|
||
tree type;
|
||
tree body;
|
||
char id[sizeof (SSDF_IDENTIFIER) + 1 /* '\0' */ + 32];
|
||
|
||
/* Create the identifier for this function. It will be of the form
|
||
SSDF_IDENTIFIER_<number>. */
|
||
sprintf (id, "%s_%u", SSDF_IDENTIFIER, ssdf_number++);
|
||
if (ssdf_number == 0)
|
||
{
|
||
/* Overflow occurred. That means there are at least 4 billion
|
||
initialization functions. */
|
||
sorry ("too many initialization functions required");
|
||
my_friendly_abort (19990430);
|
||
}
|
||
|
||
/* Create the parameters. */
|
||
parm_types = void_list_node;
|
||
parm_types = tree_cons (NULL_TREE, integer_type_node, parm_types);
|
||
parm_types = tree_cons (NULL_TREE, integer_type_node, parm_types);
|
||
type = build_function_type (void_type_node, parm_types);
|
||
|
||
/* Create the FUNCTION_DECL itself. */
|
||
ssdf_decl = build_lang_decl (FUNCTION_DECL,
|
||
get_identifier (id),
|
||
type);
|
||
TREE_PUBLIC (ssdf_decl) = 0;
|
||
DECL_ARTIFICIAL (ssdf_decl) = 1;
|
||
|
||
/* Put this function in the list of functions to be called from the
|
||
static constructors and destructors. */
|
||
if (!ssdf_decls)
|
||
{
|
||
VARRAY_TREE_INIT (ssdf_decls, 32, "ssdf_decls");
|
||
|
||
/* Take this opportunity to initialize the map from priority
|
||
numbers to information about that priority level. */
|
||
priority_info_map = splay_tree_new (splay_tree_compare_ints,
|
||
/*delete_key_fn=*/0,
|
||
/*delete_value_fn=*/
|
||
(splay_tree_delete_value_fn) &free);
|
||
|
||
/* We always need to generate functions for the
|
||
DEFAULT_INIT_PRIORITY so enter it now. That way when we walk
|
||
priorities later, we'll be sure to find the
|
||
DEFAULT_INIT_PRIORITY. */
|
||
get_priority_info (DEFAULT_INIT_PRIORITY);
|
||
}
|
||
|
||
VARRAY_PUSH_TREE (ssdf_decls, ssdf_decl);
|
||
|
||
/* Create the argument list. */
|
||
initialize_p_decl = build_decl (PARM_DECL,
|
||
get_identifier (INITIALIZE_P_IDENTIFIER),
|
||
integer_type_node);
|
||
DECL_CONTEXT (initialize_p_decl) = ssdf_decl;
|
||
DECL_ARG_TYPE (initialize_p_decl) = integer_type_node;
|
||
TREE_USED (initialize_p_decl) = 1;
|
||
priority_decl = build_decl (PARM_DECL, get_identifier (PRIORITY_IDENTIFIER),
|
||
integer_type_node);
|
||
DECL_CONTEXT (priority_decl) = ssdf_decl;
|
||
DECL_ARG_TYPE (priority_decl) = integer_type_node;
|
||
TREE_USED (priority_decl) = 1;
|
||
|
||
TREE_CHAIN (initialize_p_decl) = priority_decl;
|
||
DECL_ARGUMENTS (ssdf_decl) = initialize_p_decl;
|
||
|
||
/* Put the function in the global scope. */
|
||
pushdecl (ssdf_decl);
|
||
|
||
/* Start the function itself. This is equivalent to declarating the
|
||
function as:
|
||
|
||
static void __ssdf (int __initialize_p, init __priority_p);
|
||
|
||
It is static because we only need to call this function from the
|
||
various constructor and destructor functions for this module. */
|
||
start_function (/*specs=*/NULL_TREE,
|
||
ssdf_decl,
|
||
/*attrs=*/NULL_TREE,
|
||
SF_PRE_PARSED);
|
||
|
||
/* Set up the scope of the outermost block in the function. */
|
||
body = begin_compound_stmt (/*has_no_scope=*/0);
|
||
|
||
/* This function must not be deferred because we are depending on
|
||
its compilation to tell us what is TREE_SYMBOL_REFERENCED. */
|
||
current_function_cannot_inline
|
||
= "static storage duration functions cannot be inlined";
|
||
|
||
return body;
|
||
}
|
||
|
||
/* Finish the generation of the function which performs initialization
|
||
and destruction of objects with static storage duration. After
|
||
this point, no more such objects can be created. */
|
||
|
||
static void
|
||
finish_static_storage_duration_function (body)
|
||
tree body;
|
||
{
|
||
/* Close out the function. */
|
||
finish_compound_stmt (/*has_no_scope=*/0, body);
|
||
expand_body (finish_function (0));
|
||
}
|
||
|
||
/* Return the information about the indicated PRIORITY level. If no
|
||
code to handle this level has yet been generated, generate the
|
||
appropriate prologue. */
|
||
|
||
static priority_info
|
||
get_priority_info (priority)
|
||
int priority;
|
||
{
|
||
priority_info pi;
|
||
splay_tree_node n;
|
||
|
||
n = splay_tree_lookup (priority_info_map,
|
||
(splay_tree_key) priority);
|
||
if (!n)
|
||
{
|
||
/* Create a new priority information structure, and insert it
|
||
into the map. */
|
||
pi = (priority_info) xmalloc (sizeof (struct priority_info_s));
|
||
pi->initializations_p = 0;
|
||
pi->destructions_p = 0;
|
||
splay_tree_insert (priority_info_map,
|
||
(splay_tree_key) priority,
|
||
(splay_tree_value) pi);
|
||
}
|
||
else
|
||
pi = (priority_info) n->value;
|
||
|
||
return pi;
|
||
}
|
||
|
||
/* Set up to handle the initialization or destruction of DECL. If
|
||
INITP is non-zero, we are initializing the variable. Otherwise, we
|
||
are destroying it. */
|
||
|
||
static tree
|
||
start_static_initialization_or_destruction (decl, initp)
|
||
tree decl;
|
||
int initp;
|
||
{
|
||
tree guard_if_stmt = NULL_TREE;
|
||
int priority;
|
||
tree cond;
|
||
tree guard;
|
||
tree init_cond;
|
||
priority_info pi;
|
||
|
||
/* Figure out the priority for this declaration. */
|
||
priority = DECL_INIT_PRIORITY (decl);
|
||
if (!priority)
|
||
priority = DEFAULT_INIT_PRIORITY;
|
||
|
||
/* Remember that we had an initialization or finalization at this
|
||
priority. */
|
||
pi = get_priority_info (priority);
|
||
if (initp)
|
||
pi->initializations_p = 1;
|
||
else
|
||
pi->destructions_p = 1;
|
||
|
||
/* Trick the compiler into thinking we are at the file and line
|
||
where DECL was declared so that error-messages make sense, and so
|
||
that the debugger will show somewhat sensible file and line
|
||
information. */
|
||
input_filename = DECL_SOURCE_FILE (decl);
|
||
lineno = DECL_SOURCE_LINE (decl);
|
||
|
||
/* Because of:
|
||
|
||
[class.access.spec]
|
||
|
||
Access control for implicit calls to the constructors,
|
||
the conversion functions, or the destructor called to
|
||
create and destroy a static data member is performed as
|
||
if these calls appeared in the scope of the member's
|
||
class.
|
||
|
||
we pretend we are in a static member function of the class of
|
||
which the DECL is a member. */
|
||
if (member_p (decl))
|
||
{
|
||
DECL_CONTEXT (current_function_decl) = DECL_CONTEXT (decl);
|
||
DECL_STATIC_FUNCTION_P (current_function_decl) = 1;
|
||
}
|
||
|
||
/* Conditionalize this initialization on being in the right priority
|
||
and being initializing/finalizing appropriately. */
|
||
guard_if_stmt = begin_if_stmt ();
|
||
cond = cp_build_binary_op (EQ_EXPR,
|
||
priority_decl,
|
||
build_int_2 (priority, 0));
|
||
init_cond = initp ? integer_one_node : integer_zero_node;
|
||
init_cond = cp_build_binary_op (EQ_EXPR,
|
||
initialize_p_decl,
|
||
init_cond);
|
||
cond = cp_build_binary_op (TRUTH_ANDIF_EXPR, cond, init_cond);
|
||
|
||
/* Assume we don't need a guard. */
|
||
guard = NULL_TREE;
|
||
/* We need a guard if this is an object with external linkage that
|
||
might be initialized in more than one place. (For example, a
|
||
static data member of a template, when the data member requires
|
||
construction.) */
|
||
if (TREE_PUBLIC (decl) && (DECL_COMMON (decl)
|
||
|| DECL_ONE_ONLY (decl)
|
||
|| DECL_WEAK (decl)))
|
||
{
|
||
tree guard_cond;
|
||
|
||
guard = get_guard (decl);
|
||
|
||
/* When using __cxa_atexit, we just check the GUARD as we would
|
||
for a local static. */
|
||
if (flag_use_cxa_atexit)
|
||
{
|
||
/* When using __cxa_atexit, we never try to destroy
|
||
anything from a static destructor. */
|
||
my_friendly_assert (initp, 20000629);
|
||
guard_cond = get_guard_cond (guard);
|
||
}
|
||
/* Under the old ABI, e do initializations only if the GUARD is
|
||
zero, i.e., if we are the first to initialize the variable.
|
||
We do destructions only if the GUARD is one, i.e., if we are
|
||
the last to destroy the variable. */
|
||
else if (initp)
|
||
guard_cond
|
||
= cp_build_binary_op (EQ_EXPR,
|
||
build_unary_op (PREINCREMENT_EXPR,
|
||
guard,
|
||
/*noconvert=*/1),
|
||
integer_one_node);
|
||
else
|
||
guard_cond
|
||
= cp_build_binary_op (EQ_EXPR,
|
||
build_unary_op (PREDECREMENT_EXPR,
|
||
guard,
|
||
/*noconvert=*/1),
|
||
integer_zero_node);
|
||
|
||
cond = cp_build_binary_op (TRUTH_ANDIF_EXPR, cond, guard_cond);
|
||
}
|
||
|
||
finish_if_stmt_cond (cond, guard_if_stmt);
|
||
|
||
/* Under the new ABI, we have not already set the GUARD, so we must
|
||
do so now. */
|
||
if (guard && initp && flag_new_abi)
|
||
finish_expr_stmt (set_guard (guard));
|
||
|
||
return guard_if_stmt;
|
||
}
|
||
|
||
/* We've just finished generating code to do an initialization or
|
||
finalization. GUARD_IF_STMT is the if-statement we used to guard
|
||
the initialization. */
|
||
|
||
static void
|
||
finish_static_initialization_or_destruction (guard_if_stmt)
|
||
tree guard_if_stmt;
|
||
{
|
||
finish_then_clause (guard_if_stmt);
|
||
finish_if_stmt ();
|
||
|
||
/* Now that we're done with DECL we don't need to pretend to be a
|
||
member of its class any longer. */
|
||
DECL_CONTEXT (current_function_decl) = NULL_TREE;
|
||
DECL_STATIC_FUNCTION_P (current_function_decl) = 0;
|
||
}
|
||
|
||
/* Generate code to do the static initialization of DECL. The
|
||
initialization is INIT. If DECL may be initialized more than once
|
||
in different object files, GUARD is the guard variable to
|
||
check. PRIORITY is the priority for the initialization. */
|
||
|
||
static void
|
||
do_static_initialization (decl, init)
|
||
tree decl;
|
||
tree init;
|
||
{
|
||
tree expr;
|
||
tree guard_if_stmt;
|
||
|
||
/* Set up for the initialization. */
|
||
guard_if_stmt
|
||
= start_static_initialization_or_destruction (decl,
|
||
/*initp=*/1);
|
||
|
||
/* Do the initialization itself. */
|
||
if (IS_AGGR_TYPE (TREE_TYPE (decl))
|
||
|| TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE)
|
||
expr = build_aggr_init (decl, init, 0);
|
||
else if (TREE_CODE (init) == TREE_VEC)
|
||
expr = build_vec_init (decl, TREE_VEC_ELT (init, 0),
|
||
TREE_VEC_ELT (init, 1),
|
||
TREE_VEC_ELT (init, 2), 0);
|
||
else
|
||
{
|
||
expr = build (INIT_EXPR, TREE_TYPE (decl), decl, init);
|
||
TREE_SIDE_EFFECTS (expr) = 1;
|
||
}
|
||
finish_expr_stmt (expr);
|
||
|
||
/* If we're using __cxa_atexit, register a a function that calls the
|
||
destructor for the object. */
|
||
if (flag_use_cxa_atexit)
|
||
register_dtor_fn (decl);
|
||
|
||
/* Finsh up. */
|
||
finish_static_initialization_or_destruction (guard_if_stmt);
|
||
}
|
||
|
||
/* Generate code to do the static destruction of DECL. If DECL may be
|
||
initialized more than once in different object files, GUARD is the
|
||
guard variable to check. PRIORITY is the priority for the
|
||
destruction. */
|
||
|
||
static void
|
||
do_static_destruction (decl)
|
||
tree decl;
|
||
{
|
||
tree guard_if_stmt;
|
||
|
||
/* If we're using __cxa_atexit, then destructors are registered
|
||
immediately after objects are initialized. */
|
||
my_friendly_assert (!flag_use_cxa_atexit, 20000121);
|
||
|
||
/* If we don't need a destructor, there's nothing to do. */
|
||
if (TYPE_HAS_TRIVIAL_DESTRUCTOR (TREE_TYPE (decl)))
|
||
return;
|
||
|
||
/* Actually do the destruction. */
|
||
guard_if_stmt = start_static_initialization_or_destruction (decl,
|
||
/*initp=*/0);
|
||
finish_expr_stmt (build_cleanup (decl));
|
||
finish_static_initialization_or_destruction (guard_if_stmt);
|
||
}
|
||
|
||
/* VARS is a list of variables with static storage duration which may
|
||
need initialization and/or finalization. Remove those variables
|
||
that don't really need to be initialized or finalized, and return
|
||
the resulting list. The order in which the variables appear in
|
||
VARS is in reverse order of the order in which they should actually
|
||
be initialized. The list we return is in the unreversed order;
|
||
i.e., the first variable should be initialized first. */
|
||
|
||
static tree
|
||
prune_vars_needing_no_initialization (vars)
|
||
tree vars;
|
||
{
|
||
tree var;
|
||
tree result;
|
||
|
||
for (var = vars, result = NULL_TREE;
|
||
var;
|
||
var = TREE_CHAIN (var))
|
||
{
|
||
tree decl = TREE_VALUE (var);
|
||
tree init = TREE_PURPOSE (var);
|
||
|
||
/* Deal gracefully with error. */
|
||
if (decl == error_mark_node)
|
||
continue;
|
||
|
||
/* The only things that can be initialized are variables. */
|
||
my_friendly_assert (TREE_CODE (decl) == VAR_DECL, 19990420);
|
||
|
||
/* If this object is not defined, we don't need to do anything
|
||
here. */
|
||
if (DECL_EXTERNAL (decl))
|
||
continue;
|
||
|
||
/* Also, if the initializer already contains errors, we can bail
|
||
out now. */
|
||
if (init && TREE_CODE (init) == TREE_LIST
|
||
&& value_member (error_mark_node, init))
|
||
continue;
|
||
|
||
/* This variable is going to need initialization and/or
|
||
finalization, so we add it to the list. */
|
||
result = tree_cons (init, decl, result);
|
||
}
|
||
|
||
return result;
|
||
}
|
||
|
||
/* Make sure we have told the back end about all the variables in
|
||
VARS. */
|
||
|
||
static void
|
||
write_out_vars (vars)
|
||
tree vars;
|
||
{
|
||
tree v;
|
||
|
||
for (v = vars; v; v = TREE_CHAIN (v))
|
||
if (! TREE_ASM_WRITTEN (TREE_VALUE (v)))
|
||
rest_of_decl_compilation (TREE_VALUE (v), 0, 1, 1);
|
||
}
|
||
|
||
/* Generate a static constructor (if CONSTRUCTOR_P) or destructor
|
||
(otherwise) that will initialize all gobal objects with static
|
||
storage duration having the indicated PRIORITY. */
|
||
|
||
static void
|
||
generate_ctor_or_dtor_function (constructor_p, priority)
|
||
int constructor_p;
|
||
int priority;
|
||
{
|
||
char function_key;
|
||
tree arguments;
|
||
tree body;
|
||
size_t i;
|
||
|
||
/* We use `I' to indicate initialization and `D' to indicate
|
||
destruction. */
|
||
if (constructor_p)
|
||
function_key = 'I';
|
||
else
|
||
function_key = 'D';
|
||
|
||
/* Begin the function. */
|
||
body = start_objects (function_key, priority);
|
||
|
||
/* Call the static storage duration function with appropriate
|
||
arguments. */
|
||
for (i = 0; i < ssdf_decls->elements_used; ++i)
|
||
{
|
||
arguments = tree_cons (NULL_TREE, build_int_2 (priority, 0),
|
||
NULL_TREE);
|
||
arguments = tree_cons (NULL_TREE, build_int_2 (constructor_p, 0),
|
||
arguments);
|
||
finish_expr_stmt (build_function_call (VARRAY_TREE (ssdf_decls, i),
|
||
arguments));
|
||
}
|
||
|
||
/* If we're generating code for the DEFAULT_INIT_PRIORITY, throw in
|
||
calls to any functions marked with attributes indicating that
|
||
they should be called at initialization- or destruction-time. */
|
||
if (priority == DEFAULT_INIT_PRIORITY)
|
||
{
|
||
tree fns;
|
||
|
||
for (fns = constructor_p ? static_ctors : static_dtors;
|
||
fns;
|
||
fns = TREE_CHAIN (fns))
|
||
finish_expr_stmt (build_function_call (TREE_VALUE (fns), NULL_TREE));
|
||
}
|
||
|
||
/* Close out the function. */
|
||
finish_objects (function_key, priority, body);
|
||
}
|
||
|
||
/* Generate constructor and destructor functions for the priority
|
||
indicated by N. */
|
||
|
||
static int
|
||
generate_ctor_and_dtor_functions_for_priority (n, data)
|
||
splay_tree_node n;
|
||
void *data ATTRIBUTE_UNUSED;
|
||
{
|
||
int priority = (int) n->key;
|
||
priority_info pi = (priority_info) n->value;
|
||
|
||
/* Generate the functions themselves, but only if they are really
|
||
needed. */
|
||
if (pi->initializations_p
|
||
|| (priority == DEFAULT_INIT_PRIORITY && static_ctors))
|
||
generate_ctor_or_dtor_function (/*constructor_p=*/1,
|
||
priority);
|
||
if (pi->destructions_p
|
||
|| (priority == DEFAULT_INIT_PRIORITY && static_dtors))
|
||
generate_ctor_or_dtor_function (/*constructor_p=*/0,
|
||
priority);
|
||
|
||
/* Keep iterating. */
|
||
return 0;
|
||
}
|
||
|
||
/* This routine is called from the last rule in yyparse ().
|
||
Its job is to create all the code needed to initialize and
|
||
destroy the global aggregates. We do the destruction
|
||
first, since that way we only need to reverse the decls once. */
|
||
|
||
void
|
||
finish_file ()
|
||
{
|
||
tree vars;
|
||
int reconsider;
|
||
size_t i;
|
||
|
||
at_eof = 1;
|
||
|
||
/* Bad parse errors. Just forget about it. */
|
||
if (! global_bindings_p () || current_class_type || decl_namespace_list)
|
||
return;
|
||
|
||
/* Otherwise, GDB can get confused, because in only knows
|
||
about source for LINENO-1 lines. */
|
||
lineno -= 1;
|
||
|
||
interface_unknown = 1;
|
||
interface_only = 0;
|
||
|
||
/* We now have to write out all the stuff we put off writing out.
|
||
These include:
|
||
|
||
o Template specializations that we have not yet instantiated,
|
||
but which are needed.
|
||
o Initialization and destruction for non-local objects with
|
||
static storage duration. (Local objects with static storage
|
||
duration are initialized when their scope is first entered,
|
||
and are cleaned up via atexit.)
|
||
o Virtual function tables.
|
||
|
||
All of these may cause others to be needed. For example,
|
||
instantiating one function may cause another to be needed, and
|
||
generating the intiailzer for an object may cause templates to be
|
||
instantiated, etc., etc. */
|
||
|
||
timevar_push (TV_VARCONST);
|
||
|
||
if (new_abi_rtti_p ())
|
||
emit_support_tinfos ();
|
||
|
||
do
|
||
{
|
||
reconsider = 0;
|
||
|
||
/* If there are templates that we've put off instantiating, do
|
||
them now. */
|
||
instantiate_pending_templates ();
|
||
|
||
/* Write out virtual tables as required. Note that writing out
|
||
the virtual table for a template class may cause the
|
||
instantiation of members of that class. */
|
||
if (walk_globals (vtable_decl_p,
|
||
finish_vtable_vardecl,
|
||
/*data=*/0))
|
||
reconsider = 1;
|
||
|
||
/* Write out needed type info variables. Writing out one variable
|
||
might cause others to be needed. */
|
||
if (new_abi_rtti_p ()
|
||
&& walk_globals (tinfo_decl_p, emit_tinfo_decl, /*data=*/0))
|
||
reconsider = 1;
|
||
|
||
/* The list of objects with static storage duration is built up
|
||
in reverse order. We clear STATIC_AGGREGATES so that any new
|
||
aggregates added during the initialization of these will be
|
||
initialized in the correct order when we next come around the
|
||
loop. */
|
||
vars = prune_vars_needing_no_initialization (static_aggregates);
|
||
static_aggregates = NULL_TREE;
|
||
|
||
if (vars)
|
||
{
|
||
tree v;
|
||
|
||
/* We need to start a new initialization function each time
|
||
through the loop. That's because we need to know which
|
||
vtables have been referenced, and TREE_SYMBOL_REFERENCED
|
||
isn't computed until a function is finished, and written
|
||
out. That's a deficiency in the back-end. When this is
|
||
fixed, these initialization functions could all become
|
||
inline, with resulting performance improvements. */
|
||
tree ssdf_body = start_static_storage_duration_function ();
|
||
|
||
/* Make sure the back end knows about all the variables. */
|
||
write_out_vars (vars);
|
||
|
||
/* First generate code to do all the initializations. */
|
||
for (v = vars; v; v = TREE_CHAIN (v))
|
||
do_static_initialization (TREE_VALUE (v),
|
||
TREE_PURPOSE (v));
|
||
|
||
/* Then, generate code to do all the destructions. Do these
|
||
in reverse order so that the most recently constructed
|
||
variable is the first destroyed. If we're using
|
||
__cxa_atexit, then we don't need to do this; functions
|
||
were registered at initialization time to destroy the
|
||
local statics. */
|
||
if (!flag_use_cxa_atexit)
|
||
{
|
||
vars = nreverse (vars);
|
||
for (v = vars; v; v = TREE_CHAIN (v))
|
||
do_static_destruction (TREE_VALUE (v));
|
||
}
|
||
else
|
||
vars = NULL_TREE;
|
||
|
||
/* Finish up the static storage duration function for this
|
||
round. */
|
||
finish_static_storage_duration_function (ssdf_body);
|
||
|
||
/* All those initializations and finalizations might cause
|
||
us to need more inline functions, more template
|
||
instantiations, etc. */
|
||
reconsider = 1;
|
||
}
|
||
|
||
/* Go through the various inline functions, and see if any need
|
||
synthesizing. */
|
||
for (i = 0; i < deferred_fns_used; ++i)
|
||
{
|
||
tree decl = VARRAY_TREE (deferred_fns, i);
|
||
import_export_decl (decl);
|
||
if (DECL_ARTIFICIAL (decl) && ! DECL_INITIAL (decl)
|
||
&& TREE_USED (decl)
|
||
&& (! DECL_REALLY_EXTERN (decl) || DECL_INLINE (decl)))
|
||
{
|
||
/* Even though we're already at the top-level, we push
|
||
there again. That way, when we pop back a few lines
|
||
hence, all of our state is restored. Otherwise,
|
||
finish_function doesn't clean things up, and we end
|
||
up with CURRENT_FUNCTION_DECL set. */
|
||
push_to_top_level ();
|
||
if (DECL_TINFO_FN_P (decl))
|
||
synthesize_tinfo_fn (decl);
|
||
else
|
||
synthesize_method (decl);
|
||
pop_from_top_level ();
|
||
reconsider = 1;
|
||
}
|
||
}
|
||
|
||
/* Mark all functions that might deal with exception-handling as
|
||
referenced. */
|
||
mark_all_runtime_matches ();
|
||
|
||
/* We lie to the back-end, pretending that some functions are
|
||
not defined when they really are. This keeps these functions
|
||
from being put out unnecessarily. But, we must stop lying
|
||
when the functions are referenced, or if they are not comdat
|
||
since they need to be put out now. */
|
||
for (i = 0; i < deferred_fns_used; ++i)
|
||
{
|
||
tree decl = VARRAY_TREE (deferred_fns, i);
|
||
|
||
if (DECL_NOT_REALLY_EXTERN (decl)
|
||
&& DECL_INITIAL (decl)
|
||
&& DECL_NEEDED_P (decl))
|
||
DECL_EXTERNAL (decl) = 0;
|
||
|
||
/* If we're going to need to write this function out, and
|
||
there's already a body for it, create RTL for it now.
|
||
(There might be no body if this is a method we haven't
|
||
gotten around to synthesizing yet.) */
|
||
if (!DECL_EXTERNAL (decl)
|
||
&& DECL_NEEDED_P (decl)
|
||
&& DECL_SAVED_TREE (decl)
|
||
&& !DECL_SAVED_INSNS (decl)
|
||
&& !TREE_ASM_WRITTEN (decl))
|
||
{
|
||
int saved_not_really_extern;
|
||
|
||
/* When we call finish_function in expand_body, it will
|
||
try to reset DECL_NOT_REALLY_EXTERN so we save and
|
||
restore it here. */
|
||
saved_not_really_extern = DECL_NOT_REALLY_EXTERN (decl);
|
||
/* Generate RTL for this function now that we know we
|
||
need it. */
|
||
expand_body (decl);
|
||
/* Undo the damage done by finish_function. */
|
||
DECL_EXTERNAL (decl) = 0;
|
||
DECL_NOT_REALLY_EXTERN (decl) = saved_not_really_extern;
|
||
/* If we're compiling -fsyntax-only pretend that this
|
||
function has been written out so that we don't try to
|
||
expand it again. */
|
||
if (flag_syntax_only)
|
||
TREE_ASM_WRITTEN (decl) = 1;
|
||
reconsider = 1;
|
||
}
|
||
}
|
||
|
||
if (deferred_fns_used
|
||
&& wrapup_global_declarations (&VARRAY_TREE (deferred_fns, 0),
|
||
deferred_fns_used))
|
||
reconsider = 1;
|
||
if (walk_namespaces (wrapup_globals_for_namespace, /*data=*/0))
|
||
reconsider = 1;
|
||
|
||
/* Static data members are just like namespace-scope globals. */
|
||
for (i = 0; i < pending_statics_used; ++i)
|
||
{
|
||
tree decl = VARRAY_TREE (pending_statics, i);
|
||
if (TREE_ASM_WRITTEN (decl))
|
||
continue;
|
||
import_export_decl (decl);
|
||
if (DECL_NOT_REALLY_EXTERN (decl) && ! DECL_IN_AGGR_P (decl))
|
||
DECL_EXTERNAL (decl) = 0;
|
||
}
|
||
if (pending_statics
|
||
&& wrapup_global_declarations (&VARRAY_TREE (pending_statics, 0),
|
||
pending_statics_used))
|
||
reconsider = 1;
|
||
}
|
||
while (reconsider);
|
||
|
||
/* We give C linkage to static constructors and destructors. */
|
||
push_lang_context (lang_name_c);
|
||
|
||
/* Generate initialization and destruction functions for all
|
||
priorities for which they are required. */
|
||
if (priority_info_map)
|
||
splay_tree_foreach (priority_info_map,
|
||
generate_ctor_and_dtor_functions_for_priority,
|
||
/*data=*/0);
|
||
|
||
/* We're done with the splay-tree now. */
|
||
if (priority_info_map)
|
||
splay_tree_delete (priority_info_map);
|
||
|
||
/* We're done with static constructors, so we can go back to "C++"
|
||
linkage now. */
|
||
pop_lang_context ();
|
||
|
||
/* Now delete from the chain of variables all virtual function tables.
|
||
We output them all ourselves, because each will be treated
|
||
specially. We don't do this if we're just doing semantic
|
||
analysis, and not code-generation. */
|
||
if (!flag_syntax_only)
|
||
walk_globals (vtable_decl_p, prune_vtable_vardecl, /*data=*/0);
|
||
|
||
/* Now, issue warnings about static, but not defined, functions,
|
||
etc., and emit debugging information. */
|
||
walk_namespaces (wrapup_globals_for_namespace, /*data=*/&reconsider);
|
||
if (pending_statics)
|
||
check_global_declarations (&VARRAY_TREE (pending_statics, 0),
|
||
pending_statics_used);
|
||
|
||
finish_repo ();
|
||
|
||
/* The entire file is now complete. If requested, dump everything
|
||
to a file. */
|
||
if (flag_dump_translation_unit)
|
||
dump_node_to_file (global_namespace, flag_dump_translation_unit);
|
||
|
||
/* If there's some tool that wants to examine the entire translation
|
||
unit, let it do so now. */
|
||
if (back_end_hook)
|
||
(*back_end_hook) (global_namespace);
|
||
|
||
timevar_pop (TV_VARCONST);
|
||
|
||
if (flag_detailed_statistics)
|
||
{
|
||
dump_tree_statistics ();
|
||
dump_time_statistics ();
|
||
}
|
||
}
|
||
|
||
/* This is something of the form 'A()()()()()+1' that has turned out to be an
|
||
expr. Since it was parsed like a type, we need to wade through and fix
|
||
that. Unfortunately, since operator() is left-associative, we can't use
|
||
tail recursion. In the above example, TYPE is `A', and DECL is
|
||
`()()()()()'.
|
||
|
||
Maybe this shouldn't be recursive, but how often will it actually be
|
||
used? (jason) */
|
||
|
||
tree
|
||
reparse_absdcl_as_expr (type, decl)
|
||
tree type, decl;
|
||
{
|
||
/* do build_functional_cast (type, NULL_TREE) at bottom */
|
||
if (TREE_OPERAND (decl, 0) == NULL_TREE)
|
||
return build_functional_cast (type, NULL_TREE);
|
||
|
||
/* recurse */
|
||
decl = reparse_absdcl_as_expr (type, TREE_OPERAND (decl, 0));
|
||
|
||
decl = build_x_function_call (decl, NULL_TREE, current_class_ref);
|
||
|
||
if (TREE_CODE (decl) == CALL_EXPR
|
||
&& (! TREE_TYPE (decl)
|
||
|| TREE_CODE (TREE_TYPE (decl)) != VOID_TYPE))
|
||
decl = require_complete_type (decl);
|
||
|
||
return decl;
|
||
}
|
||
|
||
/* This is something of the form `int ((int)(int)(int)1)' that has turned
|
||
out to be an expr. Since it was parsed like a type, we need to wade
|
||
through and fix that. Since casts are right-associative, we are
|
||
reversing the order, so we don't have to recurse.
|
||
|
||
In the above example, DECL is the `(int)(int)(int)', and EXPR is the
|
||
`1'. */
|
||
|
||
tree
|
||
reparse_absdcl_as_casts (decl, expr)
|
||
tree decl, expr;
|
||
{
|
||
tree type;
|
||
|
||
if (TREE_CODE (expr) == CONSTRUCTOR
|
||
&& TREE_TYPE (expr) == 0)
|
||
{
|
||
type = groktypename (TREE_VALUE (CALL_DECLARATOR_PARMS (decl)));
|
||
decl = TREE_OPERAND (decl, 0);
|
||
|
||
expr = digest_init (type, expr, (tree *) 0);
|
||
if (TREE_CODE (type) == ARRAY_TYPE && !COMPLETE_TYPE_P (type))
|
||
{
|
||
int failure = complete_array_type (type, expr, 1);
|
||
if (failure)
|
||
my_friendly_abort (78);
|
||
}
|
||
}
|
||
|
||
while (decl)
|
||
{
|
||
type = groktypename (TREE_VALUE (CALL_DECLARATOR_PARMS (decl)));
|
||
decl = TREE_OPERAND (decl, 0);
|
||
expr = build_c_cast (type, expr);
|
||
}
|
||
|
||
if (warn_old_style_cast && ! in_system_header
|
||
&& current_lang_name != lang_name_c)
|
||
warning ("use of old-style cast");
|
||
|
||
return expr;
|
||
}
|
||
|
||
/* Given plain tree nodes for an expression, build up the full semantics. */
|
||
|
||
tree
|
||
build_expr_from_tree (t)
|
||
tree t;
|
||
{
|
||
if (t == NULL_TREE || t == error_mark_node)
|
||
return t;
|
||
|
||
switch (TREE_CODE (t))
|
||
{
|
||
case IDENTIFIER_NODE:
|
||
return do_identifier (t, 0, NULL_TREE);
|
||
|
||
case LOOKUP_EXPR:
|
||
if (LOOKUP_EXPR_GLOBAL (t))
|
||
return do_scoped_id (TREE_OPERAND (t, 0), 0);
|
||
else
|
||
return do_identifier (TREE_OPERAND (t, 0), 0, NULL_TREE);
|
||
|
||
case TEMPLATE_ID_EXPR:
|
||
return (lookup_template_function
|
||
(build_expr_from_tree (TREE_OPERAND (t, 0)),
|
||
build_expr_from_tree (TREE_OPERAND (t, 1))));
|
||
|
||
case INDIRECT_REF:
|
||
return build_x_indirect_ref
|
||
(build_expr_from_tree (TREE_OPERAND (t, 0)), "unary *");
|
||
|
||
case CAST_EXPR:
|
||
return build_functional_cast
|
||
(TREE_TYPE (t), build_expr_from_tree (TREE_OPERAND (t, 0)));
|
||
|
||
case REINTERPRET_CAST_EXPR:
|
||
return build_reinterpret_cast
|
||
(TREE_TYPE (t), build_expr_from_tree (TREE_OPERAND (t, 0)));
|
||
|
||
case CONST_CAST_EXPR:
|
||
return build_const_cast
|
||
(TREE_TYPE (t), build_expr_from_tree (TREE_OPERAND (t, 0)));
|
||
|
||
case DYNAMIC_CAST_EXPR:
|
||
return build_dynamic_cast
|
||
(TREE_TYPE (t), build_expr_from_tree (TREE_OPERAND (t, 0)));
|
||
|
||
case STATIC_CAST_EXPR:
|
||
return build_static_cast
|
||
(TREE_TYPE (t), build_expr_from_tree (TREE_OPERAND (t, 0)));
|
||
|
||
case PREDECREMENT_EXPR:
|
||
case PREINCREMENT_EXPR:
|
||
case POSTDECREMENT_EXPR:
|
||
case POSTINCREMENT_EXPR:
|
||
case NEGATE_EXPR:
|
||
case BIT_NOT_EXPR:
|
||
case ABS_EXPR:
|
||
case TRUTH_NOT_EXPR:
|
||
case ADDR_EXPR:
|
||
case CONVERT_EXPR: /* Unary + */
|
||
case REALPART_EXPR:
|
||
case IMAGPART_EXPR:
|
||
if (TREE_TYPE (t))
|
||
return t;
|
||
return build_x_unary_op (TREE_CODE (t),
|
||
build_expr_from_tree (TREE_OPERAND (t, 0)));
|
||
|
||
case PLUS_EXPR:
|
||
case MINUS_EXPR:
|
||
case MULT_EXPR:
|
||
case TRUNC_DIV_EXPR:
|
||
case CEIL_DIV_EXPR:
|
||
case FLOOR_DIV_EXPR:
|
||
case ROUND_DIV_EXPR:
|
||
case EXACT_DIV_EXPR:
|
||
case BIT_AND_EXPR:
|
||
case BIT_ANDTC_EXPR:
|
||
case BIT_IOR_EXPR:
|
||
case BIT_XOR_EXPR:
|
||
case TRUNC_MOD_EXPR:
|
||
case FLOOR_MOD_EXPR:
|
||
case TRUTH_ANDIF_EXPR:
|
||
case TRUTH_ORIF_EXPR:
|
||
case TRUTH_AND_EXPR:
|
||
case TRUTH_OR_EXPR:
|
||
case RSHIFT_EXPR:
|
||
case LSHIFT_EXPR:
|
||
case RROTATE_EXPR:
|
||
case LROTATE_EXPR:
|
||
case EQ_EXPR:
|
||
case NE_EXPR:
|
||
case MAX_EXPR:
|
||
case MIN_EXPR:
|
||
case LE_EXPR:
|
||
case GE_EXPR:
|
||
case LT_EXPR:
|
||
case GT_EXPR:
|
||
case MEMBER_REF:
|
||
return build_x_binary_op
|
||
(TREE_CODE (t),
|
||
build_expr_from_tree (TREE_OPERAND (t, 0)),
|
||
build_expr_from_tree (TREE_OPERAND (t, 1)));
|
||
|
||
case DOTSTAR_EXPR:
|
||
return build_m_component_ref
|
||
(build_expr_from_tree (TREE_OPERAND (t, 0)),
|
||
build_expr_from_tree (TREE_OPERAND (t, 1)));
|
||
|
||
case SCOPE_REF:
|
||
return build_offset_ref (TREE_OPERAND (t, 0), TREE_OPERAND (t, 1));
|
||
|
||
case ARRAY_REF:
|
||
if (TREE_OPERAND (t, 0) == NULL_TREE)
|
||
/* new-type-id */
|
||
return build_parse_node (ARRAY_REF, NULL_TREE,
|
||
build_expr_from_tree (TREE_OPERAND (t, 1)));
|
||
return grok_array_decl (build_expr_from_tree (TREE_OPERAND (t, 0)),
|
||
build_expr_from_tree (TREE_OPERAND (t, 1)));
|
||
|
||
case SIZEOF_EXPR:
|
||
case ALIGNOF_EXPR:
|
||
{
|
||
tree r = build_expr_from_tree (TREE_OPERAND (t, 0));
|
||
if (!TYPE_P (r))
|
||
r = TREE_TYPE (r);
|
||
return TREE_CODE (t) == SIZEOF_EXPR ? c_sizeof (r) : c_alignof (r);
|
||
}
|
||
|
||
case MODOP_EXPR:
|
||
return build_x_modify_expr
|
||
(build_expr_from_tree (TREE_OPERAND (t, 0)),
|
||
TREE_CODE (TREE_OPERAND (t, 1)),
|
||
build_expr_from_tree (TREE_OPERAND (t, 2)));
|
||
|
||
case ARROW_EXPR:
|
||
return build_x_arrow
|
||
(build_expr_from_tree (TREE_OPERAND (t, 0)));
|
||
|
||
case NEW_EXPR:
|
||
return build_new
|
||
(build_expr_from_tree (TREE_OPERAND (t, 0)),
|
||
build_expr_from_tree (TREE_OPERAND (t, 1)),
|
||
build_expr_from_tree (TREE_OPERAND (t, 2)),
|
||
NEW_EXPR_USE_GLOBAL (t));
|
||
|
||
case DELETE_EXPR:
|
||
return delete_sanity
|
||
(build_expr_from_tree (TREE_OPERAND (t, 0)),
|
||
build_expr_from_tree (TREE_OPERAND (t, 1)),
|
||
DELETE_EXPR_USE_VEC (t), DELETE_EXPR_USE_GLOBAL (t));
|
||
|
||
case COMPOUND_EXPR:
|
||
if (TREE_OPERAND (t, 1) == NULL_TREE)
|
||
return build_x_compound_expr
|
||
(build_expr_from_tree (TREE_OPERAND (t, 0)));
|
||
else
|
||
my_friendly_abort (42);
|
||
|
||
case METHOD_CALL_EXPR:
|
||
if (TREE_CODE (TREE_OPERAND (t, 0)) == SCOPE_REF)
|
||
{
|
||
tree ref = TREE_OPERAND (t, 0);
|
||
tree name = TREE_OPERAND (ref, 1);
|
||
|
||
if (TREE_CODE (name) == TEMPLATE_ID_EXPR)
|
||
name = build_nt (TEMPLATE_ID_EXPR,
|
||
TREE_OPERAND (name, 0),
|
||
build_expr_from_tree (TREE_OPERAND (name, 1)));
|
||
|
||
return build_scoped_method_call
|
||
(build_expr_from_tree (TREE_OPERAND (t, 1)),
|
||
build_expr_from_tree (TREE_OPERAND (ref, 0)),
|
||
name,
|
||
build_expr_from_tree (TREE_OPERAND (t, 2)));
|
||
}
|
||
else
|
||
{
|
||
tree fn = TREE_OPERAND (t, 0);
|
||
|
||
/* We can get a TEMPLATE_ID_EXPR here on code like:
|
||
|
||
x->f<2>();
|
||
|
||
so we must resolve that. However, we can also get things
|
||
like a BIT_NOT_EXPR here, when referring to a destructor,
|
||
and things like that are not correctly resolved by
|
||
build_expr_from_tree. So, just use build_expr_from_tree
|
||
when we really need it. */
|
||
if (TREE_CODE (fn) == TEMPLATE_ID_EXPR)
|
||
fn = lookup_template_function
|
||
(TREE_OPERAND (fn, 0),
|
||
build_expr_from_tree (TREE_OPERAND (fn, 1)));
|
||
|
||
return build_method_call
|
||
(build_expr_from_tree (TREE_OPERAND (t, 1)),
|
||
fn,
|
||
build_expr_from_tree (TREE_OPERAND (t, 2)),
|
||
NULL_TREE, LOOKUP_NORMAL);
|
||
}
|
||
|
||
case CALL_EXPR:
|
||
if (TREE_CODE (TREE_OPERAND (t, 0)) == SCOPE_REF)
|
||
{
|
||
tree ref = TREE_OPERAND (t, 0);
|
||
tree name = TREE_OPERAND (ref, 1);
|
||
|
||
if (TREE_CODE (name) == TEMPLATE_ID_EXPR)
|
||
name = build_nt (TEMPLATE_ID_EXPR,
|
||
TREE_OPERAND (name, 0),
|
||
build_expr_from_tree (TREE_OPERAND (name, 1)));
|
||
|
||
return build_member_call
|
||
(build_expr_from_tree (TREE_OPERAND (ref, 0)),
|
||
name,
|
||
build_expr_from_tree (TREE_OPERAND (t, 1)));
|
||
}
|
||
else
|
||
{
|
||
tree name = TREE_OPERAND (t, 0);
|
||
tree id;
|
||
tree args = build_expr_from_tree (TREE_OPERAND (t, 1));
|
||
if (args != NULL_TREE && TREE_CODE (name) == LOOKUP_EXPR
|
||
&& !LOOKUP_EXPR_GLOBAL (name)
|
||
&& TREE_CODE ((id = TREE_OPERAND (name, 0))) == IDENTIFIER_NODE
|
||
&& (!current_class_type
|
||
|| !lookup_member (current_class_type, id, 0, 0)))
|
||
{
|
||
/* Do Koenig lookup if there are no class members. */
|
||
name = do_identifier (id, 0, args);
|
||
}
|
||
else if (TREE_CODE (name) == TEMPLATE_ID_EXPR
|
||
|| ! really_overloaded_fn (name))
|
||
name = build_expr_from_tree (name);
|
||
return build_x_function_call (name, args, current_class_ref);
|
||
}
|
||
|
||
case COND_EXPR:
|
||
return build_x_conditional_expr
|
||
(build_expr_from_tree (TREE_OPERAND (t, 0)),
|
||
build_expr_from_tree (TREE_OPERAND (t, 1)),
|
||
build_expr_from_tree (TREE_OPERAND (t, 2)));
|
||
|
||
case PSEUDO_DTOR_EXPR:
|
||
return (finish_pseudo_destructor_call_expr
|
||
(build_expr_from_tree (TREE_OPERAND (t, 0)),
|
||
build_expr_from_tree (TREE_OPERAND (t, 1)),
|
||
build_expr_from_tree (TREE_OPERAND (t, 2))));
|
||
|
||
case TREE_LIST:
|
||
{
|
||
tree purpose, value, chain;
|
||
|
||
if (t == void_list_node)
|
||
return t;
|
||
|
||
purpose = TREE_PURPOSE (t);
|
||
if (purpose)
|
||
purpose = build_expr_from_tree (purpose);
|
||
value = TREE_VALUE (t);
|
||
if (value)
|
||
value = build_expr_from_tree (value);
|
||
chain = TREE_CHAIN (t);
|
||
if (chain && chain != void_type_node)
|
||
chain = build_expr_from_tree (chain);
|
||
return tree_cons (purpose, value, chain);
|
||
}
|
||
|
||
case COMPONENT_REF:
|
||
{
|
||
tree object = build_expr_from_tree (TREE_OPERAND (t, 0));
|
||
tree field = TREE_OPERAND (t, 1);
|
||
|
||
/* We use a COMPONENT_REF to indicate things of the form `x.b'
|
||
and `x.A::b'. We must distinguish between those cases
|
||
here. */
|
||
if (TREE_CODE (field) == SCOPE_REF)
|
||
return build_object_ref (object,
|
||
TREE_OPERAND (field, 0),
|
||
TREE_OPERAND (field, 1));
|
||
else
|
||
return build_x_component_ref (object, field,
|
||
NULL_TREE, 1);
|
||
}
|
||
|
||
case THROW_EXPR:
|
||
return build_throw (build_expr_from_tree (TREE_OPERAND (t, 0)));
|
||
|
||
case CONSTRUCTOR:
|
||
{
|
||
tree r;
|
||
|
||
/* digest_init will do the wrong thing if we let it. */
|
||
if (TREE_TYPE (t) && TYPE_PTRMEMFUNC_P (TREE_TYPE (t)))
|
||
return t;
|
||
|
||
r = build_nt (CONSTRUCTOR, NULL_TREE,
|
||
build_expr_from_tree (CONSTRUCTOR_ELTS (t)));
|
||
TREE_HAS_CONSTRUCTOR (r) = TREE_HAS_CONSTRUCTOR (t);
|
||
|
||
if (TREE_TYPE (t))
|
||
return digest_init (TREE_TYPE (t), r, 0);
|
||
return r;
|
||
}
|
||
|
||
case TYPEID_EXPR:
|
||
if (TYPE_P (TREE_OPERAND (t, 0)))
|
||
return get_typeid (TREE_OPERAND (t, 0));
|
||
return build_typeid (build_expr_from_tree (TREE_OPERAND (t, 0)));
|
||
|
||
case VAR_DECL:
|
||
return convert_from_reference (t);
|
||
|
||
case VA_ARG_EXPR:
|
||
return build_va_arg (build_expr_from_tree (TREE_OPERAND (t, 0)),
|
||
TREE_TYPE (t));
|
||
|
||
default:
|
||
return t;
|
||
}
|
||
}
|
||
|
||
/* This is something of the form `int (*a)++' that has turned out to be an
|
||
expr. It was only converted into parse nodes, so we need to go through
|
||
and build up the semantics. Most of the work is done by
|
||
build_expr_from_tree, above.
|
||
|
||
In the above example, TYPE is `int' and DECL is `*a'. */
|
||
|
||
tree
|
||
reparse_decl_as_expr (type, decl)
|
||
tree type, decl;
|
||
{
|
||
decl = build_expr_from_tree (decl);
|
||
if (type)
|
||
return build_functional_cast (type, build_tree_list (NULL_TREE, decl));
|
||
else
|
||
return decl;
|
||
}
|
||
|
||
/* This is something of the form `int (*a)' that has turned out to be a
|
||
decl. It was only converted into parse nodes, so we need to do the
|
||
checking that make_{pointer,reference}_declarator do. */
|
||
|
||
tree
|
||
finish_decl_parsing (decl)
|
||
tree decl;
|
||
{
|
||
extern int current_class_depth;
|
||
|
||
switch (TREE_CODE (decl))
|
||
{
|
||
case IDENTIFIER_NODE:
|
||
return decl;
|
||
case INDIRECT_REF:
|
||
return make_pointer_declarator
|
||
(NULL_TREE, finish_decl_parsing (TREE_OPERAND (decl, 0)));
|
||
case ADDR_EXPR:
|
||
return make_reference_declarator
|
||
(NULL_TREE, finish_decl_parsing (TREE_OPERAND (decl, 0)));
|
||
case BIT_NOT_EXPR:
|
||
TREE_OPERAND (decl, 0) = finish_decl_parsing (TREE_OPERAND (decl, 0));
|
||
return decl;
|
||
case SCOPE_REF:
|
||
push_nested_class (TREE_TYPE (TREE_OPERAND (decl, 0)), 3);
|
||
TREE_COMPLEXITY (decl) = current_class_depth;
|
||
return decl;
|
||
case ARRAY_REF:
|
||
TREE_OPERAND (decl, 0) = finish_decl_parsing (TREE_OPERAND (decl, 0));
|
||
return decl;
|
||
case TREE_LIST:
|
||
/* For attribute handling. */
|
||
TREE_VALUE (decl) = finish_decl_parsing (TREE_VALUE (decl));
|
||
return decl;
|
||
case TEMPLATE_ID_EXPR:
|
||
return decl;
|
||
default:
|
||
my_friendly_abort (5);
|
||
return NULL_TREE;
|
||
}
|
||
}
|
||
|
||
tree
|
||
check_cp_case_value (value)
|
||
tree value;
|
||
{
|
||
if (value == NULL_TREE)
|
||
return value;
|
||
|
||
/* Strip NON_LVALUE_EXPRs since we aren't using as an lvalue. */
|
||
STRIP_TYPE_NOPS (value);
|
||
value = decl_constant_value (value);
|
||
STRIP_TYPE_NOPS (value);
|
||
value = fold (value);
|
||
|
||
if (TREE_CODE (value) != INTEGER_CST
|
||
&& value != error_mark_node)
|
||
{
|
||
cp_error ("case label `%E' does not reduce to an integer constant",
|
||
value);
|
||
value = error_mark_node;
|
||
}
|
||
else
|
||
/* Promote char or short to int. */
|
||
value = default_conversion (value);
|
||
|
||
constant_expression_warning (value);
|
||
|
||
return value;
|
||
}
|
||
|
||
/* Return 1 if root encloses child. */
|
||
|
||
static int
|
||
is_namespace_ancestor (root, child)
|
||
tree root, child;
|
||
{
|
||
if (root == child)
|
||
return 1;
|
||
if (root == global_namespace)
|
||
return 1;
|
||
if (child == global_namespace)
|
||
return 0;
|
||
return is_namespace_ancestor (root, CP_DECL_CONTEXT (child));
|
||
}
|
||
|
||
|
||
/* Return the namespace that is the common ancestor
|
||
of two given namespaces. */
|
||
|
||
tree
|
||
namespace_ancestor (ns1, ns2)
|
||
tree ns1, ns2;
|
||
{
|
||
if (is_namespace_ancestor (ns1, ns2))
|
||
return ns1;
|
||
return namespace_ancestor (CP_DECL_CONTEXT (ns1), ns2);
|
||
}
|
||
|
||
/* Insert used into the using list of user. Set indirect_flag if this
|
||
directive is not directly from the source. Also find the common
|
||
ancestor and let our users know about the new namespace */
|
||
static void
|
||
add_using_namespace (user, used, indirect)
|
||
tree user;
|
||
tree used;
|
||
int indirect;
|
||
{
|
||
tree t;
|
||
/* Using oneself is a no-op. */
|
||
if (user == used)
|
||
return;
|
||
my_friendly_assert (TREE_CODE (user) == NAMESPACE_DECL, 380);
|
||
my_friendly_assert (TREE_CODE (used) == NAMESPACE_DECL, 380);
|
||
/* Check if we already have this. */
|
||
t = purpose_member (used, DECL_NAMESPACE_USING (user));
|
||
if (t != NULL_TREE)
|
||
{
|
||
if (!indirect)
|
||
/* Promote to direct usage. */
|
||
TREE_INDIRECT_USING (t) = 0;
|
||
return;
|
||
}
|
||
|
||
/* Add used to the user's using list. */
|
||
DECL_NAMESPACE_USING (user)
|
||
= tree_cons (used, namespace_ancestor (user, used),
|
||
DECL_NAMESPACE_USING (user));
|
||
|
||
TREE_INDIRECT_USING (DECL_NAMESPACE_USING (user)) = indirect;
|
||
|
||
/* Add user to the used's users list. */
|
||
DECL_NAMESPACE_USERS (used)
|
||
= tree_cons (user, 0, DECL_NAMESPACE_USERS (used));
|
||
|
||
/* Recursively add all namespaces used. */
|
||
for (t = DECL_NAMESPACE_USING (used); t; t = TREE_CHAIN (t))
|
||
/* indirect usage */
|
||
add_using_namespace (user, TREE_PURPOSE (t), 1);
|
||
|
||
/* Tell everyone using us about the new used namespaces. */
|
||
for (t = DECL_NAMESPACE_USERS (user); t; t = TREE_CHAIN (t))
|
||
add_using_namespace (TREE_PURPOSE (t), used, 1);
|
||
}
|
||
|
||
/* Combines two sets of overloaded functions into an OVERLOAD chain, removing
|
||
duplicates. The first list becomes the tail of the result.
|
||
|
||
The algorithm is O(n^2). We could get this down to O(n log n) by
|
||
doing a sort on the addresses of the functions, if that becomes
|
||
necessary. */
|
||
|
||
static tree
|
||
merge_functions (s1, s2)
|
||
tree s1;
|
||
tree s2;
|
||
{
|
||
for (; s2; s2 = OVL_NEXT (s2))
|
||
{
|
||
tree fn = OVL_CURRENT (s2);
|
||
if (! ovl_member (fn, s1))
|
||
s1 = build_overload (fn, s1);
|
||
}
|
||
return s1;
|
||
}
|
||
|
||
/* This should return an error not all definitions define functions.
|
||
It is not an error if we find two functions with exactly the
|
||
same signature, only if these are selected in overload resolution.
|
||
old is the current set of bindings, new the freshly-found binding.
|
||
XXX Do we want to give *all* candidates in case of ambiguity?
|
||
XXX In what way should I treat extern declarations?
|
||
XXX I don't want to repeat the entire duplicate_decls here */
|
||
|
||
static tree
|
||
ambiguous_decl (name, old, new, flags)
|
||
tree name;
|
||
tree old;
|
||
tree new;
|
||
int flags;
|
||
{
|
||
tree val, type;
|
||
my_friendly_assert (old != NULL_TREE, 393);
|
||
/* Copy the value. */
|
||
val = BINDING_VALUE (new);
|
||
if (val)
|
||
switch (TREE_CODE (val))
|
||
{
|
||
case TEMPLATE_DECL:
|
||
/* If we expect types or namespaces, and not templates,
|
||
or this is not a template class. */
|
||
if (LOOKUP_QUALIFIERS_ONLY (flags)
|
||
&& !DECL_CLASS_TEMPLATE_P (val))
|
||
val = NULL_TREE;
|
||
break;
|
||
case TYPE_DECL:
|
||
if (LOOKUP_NAMESPACES_ONLY (flags))
|
||
val = NULL_TREE;
|
||
break;
|
||
case NAMESPACE_DECL:
|
||
if (LOOKUP_TYPES_ONLY (flags))
|
||
val = NULL_TREE;
|
||
break;
|
||
default:
|
||
if (LOOKUP_QUALIFIERS_ONLY (flags))
|
||
val = NULL_TREE;
|
||
}
|
||
|
||
if (!BINDING_VALUE (old))
|
||
BINDING_VALUE (old) = val;
|
||
else if (val && val != BINDING_VALUE (old))
|
||
{
|
||
if (is_overloaded_fn (BINDING_VALUE (old))
|
||
&& is_overloaded_fn (val))
|
||
{
|
||
BINDING_VALUE (old) = merge_functions (BINDING_VALUE (old),
|
||
val);
|
||
}
|
||
else
|
||
{
|
||
/* Some declarations are functions, some are not. */
|
||
if (flags & LOOKUP_COMPLAIN)
|
||
{
|
||
/* If we've already given this error for this lookup,
|
||
BINDING_VALUE (old) is error_mark_node, so let's not
|
||
repeat ourselves. */
|
||
if (BINDING_VALUE (old) != error_mark_node)
|
||
{
|
||
cp_error ("use of `%D' is ambiguous", name);
|
||
cp_error_at (" first declared as `%#D' here",
|
||
BINDING_VALUE (old));
|
||
}
|
||
cp_error_at (" also declared as `%#D' here", val);
|
||
}
|
||
BINDING_VALUE (old) = error_mark_node;
|
||
}
|
||
}
|
||
/* ... and copy the type. */
|
||
type = BINDING_TYPE (new);
|
||
if (LOOKUP_NAMESPACES_ONLY (flags))
|
||
type = NULL_TREE;
|
||
if (!BINDING_TYPE (old))
|
||
BINDING_TYPE (old) = type;
|
||
else if (type && BINDING_TYPE (old) != type)
|
||
{
|
||
if (flags & LOOKUP_COMPLAIN)
|
||
{
|
||
cp_error ("`%D' denotes an ambiguous type",name);
|
||
cp_error_at (" first type here", BINDING_TYPE (old));
|
||
cp_error_at (" other type here", type);
|
||
}
|
||
}
|
||
return old;
|
||
}
|
||
|
||
/* Subroutine of unualified_namespace_lookup:
|
||
Add the bindings of NAME in used namespaces to VAL.
|
||
We are currently looking for names in namespace SCOPE, so we
|
||
look through USINGS for using-directives of namespaces
|
||
which have SCOPE as a common ancestor with the current scope.
|
||
Returns zero on errors. */
|
||
|
||
int
|
||
lookup_using_namespace (name, val, usings, scope, flags, spacesp)
|
||
tree name, val, usings, scope;
|
||
int flags;
|
||
tree *spacesp;
|
||
{
|
||
tree iter;
|
||
tree val1;
|
||
/* Iterate over all used namespaces in current, searching for using
|
||
directives of scope. */
|
||
for (iter = usings; iter; iter = TREE_CHAIN (iter))
|
||
if (TREE_VALUE (iter) == scope)
|
||
{
|
||
if (spacesp)
|
||
*spacesp = tree_cons (TREE_PURPOSE (iter), NULL_TREE,
|
||
*spacesp);
|
||
val1 = binding_for_name (name, TREE_PURPOSE (iter));
|
||
/* Resolve ambiguities. */
|
||
val = ambiguous_decl (name, val, val1, flags);
|
||
}
|
||
return BINDING_VALUE (val) != error_mark_node;
|
||
}
|
||
|
||
/* [namespace.qual]
|
||
Accepts the NAME to lookup and its qualifying SCOPE.
|
||
Returns the name/type pair found into the CPLUS_BINDING RESULT,
|
||
or 0 on error. */
|
||
|
||
int
|
||
qualified_lookup_using_namespace (name, scope, result, flags)
|
||
tree name;
|
||
tree scope;
|
||
tree result;
|
||
int flags;
|
||
{
|
||
/* Maintain a list of namespaces visited... */
|
||
tree seen = NULL_TREE;
|
||
/* ... and a list of namespace yet to see. */
|
||
tree todo = NULL_TREE;
|
||
tree usings;
|
||
/* Look through namespace aliases. */
|
||
scope = ORIGINAL_NAMESPACE (scope);
|
||
while (scope && (result != error_mark_node))
|
||
{
|
||
seen = tree_cons (scope, NULL_TREE, seen);
|
||
result = ambiguous_decl (name, result,
|
||
binding_for_name (name, scope), flags);
|
||
if (!BINDING_VALUE (result) && !BINDING_TYPE (result))
|
||
/* Consider using directives. */
|
||
for (usings = DECL_NAMESPACE_USING (scope); usings;
|
||
usings = TREE_CHAIN (usings))
|
||
/* If this was a real directive, and we have not seen it. */
|
||
if (!TREE_INDIRECT_USING (usings)
|
||
&& !purpose_member (TREE_PURPOSE (usings), seen))
|
||
todo = tree_cons (TREE_PURPOSE (usings), NULL_TREE, todo);
|
||
if (todo)
|
||
{
|
||
scope = TREE_PURPOSE (todo);
|
||
todo = TREE_CHAIN (todo);
|
||
}
|
||
else
|
||
scope = NULL_TREE; /* If there never was a todo list. */
|
||
}
|
||
return result != error_mark_node;
|
||
}
|
||
|
||
/* [namespace.memdef]/2 */
|
||
|
||
/* Set the context of a declaration to scope. Complain if we are not
|
||
outside scope. */
|
||
|
||
void
|
||
set_decl_namespace (decl, scope, friendp)
|
||
tree decl;
|
||
tree scope;
|
||
int friendp;
|
||
{
|
||
tree old;
|
||
if (scope == std_node)
|
||
scope = global_namespace;
|
||
/* Get rid of namespace aliases. */
|
||
scope = ORIGINAL_NAMESPACE (scope);
|
||
|
||
/* It is ok for friends to be qualified in parallel space. */
|
||
if (!friendp && !is_namespace_ancestor (current_namespace, scope))
|
||
cp_error ("declaration of `%D' not in a namespace surrounding `%D'",
|
||
decl, scope);
|
||
DECL_CONTEXT (decl) = FROB_CONTEXT (scope);
|
||
if (scope != current_namespace)
|
||
{
|
||
/* See whether this has been declared in the namespace. */
|
||
old = namespace_binding (DECL_NAME (decl), scope);
|
||
if (!old)
|
||
/* No old declaration at all. */
|
||
goto complain;
|
||
if (!is_overloaded_fn (decl))
|
||
/* Don't compare non-function decls with decls_match here,
|
||
since it can't check for the correct constness at this
|
||
point. pushdecl will find those errors later. */
|
||
return;
|
||
/* Since decl is a function, old should contain a function decl. */
|
||
if (!is_overloaded_fn (old))
|
||
goto complain;
|
||
if (processing_template_decl || processing_specialization)
|
||
/* We have not yet called push_template_decl to turn the
|
||
FUNCTION_DECL into a TEMPLATE_DECL, so the declarations
|
||
won't match. But, we'll check later, when we construct the
|
||
template. */
|
||
return;
|
||
for (; old; old = OVL_NEXT (old))
|
||
if (decls_match (decl, OVL_CURRENT (old)))
|
||
return;
|
||
}
|
||
else
|
||
return;
|
||
complain:
|
||
cp_error ("`%D' should have been declared inside `%D'",
|
||
decl, scope);
|
||
}
|
||
|
||
/* Compute the namespace where a declaration is defined. */
|
||
|
||
static tree
|
||
decl_namespace (decl)
|
||
tree decl;
|
||
{
|
||
if (TYPE_P (decl))
|
||
decl = TYPE_STUB_DECL (decl);
|
||
while (DECL_CONTEXT (decl))
|
||
{
|
||
decl = DECL_CONTEXT (decl);
|
||
if (TREE_CODE (decl) == NAMESPACE_DECL)
|
||
return decl;
|
||
if (TYPE_P (decl))
|
||
decl = TYPE_STUB_DECL (decl);
|
||
my_friendly_assert (DECL_P (decl), 390);
|
||
}
|
||
|
||
return global_namespace;
|
||
}
|
||
|
||
/* Return the namespace where the current declaration is declared. */
|
||
|
||
tree
|
||
current_decl_namespace ()
|
||
{
|
||
tree result;
|
||
/* If we have been pushed into a different namespace, use it. */
|
||
if (decl_namespace_list)
|
||
return TREE_PURPOSE (decl_namespace_list);
|
||
|
||
if (current_class_type)
|
||
result = decl_namespace (TYPE_STUB_DECL (current_class_type));
|
||
else if (current_function_decl)
|
||
result = decl_namespace (current_function_decl);
|
||
else
|
||
result = current_namespace;
|
||
return result;
|
||
}
|
||
|
||
/* Temporarily set the namespace for the current declaration. */
|
||
|
||
void
|
||
push_decl_namespace (decl)
|
||
tree decl;
|
||
{
|
||
if (TREE_CODE (decl) != NAMESPACE_DECL)
|
||
decl = decl_namespace (decl);
|
||
decl_namespace_list = tree_cons (ORIGINAL_NAMESPACE (decl),
|
||
NULL_TREE, decl_namespace_list);
|
||
}
|
||
|
||
void
|
||
pop_decl_namespace ()
|
||
{
|
||
decl_namespace_list = TREE_CHAIN (decl_namespace_list);
|
||
}
|
||
|
||
/* Enter a class or namespace scope. */
|
||
|
||
void
|
||
push_scope (t)
|
||
tree t;
|
||
{
|
||
if (TREE_CODE (t) == NAMESPACE_DECL)
|
||
push_decl_namespace (t);
|
||
else
|
||
pushclass (t, 2);
|
||
}
|
||
|
||
/* Leave scope pushed by push_scope. */
|
||
|
||
void
|
||
pop_scope (t)
|
||
tree t;
|
||
{
|
||
if (TREE_CODE (t) == NAMESPACE_DECL)
|
||
pop_decl_namespace ();
|
||
else
|
||
popclass ();
|
||
}
|
||
|
||
/* [basic.lookup.koenig] */
|
||
/* A non-zero return value in the functions below indicates an error.
|
||
All nodes allocated in the procedure are on the scratch obstack. */
|
||
|
||
struct arg_lookup
|
||
{
|
||
tree name;
|
||
tree namespaces;
|
||
tree classes;
|
||
tree functions;
|
||
};
|
||
|
||
static int arg_assoc PARAMS ((struct arg_lookup*, tree));
|
||
static int arg_assoc_args PARAMS ((struct arg_lookup*, tree));
|
||
static int arg_assoc_type PARAMS ((struct arg_lookup*, tree));
|
||
static int add_function PARAMS ((struct arg_lookup *, tree));
|
||
static int arg_assoc_namespace PARAMS ((struct arg_lookup *, tree));
|
||
static int arg_assoc_class PARAMS ((struct arg_lookup *, tree));
|
||
static int arg_assoc_template_arg PARAMS ((struct arg_lookup*, tree));
|
||
|
||
/* Add a function to the lookup structure.
|
||
Returns 1 on error. */
|
||
|
||
static int
|
||
add_function (k, fn)
|
||
struct arg_lookup *k;
|
||
tree fn;
|
||
{
|
||
/* We used to check here to see if the function was already in the list,
|
||
but that's O(n^2), which is just too expensive for function lookup.
|
||
Now we deal with the occasional duplicate in joust. In doing this, we
|
||
assume that the number of duplicates will be small compared to the
|
||
total number of functions being compared, which should usually be the
|
||
case. */
|
||
|
||
/* We must find only functions, or exactly one non-function. */
|
||
if (!k->functions)
|
||
k->functions = fn;
|
||
else if (is_overloaded_fn (k->functions) && is_overloaded_fn (fn))
|
||
k->functions = build_overload (fn, k->functions);
|
||
else
|
||
{
|
||
tree f1 = OVL_CURRENT (k->functions);
|
||
tree f2 = fn;
|
||
if (is_overloaded_fn (f1))
|
||
{
|
||
fn = f1; f1 = f2; f2 = fn;
|
||
}
|
||
cp_error_at ("`%D' is not a function,", f1);
|
||
cp_error_at (" conflict with `%D'", f2);
|
||
cp_error (" in call to `%D'", k->name);
|
||
return 1;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Add functions of a namespace to the lookup structure.
|
||
Returns 1 on error. */
|
||
|
||
static int
|
||
arg_assoc_namespace (k, scope)
|
||
struct arg_lookup *k;
|
||
tree scope;
|
||
{
|
||
tree value;
|
||
|
||
if (purpose_member (scope, k->namespaces))
|
||
return 0;
|
||
k->namespaces = tree_cons (scope, NULL_TREE, k->namespaces);
|
||
|
||
value = namespace_binding (k->name, scope);
|
||
if (!value)
|
||
return 0;
|
||
|
||
for (; value; value = OVL_NEXT (value))
|
||
if (add_function (k, OVL_CURRENT (value)))
|
||
return 1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Adds everything associated with a template argument to the lookup
|
||
structure. Returns 1 on error. */
|
||
|
||
static int
|
||
arg_assoc_template_arg (k, arg)
|
||
struct arg_lookup* k;
|
||
tree arg;
|
||
{
|
||
/* [basic.lookup.koenig]
|
||
|
||
If T is a template-id, its associated namespaces and classes are
|
||
... the namespaces and classes associated with the types of the
|
||
template arguments provided for template type parameters
|
||
(excluding template template parameters); the namespaces in which
|
||
any template template arguments are defined; and the classes in
|
||
which any member templates used as template template arguments
|
||
are defined. [Note: non-type template arguments do not
|
||
contribute to the set of associated namespaces. ] */
|
||
|
||
/* Consider first template template arguments. */
|
||
if (TREE_CODE (arg) == TEMPLATE_DECL)
|
||
{
|
||
tree ctx = CP_DECL_CONTEXT (arg);
|
||
|
||
/* It's not a member template. */
|
||
if (TREE_CODE (ctx) == NAMESPACE_DECL)
|
||
return arg_assoc_namespace (k, ctx);
|
||
/* Otherwise, it must be member template. */
|
||
else
|
||
return arg_assoc_class (k, ctx);
|
||
}
|
||
/* It's not a template template argument, but it is a type template
|
||
argument. */
|
||
else if (TYPE_P (arg))
|
||
return arg_assoc_type (k, arg);
|
||
/* It's a non-type template argument. */
|
||
else
|
||
return 0;
|
||
}
|
||
|
||
/* Adds everything associated with class to the lookup structure.
|
||
Returns 1 on error. */
|
||
|
||
static int
|
||
arg_assoc_class (k, type)
|
||
struct arg_lookup* k;
|
||
tree type;
|
||
{
|
||
tree list, friends, context;
|
||
int i;
|
||
|
||
/* Backend build structures, such as __builtin_va_list, aren't
|
||
affected by all this. */
|
||
if (!CLASS_TYPE_P (type))
|
||
return 0;
|
||
|
||
if (purpose_member (type, k->classes))
|
||
return 0;
|
||
k->classes = tree_cons (type, NULL_TREE, k->classes);
|
||
|
||
context = decl_namespace (TYPE_MAIN_DECL (type));
|
||
if (arg_assoc_namespace (k, context))
|
||
return 1;
|
||
|
||
/* Process baseclasses. */
|
||
for (i = 0; i < CLASSTYPE_N_BASECLASSES (type); i++)
|
||
if (arg_assoc_class (k, TYPE_BINFO_BASETYPE (type, i)))
|
||
return 1;
|
||
|
||
/* Process friends. */
|
||
for (list = DECL_FRIENDLIST (TYPE_MAIN_DECL (type)); list;
|
||
list = TREE_CHAIN (list))
|
||
if (k->name == TREE_PURPOSE (list))
|
||
for (friends = TREE_VALUE (list); friends;
|
||
friends = TREE_CHAIN (friends))
|
||
/* Only interested in global functions with potentially hidden
|
||
(i.e. unqualified) declarations. */
|
||
if (TREE_PURPOSE (list) == error_mark_node && TREE_VALUE (list)
|
||
&& decl_namespace (TREE_VALUE (list)) == context)
|
||
if (add_function (k, TREE_VALUE (list)))
|
||
return 1;
|
||
|
||
/* Process template arguments. */
|
||
if (CLASSTYPE_TEMPLATE_INFO (type))
|
||
{
|
||
list = INNERMOST_TEMPLATE_ARGS (CLASSTYPE_TI_ARGS (type));
|
||
for (i = 0; i < TREE_VEC_LENGTH (list); ++i)
|
||
arg_assoc_template_arg (k, TREE_VEC_ELT (list, i));
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Adds everything associated with a given type.
|
||
Returns 1 on error. */
|
||
|
||
static int
|
||
arg_assoc_type (k, type)
|
||
struct arg_lookup *k;
|
||
tree type;
|
||
{
|
||
switch (TREE_CODE (type))
|
||
{
|
||
case VOID_TYPE:
|
||
case INTEGER_TYPE:
|
||
case REAL_TYPE:
|
||
case COMPLEX_TYPE:
|
||
case CHAR_TYPE:
|
||
case BOOLEAN_TYPE:
|
||
return 0;
|
||
case RECORD_TYPE:
|
||
if (TYPE_PTRMEMFUNC_P (type))
|
||
return arg_assoc_type (k, TYPE_PTRMEMFUNC_FN_TYPE (type));
|
||
return arg_assoc_class (k, type);
|
||
case POINTER_TYPE:
|
||
case REFERENCE_TYPE:
|
||
case ARRAY_TYPE:
|
||
return arg_assoc_type (k, TREE_TYPE (type));
|
||
case UNION_TYPE:
|
||
case ENUMERAL_TYPE:
|
||
return arg_assoc_namespace (k, decl_namespace (TYPE_MAIN_DECL (type)));
|
||
case OFFSET_TYPE:
|
||
/* Pointer to member: associate class type and value type. */
|
||
if (arg_assoc_type (k, TYPE_OFFSET_BASETYPE (type)))
|
||
return 1;
|
||
return arg_assoc_type (k, TREE_TYPE (type));
|
||
case METHOD_TYPE:
|
||
/* The basetype is referenced in the first arg type, so just
|
||
fall through. */
|
||
case FUNCTION_TYPE:
|
||
/* Associate the parameter types. */
|
||
if (arg_assoc_args (k, TYPE_ARG_TYPES (type)))
|
||
return 1;
|
||
/* Associate the return type. */
|
||
return arg_assoc_type (k, TREE_TYPE (type));
|
||
case TEMPLATE_TYPE_PARM:
|
||
case TEMPLATE_TEMPLATE_PARM:
|
||
return 0;
|
||
case LANG_TYPE:
|
||
if (type == unknown_type_node)
|
||
return 0;
|
||
/* else fall through */
|
||
default:
|
||
my_friendly_abort (390);
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
/* Adds everything associated with arguments. Returns 1 on error. */
|
||
|
||
static int
|
||
arg_assoc_args (k, args)
|
||
struct arg_lookup* k;
|
||
tree args;
|
||
{
|
||
for (; args; args = TREE_CHAIN (args))
|
||
if (arg_assoc (k, TREE_VALUE (args)))
|
||
return 1;
|
||
return 0;
|
||
}
|
||
|
||
/* Adds everything associated with a given tree_node. Returns 1 on error. */
|
||
|
||
static int
|
||
arg_assoc (k, n)
|
||
struct arg_lookup* k;
|
||
tree n;
|
||
{
|
||
if (n == error_mark_node)
|
||
return 0;
|
||
|
||
if (TYPE_P (n))
|
||
return arg_assoc_type (k, n);
|
||
|
||
if (! type_unknown_p (n))
|
||
return arg_assoc_type (k, TREE_TYPE (n));
|
||
|
||
if (TREE_CODE (n) == ADDR_EXPR)
|
||
n = TREE_OPERAND (n, 0);
|
||
if (TREE_CODE (n) == COMPONENT_REF)
|
||
n = TREE_OPERAND (n, 1);
|
||
if (TREE_CODE (n) == OFFSET_REF)
|
||
n = TREE_OPERAND (n, 1);
|
||
while (TREE_CODE (n) == TREE_LIST)
|
||
n = TREE_VALUE (n);
|
||
|
||
if (TREE_CODE (n) == FUNCTION_DECL)
|
||
return arg_assoc_type (k, TREE_TYPE (n));
|
||
if (TREE_CODE (n) == TEMPLATE_ID_EXPR)
|
||
{
|
||
/* [basic.lookup.koenig]
|
||
|
||
If T is a template-id, its associated namespaces and classes
|
||
are the namespace in which the template is defined; for
|
||
member templates, the member template's class... */
|
||
tree template = TREE_OPERAND (n, 0);
|
||
tree args = TREE_OPERAND (n, 1);
|
||
tree ctx;
|
||
tree arg;
|
||
|
||
/* First, the template. There may actually be more than one if
|
||
this is an overloaded function template. But, in that case,
|
||
we only need the first; all the functions will be in the same
|
||
namespace. */
|
||
template = OVL_CURRENT (template);
|
||
|
||
ctx = CP_DECL_CONTEXT (template);
|
||
|
||
if (TREE_CODE (ctx) == NAMESPACE_DECL)
|
||
{
|
||
if (arg_assoc_namespace (k, ctx) == 1)
|
||
return 1;
|
||
}
|
||
/* It must be a member template. */
|
||
else if (arg_assoc_class (k, ctx) == 1)
|
||
return 1;
|
||
|
||
/* Now the arguments. */
|
||
for (arg = args; arg != NULL_TREE; arg = TREE_CHAIN (arg))
|
||
if (arg_assoc_template_arg (k, TREE_VALUE (arg)) == 1)
|
||
return 1;
|
||
}
|
||
else
|
||
{
|
||
my_friendly_assert (TREE_CODE (n) == OVERLOAD, 980715);
|
||
|
||
for (; n; n = OVL_CHAIN (n))
|
||
{
|
||
/* Do not consider function template decls during Koenig lookup. */
|
||
|
||
tree fn = OVL_FUNCTION (n);
|
||
if (!DECL_FUNCTION_TEMPLATE_P (fn)
|
||
&& arg_assoc_type (k, TREE_TYPE (fn)))
|
||
return 1;
|
||
}
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Performs Koenig lookup depending on arguments, where fns
|
||
are the functions found in normal lookup. */
|
||
|
||
tree
|
||
lookup_arg_dependent (name, fns, args)
|
||
tree name;
|
||
tree fns;
|
||
tree args;
|
||
{
|
||
struct arg_lookup k;
|
||
tree fn = NULL_TREE;
|
||
|
||
k.name = name;
|
||
k.functions = fns;
|
||
k.classes = NULL_TREE;
|
||
|
||
/* Note that we've already looked at some namespaces during normal
|
||
unqualified lookup, unless we found a decl in function scope. */
|
||
if (fns)
|
||
fn = OVL_CURRENT (fns);
|
||
if (fn && TREE_CODE (fn) == FUNCTION_DECL && DECL_LOCAL_FUNCTION_P (fn))
|
||
k.namespaces = NULL_TREE;
|
||
else
|
||
unqualified_namespace_lookup (name, 0, &k.namespaces);
|
||
|
||
arg_assoc_args (&k, args);
|
||
return k.functions;
|
||
}
|
||
|
||
/* Process a namespace-alias declaration. */
|
||
|
||
void
|
||
do_namespace_alias (alias, namespace)
|
||
tree alias, namespace;
|
||
{
|
||
if (TREE_CODE (namespace) != NAMESPACE_DECL)
|
||
{
|
||
/* The parser did not find it, so it's not there. */
|
||
cp_error ("unknown namespace `%D'", namespace);
|
||
return;
|
||
}
|
||
|
||
namespace = ORIGINAL_NAMESPACE (namespace);
|
||
|
||
/* Build the alias. */
|
||
alias = build_lang_decl (NAMESPACE_DECL, alias, void_type_node);
|
||
DECL_NAMESPACE_ALIAS (alias) = namespace;
|
||
pushdecl (alias);
|
||
}
|
||
|
||
/* Check a non-member using-declaration. Return the name and scope
|
||
being used, and the USING_DECL, or NULL_TREE on failure. */
|
||
|
||
static tree
|
||
validate_nonmember_using_decl (decl, scope, name)
|
||
tree decl;
|
||
tree *scope;
|
||
tree *name;
|
||
{
|
||
if (TREE_CODE (decl) == SCOPE_REF
|
||
&& TREE_OPERAND (decl, 0) == std_node)
|
||
{
|
||
if (namespace_bindings_p ()
|
||
&& current_namespace == global_namespace)
|
||
/* There's no need for a using declaration at all, here,
|
||
since `std' is the same as `::'. We can't just pass this
|
||
on because we'll complain later about declaring something
|
||
in the same scope as a using declaration with the same
|
||
name. We return NULL_TREE which indicates to the caller
|
||
that there's no need to do any further processing. */
|
||
return NULL_TREE;
|
||
|
||
*scope = global_namespace;
|
||
*name = TREE_OPERAND (decl, 1);
|
||
}
|
||
else if (TREE_CODE (decl) == SCOPE_REF)
|
||
{
|
||
*scope = TREE_OPERAND (decl, 0);
|
||
*name = TREE_OPERAND (decl, 1);
|
||
|
||
/* [namespace.udecl]
|
||
|
||
A using-declaration for a class member shall be a
|
||
member-declaration. */
|
||
if (TREE_CODE (*scope) != NAMESPACE_DECL)
|
||
{
|
||
if (TYPE_P (*scope))
|
||
cp_error ("`%T' is not a namespace", *scope);
|
||
else
|
||
cp_error ("`%D' is not a namespace", *scope);
|
||
return NULL_TREE;
|
||
}
|
||
}
|
||
else if (TREE_CODE (decl) == IDENTIFIER_NODE
|
||
|| TREE_CODE (decl) == TYPE_DECL
|
||
|| TREE_CODE (decl) == TEMPLATE_DECL)
|
||
{
|
||
*scope = global_namespace;
|
||
*name = decl;
|
||
}
|
||
else
|
||
my_friendly_abort (382);
|
||
if (DECL_P (*name))
|
||
*name = DECL_NAME (*name);
|
||
/* Make a USING_DECL. */
|
||
return push_using_decl (*scope, *name);
|
||
}
|
||
|
||
/* Process local and global using-declarations. */
|
||
|
||
static void
|
||
do_nonmember_using_decl (scope, name, oldval, oldtype, newval, newtype)
|
||
tree scope, name;
|
||
tree oldval, oldtype;
|
||
tree *newval, *newtype;
|
||
{
|
||
tree decls;
|
||
|
||
*newval = *newtype = NULL_TREE;
|
||
decls = make_node (CPLUS_BINDING);
|
||
if (!qualified_lookup_using_namespace (name, scope, decls, 0))
|
||
/* Lookup error */
|
||
return;
|
||
|
||
if (!BINDING_VALUE (decls) && !BINDING_TYPE (decls))
|
||
{
|
||
cp_error ("`%D' not declared", name);
|
||
return;
|
||
}
|
||
|
||
/* Check for using functions. */
|
||
if (BINDING_VALUE (decls) && is_overloaded_fn (BINDING_VALUE (decls)))
|
||
{
|
||
tree tmp, tmp1;
|
||
|
||
if (oldval && !is_overloaded_fn (oldval))
|
||
{
|
||
duplicate_decls (OVL_CURRENT (BINDING_VALUE (decls)), oldval);
|
||
oldval = NULL_TREE;
|
||
}
|
||
|
||
*newval = oldval;
|
||
for (tmp = BINDING_VALUE (decls); tmp; tmp = OVL_NEXT (tmp))
|
||
{
|
||
tree new_fn = OVL_CURRENT (tmp);
|
||
|
||
/* [namespace.udecl]
|
||
|
||
If a function declaration in namespace scope or block
|
||
scope has the same name and the same parameter types as a
|
||
function introduced by a using declaration the program is
|
||
ill-formed. */
|
||
for (tmp1 = oldval; tmp1; tmp1 = OVL_NEXT (tmp1))
|
||
{
|
||
tree old_fn = OVL_CURRENT (tmp1);
|
||
|
||
if (!OVL_USED (tmp1)
|
||
&& compparms (TYPE_ARG_TYPES (TREE_TYPE (new_fn)),
|
||
TYPE_ARG_TYPES (TREE_TYPE (old_fn))))
|
||
{
|
||
/* There was already a non-using declaration in
|
||
this scope with the same parameter types. */
|
||
cp_error ("`%D' is already declared in this scope",
|
||
name);
|
||
break;
|
||
}
|
||
else if (duplicate_decls (new_fn, old_fn))
|
||
/* We're re-using something we already used
|
||
before. We don't need to add it again. */
|
||
break;
|
||
}
|
||
|
||
/* If we broke out of the loop, there's no reason to add
|
||
this function to the using declarations for this
|
||
scope. */
|
||
if (tmp1)
|
||
continue;
|
||
|
||
*newval = build_overload (OVL_CURRENT (tmp), *newval);
|
||
if (TREE_CODE (*newval) != OVERLOAD)
|
||
*newval = ovl_cons (*newval, NULL_TREE);
|
||
OVL_USED (*newval) = 1;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
*newval = BINDING_VALUE (decls);
|
||
if (oldval)
|
||
duplicate_decls (*newval, oldval);
|
||
}
|
||
|
||
*newtype = BINDING_TYPE (decls);
|
||
if (oldtype && *newtype && oldtype != *newtype)
|
||
{
|
||
cp_error ("using directive `%D' introduced ambiguous type `%T'",
|
||
name, oldtype);
|
||
return;
|
||
}
|
||
}
|
||
|
||
/* Process a using-declaration not appearing in class or local scope. */
|
||
|
||
void
|
||
do_toplevel_using_decl (decl)
|
||
tree decl;
|
||
{
|
||
tree scope, name, binding;
|
||
tree oldval, oldtype, newval, newtype;
|
||
|
||
decl = validate_nonmember_using_decl (decl, &scope, &name);
|
||
if (decl == NULL_TREE)
|
||
return;
|
||
|
||
binding = binding_for_name (name, current_namespace);
|
||
|
||
oldval = BINDING_VALUE (binding);
|
||
oldtype = BINDING_TYPE (binding);
|
||
|
||
do_nonmember_using_decl (scope, name, oldval, oldtype, &newval, &newtype);
|
||
|
||
/* Copy declarations found. */
|
||
if (newval)
|
||
BINDING_VALUE (binding) = newval;
|
||
if (newtype)
|
||
BINDING_TYPE (binding) = newtype;
|
||
return;
|
||
}
|
||
|
||
/* Process a using-declaration at function scope. */
|
||
|
||
void
|
||
do_local_using_decl (decl)
|
||
tree decl;
|
||
{
|
||
tree scope, name;
|
||
tree oldval, oldtype, newval, newtype;
|
||
|
||
decl = validate_nonmember_using_decl (decl, &scope, &name);
|
||
if (decl == NULL_TREE)
|
||
return;
|
||
|
||
oldval = lookup_name_current_level (name);
|
||
oldtype = lookup_type_current_level (name);
|
||
|
||
do_nonmember_using_decl (scope, name, oldval, oldtype, &newval, &newtype);
|
||
|
||
if (newval)
|
||
{
|
||
if (is_overloaded_fn (newval))
|
||
{
|
||
tree fn, term;
|
||
|
||
/* We only need to push declarations for those functions
|
||
that were not already bound in the current level.
|
||
The old value might be NULL_TREE, it might be a single
|
||
function, or an OVERLOAD. */
|
||
if (oldval && TREE_CODE (oldval) == OVERLOAD)
|
||
term = OVL_FUNCTION (oldval);
|
||
else
|
||
term = oldval;
|
||
for (fn = newval; fn && OVL_CURRENT (fn) != term;
|
||
fn = OVL_NEXT (fn))
|
||
push_overloaded_decl (OVL_CURRENT (fn),
|
||
PUSH_LOCAL | PUSH_USING);
|
||
}
|
||
else
|
||
push_local_binding (name, newval, PUSH_USING);
|
||
}
|
||
if (newtype)
|
||
set_identifier_type_value (name, newtype);
|
||
}
|
||
|
||
tree
|
||
do_class_using_decl (decl)
|
||
tree decl;
|
||
{
|
||
tree name, value;
|
||
|
||
if (TREE_CODE (decl) != SCOPE_REF
|
||
|| !TYPE_P (TREE_OPERAND (decl, 0)))
|
||
{
|
||
cp_error ("using-declaration for non-member at class scope");
|
||
return NULL_TREE;
|
||
}
|
||
name = TREE_OPERAND (decl, 1);
|
||
if (TREE_CODE (name) == BIT_NOT_EXPR)
|
||
{
|
||
cp_error ("using-declaration for destructor");
|
||
return NULL_TREE;
|
||
}
|
||
if (TREE_CODE (name) == TYPE_DECL)
|
||
name = DECL_NAME (name);
|
||
|
||
my_friendly_assert (TREE_CODE (name) == IDENTIFIER_NODE, 980716);
|
||
|
||
value = build_lang_decl (USING_DECL, name, void_type_node);
|
||
DECL_INITIAL (value) = TREE_OPERAND (decl, 0);
|
||
return value;
|
||
}
|
||
|
||
/* Process a using-directive. */
|
||
|
||
void
|
||
do_using_directive (namespace)
|
||
tree namespace;
|
||
{
|
||
if (namespace == std_node)
|
||
return;
|
||
/* using namespace A::B::C; */
|
||
if (TREE_CODE (namespace) == SCOPE_REF)
|
||
namespace = TREE_OPERAND (namespace, 1);
|
||
if (TREE_CODE (namespace) == IDENTIFIER_NODE)
|
||
{
|
||
/* Lookup in lexer did not find a namespace. */
|
||
cp_error ("namespace `%T' undeclared", namespace);
|
||
return;
|
||
}
|
||
if (TREE_CODE (namespace) != NAMESPACE_DECL)
|
||
{
|
||
cp_error ("`%T' is not a namespace", namespace);
|
||
return;
|
||
}
|
||
namespace = ORIGINAL_NAMESPACE (namespace);
|
||
if (!toplevel_bindings_p ())
|
||
push_using_directive (namespace);
|
||
else
|
||
/* direct usage */
|
||
add_using_namespace (current_namespace, namespace, 0);
|
||
}
|
||
|
||
void
|
||
check_default_args (x)
|
||
tree x;
|
||
{
|
||
tree arg = TYPE_ARG_TYPES (TREE_TYPE (x));
|
||
int saw_def = 0, i = 0 - (TREE_CODE (TREE_TYPE (x)) == METHOD_TYPE);
|
||
for (; arg && arg != void_list_node; arg = TREE_CHAIN (arg), ++i)
|
||
{
|
||
if (TREE_PURPOSE (arg))
|
||
saw_def = 1;
|
||
else if (saw_def)
|
||
{
|
||
cp_error_at ("default argument missing for parameter %P of `%+#D'",
|
||
i, x);
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
void
|
||
mark_used (decl)
|
||
tree decl;
|
||
{
|
||
TREE_USED (decl) = 1;
|
||
if (processing_template_decl)
|
||
return;
|
||
assemble_external (decl);
|
||
|
||
/* Is it a synthesized method that needs to be synthesized? */
|
||
if (TREE_CODE (decl) == FUNCTION_DECL
|
||
&& DECL_NONSTATIC_MEMBER_FUNCTION_P (decl)
|
||
&& DECL_ARTIFICIAL (decl)
|
||
&& ! DECL_INITIAL (decl)
|
||
/* Kludge: don't synthesize for default args. */
|
||
&& current_function_decl)
|
||
{
|
||
synthesize_method (decl);
|
||
/* If we've already synthesized the method we don't need to
|
||
instantiate it, so we can return right away. */
|
||
return;
|
||
}
|
||
|
||
/* If this is a function or variable that is an instance of some
|
||
template, we now know that we will need to actually do the
|
||
instantiation. We check that DECL is not an explicit
|
||
instantiation because that is not checked in instantiate_decl. */
|
||
if ((DECL_NON_THUNK_FUNCTION_P (decl) || TREE_CODE (decl) == VAR_DECL)
|
||
&& DECL_LANG_SPECIFIC (decl) && DECL_TEMPLATE_INFO (decl)
|
||
&& (!DECL_EXPLICIT_INSTANTIATION (decl)
|
||
|| (TREE_CODE (decl) == FUNCTION_DECL && DECL_INLINE (decl))))
|
||
instantiate_decl (decl, /*defer_ok=*/1);
|
||
}
|
||
|
||
/* Helper function for named_class_head_sans_basetype nonterminal. We
|
||
have just seen something of the form `AGGR SCOPE::ID'. Return a
|
||
TYPE_DECL for the type declared by ID in SCOPE. */
|
||
|
||
tree
|
||
handle_class_head (aggr, scope, id)
|
||
tree aggr, scope, id;
|
||
{
|
||
tree decl;
|
||
|
||
if (TREE_CODE (id) == TYPE_DECL)
|
||
/* We must bash typedefs back to the main decl of the type. Otherwise
|
||
we become confused about scopes. */
|
||
decl = TYPE_MAIN_DECL (TREE_TYPE (id));
|
||
else if (DECL_CLASS_TEMPLATE_P (id))
|
||
decl = DECL_TEMPLATE_RESULT (id);
|
||
else
|
||
{
|
||
tree current = current_scope();
|
||
|
||
if (current == NULL_TREE)
|
||
current = current_namespace;
|
||
if (scope == std_node)
|
||
scope = global_namespace;
|
||
if (scope == NULL_TREE)
|
||
scope = global_namespace;
|
||
if (scope == current)
|
||
{
|
||
/* We've been given AGGR SCOPE::ID, when we're already inside SCOPE.
|
||
Be nice about it. */
|
||
if (pedantic)
|
||
cp_pedwarn ("extra qualification `%T::' on member `%D' ignored",
|
||
FROB_CONTEXT (scope), id);
|
||
}
|
||
else if (scope != global_namespace)
|
||
cp_error ("`%T' does not have a nested type named `%D'", scope, id);
|
||
else
|
||
cp_error ("no file-scope type named `%D'", id);
|
||
|
||
/* Inject it at the current scope. */
|
||
decl = TYPE_MAIN_DECL (xref_tag (aggr, id, 1));
|
||
}
|
||
|
||
/* Enter the SCOPE. If this turns out not to be a definition, the
|
||
parser must leave the scope. */
|
||
push_scope (CP_DECL_CONTEXT (decl));
|
||
|
||
/* If we see something like:
|
||
|
||
template <typename T> struct S::I ....
|
||
|
||
we must create a TEMPLATE_DECL for the nested type. */
|
||
if (PROCESSING_REAL_TEMPLATE_DECL_P ())
|
||
decl = push_template_decl (decl);
|
||
|
||
return decl;
|
||
}
|
||
|
||
/* Initialize decl2.c. */
|
||
|
||
void
|
||
init_decl2 ()
|
||
{
|
||
ggc_add_tree_root (&decl_namespace_list, 1);
|
||
ggc_add_tree_varray_root (&deferred_fns, 1);
|
||
ggc_add_tree_varray_root (&pending_statics, 1);
|
||
ggc_add_tree_varray_root (&ssdf_decls, 1);
|
||
ggc_add_tree_root (&ssdf_decl, 1);
|
||
ggc_add_tree_root (&priority_decl, 1);
|
||
ggc_add_tree_root (&initialize_p_decl, 1);
|
||
ggc_add_tree_root (&pending_vtables, 1);
|
||
}
|