4a2bb7fcb0
This change removes the gccgo-specific hashmap code and replaces it with the hashmap code from the Go 1.7 runtime. The Go 1.7 hashmap code is more efficient, does a better job on details like when to update a key, and provides some support against denial-of-service attacks. The compiler is changed to call the new hashmap functions instead of the old ones. The compiler now tracks which types are reflexive and which require updating when used as a map key, and records the information in map type descriptors. Map_index_expression is simplified. The special case for a map index on the right hand side of a tuple expression has been unnecessary for some time, and is removed. The support for specially marking a map index as an lvalue is removed, in favor of lowering an assignment to a map index into a function call. The long-obsolete support for a map index of a pointer to a map is removed. The __go_new_map_big function (known to the compiler as Runtime::MAKEMAPBIG) is no longer needed, as the new runtime.makemap function takes an int64 hint argument. The old map descriptor type and supporting expression is removed. The compiler was still supporting the long-obsolete syntax `m[k] = 0, false` to delete a value from a map. That is now removed, requiring a change to one of the gccgo-specific tests. The builtin len function applied to a map or channel p is now compiled as `p == nil ? 0 : *(*int)(p)`. The __go_chan_len function (known to the compiler as Runtime::CHAN_LEN) is removed. Support for a shared zero value for maps to large value types is introduced, along the lines of the gc compiler. The zero value is handled as a common variable. The hash function is changed to take a seed argument, changing the runtime hash functions and the compiler-generated hash functions. Unlike the gc compiler, both the hash and equal functions continue to take the type length. Types that can not be compared now store nil for the hash and equal functions, rather than pointing to functions that throw. Interface hash and comparison functions now check explicitly for nil. This matches the gc compiler and permits a simple implementation for ismapkey. The compiler is changed to permit marking struct and array types as incomparable, meaning that they have no hash or equal function. We use this for thunk types, removing the existing special code to avoid generating hash/equal functions for them. The C runtime code adds memclr, memequal, and memmove functions. The hashmap code uses go:linkname comments to make the functions visible, as otherwise the compiler would discard them. The hashmap code comments out the unused reference to the address of the first parameter in the race code, as otherwise the compiler thinks that the parameter escapes and copies it onto the heap. This is probably not needed when we enable escape analysis. Several runtime map tests that ere previously skipped for gccgo are now run. The Go runtime picks up type kind information and stubs. The type kind information causes the generated runtime header file to define some constants, including `empty`, and the C code is adjusted accordingly. A Go-callable version of runtime.throw, that takes a Go string, is added to be called from the hashmap code. Reviewed-on: https://go-review.googlesource.com/29447 * go.go-torture/execute/map-1.go: Replace old map deletion syntax with call to builtin delete function. From-SVN: r240334
591 lines
20 KiB
C
591 lines
20 KiB
C
// Copyright 2009 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
// Memory allocator, based on tcmalloc.
|
|
// http://goog-perftools.sourceforge.net/doc/tcmalloc.html
|
|
|
|
// The main allocator works in runs of pages.
|
|
// Small allocation sizes (up to and including 32 kB) are
|
|
// rounded to one of about 100 size classes, each of which
|
|
// has its own free list of objects of exactly that size.
|
|
// Any free page of memory can be split into a set of objects
|
|
// of one size class, which are then managed using free list
|
|
// allocators.
|
|
//
|
|
// The allocator's data structures are:
|
|
//
|
|
// FixAlloc: a free-list allocator for fixed-size objects,
|
|
// used to manage storage used by the allocator.
|
|
// MHeap: the malloc heap, managed at page (4096-byte) granularity.
|
|
// MSpan: a run of pages managed by the MHeap.
|
|
// MCentral: a shared free list for a given size class.
|
|
// MCache: a per-thread (in Go, per-P) cache for small objects.
|
|
// MStats: allocation statistics.
|
|
//
|
|
// Allocating a small object proceeds up a hierarchy of caches:
|
|
//
|
|
// 1. Round the size up to one of the small size classes
|
|
// and look in the corresponding MCache free list.
|
|
// If the list is not empty, allocate an object from it.
|
|
// This can all be done without acquiring a lock.
|
|
//
|
|
// 2. If the MCache free list is empty, replenish it by
|
|
// taking a bunch of objects from the MCentral free list.
|
|
// Moving a bunch amortizes the cost of acquiring the MCentral lock.
|
|
//
|
|
// 3. If the MCentral free list is empty, replenish it by
|
|
// allocating a run of pages from the MHeap and then
|
|
// chopping that memory into a objects of the given size.
|
|
// Allocating many objects amortizes the cost of locking
|
|
// the heap.
|
|
//
|
|
// 4. If the MHeap is empty or has no page runs large enough,
|
|
// allocate a new group of pages (at least 1MB) from the
|
|
// operating system. Allocating a large run of pages
|
|
// amortizes the cost of talking to the operating system.
|
|
//
|
|
// Freeing a small object proceeds up the same hierarchy:
|
|
//
|
|
// 1. Look up the size class for the object and add it to
|
|
// the MCache free list.
|
|
//
|
|
// 2. If the MCache free list is too long or the MCache has
|
|
// too much memory, return some to the MCentral free lists.
|
|
//
|
|
// 3. If all the objects in a given span have returned to
|
|
// the MCentral list, return that span to the page heap.
|
|
//
|
|
// 4. If the heap has too much memory, return some to the
|
|
// operating system.
|
|
//
|
|
// TODO(rsc): Step 4 is not implemented.
|
|
//
|
|
// Allocating and freeing a large object uses the page heap
|
|
// directly, bypassing the MCache and MCentral free lists.
|
|
//
|
|
// The small objects on the MCache and MCentral free lists
|
|
// may or may not be zeroed. They are zeroed if and only if
|
|
// the second word of the object is zero. A span in the
|
|
// page heap is zeroed unless s->needzero is set. When a span
|
|
// is allocated to break into small objects, it is zeroed if needed
|
|
// and s->needzero is set. There are two main benefits to delaying the
|
|
// zeroing this way:
|
|
//
|
|
// 1. stack frames allocated from the small object lists
|
|
// or the page heap can avoid zeroing altogether.
|
|
// 2. the cost of zeroing when reusing a small object is
|
|
// charged to the mutator, not the garbage collector.
|
|
//
|
|
// This C code was written with an eye toward translating to Go
|
|
// in the future. Methods have the form Type_Method(Type *t, ...).
|
|
|
|
typedef struct MCentral MCentral;
|
|
typedef struct MHeap MHeap;
|
|
typedef struct mspan MSpan;
|
|
typedef struct MStats MStats;
|
|
typedef struct mlink MLink;
|
|
typedef struct mtypes MTypes;
|
|
typedef struct gcstats GCStats;
|
|
|
|
enum
|
|
{
|
|
PageShift = 13,
|
|
PageSize = 1<<PageShift,
|
|
PageMask = PageSize - 1,
|
|
};
|
|
typedef uintptr PageID; // address >> PageShift
|
|
|
|
enum
|
|
{
|
|
// Computed constant. The definition of MaxSmallSize and the
|
|
// algorithm in msize.c produce some number of different allocation
|
|
// size classes. _NumSizeClasses is that number. It's needed here
|
|
// because there are static arrays of this length; when msize runs its
|
|
// size choosing algorithm it double-checks that NumSizeClasses agrees.
|
|
// _NumSizeClasses is defined in runtime2.go as 67.
|
|
|
|
// Tunable constants.
|
|
MaxSmallSize = 32<<10,
|
|
|
|
// Tiny allocator parameters, see "Tiny allocator" comment in malloc.goc.
|
|
TinySize = 16,
|
|
TinySizeClass = 2,
|
|
|
|
FixAllocChunk = 16<<10, // Chunk size for FixAlloc
|
|
MaxMHeapList = 1<<(20 - PageShift), // Maximum page length for fixed-size list in MHeap.
|
|
HeapAllocChunk = 1<<20, // Chunk size for heap growth
|
|
|
|
// Number of bits in page to span calculations (4k pages).
|
|
// On Windows 64-bit we limit the arena to 32GB or 35 bits (see below for reason).
|
|
// On other 64-bit platforms, we limit the arena to 128GB, or 37 bits.
|
|
// On 32-bit, we don't bother limiting anything, so we use the full 32-bit address.
|
|
#if __SIZEOF_POINTER__ == 8
|
|
#ifdef GOOS_windows
|
|
// Windows counts memory used by page table into committed memory
|
|
// of the process, so we can't reserve too much memory.
|
|
// See http://golang.org/issue/5402 and http://golang.org/issue/5236.
|
|
MHeapMap_Bits = 35 - PageShift,
|
|
#else
|
|
MHeapMap_Bits = 37 - PageShift,
|
|
#endif
|
|
#else
|
|
MHeapMap_Bits = 32 - PageShift,
|
|
#endif
|
|
|
|
// Max number of threads to run garbage collection.
|
|
// 2, 3, and 4 are all plausible maximums depending
|
|
// on the hardware details of the machine. The garbage
|
|
// collector scales well to 8 cpus.
|
|
MaxGcproc = 8,
|
|
};
|
|
|
|
// Maximum memory allocation size, a hint for callers.
|
|
// This must be a #define instead of an enum because it
|
|
// is so large.
|
|
#if __SIZEOF_POINTER__ == 8
|
|
#define MaxMem (1ULL<<(MHeapMap_Bits+PageShift)) /* 128 GB or 32 GB */
|
|
#else
|
|
#define MaxMem ((uintptr)-1)
|
|
#endif
|
|
// SysAlloc obtains a large chunk of zeroed memory from the
|
|
// operating system, typically on the order of a hundred kilobytes
|
|
// or a megabyte.
|
|
// NOTE: SysAlloc returns OS-aligned memory, but the heap allocator
|
|
// may use larger alignment, so the caller must be careful to realign the
|
|
// memory obtained by SysAlloc.
|
|
//
|
|
// SysUnused notifies the operating system that the contents
|
|
// of the memory region are no longer needed and can be reused
|
|
// for other purposes.
|
|
// SysUsed notifies the operating system that the contents
|
|
// of the memory region are needed again.
|
|
//
|
|
// SysFree returns it unconditionally; this is only used if
|
|
// an out-of-memory error has been detected midway through
|
|
// an allocation. It is okay if SysFree is a no-op.
|
|
//
|
|
// SysReserve reserves address space without allocating memory.
|
|
// If the pointer passed to it is non-nil, the caller wants the
|
|
// reservation there, but SysReserve can still choose another
|
|
// location if that one is unavailable. On some systems and in some
|
|
// cases SysReserve will simply check that the address space is
|
|
// available and not actually reserve it. If SysReserve returns
|
|
// non-nil, it sets *reserved to true if the address space is
|
|
// reserved, false if it has merely been checked.
|
|
// NOTE: SysReserve returns OS-aligned memory, but the heap allocator
|
|
// may use larger alignment, so the caller must be careful to realign the
|
|
// memory obtained by SysAlloc.
|
|
//
|
|
// SysMap maps previously reserved address space for use.
|
|
// The reserved argument is true if the address space was really
|
|
// reserved, not merely checked.
|
|
//
|
|
// SysFault marks a (already SysAlloc'd) region to fault
|
|
// if accessed. Used only for debugging the runtime.
|
|
|
|
void* runtime_SysAlloc(uintptr nbytes, uint64 *stat);
|
|
void runtime_SysFree(void *v, uintptr nbytes, uint64 *stat);
|
|
void runtime_SysUnused(void *v, uintptr nbytes);
|
|
void runtime_SysUsed(void *v, uintptr nbytes);
|
|
void runtime_SysMap(void *v, uintptr nbytes, bool reserved, uint64 *stat);
|
|
void* runtime_SysReserve(void *v, uintptr nbytes, bool *reserved);
|
|
void runtime_SysFault(void *v, uintptr nbytes);
|
|
|
|
// FixAlloc is a simple free-list allocator for fixed size objects.
|
|
// Malloc uses a FixAlloc wrapped around SysAlloc to manages its
|
|
// MCache and MSpan objects.
|
|
//
|
|
// Memory returned by FixAlloc_Alloc is not zeroed.
|
|
// The caller is responsible for locking around FixAlloc calls.
|
|
// Callers can keep state in the object but the first word is
|
|
// smashed by freeing and reallocating.
|
|
struct FixAlloc
|
|
{
|
|
uintptr size;
|
|
void (*first)(void *arg, byte *p); // called first time p is returned
|
|
void* arg;
|
|
MLink* list;
|
|
byte* chunk;
|
|
uint32 nchunk;
|
|
uintptr inuse; // in-use bytes now
|
|
uint64* stat;
|
|
};
|
|
|
|
void runtime_FixAlloc_Init(FixAlloc *f, uintptr size, void (*first)(void*, byte*), void *arg, uint64 *stat);
|
|
void* runtime_FixAlloc_Alloc(FixAlloc *f);
|
|
void runtime_FixAlloc_Free(FixAlloc *f, void *p);
|
|
|
|
|
|
// Statistics.
|
|
// Shared with Go: if you edit this structure, also edit type MemStats in mem.go.
|
|
struct MStats
|
|
{
|
|
// General statistics.
|
|
uint64 alloc; // bytes allocated and still in use
|
|
uint64 total_alloc; // bytes allocated (even if freed)
|
|
uint64 sys; // bytes obtained from system (should be sum of xxx_sys below, no locking, approximate)
|
|
uint64 nlookup; // number of pointer lookups
|
|
uint64 nmalloc; // number of mallocs
|
|
uint64 nfree; // number of frees
|
|
|
|
// Statistics about malloc heap.
|
|
// protected by mheap.Lock
|
|
uint64 heap_alloc; // bytes allocated and still in use
|
|
uint64 heap_sys; // bytes obtained from system
|
|
uint64 heap_idle; // bytes in idle spans
|
|
uint64 heap_inuse; // bytes in non-idle spans
|
|
uint64 heap_released; // bytes released to the OS
|
|
uint64 heap_objects; // total number of allocated objects
|
|
|
|
// Statistics about allocation of low-level fixed-size structures.
|
|
// Protected by FixAlloc locks.
|
|
uint64 stacks_inuse; // bootstrap stacks
|
|
uint64 stacks_sys;
|
|
uint64 mspan_inuse; // MSpan structures
|
|
uint64 mspan_sys;
|
|
uint64 mcache_inuse; // MCache structures
|
|
uint64 mcache_sys;
|
|
uint64 buckhash_sys; // profiling bucket hash table
|
|
uint64 gc_sys;
|
|
uint64 other_sys;
|
|
|
|
// Statistics about garbage collector.
|
|
// Protected by mheap or stopping the world during GC.
|
|
uint64 next_gc; // next GC (in heap_alloc time)
|
|
uint64 last_gc; // last GC (in absolute time)
|
|
uint64 pause_total_ns;
|
|
uint64 pause_ns[256];
|
|
uint64 pause_end[256];
|
|
uint32 numgc;
|
|
float64 gc_cpu_fraction;
|
|
bool enablegc;
|
|
bool debuggc;
|
|
|
|
// Statistics about allocation size classes.
|
|
struct {
|
|
uint32 size;
|
|
uint64 nmalloc;
|
|
uint64 nfree;
|
|
} by_size[_NumSizeClasses];
|
|
};
|
|
|
|
extern MStats mstats
|
|
__asm__ (GOSYM_PREFIX "runtime.memStats");
|
|
void runtime_updatememstats(GCStats *stats);
|
|
|
|
// Size classes. Computed and initialized by InitSizes.
|
|
//
|
|
// SizeToClass(0 <= n <= MaxSmallSize) returns the size class,
|
|
// 1 <= sizeclass < _NumSizeClasses, for n.
|
|
// Size class 0 is reserved to mean "not small".
|
|
//
|
|
// class_to_size[i] = largest size in class i
|
|
// class_to_allocnpages[i] = number of pages to allocate when
|
|
// making new objects in class i
|
|
|
|
int32 runtime_SizeToClass(int32);
|
|
uintptr runtime_roundupsize(uintptr);
|
|
extern int32 runtime_class_to_size[_NumSizeClasses];
|
|
extern int32 runtime_class_to_allocnpages[_NumSizeClasses];
|
|
extern int8 runtime_size_to_class8[1024/8 + 1];
|
|
extern int8 runtime_size_to_class128[(MaxSmallSize-1024)/128 + 1];
|
|
extern void runtime_InitSizes(void);
|
|
|
|
|
|
typedef struct mcachelist MCacheList;
|
|
|
|
MSpan* runtime_MCache_Refill(MCache *c, int32 sizeclass);
|
|
void runtime_MCache_Free(MCache *c, MLink *p, int32 sizeclass, uintptr size);
|
|
void runtime_MCache_ReleaseAll(MCache *c);
|
|
|
|
// MTypes describes the types of blocks allocated within a span.
|
|
// The compression field describes the layout of the data.
|
|
//
|
|
// MTypes_Empty:
|
|
// All blocks are free, or no type information is available for
|
|
// allocated blocks.
|
|
// The data field has no meaning.
|
|
// MTypes_Single:
|
|
// The span contains just one block.
|
|
// The data field holds the type information.
|
|
// The sysalloc field has no meaning.
|
|
// MTypes_Words:
|
|
// The span contains multiple blocks.
|
|
// The data field points to an array of type [NumBlocks]uintptr,
|
|
// and each element of the array holds the type of the corresponding
|
|
// block.
|
|
// MTypes_Bytes:
|
|
// The span contains at most seven different types of blocks.
|
|
// The data field points to the following structure:
|
|
// struct {
|
|
// type [8]uintptr // type[0] is always 0
|
|
// index [NumBlocks]byte
|
|
// }
|
|
// The type of the i-th block is: data.type[data.index[i]]
|
|
enum
|
|
{
|
|
MTypes_Empty = 0,
|
|
MTypes_Single = 1,
|
|
MTypes_Words = 2,
|
|
MTypes_Bytes = 3,
|
|
};
|
|
|
|
enum
|
|
{
|
|
KindSpecialFinalizer = 1,
|
|
KindSpecialProfile = 2,
|
|
// Note: The finalizer special must be first because if we're freeing
|
|
// an object, a finalizer special will cause the freeing operation
|
|
// to abort, and we want to keep the other special records around
|
|
// if that happens.
|
|
};
|
|
|
|
typedef struct special Special;
|
|
|
|
// The described object has a finalizer set for it.
|
|
typedef struct SpecialFinalizer SpecialFinalizer;
|
|
struct SpecialFinalizer
|
|
{
|
|
Special;
|
|
FuncVal* fn;
|
|
const FuncType* ft;
|
|
const PtrType* ot;
|
|
};
|
|
|
|
// The described object is being heap profiled.
|
|
typedef struct Bucket Bucket; // from mprof.goc
|
|
typedef struct SpecialProfile SpecialProfile;
|
|
struct SpecialProfile
|
|
{
|
|
Special;
|
|
Bucket* b;
|
|
};
|
|
|
|
// An MSpan is a run of pages.
|
|
enum
|
|
{
|
|
MSpanInUse = 0,
|
|
MSpanFree,
|
|
MSpanListHead,
|
|
MSpanDead,
|
|
};
|
|
|
|
void runtime_MSpan_Init(MSpan *span, PageID start, uintptr npages);
|
|
void runtime_MSpan_EnsureSwept(MSpan *span);
|
|
bool runtime_MSpan_Sweep(MSpan *span);
|
|
|
|
// Every MSpan is in one doubly-linked list,
|
|
// either one of the MHeap's free lists or one of the
|
|
// MCentral's span lists. We use empty MSpan structures as list heads.
|
|
void runtime_MSpanList_Init(MSpan *list);
|
|
bool runtime_MSpanList_IsEmpty(MSpan *list);
|
|
void runtime_MSpanList_Insert(MSpan *list, MSpan *span);
|
|
void runtime_MSpanList_InsertBack(MSpan *list, MSpan *span);
|
|
void runtime_MSpanList_Remove(MSpan *span); // from whatever list it is in
|
|
|
|
|
|
// Central list of free objects of a given size.
|
|
struct MCentral
|
|
{
|
|
Lock;
|
|
int32 sizeclass;
|
|
MSpan nonempty; // list of spans with a free object
|
|
MSpan mempty; // list of spans with no free objects (or cached in an MCache)
|
|
int32 nfree; // # of objects available in nonempty spans
|
|
};
|
|
|
|
void runtime_MCentral_Init(MCentral *c, int32 sizeclass);
|
|
MSpan* runtime_MCentral_CacheSpan(MCentral *c);
|
|
void runtime_MCentral_UncacheSpan(MCentral *c, MSpan *s);
|
|
bool runtime_MCentral_FreeSpan(MCentral *c, MSpan *s, int32 n, MLink *start, MLink *end);
|
|
void runtime_MCentral_FreeList(MCentral *c, MLink *start); // TODO: need this?
|
|
|
|
// Main malloc heap.
|
|
// The heap itself is the "free[]" and "large" arrays,
|
|
// but all the other global data is here too.
|
|
struct MHeap
|
|
{
|
|
Lock;
|
|
MSpan free[MaxMHeapList]; // free lists of given length
|
|
MSpan freelarge; // free lists length >= MaxMHeapList
|
|
MSpan busy[MaxMHeapList]; // busy lists of large objects of given length
|
|
MSpan busylarge; // busy lists of large objects length >= MaxMHeapList
|
|
MSpan **allspans; // all spans out there
|
|
MSpan **sweepspans; // copy of allspans referenced by sweeper
|
|
uint32 nspan;
|
|
uint32 nspancap;
|
|
uint32 sweepgen; // sweep generation, see comment in MSpan
|
|
uint32 sweepdone; // all spans are swept
|
|
|
|
// span lookup
|
|
MSpan** spans;
|
|
uintptr spans_mapped;
|
|
|
|
// range of addresses we might see in the heap
|
|
byte *bitmap;
|
|
uintptr bitmap_mapped;
|
|
byte *arena_start;
|
|
byte *arena_used;
|
|
byte *arena_end;
|
|
bool arena_reserved;
|
|
|
|
// central free lists for small size classes.
|
|
// the padding makes sure that the MCentrals are
|
|
// spaced CacheLineSize bytes apart, so that each MCentral.Lock
|
|
// gets its own cache line.
|
|
struct {
|
|
MCentral;
|
|
byte pad[64];
|
|
} central[_NumSizeClasses];
|
|
|
|
FixAlloc spanalloc; // allocator for Span*
|
|
FixAlloc cachealloc; // allocator for MCache*
|
|
FixAlloc specialfinalizeralloc; // allocator for SpecialFinalizer*
|
|
FixAlloc specialprofilealloc; // allocator for SpecialProfile*
|
|
Lock speciallock; // lock for sepcial record allocators.
|
|
|
|
// Malloc stats.
|
|
uint64 largefree; // bytes freed for large objects (>MaxSmallSize)
|
|
uint64 nlargefree; // number of frees for large objects (>MaxSmallSize)
|
|
uint64 nsmallfree[_NumSizeClasses]; // number of frees for small objects (<=MaxSmallSize)
|
|
};
|
|
extern MHeap runtime_mheap;
|
|
|
|
void runtime_MHeap_Init(MHeap *h);
|
|
MSpan* runtime_MHeap_Alloc(MHeap *h, uintptr npage, int32 sizeclass, bool large, bool needzero);
|
|
void runtime_MHeap_Free(MHeap *h, MSpan *s, int32 acct);
|
|
MSpan* runtime_MHeap_Lookup(MHeap *h, void *v);
|
|
MSpan* runtime_MHeap_LookupMaybe(MHeap *h, void *v);
|
|
void runtime_MGetSizeClassInfo(int32 sizeclass, uintptr *size, int32 *npages, int32 *nobj);
|
|
void* runtime_MHeap_SysAlloc(MHeap *h, uintptr n);
|
|
void runtime_MHeap_MapBits(MHeap *h);
|
|
void runtime_MHeap_MapSpans(MHeap *h);
|
|
void runtime_MHeap_Scavenger(void*);
|
|
void runtime_MHeap_SplitSpan(MHeap *h, MSpan *s);
|
|
|
|
void* runtime_mallocgc(uintptr size, uintptr typ, uint32 flag);
|
|
void* runtime_persistentalloc(uintptr size, uintptr align, uint64 *stat);
|
|
int32 runtime_mlookup(void *v, byte **base, uintptr *size, MSpan **s);
|
|
void runtime_gc(int32 force);
|
|
uintptr runtime_sweepone(void);
|
|
void runtime_markscan(void *v);
|
|
void runtime_marknogc(void *v);
|
|
void runtime_checkallocated(void *v, uintptr n);
|
|
void runtime_markfreed(void *v);
|
|
void runtime_checkfreed(void *v, uintptr n);
|
|
extern int32 runtime_checking;
|
|
void runtime_markspan(void *v, uintptr size, uintptr n, bool leftover);
|
|
void runtime_unmarkspan(void *v, uintptr size);
|
|
void runtime_purgecachedstats(MCache*);
|
|
void* runtime_cnew(const Type*)
|
|
__asm__(GOSYM_PREFIX "runtime.newobject");
|
|
void* runtime_cnewarray(const Type*, intgo)
|
|
__asm__(GOSYM_PREFIX "runtime.newarray");
|
|
void runtime_tracealloc(void*, uintptr, uintptr);
|
|
void runtime_tracefree(void*, uintptr);
|
|
void runtime_tracegc(void);
|
|
|
|
uintptr runtime_gettype(void*);
|
|
|
|
enum
|
|
{
|
|
// flags to malloc
|
|
FlagNoScan = 1<<0, // GC doesn't have to scan object
|
|
FlagNoProfiling = 1<<1, // must not profile
|
|
FlagNoGC = 1<<2, // must not free or scan for pointers
|
|
FlagNoZero = 1<<3, // don't zero memory
|
|
FlagNoInvokeGC = 1<<4, // don't invoke GC
|
|
};
|
|
|
|
typedef struct Obj Obj;
|
|
struct Obj
|
|
{
|
|
byte *p; // data pointer
|
|
uintptr n; // size of data in bytes
|
|
uintptr ti; // type info
|
|
};
|
|
|
|
void runtime_MProf_Malloc(void*, uintptr);
|
|
void runtime_MProf_Free(Bucket*, uintptr, bool);
|
|
void runtime_MProf_GC(void);
|
|
void runtime_iterate_memprof(void (*callback)(Bucket*, uintptr, Location*, uintptr, uintptr, uintptr));
|
|
int32 runtime_gcprocs(void);
|
|
void runtime_helpgc(int32 nproc);
|
|
void runtime_gchelper(void);
|
|
void runtime_createfing(void);
|
|
G* runtime_wakefing(void);
|
|
extern bool runtime_fingwait;
|
|
extern bool runtime_fingwake;
|
|
|
|
void runtime_setprofilebucket(void *p, Bucket *b);
|
|
|
|
struct __go_func_type;
|
|
struct __go_ptr_type;
|
|
bool runtime_addfinalizer(void *p, FuncVal *fn, const struct __go_func_type*, const struct __go_ptr_type*);
|
|
void runtime_removefinalizer(void*);
|
|
void runtime_queuefinalizer(void *p, FuncVal *fn, const struct __go_func_type *ft, const struct __go_ptr_type *ot);
|
|
|
|
void runtime_freeallspecials(MSpan *span, void *p, uintptr size);
|
|
bool runtime_freespecial(Special *s, void *p, uintptr size, bool freed);
|
|
|
|
enum
|
|
{
|
|
TypeInfo_SingleObject = 0,
|
|
TypeInfo_Array = 1,
|
|
TypeInfo_Chan = 2,
|
|
|
|
// Enables type information at the end of blocks allocated from heap
|
|
DebugTypeAtBlockEnd = 0,
|
|
};
|
|
|
|
// Information from the compiler about the layout of stack frames.
|
|
typedef struct BitVector BitVector;
|
|
struct BitVector
|
|
{
|
|
int32 n; // # of bits
|
|
uint32 *data;
|
|
};
|
|
typedef struct StackMap StackMap;
|
|
struct StackMap
|
|
{
|
|
int32 n; // number of bitmaps
|
|
int32 nbit; // number of bits in each bitmap
|
|
uint32 data[];
|
|
};
|
|
enum {
|
|
// Pointer map
|
|
BitsPerPointer = 2,
|
|
BitsDead = 0,
|
|
BitsScalar = 1,
|
|
BitsPointer = 2,
|
|
BitsMultiWord = 3,
|
|
// BitsMultiWord will be set for the first word of a multi-word item.
|
|
// When it is set, one of the following will be set for the second word.
|
|
BitsString = 0,
|
|
BitsSlice = 1,
|
|
BitsIface = 2,
|
|
BitsEface = 3,
|
|
};
|
|
// Returns pointer map data for the given stackmap index
|
|
// (the index is encoded in PCDATA_StackMapIndex).
|
|
BitVector runtime_stackmapdata(StackMap *stackmap, int32 n);
|
|
|
|
// defined in mgc0.go
|
|
void runtime_gc_m_ptr(Eface*);
|
|
void runtime_gc_g_ptr(Eface*);
|
|
void runtime_gc_itab_ptr(Eface*);
|
|
|
|
void runtime_memorydump(void);
|
|
int32 runtime_setgcpercent(int32);
|
|
|
|
// Value we use to mark dead pointers when GODEBUG=gcdead=1.
|
|
#define PoisonGC ((uintptr)0xf969696969696969ULL)
|
|
#define PoisonStack ((uintptr)0x6868686868686868ULL)
|
|
|
|
struct Workbuf;
|
|
void runtime_MProf_Mark(struct Workbuf**, void (*)(struct Workbuf**, Obj));
|
|
void runtime_proc_scan(struct Workbuf**, void (*)(struct Workbuf**, Obj));
|
|
void runtime_time_scan(struct Workbuf**, void (*)(struct Workbuf**, Obj));
|
|
void runtime_netpoll_scan(struct Workbuf**, void (*)(struct Workbuf**, Obj));
|