b4c811bd14
2006-12-06 Thomas Koenig <Thomas.Koenig@online.de> PR libfortran/30009 PR libfortran/30056 * gfortran.dg/read_eof_4.f90: Add tests. * gfortran.dg/readwrite_unf_direct_eor_1.f90: New test. * gfortran.dg/unf_read_corrupted_1.f90: New test. 2006-12-06 Thomas Koenig <Thomas.Koenig@online.de> PR libfortran/30009 PR libfortran/30056 * libgfortran.h: Add ERROR_CORRUPT_FILE to error_codes. * runtime/error.c (translate_error): Add handling for ERROR_CORRUPT_FILE. * io/transfer.c (read_block_direct): Add comment about EOR for stream files. Remove test for no bytes left for direct access files. Generate an ERROR_SHORT_RECORD if the read was short. For unformatted sequential files: Check endfile condition. Remove test for no bytes left. End of file here means that the file structure has been corrupted. Pre-position the file for the next record in case of error. (write_buf): Whitespace fix. Subtract the number of bytes written from bytes_left. From-SVN: r119592
2876 lines
71 KiB
C
2876 lines
71 KiB
C
/* Copyright (C) 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
|
|
Contributed by Andy Vaught
|
|
Namelist transfer functions contributed by Paul Thomas
|
|
|
|
This file is part of the GNU Fortran 95 runtime library (libgfortran).
|
|
|
|
Libgfortran is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2, or (at your option)
|
|
any later version.
|
|
|
|
In addition to the permissions in the GNU General Public License, the
|
|
Free Software Foundation gives you unlimited permission to link the
|
|
compiled version of this file into combinations with other programs,
|
|
and to distribute those combinations without any restriction coming
|
|
from the use of this file. (The General Public License restrictions
|
|
do apply in other respects; for example, they cover modification of
|
|
the file, and distribution when not linked into a combine
|
|
executable.)
|
|
|
|
Libgfortran is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with Libgfortran; see the file COPYING. If not, write to
|
|
the Free Software Foundation, 51 Franklin Street, Fifth Floor,
|
|
Boston, MA 02110-1301, USA. */
|
|
|
|
|
|
/* transfer.c -- Top level handling of data transfer statements. */
|
|
|
|
#include "config.h"
|
|
#include <string.h>
|
|
#include <assert.h>
|
|
#include "libgfortran.h"
|
|
#include "io.h"
|
|
|
|
|
|
/* Calling conventions: Data transfer statements are unlike other
|
|
library calls in that they extend over several calls.
|
|
|
|
The first call is always a call to st_read() or st_write(). These
|
|
subroutines return no status unless a namelist read or write is
|
|
being done, in which case there is the usual status. No further
|
|
calls are necessary in this case.
|
|
|
|
For other sorts of data transfer, there are zero or more data
|
|
transfer statement that depend on the format of the data transfer
|
|
statement.
|
|
|
|
transfer_integer
|
|
transfer_logical
|
|
transfer_character
|
|
transfer_real
|
|
transfer_complex
|
|
|
|
These subroutines do not return status.
|
|
|
|
The last call is a call to st_[read|write]_done(). While
|
|
something can easily go wrong with the initial st_read() or
|
|
st_write(), an error inhibits any data from actually being
|
|
transferred. */
|
|
|
|
extern void transfer_integer (st_parameter_dt *, void *, int);
|
|
export_proto(transfer_integer);
|
|
|
|
extern void transfer_real (st_parameter_dt *, void *, int);
|
|
export_proto(transfer_real);
|
|
|
|
extern void transfer_logical (st_parameter_dt *, void *, int);
|
|
export_proto(transfer_logical);
|
|
|
|
extern void transfer_character (st_parameter_dt *, void *, int);
|
|
export_proto(transfer_character);
|
|
|
|
extern void transfer_complex (st_parameter_dt *, void *, int);
|
|
export_proto(transfer_complex);
|
|
|
|
extern void transfer_array (st_parameter_dt *, gfc_array_char *, int,
|
|
gfc_charlen_type);
|
|
export_proto(transfer_array);
|
|
|
|
static void us_read (st_parameter_dt *, int);
|
|
static void us_write (st_parameter_dt *, int);
|
|
static void next_record_r_unf (st_parameter_dt *, int);
|
|
static void next_record_w_unf (st_parameter_dt *, int);
|
|
|
|
static const st_option advance_opt[] = {
|
|
{"yes", ADVANCE_YES},
|
|
{"no", ADVANCE_NO},
|
|
{NULL, 0}
|
|
};
|
|
|
|
|
|
typedef enum
|
|
{ FORMATTED_SEQUENTIAL, UNFORMATTED_SEQUENTIAL,
|
|
FORMATTED_DIRECT, UNFORMATTED_DIRECT, FORMATTED_STREAM, UNFORMATTED_STREAM
|
|
}
|
|
file_mode;
|
|
|
|
|
|
static file_mode
|
|
current_mode (st_parameter_dt *dtp)
|
|
{
|
|
file_mode m;
|
|
|
|
m = FORM_UNSPECIFIED;
|
|
|
|
if (dtp->u.p.current_unit->flags.access == ACCESS_DIRECT)
|
|
{
|
|
m = dtp->u.p.current_unit->flags.form == FORM_FORMATTED ?
|
|
FORMATTED_DIRECT : UNFORMATTED_DIRECT;
|
|
}
|
|
else if (dtp->u.p.current_unit->flags.access == ACCESS_SEQUENTIAL)
|
|
{
|
|
m = dtp->u.p.current_unit->flags.form == FORM_FORMATTED ?
|
|
FORMATTED_SEQUENTIAL : UNFORMATTED_SEQUENTIAL;
|
|
}
|
|
else if (dtp->u.p.current_unit->flags.access == ACCESS_STREAM)
|
|
{
|
|
m = dtp->u.p.current_unit->flags.form == FORM_FORMATTED ?
|
|
FORMATTED_STREAM : UNFORMATTED_STREAM;
|
|
}
|
|
|
|
return m;
|
|
}
|
|
|
|
|
|
/* Mid level data transfer statements. These subroutines do reading
|
|
and writing in the style of salloc_r()/salloc_w() within the
|
|
current record. */
|
|
|
|
/* When reading sequential formatted records we have a problem. We
|
|
don't know how long the line is until we read the trailing newline,
|
|
and we don't want to read too much. If we read too much, we might
|
|
have to do a physical seek backwards depending on how much data is
|
|
present, and devices like terminals aren't seekable and would cause
|
|
an I/O error.
|
|
|
|
Given this, the solution is to read a byte at a time, stopping if
|
|
we hit the newline. For small allocations, we use a static buffer.
|
|
For larger allocations, we are forced to allocate memory on the
|
|
heap. Hopefully this won't happen very often. */
|
|
|
|
char *
|
|
read_sf (st_parameter_dt *dtp, int *length, int no_error)
|
|
{
|
|
char *base, *p, *q;
|
|
int n, readlen, crlf;
|
|
gfc_offset pos;
|
|
|
|
if (*length > SCRATCH_SIZE)
|
|
dtp->u.p.line_buffer = get_mem (*length);
|
|
p = base = dtp->u.p.line_buffer;
|
|
|
|
/* If we have seen an eor previously, return a length of 0. The
|
|
caller is responsible for correctly padding the input field. */
|
|
if (dtp->u.p.sf_seen_eor)
|
|
{
|
|
*length = 0;
|
|
return base;
|
|
}
|
|
|
|
readlen = 1;
|
|
n = 0;
|
|
|
|
do
|
|
{
|
|
if (is_internal_unit (dtp))
|
|
{
|
|
/* readlen may be modified inside salloc_r if
|
|
is_internal_unit (dtp) is true. */
|
|
readlen = 1;
|
|
}
|
|
|
|
q = salloc_r (dtp->u.p.current_unit->s, &readlen);
|
|
if (q == NULL)
|
|
break;
|
|
|
|
/* If we have a line without a terminating \n, drop through to
|
|
EOR below. */
|
|
if (readlen < 1 && n == 0)
|
|
{
|
|
if (no_error)
|
|
break;
|
|
generate_error (&dtp->common, ERROR_END, NULL);
|
|
return NULL;
|
|
}
|
|
|
|
if (readlen < 1 || *q == '\n' || *q == '\r')
|
|
{
|
|
/* Unexpected end of line. */
|
|
|
|
/* If we see an EOR during non-advancing I/O, we need to skip
|
|
the rest of the I/O statement. Set the corresponding flag. */
|
|
if (dtp->u.p.advance_status == ADVANCE_NO || dtp->u.p.seen_dollar)
|
|
dtp->u.p.eor_condition = 1;
|
|
|
|
crlf = 0;
|
|
/* If we encounter a CR, it might be a CRLF. */
|
|
if (*q == '\r') /* Probably a CRLF */
|
|
{
|
|
readlen = 1;
|
|
pos = stream_offset (dtp->u.p.current_unit->s);
|
|
q = salloc_r (dtp->u.p.current_unit->s, &readlen);
|
|
if (*q != '\n' && readlen == 1) /* Not a CRLF after all. */
|
|
sseek (dtp->u.p.current_unit->s, pos);
|
|
else
|
|
crlf = 1;
|
|
}
|
|
|
|
/* Without padding, terminate the I/O statement without assigning
|
|
the value. With padding, the value still needs to be assigned,
|
|
so we can just continue with a short read. */
|
|
if (dtp->u.p.current_unit->flags.pad == PAD_NO)
|
|
{
|
|
if (no_error)
|
|
break;
|
|
generate_error (&dtp->common, ERROR_EOR, NULL);
|
|
return NULL;
|
|
}
|
|
|
|
*length = n;
|
|
dtp->u.p.sf_seen_eor = (crlf ? 2 : 1);
|
|
break;
|
|
}
|
|
/* Short circuit the read if a comma is found during numeric input.
|
|
The flag is set to zero during character reads so that commas in
|
|
strings are not ignored */
|
|
if (*q == ',')
|
|
if (dtp->u.p.sf_read_comma == 1)
|
|
{
|
|
notify_std (&dtp->common, GFC_STD_GNU,
|
|
"Comma in formatted numeric read.");
|
|
*length = n;
|
|
break;
|
|
}
|
|
|
|
n++;
|
|
*p++ = *q;
|
|
dtp->u.p.sf_seen_eor = 0;
|
|
}
|
|
while (n < *length);
|
|
dtp->u.p.current_unit->bytes_left -= *length;
|
|
|
|
if ((dtp->common.flags & IOPARM_DT_HAS_SIZE) != 0)
|
|
dtp->u.p.size_used += (gfc_offset) *length;
|
|
|
|
return base;
|
|
}
|
|
|
|
|
|
/* Function for reading the next couple of bytes from the current
|
|
file, advancing the current position. We return a pointer to a
|
|
buffer containing the bytes. We return NULL on end of record or
|
|
end of file.
|
|
|
|
If the read is short, then it is because the current record does not
|
|
have enough data to satisfy the read request and the file was
|
|
opened with PAD=YES. The caller must assume tailing spaces for
|
|
short reads. */
|
|
|
|
void *
|
|
read_block (st_parameter_dt *dtp, int *length)
|
|
{
|
|
char *source;
|
|
int nread;
|
|
|
|
if (is_stream_io (dtp))
|
|
{
|
|
if (sseek (dtp->u.p.current_unit->s,
|
|
dtp->u.p.current_unit->strm_pos - 1) == FAILURE)
|
|
{
|
|
generate_error (&dtp->common, ERROR_END, NULL);
|
|
return NULL;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (dtp->u.p.current_unit->bytes_left < (gfc_offset) *length)
|
|
{
|
|
/* For preconnected units with default record length, set bytes left
|
|
to unit record length and proceed, otherwise error. */
|
|
if (dtp->u.p.current_unit->unit_number == options.stdin_unit
|
|
&& dtp->u.p.current_unit->recl == DEFAULT_RECL)
|
|
dtp->u.p.current_unit->bytes_left = dtp->u.p.current_unit->recl;
|
|
else
|
|
{
|
|
if (dtp->u.p.current_unit->flags.pad == PAD_NO)
|
|
{
|
|
/* Not enough data left. */
|
|
generate_error (&dtp->common, ERROR_EOR, NULL);
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
if (dtp->u.p.current_unit->bytes_left == 0)
|
|
{
|
|
dtp->u.p.current_unit->endfile = AT_ENDFILE;
|
|
generate_error (&dtp->common, ERROR_END, NULL);
|
|
return NULL;
|
|
}
|
|
|
|
*length = dtp->u.p.current_unit->bytes_left;
|
|
}
|
|
}
|
|
|
|
if (dtp->u.p.current_unit->flags.form == FORM_FORMATTED &&
|
|
(dtp->u.p.current_unit->flags.access == ACCESS_SEQUENTIAL ||
|
|
dtp->u.p.current_unit->flags.access == ACCESS_STREAM))
|
|
{
|
|
source = read_sf (dtp, length, 0);
|
|
dtp->u.p.current_unit->strm_pos +=
|
|
(gfc_offset) (*length + dtp->u.p.sf_seen_eor);
|
|
return source;
|
|
}
|
|
dtp->u.p.current_unit->bytes_left -= (gfc_offset) *length;
|
|
|
|
nread = *length;
|
|
source = salloc_r (dtp->u.p.current_unit->s, &nread);
|
|
|
|
if ((dtp->common.flags & IOPARM_DT_HAS_SIZE) != 0)
|
|
dtp->u.p.size_used += (gfc_offset) nread;
|
|
|
|
if (nread != *length)
|
|
{ /* Short read, this shouldn't happen. */
|
|
if (dtp->u.p.current_unit->flags.pad == PAD_YES)
|
|
*length = nread;
|
|
else
|
|
{
|
|
generate_error (&dtp->common, ERROR_EOR, NULL);
|
|
source = NULL;
|
|
}
|
|
}
|
|
|
|
dtp->u.p.current_unit->strm_pos += (gfc_offset) nread;
|
|
|
|
return source;
|
|
}
|
|
|
|
|
|
/* Reads a block directly into application data space. This is for
|
|
unformatted files. */
|
|
|
|
static void
|
|
read_block_direct (st_parameter_dt *dtp, void *buf, size_t *nbytes)
|
|
{
|
|
size_t to_read_record;
|
|
size_t have_read_record;
|
|
size_t to_read_subrecord;
|
|
size_t have_read_subrecord;
|
|
int short_record;
|
|
|
|
if (is_stream_io (dtp))
|
|
{
|
|
if (sseek (dtp->u.p.current_unit->s,
|
|
dtp->u.p.current_unit->strm_pos - 1) == FAILURE)
|
|
{
|
|
generate_error (&dtp->common, ERROR_END, NULL);
|
|
return;
|
|
}
|
|
|
|
to_read_record = *nbytes;
|
|
have_read_record = to_read_record;
|
|
if (sread (dtp->u.p.current_unit->s, buf, &have_read_record) != 0)
|
|
{
|
|
generate_error (&dtp->common, ERROR_OS, NULL);
|
|
return;
|
|
}
|
|
|
|
dtp->u.p.current_unit->strm_pos += (gfc_offset) have_read_record;
|
|
|
|
if (to_read_record != have_read_record)
|
|
{
|
|
/* Short read, e.g. if we hit EOF. For stream files,
|
|
we have to set the end-of-file condition. */
|
|
generate_error (&dtp->common, ERROR_END, NULL);
|
|
return;
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (dtp->u.p.current_unit->flags.access == ACCESS_DIRECT)
|
|
{
|
|
if (dtp->u.p.current_unit->bytes_left < (gfc_offset) *nbytes)
|
|
{
|
|
short_record = 1;
|
|
to_read_record = (size_t) dtp->u.p.current_unit->bytes_left;
|
|
*nbytes = to_read_record;
|
|
}
|
|
|
|
else
|
|
{
|
|
short_record = 0;
|
|
to_read_record = *nbytes;
|
|
}
|
|
|
|
dtp->u.p.current_unit->bytes_left -= to_read_record;
|
|
|
|
if (sread (dtp->u.p.current_unit->s, buf, &to_read_record) != 0)
|
|
{
|
|
generate_error (&dtp->common, ERROR_OS, NULL);
|
|
return;
|
|
}
|
|
|
|
if (to_read_record != *nbytes)
|
|
{
|
|
/* Short read, e.g. if we hit EOF. Apparently, we read
|
|
more than was written to the last record. */
|
|
*nbytes = to_read_record;
|
|
generate_error (&dtp->common, ERROR_SHORT_RECORD, NULL);
|
|
return;
|
|
}
|
|
|
|
if (short_record)
|
|
{
|
|
generate_error (&dtp->common, ERROR_SHORT_RECORD, NULL);
|
|
return;
|
|
}
|
|
return;
|
|
}
|
|
|
|
/* Unformatted sequential. We loop over the subrecords, reading
|
|
until the request has been fulfilled or the record has run out
|
|
of continuation subrecords. */
|
|
|
|
if (dtp->u.p.current_unit->endfile == AT_ENDFILE)
|
|
{
|
|
generate_error (&dtp->common, ERROR_END, NULL);
|
|
return;
|
|
}
|
|
|
|
/* Check whether we exceed the total record length. */
|
|
|
|
if (dtp->u.p.current_unit->flags.has_recl)
|
|
{
|
|
to_read_record =
|
|
*nbytes > (size_t) dtp->u.p.current_unit->bytes_left ?
|
|
*nbytes : (size_t) dtp->u.p.current_unit->bytes_left;
|
|
short_record = 1;
|
|
}
|
|
else
|
|
{
|
|
to_read_record = *nbytes;
|
|
short_record = 0;
|
|
}
|
|
have_read_record = 0;
|
|
|
|
while(1)
|
|
{
|
|
if (dtp->u.p.current_unit->bytes_left_subrecord
|
|
< (gfc_offset) to_read_record)
|
|
{
|
|
to_read_subrecord = (size_t) dtp->u.p.current_unit->bytes_left_subrecord;
|
|
to_read_record -= to_read_subrecord;
|
|
}
|
|
else
|
|
{
|
|
to_read_subrecord = to_read_record;
|
|
to_read_record = 0;
|
|
}
|
|
|
|
dtp->u.p.current_unit->bytes_left_subrecord -= to_read_subrecord;
|
|
|
|
have_read_subrecord = to_read_subrecord;
|
|
if (sread (dtp->u.p.current_unit->s, buf + have_read_record,
|
|
&have_read_subrecord) != 0)
|
|
{
|
|
generate_error (&dtp->common, ERROR_OS, NULL);
|
|
return;
|
|
}
|
|
|
|
have_read_record += have_read_subrecord;
|
|
|
|
if (to_read_subrecord != have_read_subrecord)
|
|
|
|
{
|
|
/* Short read, e.g. if we hit EOF. This means the record
|
|
structure has been corrupted, or the trailing record
|
|
marker would still be present. */
|
|
|
|
*nbytes = have_read_record;
|
|
generate_error (&dtp->common, ERROR_CORRUPT_FILE, NULL);
|
|
return;
|
|
}
|
|
|
|
if (to_read_record > 0)
|
|
{
|
|
if (dtp->u.p.current_unit->continued)
|
|
{
|
|
next_record_r_unf (dtp, 0);
|
|
us_read (dtp, 1);
|
|
}
|
|
else
|
|
{
|
|
/* Let's make sure the file position is correctly set for the
|
|
next read statement. */
|
|
|
|
next_record_r_unf (dtp, 0);
|
|
us_read (dtp, 0);
|
|
generate_error (&dtp->common, ERROR_SHORT_RECORD, NULL);
|
|
return;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Normal exit, the read request has been fulfilled. */
|
|
break;
|
|
}
|
|
}
|
|
|
|
dtp->u.p.current_unit->bytes_left -= have_read_record;
|
|
if (short_record)
|
|
{
|
|
generate_error (&dtp->common, ERROR_SHORT_RECORD, NULL);
|
|
return;
|
|
}
|
|
return;
|
|
}
|
|
|
|
|
|
/* Function for writing a block of bytes to the current file at the
|
|
current position, advancing the file pointer. We are given a length
|
|
and return a pointer to a buffer that the caller must (completely)
|
|
fill in. Returns NULL on error. */
|
|
|
|
void *
|
|
write_block (st_parameter_dt *dtp, int length)
|
|
{
|
|
char *dest;
|
|
|
|
if (is_stream_io (dtp))
|
|
{
|
|
if (sseek (dtp->u.p.current_unit->s,
|
|
dtp->u.p.current_unit->strm_pos - 1) == FAILURE)
|
|
{
|
|
generate_error (&dtp->common, ERROR_OS, NULL);
|
|
return NULL;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (dtp->u.p.current_unit->bytes_left < (gfc_offset) length)
|
|
{
|
|
/* For preconnected units with default record length, set bytes left
|
|
to unit record length and proceed, otherwise error. */
|
|
if ((dtp->u.p.current_unit->unit_number == options.stdout_unit
|
|
|| dtp->u.p.current_unit->unit_number == options.stderr_unit)
|
|
&& dtp->u.p.current_unit->recl == DEFAULT_RECL)
|
|
dtp->u.p.current_unit->bytes_left = dtp->u.p.current_unit->recl;
|
|
else
|
|
{
|
|
generate_error (&dtp->common, ERROR_EOR, NULL);
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
dtp->u.p.current_unit->bytes_left -= (gfc_offset) length;
|
|
}
|
|
|
|
dest = salloc_w (dtp->u.p.current_unit->s, &length);
|
|
|
|
if (dest == NULL)
|
|
{
|
|
generate_error (&dtp->common, ERROR_END, NULL);
|
|
return NULL;
|
|
}
|
|
|
|
if (is_internal_unit (dtp) && dtp->u.p.current_unit->endfile == AT_ENDFILE)
|
|
generate_error (&dtp->common, ERROR_END, NULL);
|
|
|
|
if ((dtp->common.flags & IOPARM_DT_HAS_SIZE) != 0)
|
|
dtp->u.p.size_used += (gfc_offset) length;
|
|
|
|
dtp->u.p.current_unit->strm_pos += (gfc_offset) length;
|
|
|
|
return dest;
|
|
}
|
|
|
|
|
|
/* High level interface to swrite(), taking care of errors. This is only
|
|
called for unformatted files. There are three cases to consider:
|
|
Stream I/O, unformatted direct, unformatted sequential. */
|
|
|
|
static try
|
|
write_buf (st_parameter_dt *dtp, void *buf, size_t nbytes)
|
|
{
|
|
|
|
size_t have_written, to_write_subrecord;
|
|
int short_record;
|
|
|
|
|
|
/* Stream I/O. */
|
|
|
|
if (is_stream_io (dtp))
|
|
{
|
|
if (sseek (dtp->u.p.current_unit->s,
|
|
dtp->u.p.current_unit->strm_pos - 1) == FAILURE)
|
|
{
|
|
generate_error (&dtp->common, ERROR_OS, NULL);
|
|
return FAILURE;
|
|
}
|
|
|
|
if (swrite (dtp->u.p.current_unit->s, buf, &nbytes) != 0)
|
|
{
|
|
generate_error (&dtp->common, ERROR_OS, NULL);
|
|
return FAILURE;
|
|
}
|
|
|
|
dtp->u.p.current_unit->strm_pos += (gfc_offset) nbytes;
|
|
|
|
return SUCCESS;
|
|
}
|
|
|
|
/* Unformatted direct access. */
|
|
|
|
if (dtp->u.p.current_unit->flags.access == ACCESS_DIRECT)
|
|
{
|
|
if (dtp->u.p.current_unit->bytes_left < (gfc_offset) nbytes)
|
|
{
|
|
generate_error (&dtp->common, ERROR_DIRECT_EOR, NULL);
|
|
return FAILURE;
|
|
}
|
|
|
|
if (swrite (dtp->u.p.current_unit->s, buf, &nbytes) != 0)
|
|
{
|
|
generate_error (&dtp->common, ERROR_OS, NULL);
|
|
return FAILURE;
|
|
}
|
|
|
|
dtp->u.p.current_unit->strm_pos += (gfc_offset) nbytes;
|
|
dtp->u.p.current_unit->bytes_left -= (gfc_offset) nbytes;
|
|
|
|
return SUCCESS;
|
|
|
|
}
|
|
|
|
/* Unformatted sequential. */
|
|
|
|
have_written = 0;
|
|
|
|
if (dtp->u.p.current_unit->flags.has_recl
|
|
&& (gfc_offset) nbytes > dtp->u.p.current_unit->bytes_left)
|
|
{
|
|
nbytes = dtp->u.p.current_unit->bytes_left;
|
|
short_record = 1;
|
|
}
|
|
else
|
|
{
|
|
short_record = 0;
|
|
}
|
|
|
|
while (1)
|
|
{
|
|
|
|
to_write_subrecord =
|
|
(size_t) dtp->u.p.current_unit->bytes_left_subrecord < nbytes ?
|
|
(size_t) dtp->u.p.current_unit->bytes_left_subrecord : nbytes;
|
|
|
|
dtp->u.p.current_unit->bytes_left_subrecord -=
|
|
(gfc_offset) to_write_subrecord;
|
|
|
|
if (swrite (dtp->u.p.current_unit->s, buf + have_written,
|
|
&to_write_subrecord) != 0)
|
|
{
|
|
generate_error (&dtp->common, ERROR_OS, NULL);
|
|
return FAILURE;
|
|
}
|
|
|
|
dtp->u.p.current_unit->strm_pos += (gfc_offset) to_write_subrecord;
|
|
nbytes -= to_write_subrecord;
|
|
have_written += to_write_subrecord;
|
|
|
|
if (nbytes == 0)
|
|
break;
|
|
|
|
next_record_w_unf (dtp, 1);
|
|
us_write (dtp, 1);
|
|
}
|
|
dtp->u.p.current_unit->bytes_left -= have_written;
|
|
if (short_record)
|
|
{
|
|
generate_error (&dtp->common, ERROR_SHORT_RECORD, NULL);
|
|
return FAILURE;
|
|
}
|
|
return SUCCESS;
|
|
}
|
|
|
|
|
|
/* Master function for unformatted reads. */
|
|
|
|
static void
|
|
unformatted_read (st_parameter_dt *dtp, bt type,
|
|
void *dest, int kind,
|
|
size_t size, size_t nelems)
|
|
{
|
|
size_t i, sz;
|
|
|
|
/* Currently, character implies size=1. */
|
|
if (dtp->u.p.current_unit->flags.convert == CONVERT_NATIVE
|
|
|| size == 1 || type == BT_CHARACTER)
|
|
{
|
|
sz = size * nelems;
|
|
read_block_direct (dtp, dest, &sz);
|
|
}
|
|
else
|
|
{
|
|
char buffer[16];
|
|
char *p;
|
|
|
|
/* Break up complex into its constituent reals. */
|
|
if (type == BT_COMPLEX)
|
|
{
|
|
nelems *= 2;
|
|
size /= 2;
|
|
}
|
|
p = dest;
|
|
|
|
/* By now, all complex variables have been split into their
|
|
constituent reals. For types with padding, we only need to
|
|
read kind bytes. We don't care about the contents
|
|
of the padding. If we hit a short record, then sz is
|
|
adjusted accordingly, making later reads no-ops. */
|
|
|
|
sz = kind;
|
|
for (i=0; i<nelems; i++)
|
|
{
|
|
read_block_direct (dtp, buffer, &sz);
|
|
reverse_memcpy (p, buffer, sz);
|
|
p += size;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/* Master function for unformatted writes. */
|
|
|
|
static void
|
|
unformatted_write (st_parameter_dt *dtp, bt type,
|
|
void *source, int kind,
|
|
size_t size, size_t nelems)
|
|
{
|
|
if (dtp->u.p.current_unit->flags.convert == CONVERT_NATIVE ||
|
|
size == 1 || type == BT_CHARACTER)
|
|
{
|
|
size *= nelems;
|
|
|
|
write_buf (dtp, source, size);
|
|
}
|
|
else
|
|
{
|
|
char buffer[16];
|
|
char *p;
|
|
size_t i, sz;
|
|
|
|
/* Break up complex into its constituent reals. */
|
|
if (type == BT_COMPLEX)
|
|
{
|
|
nelems *= 2;
|
|
size /= 2;
|
|
}
|
|
|
|
p = source;
|
|
|
|
/* By now, all complex variables have been split into their
|
|
constituent reals. For types with padding, we only need to
|
|
read kind bytes. We don't care about the contents
|
|
of the padding. */
|
|
|
|
sz = kind;
|
|
for (i=0; i<nelems; i++)
|
|
{
|
|
reverse_memcpy(buffer, p, size);
|
|
p+= size;
|
|
write_buf (dtp, buffer, sz);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/* Return a pointer to the name of a type. */
|
|
|
|
const char *
|
|
type_name (bt type)
|
|
{
|
|
const char *p;
|
|
|
|
switch (type)
|
|
{
|
|
case BT_INTEGER:
|
|
p = "INTEGER";
|
|
break;
|
|
case BT_LOGICAL:
|
|
p = "LOGICAL";
|
|
break;
|
|
case BT_CHARACTER:
|
|
p = "CHARACTER";
|
|
break;
|
|
case BT_REAL:
|
|
p = "REAL";
|
|
break;
|
|
case BT_COMPLEX:
|
|
p = "COMPLEX";
|
|
break;
|
|
default:
|
|
internal_error (NULL, "type_name(): Bad type");
|
|
}
|
|
|
|
return p;
|
|
}
|
|
|
|
|
|
/* Write a constant string to the output.
|
|
This is complicated because the string can have doubled delimiters
|
|
in it. The length in the format node is the true length. */
|
|
|
|
static void
|
|
write_constant_string (st_parameter_dt *dtp, const fnode *f)
|
|
{
|
|
char c, delimiter, *p, *q;
|
|
int length;
|
|
|
|
length = f->u.string.length;
|
|
if (length == 0)
|
|
return;
|
|
|
|
p = write_block (dtp, length);
|
|
if (p == NULL)
|
|
return;
|
|
|
|
q = f->u.string.p;
|
|
delimiter = q[-1];
|
|
|
|
for (; length > 0; length--)
|
|
{
|
|
c = *p++ = *q++;
|
|
if (c == delimiter && c != 'H' && c != 'h')
|
|
q++; /* Skip the doubled delimiter. */
|
|
}
|
|
}
|
|
|
|
|
|
/* Given actual and expected types in a formatted data transfer, make
|
|
sure they agree. If not, an error message is generated. Returns
|
|
nonzero if something went wrong. */
|
|
|
|
static int
|
|
require_type (st_parameter_dt *dtp, bt expected, bt actual, const fnode *f)
|
|
{
|
|
char buffer[100];
|
|
|
|
if (actual == expected)
|
|
return 0;
|
|
|
|
st_sprintf (buffer, "Expected %s for item %d in formatted transfer, got %s",
|
|
type_name (expected), dtp->u.p.item_count, type_name (actual));
|
|
|
|
format_error (dtp, f, buffer);
|
|
return 1;
|
|
}
|
|
|
|
|
|
/* This subroutine is the main loop for a formatted data transfer
|
|
statement. It would be natural to implement this as a coroutine
|
|
with the user program, but C makes that awkward. We loop,
|
|
processing format elements. When we actually have to transfer
|
|
data instead of just setting flags, we return control to the user
|
|
program which calls a subroutine that supplies the address and type
|
|
of the next element, then comes back here to process it. */
|
|
|
|
static void
|
|
formatted_transfer_scalar (st_parameter_dt *dtp, bt type, void *p, int len,
|
|
size_t size)
|
|
{
|
|
char scratch[SCRATCH_SIZE];
|
|
int pos, bytes_used;
|
|
const fnode *f;
|
|
format_token t;
|
|
int n;
|
|
int consume_data_flag;
|
|
|
|
/* Change a complex data item into a pair of reals. */
|
|
|
|
n = (p == NULL) ? 0 : ((type != BT_COMPLEX) ? 1 : 2);
|
|
if (type == BT_COMPLEX)
|
|
{
|
|
type = BT_REAL;
|
|
size /= 2;
|
|
}
|
|
|
|
/* If there's an EOR condition, we simulate finalizing the transfer
|
|
by doing nothing. */
|
|
if (dtp->u.p.eor_condition)
|
|
return;
|
|
|
|
/* Set this flag so that commas in reads cause the read to complete before
|
|
the entire field has been read. The next read field will start right after
|
|
the comma in the stream. (Set to 0 for character reads). */
|
|
dtp->u.p.sf_read_comma = 1;
|
|
|
|
dtp->u.p.line_buffer = scratch;
|
|
for (;;)
|
|
{
|
|
/* If reversion has occurred and there is another real data item,
|
|
then we have to move to the next record. */
|
|
if (dtp->u.p.reversion_flag && n > 0)
|
|
{
|
|
dtp->u.p.reversion_flag = 0;
|
|
next_record (dtp, 0);
|
|
}
|
|
|
|
consume_data_flag = 1 ;
|
|
if ((dtp->common.flags & IOPARM_LIBRETURN_MASK) != IOPARM_LIBRETURN_OK)
|
|
break;
|
|
|
|
f = next_format (dtp);
|
|
if (f == NULL)
|
|
{
|
|
/* No data descriptors left. */
|
|
if (n > 0)
|
|
generate_error (&dtp->common, ERROR_FORMAT,
|
|
"Insufficient data descriptors in format after reversion");
|
|
return;
|
|
}
|
|
|
|
/* Now discharge T, TR and X movements to the right. This is delayed
|
|
until a data producing format to suppress trailing spaces. */
|
|
|
|
t = f->format;
|
|
if (dtp->u.p.mode == WRITING && dtp->u.p.skips != 0
|
|
&& ((n>0 && ( t == FMT_I || t == FMT_B || t == FMT_O
|
|
|| t == FMT_Z || t == FMT_F || t == FMT_E
|
|
|| t == FMT_EN || t == FMT_ES || t == FMT_G
|
|
|| t == FMT_L || t == FMT_A || t == FMT_D))
|
|
|| t == FMT_STRING))
|
|
{
|
|
if (dtp->u.p.skips > 0)
|
|
{
|
|
write_x (dtp, dtp->u.p.skips, dtp->u.p.pending_spaces);
|
|
dtp->u.p.max_pos = (int)(dtp->u.p.current_unit->recl
|
|
- dtp->u.p.current_unit->bytes_left);
|
|
}
|
|
if (dtp->u.p.skips < 0)
|
|
{
|
|
move_pos_offset (dtp->u.p.current_unit->s, dtp->u.p.skips);
|
|
dtp->u.p.current_unit->bytes_left -= (gfc_offset) dtp->u.p.skips;
|
|
}
|
|
dtp->u.p.skips = dtp->u.p.pending_spaces = 0;
|
|
}
|
|
|
|
bytes_used = (int)(dtp->u.p.current_unit->recl
|
|
- dtp->u.p.current_unit->bytes_left);
|
|
|
|
switch (t)
|
|
{
|
|
case FMT_I:
|
|
if (n == 0)
|
|
goto need_data;
|
|
if (require_type (dtp, BT_INTEGER, type, f))
|
|
return;
|
|
|
|
if (dtp->u.p.mode == READING)
|
|
read_decimal (dtp, f, p, len);
|
|
else
|
|
write_i (dtp, f, p, len);
|
|
|
|
break;
|
|
|
|
case FMT_B:
|
|
if (n == 0)
|
|
goto need_data;
|
|
|
|
if (compile_options.allow_std < GFC_STD_GNU
|
|
&& require_type (dtp, BT_INTEGER, type, f))
|
|
return;
|
|
|
|
if (dtp->u.p.mode == READING)
|
|
read_radix (dtp, f, p, len, 2);
|
|
else
|
|
write_b (dtp, f, p, len);
|
|
|
|
break;
|
|
|
|
case FMT_O:
|
|
if (n == 0)
|
|
goto need_data;
|
|
|
|
if (compile_options.allow_std < GFC_STD_GNU
|
|
&& require_type (dtp, BT_INTEGER, type, f))
|
|
return;
|
|
|
|
if (dtp->u.p.mode == READING)
|
|
read_radix (dtp, f, p, len, 8);
|
|
else
|
|
write_o (dtp, f, p, len);
|
|
|
|
break;
|
|
|
|
case FMT_Z:
|
|
if (n == 0)
|
|
goto need_data;
|
|
|
|
if (compile_options.allow_std < GFC_STD_GNU
|
|
&& require_type (dtp, BT_INTEGER, type, f))
|
|
return;
|
|
|
|
if (dtp->u.p.mode == READING)
|
|
read_radix (dtp, f, p, len, 16);
|
|
else
|
|
write_z (dtp, f, p, len);
|
|
|
|
break;
|
|
|
|
case FMT_A:
|
|
if (n == 0)
|
|
goto need_data;
|
|
|
|
if (dtp->u.p.mode == READING)
|
|
read_a (dtp, f, p, len);
|
|
else
|
|
write_a (dtp, f, p, len);
|
|
|
|
break;
|
|
|
|
case FMT_L:
|
|
if (n == 0)
|
|
goto need_data;
|
|
|
|
if (dtp->u.p.mode == READING)
|
|
read_l (dtp, f, p, len);
|
|
else
|
|
write_l (dtp, f, p, len);
|
|
|
|
break;
|
|
|
|
case FMT_D:
|
|
if (n == 0)
|
|
goto need_data;
|
|
if (require_type (dtp, BT_REAL, type, f))
|
|
return;
|
|
|
|
if (dtp->u.p.mode == READING)
|
|
read_f (dtp, f, p, len);
|
|
else
|
|
write_d (dtp, f, p, len);
|
|
|
|
break;
|
|
|
|
case FMT_E:
|
|
if (n == 0)
|
|
goto need_data;
|
|
if (require_type (dtp, BT_REAL, type, f))
|
|
return;
|
|
|
|
if (dtp->u.p.mode == READING)
|
|
read_f (dtp, f, p, len);
|
|
else
|
|
write_e (dtp, f, p, len);
|
|
break;
|
|
|
|
case FMT_EN:
|
|
if (n == 0)
|
|
goto need_data;
|
|
if (require_type (dtp, BT_REAL, type, f))
|
|
return;
|
|
|
|
if (dtp->u.p.mode == READING)
|
|
read_f (dtp, f, p, len);
|
|
else
|
|
write_en (dtp, f, p, len);
|
|
|
|
break;
|
|
|
|
case FMT_ES:
|
|
if (n == 0)
|
|
goto need_data;
|
|
if (require_type (dtp, BT_REAL, type, f))
|
|
return;
|
|
|
|
if (dtp->u.p.mode == READING)
|
|
read_f (dtp, f, p, len);
|
|
else
|
|
write_es (dtp, f, p, len);
|
|
|
|
break;
|
|
|
|
case FMT_F:
|
|
if (n == 0)
|
|
goto need_data;
|
|
if (require_type (dtp, BT_REAL, type, f))
|
|
return;
|
|
|
|
if (dtp->u.p.mode == READING)
|
|
read_f (dtp, f, p, len);
|
|
else
|
|
write_f (dtp, f, p, len);
|
|
|
|
break;
|
|
|
|
case FMT_G:
|
|
if (n == 0)
|
|
goto need_data;
|
|
if (dtp->u.p.mode == READING)
|
|
switch (type)
|
|
{
|
|
case BT_INTEGER:
|
|
read_decimal (dtp, f, p, len);
|
|
break;
|
|
case BT_LOGICAL:
|
|
read_l (dtp, f, p, len);
|
|
break;
|
|
case BT_CHARACTER:
|
|
read_a (dtp, f, p, len);
|
|
break;
|
|
case BT_REAL:
|
|
read_f (dtp, f, p, len);
|
|
break;
|
|
default:
|
|
goto bad_type;
|
|
}
|
|
else
|
|
switch (type)
|
|
{
|
|
case BT_INTEGER:
|
|
write_i (dtp, f, p, len);
|
|
break;
|
|
case BT_LOGICAL:
|
|
write_l (dtp, f, p, len);
|
|
break;
|
|
case BT_CHARACTER:
|
|
write_a (dtp, f, p, len);
|
|
break;
|
|
case BT_REAL:
|
|
write_d (dtp, f, p, len);
|
|
break;
|
|
default:
|
|
bad_type:
|
|
internal_error (&dtp->common,
|
|
"formatted_transfer(): Bad type");
|
|
}
|
|
|
|
break;
|
|
|
|
case FMT_STRING:
|
|
consume_data_flag = 0 ;
|
|
if (dtp->u.p.mode == READING)
|
|
{
|
|
format_error (dtp, f, "Constant string in input format");
|
|
return;
|
|
}
|
|
write_constant_string (dtp, f);
|
|
break;
|
|
|
|
/* Format codes that don't transfer data. */
|
|
case FMT_X:
|
|
case FMT_TR:
|
|
consume_data_flag = 0 ;
|
|
|
|
pos = bytes_used + f->u.n + dtp->u.p.skips;
|
|
dtp->u.p.skips = f->u.n + dtp->u.p.skips;
|
|
dtp->u.p.pending_spaces = pos - dtp->u.p.max_pos;
|
|
|
|
/* Writes occur just before the switch on f->format, above, so
|
|
that trailing blanks are suppressed, unless we are doing a
|
|
non-advancing write in which case we want to output the blanks
|
|
now. */
|
|
if (dtp->u.p.mode == WRITING
|
|
&& dtp->u.p.advance_status == ADVANCE_NO)
|
|
{
|
|
write_x (dtp, dtp->u.p.skips, dtp->u.p.pending_spaces);
|
|
dtp->u.p.skips = dtp->u.p.pending_spaces = 0;
|
|
}
|
|
if (dtp->u.p.mode == READING)
|
|
read_x (dtp, f->u.n);
|
|
|
|
break;
|
|
|
|
case FMT_TL:
|
|
case FMT_T:
|
|
if (f->format == FMT_TL)
|
|
{
|
|
|
|
/* Handle the special case when no bytes have been used yet.
|
|
Cannot go below zero. */
|
|
if (bytes_used == 0)
|
|
{
|
|
dtp->u.p.pending_spaces -= f->u.n;
|
|
dtp->u.p.pending_spaces = dtp->u.p.pending_spaces < 0 ? 0
|
|
: dtp->u.p.pending_spaces;
|
|
dtp->u.p.skips -= f->u.n;
|
|
dtp->u.p.skips = dtp->u.p.skips < 0 ? 0 : dtp->u.p.skips;
|
|
}
|
|
|
|
pos = bytes_used - f->u.n;
|
|
}
|
|
else /* FMT_T */
|
|
{
|
|
consume_data_flag = 0;
|
|
pos = f->u.n - 1;
|
|
}
|
|
|
|
/* Standard 10.6.1.1: excessive left tabbing is reset to the
|
|
left tab limit. We do not check if the position has gone
|
|
beyond the end of record because a subsequent tab could
|
|
bring us back again. */
|
|
pos = pos < 0 ? 0 : pos;
|
|
|
|
dtp->u.p.skips = dtp->u.p.skips + pos - bytes_used;
|
|
dtp->u.p.pending_spaces = dtp->u.p.pending_spaces
|
|
+ pos - dtp->u.p.max_pos;
|
|
|
|
if (dtp->u.p.skips == 0)
|
|
break;
|
|
|
|
/* Writes occur just before the switch on f->format, above, so that
|
|
trailing blanks are suppressed. */
|
|
if (dtp->u.p.mode == READING)
|
|
{
|
|
/* Adjust everything for end-of-record condition */
|
|
if (dtp->u.p.sf_seen_eor && !is_internal_unit (dtp))
|
|
{
|
|
if (dtp->u.p.sf_seen_eor == 2)
|
|
{
|
|
/* The EOR was a CRLF (two bytes wide). */
|
|
dtp->u.p.current_unit->bytes_left -= 2;
|
|
dtp->u.p.skips -= 2;
|
|
}
|
|
else
|
|
{
|
|
/* The EOR marker was only one byte wide. */
|
|
dtp->u.p.current_unit->bytes_left--;
|
|
dtp->u.p.skips--;
|
|
}
|
|
bytes_used = pos;
|
|
dtp->u.p.sf_seen_eor = 0;
|
|
}
|
|
if (dtp->u.p.skips < 0)
|
|
{
|
|
move_pos_offset (dtp->u.p.current_unit->s, dtp->u.p.skips);
|
|
dtp->u.p.current_unit->bytes_left
|
|
-= (gfc_offset) dtp->u.p.skips;
|
|
dtp->u.p.skips = dtp->u.p.pending_spaces = 0;
|
|
}
|
|
else
|
|
read_x (dtp, dtp->u.p.skips);
|
|
}
|
|
|
|
break;
|
|
|
|
case FMT_S:
|
|
consume_data_flag = 0 ;
|
|
dtp->u.p.sign_status = SIGN_S;
|
|
break;
|
|
|
|
case FMT_SS:
|
|
consume_data_flag = 0 ;
|
|
dtp->u.p.sign_status = SIGN_SS;
|
|
break;
|
|
|
|
case FMT_SP:
|
|
consume_data_flag = 0 ;
|
|
dtp->u.p.sign_status = SIGN_SP;
|
|
break;
|
|
|
|
case FMT_BN:
|
|
consume_data_flag = 0 ;
|
|
dtp->u.p.blank_status = BLANK_NULL;
|
|
break;
|
|
|
|
case FMT_BZ:
|
|
consume_data_flag = 0 ;
|
|
dtp->u.p.blank_status = BLANK_ZERO;
|
|
break;
|
|
|
|
case FMT_P:
|
|
consume_data_flag = 0 ;
|
|
dtp->u.p.scale_factor = f->u.k;
|
|
break;
|
|
|
|
case FMT_DOLLAR:
|
|
consume_data_flag = 0 ;
|
|
dtp->u.p.seen_dollar = 1;
|
|
break;
|
|
|
|
case FMT_SLASH:
|
|
consume_data_flag = 0 ;
|
|
dtp->u.p.skips = dtp->u.p.pending_spaces = 0;
|
|
next_record (dtp, 0);
|
|
break;
|
|
|
|
case FMT_COLON:
|
|
/* A colon descriptor causes us to exit this loop (in
|
|
particular preventing another / descriptor from being
|
|
processed) unless there is another data item to be
|
|
transferred. */
|
|
consume_data_flag = 0 ;
|
|
if (n == 0)
|
|
return;
|
|
break;
|
|
|
|
default:
|
|
internal_error (&dtp->common, "Bad format node");
|
|
}
|
|
|
|
/* Free a buffer that we had to allocate during a sequential
|
|
formatted read of a block that was larger than the static
|
|
buffer. */
|
|
|
|
if (dtp->u.p.line_buffer != scratch)
|
|
{
|
|
free_mem (dtp->u.p.line_buffer);
|
|
dtp->u.p.line_buffer = scratch;
|
|
}
|
|
|
|
/* Adjust the item count and data pointer. */
|
|
|
|
if ((consume_data_flag > 0) && (n > 0))
|
|
{
|
|
n--;
|
|
p = ((char *) p) + size;
|
|
}
|
|
|
|
if (dtp->u.p.mode == READING)
|
|
dtp->u.p.skips = 0;
|
|
|
|
pos = (int)(dtp->u.p.current_unit->recl - dtp->u.p.current_unit->bytes_left);
|
|
dtp->u.p.max_pos = (dtp->u.p.max_pos > pos) ? dtp->u.p.max_pos : pos;
|
|
|
|
}
|
|
|
|
return;
|
|
|
|
/* Come here when we need a data descriptor but don't have one. We
|
|
push the current format node back onto the input, then return and
|
|
let the user program call us back with the data. */
|
|
need_data:
|
|
unget_format (dtp, f);
|
|
}
|
|
|
|
static void
|
|
formatted_transfer (st_parameter_dt *dtp, bt type, void *p, int kind,
|
|
size_t size, size_t nelems)
|
|
{
|
|
size_t elem;
|
|
char *tmp;
|
|
|
|
tmp = (char *) p;
|
|
|
|
/* Big loop over all the elements. */
|
|
for (elem = 0; elem < nelems; elem++)
|
|
{
|
|
dtp->u.p.item_count++;
|
|
formatted_transfer_scalar (dtp, type, tmp + size*elem, kind, size);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
/* Data transfer entry points. The type of the data entity is
|
|
implicit in the subroutine call. This prevents us from having to
|
|
share a common enum with the compiler. */
|
|
|
|
void
|
|
transfer_integer (st_parameter_dt *dtp, void *p, int kind)
|
|
{
|
|
if ((dtp->common.flags & IOPARM_LIBRETURN_MASK) != IOPARM_LIBRETURN_OK)
|
|
return;
|
|
dtp->u.p.transfer (dtp, BT_INTEGER, p, kind, kind, 1);
|
|
}
|
|
|
|
|
|
void
|
|
transfer_real (st_parameter_dt *dtp, void *p, int kind)
|
|
{
|
|
size_t size;
|
|
if ((dtp->common.flags & IOPARM_LIBRETURN_MASK) != IOPARM_LIBRETURN_OK)
|
|
return;
|
|
size = size_from_real_kind (kind);
|
|
dtp->u.p.transfer (dtp, BT_REAL, p, kind, size, 1);
|
|
}
|
|
|
|
|
|
void
|
|
transfer_logical (st_parameter_dt *dtp, void *p, int kind)
|
|
{
|
|
if ((dtp->common.flags & IOPARM_LIBRETURN_MASK) != IOPARM_LIBRETURN_OK)
|
|
return;
|
|
dtp->u.p.transfer (dtp, BT_LOGICAL, p, kind, kind, 1);
|
|
}
|
|
|
|
|
|
void
|
|
transfer_character (st_parameter_dt *dtp, void *p, int len)
|
|
{
|
|
if ((dtp->common.flags & IOPARM_LIBRETURN_MASK) != IOPARM_LIBRETURN_OK)
|
|
return;
|
|
/* Currently we support only 1 byte chars, and the library is a bit
|
|
confused of character kind vs. length, so we kludge it by setting
|
|
kind = length. */
|
|
dtp->u.p.transfer (dtp, BT_CHARACTER, p, len, len, 1);
|
|
}
|
|
|
|
|
|
void
|
|
transfer_complex (st_parameter_dt *dtp, void *p, int kind)
|
|
{
|
|
size_t size;
|
|
if ((dtp->common.flags & IOPARM_LIBRETURN_MASK) != IOPARM_LIBRETURN_OK)
|
|
return;
|
|
size = size_from_complex_kind (kind);
|
|
dtp->u.p.transfer (dtp, BT_COMPLEX, p, kind, size, 1);
|
|
}
|
|
|
|
|
|
void
|
|
transfer_array (st_parameter_dt *dtp, gfc_array_char *desc, int kind,
|
|
gfc_charlen_type charlen)
|
|
{
|
|
index_type count[GFC_MAX_DIMENSIONS];
|
|
index_type extent[GFC_MAX_DIMENSIONS];
|
|
index_type stride[GFC_MAX_DIMENSIONS];
|
|
index_type stride0, rank, size, type, n;
|
|
size_t tsize;
|
|
char *data;
|
|
bt iotype;
|
|
|
|
if ((dtp->common.flags & IOPARM_LIBRETURN_MASK) != IOPARM_LIBRETURN_OK)
|
|
return;
|
|
|
|
type = GFC_DESCRIPTOR_TYPE (desc);
|
|
size = GFC_DESCRIPTOR_SIZE (desc);
|
|
|
|
/* FIXME: What a kludge: Array descriptors and the IO library use
|
|
different enums for types. */
|
|
switch (type)
|
|
{
|
|
case GFC_DTYPE_UNKNOWN:
|
|
iotype = BT_NULL; /* Is this correct? */
|
|
break;
|
|
case GFC_DTYPE_INTEGER:
|
|
iotype = BT_INTEGER;
|
|
break;
|
|
case GFC_DTYPE_LOGICAL:
|
|
iotype = BT_LOGICAL;
|
|
break;
|
|
case GFC_DTYPE_REAL:
|
|
iotype = BT_REAL;
|
|
break;
|
|
case GFC_DTYPE_COMPLEX:
|
|
iotype = BT_COMPLEX;
|
|
break;
|
|
case GFC_DTYPE_CHARACTER:
|
|
iotype = BT_CHARACTER;
|
|
/* FIXME: Currently dtype contains the charlen, which is
|
|
clobbered if charlen > 2**24. That's why we use a separate
|
|
argument for the charlen. However, if we want to support
|
|
non-8-bit charsets we need to fix dtype to contain
|
|
sizeof(chartype) and fix the code below. */
|
|
size = charlen;
|
|
kind = charlen;
|
|
break;
|
|
case GFC_DTYPE_DERIVED:
|
|
internal_error (&dtp->common,
|
|
"Derived type I/O should have been handled via the frontend.");
|
|
break;
|
|
default:
|
|
internal_error (&dtp->common, "transfer_array(): Bad type");
|
|
}
|
|
|
|
rank = GFC_DESCRIPTOR_RANK (desc);
|
|
for (n = 0; n < rank; n++)
|
|
{
|
|
count[n] = 0;
|
|
stride[n] = desc->dim[n].stride;
|
|
extent[n] = desc->dim[n].ubound + 1 - desc->dim[n].lbound;
|
|
|
|
/* If the extent of even one dimension is zero, then the entire
|
|
array section contains zero elements, so we return. */
|
|
if (extent[n] == 0)
|
|
return;
|
|
}
|
|
|
|
stride0 = stride[0];
|
|
|
|
/* If the innermost dimension has stride 1, we can do the transfer
|
|
in contiguous chunks. */
|
|
if (stride0 == 1)
|
|
tsize = extent[0];
|
|
else
|
|
tsize = 1;
|
|
|
|
data = GFC_DESCRIPTOR_DATA (desc);
|
|
|
|
while (data)
|
|
{
|
|
dtp->u.p.transfer (dtp, iotype, data, kind, size, tsize);
|
|
data += stride0 * size * tsize;
|
|
count[0] += tsize;
|
|
n = 0;
|
|
while (count[n] == extent[n])
|
|
{
|
|
count[n] = 0;
|
|
data -= stride[n] * extent[n] * size;
|
|
n++;
|
|
if (n == rank)
|
|
{
|
|
data = NULL;
|
|
break;
|
|
}
|
|
else
|
|
{
|
|
count[n]++;
|
|
data += stride[n] * size;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/* Preposition a sequential unformatted file while reading. */
|
|
|
|
static void
|
|
us_read (st_parameter_dt *dtp, int continued)
|
|
{
|
|
char *p;
|
|
int n;
|
|
int nr;
|
|
GFC_INTEGER_4 i4;
|
|
GFC_INTEGER_8 i8;
|
|
gfc_offset i;
|
|
|
|
if (dtp->u.p.current_unit->endfile == AT_ENDFILE)
|
|
return;
|
|
|
|
if (compile_options.record_marker == 0)
|
|
n = sizeof (GFC_INTEGER_4);
|
|
else
|
|
n = compile_options.record_marker;
|
|
|
|
nr = n;
|
|
|
|
p = salloc_r (dtp->u.p.current_unit->s, &n);
|
|
|
|
if (n == 0)
|
|
{
|
|
dtp->u.p.current_unit->endfile = AT_ENDFILE;
|
|
return; /* end of file */
|
|
}
|
|
|
|
if (p == NULL || n != nr)
|
|
{
|
|
generate_error (&dtp->common, ERROR_BAD_US, NULL);
|
|
return;
|
|
}
|
|
|
|
/* Only CONVERT_NATIVE and CONVERT_SWAP are valid here. */
|
|
if (dtp->u.p.current_unit->flags.convert == CONVERT_NATIVE)
|
|
{
|
|
switch (nr)
|
|
{
|
|
case sizeof(GFC_INTEGER_4):
|
|
memcpy (&i4, p, sizeof (i4));
|
|
i = i4;
|
|
break;
|
|
|
|
case sizeof(GFC_INTEGER_8):
|
|
memcpy (&i8, p, sizeof (i8));
|
|
i = i8;
|
|
break;
|
|
|
|
default:
|
|
runtime_error ("Illegal value for record marker");
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
switch (nr)
|
|
{
|
|
case sizeof(GFC_INTEGER_4):
|
|
reverse_memcpy (&i4, p, sizeof (i4));
|
|
i = i4;
|
|
break;
|
|
|
|
case sizeof(GFC_INTEGER_8):
|
|
reverse_memcpy (&i8, p, sizeof (i8));
|
|
i = i8;
|
|
break;
|
|
|
|
default:
|
|
runtime_error ("Illegal value for record marker");
|
|
break;
|
|
}
|
|
|
|
if (i >= 0)
|
|
{
|
|
dtp->u.p.current_unit->bytes_left_subrecord = i;
|
|
dtp->u.p.current_unit->continued = 0;
|
|
}
|
|
else
|
|
{
|
|
dtp->u.p.current_unit->bytes_left_subrecord = -i;
|
|
dtp->u.p.current_unit->continued = 1;
|
|
}
|
|
|
|
if (! continued)
|
|
dtp->u.p.current_unit->bytes_left = dtp->u.p.current_unit->recl;
|
|
}
|
|
|
|
|
|
/* Preposition a sequential unformatted file while writing. This
|
|
amount to writing a bogus length that will be filled in later. */
|
|
|
|
static void
|
|
us_write (st_parameter_dt *dtp, int continued)
|
|
{
|
|
size_t nbytes;
|
|
gfc_offset dummy;
|
|
|
|
dummy = 0;
|
|
|
|
if (compile_options.record_marker == 0)
|
|
nbytes = sizeof (GFC_INTEGER_4);
|
|
else
|
|
nbytes = compile_options.record_marker ;
|
|
|
|
if (swrite (dtp->u.p.current_unit->s, &dummy, &nbytes) != 0)
|
|
generate_error (&dtp->common, ERROR_OS, NULL);
|
|
|
|
/* For sequential unformatted, if RECL= was not specified in the OPEN
|
|
we write until we have more bytes than can fit in the subrecord
|
|
markers, then we write a new subrecord. */
|
|
|
|
dtp->u.p.current_unit->bytes_left_subrecord =
|
|
dtp->u.p.current_unit->recl_subrecord;
|
|
dtp->u.p.current_unit->continued = continued;
|
|
}
|
|
|
|
|
|
/* Position to the next record prior to transfer. We are assumed to
|
|
be before the next record. We also calculate the bytes in the next
|
|
record. */
|
|
|
|
static void
|
|
pre_position (st_parameter_dt *dtp)
|
|
{
|
|
if (dtp->u.p.current_unit->current_record)
|
|
return; /* Already positioned. */
|
|
|
|
switch (current_mode (dtp))
|
|
{
|
|
case FORMATTED_STREAM:
|
|
case UNFORMATTED_STREAM:
|
|
/* There are no records with stream I/O. Set the default position
|
|
to the beginning of the file if no position was specified. */
|
|
if ((dtp->common.flags & IOPARM_DT_HAS_REC) == 0)
|
|
dtp->u.p.current_unit->strm_pos = 1;
|
|
break;
|
|
|
|
case UNFORMATTED_SEQUENTIAL:
|
|
if (dtp->u.p.mode == READING)
|
|
us_read (dtp, 0);
|
|
else
|
|
us_write (dtp, 0);
|
|
|
|
break;
|
|
|
|
case FORMATTED_SEQUENTIAL:
|
|
case FORMATTED_DIRECT:
|
|
case UNFORMATTED_DIRECT:
|
|
dtp->u.p.current_unit->bytes_left = dtp->u.p.current_unit->recl;
|
|
break;
|
|
}
|
|
|
|
dtp->u.p.current_unit->current_record = 1;
|
|
}
|
|
|
|
|
|
/* Initialize things for a data transfer. This code is common for
|
|
both reading and writing. */
|
|
|
|
static void
|
|
data_transfer_init (st_parameter_dt *dtp, int read_flag)
|
|
{
|
|
unit_flags u_flags; /* Used for creating a unit if needed. */
|
|
GFC_INTEGER_4 cf = dtp->common.flags;
|
|
namelist_info *ionml;
|
|
|
|
ionml = ((cf & IOPARM_DT_IONML_SET) != 0) ? dtp->u.p.ionml : NULL;
|
|
memset (&dtp->u.p, 0, sizeof (dtp->u.p));
|
|
dtp->u.p.ionml = ionml;
|
|
dtp->u.p.mode = read_flag ? READING : WRITING;
|
|
|
|
if ((cf & IOPARM_DT_HAS_SIZE) != 0)
|
|
dtp->u.p.size_used = 0; /* Initialize the count. */
|
|
|
|
dtp->u.p.current_unit = get_unit (dtp, 1);
|
|
if (dtp->u.p.current_unit->s == NULL)
|
|
{ /* Open the unit with some default flags. */
|
|
st_parameter_open opp;
|
|
unit_convert conv;
|
|
|
|
if (dtp->common.unit < 0)
|
|
{
|
|
close_unit (dtp->u.p.current_unit);
|
|
dtp->u.p.current_unit = NULL;
|
|
generate_error (&dtp->common, ERROR_BAD_OPTION,
|
|
"Bad unit number in OPEN statement");
|
|
return;
|
|
}
|
|
memset (&u_flags, '\0', sizeof (u_flags));
|
|
u_flags.access = ACCESS_SEQUENTIAL;
|
|
u_flags.action = ACTION_READWRITE;
|
|
|
|
/* Is it unformatted? */
|
|
if (!(cf & (IOPARM_DT_HAS_FORMAT | IOPARM_DT_LIST_FORMAT
|
|
| IOPARM_DT_IONML_SET)))
|
|
u_flags.form = FORM_UNFORMATTED;
|
|
else
|
|
u_flags.form = FORM_UNSPECIFIED;
|
|
|
|
u_flags.delim = DELIM_UNSPECIFIED;
|
|
u_flags.blank = BLANK_UNSPECIFIED;
|
|
u_flags.pad = PAD_UNSPECIFIED;
|
|
u_flags.status = STATUS_UNKNOWN;
|
|
|
|
conv = get_unformatted_convert (dtp->common.unit);
|
|
|
|
if (conv == CONVERT_NONE)
|
|
conv = compile_options.convert;
|
|
|
|
/* We use l8_to_l4_offset, which is 0 on little-endian machines
|
|
and 1 on big-endian machines. */
|
|
switch (conv)
|
|
{
|
|
case CONVERT_NATIVE:
|
|
case CONVERT_SWAP:
|
|
break;
|
|
|
|
case CONVERT_BIG:
|
|
conv = l8_to_l4_offset ? CONVERT_NATIVE : CONVERT_SWAP;
|
|
break;
|
|
|
|
case CONVERT_LITTLE:
|
|
conv = l8_to_l4_offset ? CONVERT_SWAP : CONVERT_NATIVE;
|
|
break;
|
|
|
|
default:
|
|
internal_error (&opp.common, "Illegal value for CONVERT");
|
|
break;
|
|
}
|
|
|
|
u_flags.convert = conv;
|
|
|
|
opp.common = dtp->common;
|
|
opp.common.flags &= IOPARM_COMMON_MASK;
|
|
dtp->u.p.current_unit = new_unit (&opp, dtp->u.p.current_unit, &u_flags);
|
|
dtp->common.flags &= ~IOPARM_COMMON_MASK;
|
|
dtp->common.flags |= (opp.common.flags & IOPARM_COMMON_MASK);
|
|
if (dtp->u.p.current_unit == NULL)
|
|
return;
|
|
}
|
|
|
|
/* Check the action. */
|
|
|
|
if (read_flag && dtp->u.p.current_unit->flags.action == ACTION_WRITE)
|
|
generate_error (&dtp->common, ERROR_BAD_ACTION,
|
|
"Cannot read from file opened for WRITE");
|
|
|
|
if (!read_flag && dtp->u.p.current_unit->flags.action == ACTION_READ)
|
|
generate_error (&dtp->common, ERROR_BAD_ACTION,
|
|
"Cannot write to file opened for READ");
|
|
|
|
if ((dtp->common.flags & IOPARM_LIBRETURN_MASK) != IOPARM_LIBRETURN_OK)
|
|
return;
|
|
|
|
dtp->u.p.first_item = 1;
|
|
|
|
/* Check the format. */
|
|
|
|
if ((cf & IOPARM_DT_HAS_FORMAT) != 0)
|
|
parse_format (dtp);
|
|
|
|
if ((dtp->common.flags & IOPARM_LIBRETURN_MASK) != IOPARM_LIBRETURN_OK)
|
|
return;
|
|
|
|
if (dtp->u.p.current_unit->flags.form == FORM_UNFORMATTED
|
|
&& (cf & (IOPARM_DT_HAS_FORMAT | IOPARM_DT_LIST_FORMAT))
|
|
!= 0)
|
|
generate_error (&dtp->common, ERROR_OPTION_CONFLICT,
|
|
"Format present for UNFORMATTED data transfer");
|
|
|
|
if ((cf & IOPARM_DT_HAS_NAMELIST_NAME) != 0 && dtp->u.p.ionml != NULL)
|
|
{
|
|
if ((cf & IOPARM_DT_HAS_FORMAT) != 0)
|
|
generate_error (&dtp->common, ERROR_OPTION_CONFLICT,
|
|
"A format cannot be specified with a namelist");
|
|
}
|
|
else if (dtp->u.p.current_unit->flags.form == FORM_FORMATTED &&
|
|
!(cf & (IOPARM_DT_HAS_FORMAT | IOPARM_DT_LIST_FORMAT)))
|
|
generate_error (&dtp->common, ERROR_OPTION_CONFLICT,
|
|
"Missing format for FORMATTED data transfer");
|
|
|
|
if (is_internal_unit (dtp)
|
|
&& dtp->u.p.current_unit->flags.form == FORM_UNFORMATTED)
|
|
generate_error (&dtp->common, ERROR_OPTION_CONFLICT,
|
|
"Internal file cannot be accessed by UNFORMATTED data transfer");
|
|
|
|
/* Check the record or position number. */
|
|
|
|
if (dtp->u.p.current_unit->flags.access == ACCESS_DIRECT
|
|
&& (cf & IOPARM_DT_HAS_REC) == 0)
|
|
{
|
|
generate_error (&dtp->common, ERROR_MISSING_OPTION,
|
|
"Direct access data transfer requires record number");
|
|
return;
|
|
}
|
|
|
|
if (dtp->u.p.current_unit->flags.access == ACCESS_SEQUENTIAL
|
|
&& (cf & IOPARM_DT_HAS_REC) != 0)
|
|
{
|
|
generate_error (&dtp->common, ERROR_OPTION_CONFLICT,
|
|
"Record number not allowed for sequential access data transfer");
|
|
return;
|
|
}
|
|
|
|
/* Process the ADVANCE option. */
|
|
|
|
dtp->u.p.advance_status
|
|
= !(cf & IOPARM_DT_HAS_ADVANCE) ? ADVANCE_UNSPECIFIED :
|
|
find_option (&dtp->common, dtp->advance, dtp->advance_len, advance_opt,
|
|
"Bad ADVANCE parameter in data transfer statement");
|
|
|
|
if (dtp->u.p.advance_status != ADVANCE_UNSPECIFIED)
|
|
{
|
|
if (dtp->u.p.current_unit->flags.access == ACCESS_DIRECT)
|
|
generate_error (&dtp->common, ERROR_OPTION_CONFLICT,
|
|
"ADVANCE specification conflicts with sequential access");
|
|
|
|
if (is_internal_unit (dtp))
|
|
generate_error (&dtp->common, ERROR_OPTION_CONFLICT,
|
|
"ADVANCE specification conflicts with internal file");
|
|
|
|
if ((cf & (IOPARM_DT_HAS_FORMAT | IOPARM_DT_LIST_FORMAT))
|
|
!= IOPARM_DT_HAS_FORMAT)
|
|
generate_error (&dtp->common, ERROR_OPTION_CONFLICT,
|
|
"ADVANCE specification requires an explicit format");
|
|
}
|
|
|
|
if (read_flag)
|
|
{
|
|
if ((cf & IOPARM_EOR) != 0 && dtp->u.p.advance_status != ADVANCE_NO)
|
|
generate_error (&dtp->common, ERROR_MISSING_OPTION,
|
|
"EOR specification requires an ADVANCE specification of NO");
|
|
|
|
if ((cf & IOPARM_DT_HAS_SIZE) != 0 && dtp->u.p.advance_status != ADVANCE_NO)
|
|
generate_error (&dtp->common, ERROR_MISSING_OPTION,
|
|
"SIZE specification requires an ADVANCE specification of NO");
|
|
|
|
}
|
|
else
|
|
{ /* Write constraints. */
|
|
if ((cf & IOPARM_END) != 0)
|
|
generate_error (&dtp->common, ERROR_OPTION_CONFLICT,
|
|
"END specification cannot appear in a write statement");
|
|
|
|
if ((cf & IOPARM_EOR) != 0)
|
|
generate_error (&dtp->common, ERROR_OPTION_CONFLICT,
|
|
"EOR specification cannot appear in a write statement");
|
|
|
|
if ((cf & IOPARM_DT_HAS_SIZE) != 0)
|
|
generate_error (&dtp->common, ERROR_OPTION_CONFLICT,
|
|
"SIZE specification cannot appear in a write statement");
|
|
}
|
|
|
|
if (dtp->u.p.advance_status == ADVANCE_UNSPECIFIED)
|
|
dtp->u.p.advance_status = ADVANCE_YES;
|
|
if ((dtp->common.flags & IOPARM_LIBRETURN_MASK) != IOPARM_LIBRETURN_OK)
|
|
return;
|
|
|
|
/* Sanity checks on the record number. */
|
|
if ((cf & IOPARM_DT_HAS_REC) != 0)
|
|
{
|
|
if (dtp->rec <= 0)
|
|
{
|
|
generate_error (&dtp->common, ERROR_BAD_OPTION,
|
|
"Record number must be positive");
|
|
return;
|
|
}
|
|
|
|
if (dtp->rec >= dtp->u.p.current_unit->maxrec)
|
|
{
|
|
generate_error (&dtp->common, ERROR_BAD_OPTION,
|
|
"Record number too large");
|
|
return;
|
|
}
|
|
|
|
/* Check to see if we might be reading what we wrote before */
|
|
|
|
if (dtp->u.p.mode == READING
|
|
&& dtp->u.p.current_unit->mode == WRITING
|
|
&& !is_internal_unit (dtp))
|
|
flush(dtp->u.p.current_unit->s);
|
|
|
|
/* Check whether the record exists to be read. Only
|
|
a partial record needs to exist. */
|
|
|
|
if (dtp->u.p.mode == READING && (dtp->rec -1)
|
|
* dtp->u.p.current_unit->recl >= file_length (dtp->u.p.current_unit->s))
|
|
{
|
|
generate_error (&dtp->common, ERROR_BAD_OPTION,
|
|
"Non-existing record number");
|
|
return;
|
|
}
|
|
|
|
/* Position the file. */
|
|
if (!is_stream_io (dtp))
|
|
{
|
|
if (sseek (dtp->u.p.current_unit->s, (gfc_offset) (dtp->rec - 1)
|
|
* dtp->u.p.current_unit->recl) == FAILURE)
|
|
{
|
|
generate_error (&dtp->common, ERROR_OS, NULL);
|
|
return;
|
|
}
|
|
}
|
|
else
|
|
dtp->u.p.current_unit->strm_pos = dtp->rec;
|
|
|
|
}
|
|
|
|
/* Overwriting an existing sequential file ?
|
|
it is always safe to truncate the file on the first write */
|
|
if (dtp->u.p.mode == WRITING
|
|
&& dtp->u.p.current_unit->flags.access == ACCESS_SEQUENTIAL
|
|
&& dtp->u.p.current_unit->last_record == 0
|
|
&& !is_preconnected(dtp->u.p.current_unit->s))
|
|
struncate(dtp->u.p.current_unit->s);
|
|
|
|
/* Bugware for badly written mixed C-Fortran I/O. */
|
|
flush_if_preconnected(dtp->u.p.current_unit->s);
|
|
|
|
dtp->u.p.current_unit->mode = dtp->u.p.mode;
|
|
|
|
/* Set the initial value of flags. */
|
|
|
|
dtp->u.p.blank_status = dtp->u.p.current_unit->flags.blank;
|
|
dtp->u.p.sign_status = SIGN_S;
|
|
|
|
pre_position (dtp);
|
|
|
|
/* Set up the subroutine that will handle the transfers. */
|
|
|
|
if (read_flag)
|
|
{
|
|
if (dtp->u.p.current_unit->flags.form == FORM_UNFORMATTED)
|
|
dtp->u.p.transfer = unformatted_read;
|
|
else
|
|
{
|
|
if ((cf & IOPARM_DT_LIST_FORMAT) != 0)
|
|
dtp->u.p.transfer = list_formatted_read;
|
|
else
|
|
dtp->u.p.transfer = formatted_transfer;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (dtp->u.p.current_unit->flags.form == FORM_UNFORMATTED)
|
|
dtp->u.p.transfer = unformatted_write;
|
|
else
|
|
{
|
|
if ((cf & IOPARM_DT_LIST_FORMAT) != 0)
|
|
dtp->u.p.transfer = list_formatted_write;
|
|
else
|
|
dtp->u.p.transfer = formatted_transfer;
|
|
}
|
|
}
|
|
|
|
/* Make sure that we don't do a read after a nonadvancing write. */
|
|
|
|
if (read_flag)
|
|
{
|
|
if (dtp->u.p.current_unit->read_bad && !is_stream_io (dtp))
|
|
{
|
|
generate_error (&dtp->common, ERROR_BAD_OPTION,
|
|
"Cannot READ after a nonadvancing WRITE");
|
|
return;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (dtp->u.p.advance_status == ADVANCE_YES && !dtp->u.p.seen_dollar)
|
|
dtp->u.p.current_unit->read_bad = 1;
|
|
}
|
|
|
|
/* Start the data transfer if we are doing a formatted transfer. */
|
|
if (dtp->u.p.current_unit->flags.form == FORM_FORMATTED
|
|
&& ((cf & (IOPARM_DT_LIST_FORMAT | IOPARM_DT_HAS_NAMELIST_NAME)) == 0)
|
|
&& dtp->u.p.ionml == NULL)
|
|
formatted_transfer (dtp, 0, NULL, 0, 0, 1);
|
|
}
|
|
|
|
/* Initialize an array_loop_spec given the array descriptor. The function
|
|
returns the index of the last element of the array. */
|
|
|
|
gfc_offset
|
|
init_loop_spec (gfc_array_char *desc, array_loop_spec *ls)
|
|
{
|
|
int rank = GFC_DESCRIPTOR_RANK(desc);
|
|
int i;
|
|
gfc_offset index;
|
|
|
|
index = 1;
|
|
for (i=0; i<rank; i++)
|
|
{
|
|
ls[i].idx = 1;
|
|
ls[i].start = desc->dim[i].lbound;
|
|
ls[i].end = desc->dim[i].ubound;
|
|
ls[i].step = desc->dim[i].stride;
|
|
|
|
index += (desc->dim[i].ubound - desc->dim[i].lbound)
|
|
* desc->dim[i].stride;
|
|
}
|
|
return index;
|
|
}
|
|
|
|
/* Determine the index to the next record in an internal unit array by
|
|
by incrementing through the array_loop_spec. TODO: Implement handling
|
|
negative strides. */
|
|
|
|
gfc_offset
|
|
next_array_record (st_parameter_dt *dtp, array_loop_spec *ls)
|
|
{
|
|
int i, carry;
|
|
gfc_offset index;
|
|
|
|
carry = 1;
|
|
index = 0;
|
|
|
|
for (i = 0; i < dtp->u.p.current_unit->rank; i++)
|
|
{
|
|
if (carry)
|
|
{
|
|
ls[i].idx++;
|
|
if (ls[i].idx > ls[i].end)
|
|
{
|
|
ls[i].idx = ls[i].start;
|
|
carry = 1;
|
|
}
|
|
else
|
|
carry = 0;
|
|
}
|
|
index = index + (ls[i].idx - 1) * ls[i].step;
|
|
}
|
|
return index;
|
|
}
|
|
|
|
|
|
|
|
/* Skip to the end of the current record, taking care of an optional
|
|
record marker of size bytes. If the file is not seekable, we
|
|
read chunks of size MAX_READ until we get to the right
|
|
position. */
|
|
|
|
#define MAX_READ 4096
|
|
|
|
static void
|
|
skip_record (st_parameter_dt *dtp, size_t bytes)
|
|
{
|
|
gfc_offset new;
|
|
int rlength, length;
|
|
char *p;
|
|
|
|
dtp->u.p.current_unit->bytes_left_subrecord += bytes;
|
|
if (dtp->u.p.current_unit->bytes_left_subrecord == 0)
|
|
return;
|
|
|
|
if (is_seekable (dtp->u.p.current_unit->s))
|
|
{
|
|
new = file_position (dtp->u.p.current_unit->s)
|
|
+ dtp->u.p.current_unit->bytes_left_subrecord;
|
|
|
|
/* Direct access files do not generate END conditions,
|
|
only I/O errors. */
|
|
if (sseek (dtp->u.p.current_unit->s, new) == FAILURE)
|
|
generate_error (&dtp->common, ERROR_OS, NULL);
|
|
}
|
|
else
|
|
{ /* Seek by reading data. */
|
|
while (dtp->u.p.current_unit->bytes_left_subrecord > 0)
|
|
{
|
|
rlength = length =
|
|
(MAX_READ > dtp->u.p.current_unit->bytes_left_subrecord) ?
|
|
MAX_READ : dtp->u.p.current_unit->bytes_left_subrecord;
|
|
|
|
p = salloc_r (dtp->u.p.current_unit->s, &rlength);
|
|
if (p == NULL)
|
|
{
|
|
generate_error (&dtp->common, ERROR_OS, NULL);
|
|
return;
|
|
}
|
|
|
|
dtp->u.p.current_unit->bytes_left_subrecord -= length;
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
#undef MAX_READ
|
|
|
|
/* Advance to the next record reading unformatted files, taking
|
|
care of subrecords. If complete_record is nonzero, we loop
|
|
until all subrecords are cleared. */
|
|
|
|
static void
|
|
next_record_r_unf (st_parameter_dt *dtp, int complete_record)
|
|
{
|
|
size_t bytes;
|
|
|
|
bytes = compile_options.record_marker == 0 ?
|
|
sizeof (GFC_INTEGER_4) : compile_options.record_marker;
|
|
|
|
while(1)
|
|
{
|
|
|
|
/* Skip over tail */
|
|
|
|
skip_record (dtp, bytes);
|
|
|
|
if ( ! (complete_record && dtp->u.p.current_unit->continued))
|
|
return;
|
|
|
|
us_read (dtp, 1);
|
|
}
|
|
}
|
|
|
|
/* Space to the next record for read mode. */
|
|
|
|
static void
|
|
next_record_r (st_parameter_dt *dtp)
|
|
{
|
|
gfc_offset record;
|
|
int length, bytes_left;
|
|
char *p;
|
|
|
|
switch (current_mode (dtp))
|
|
{
|
|
/* No records in unformatted STREAM I/O. */
|
|
case UNFORMATTED_STREAM:
|
|
return;
|
|
|
|
case UNFORMATTED_SEQUENTIAL:
|
|
next_record_r_unf (dtp, 1);
|
|
break;
|
|
|
|
case FORMATTED_DIRECT:
|
|
case UNFORMATTED_DIRECT:
|
|
skip_record (dtp, 0);
|
|
break;
|
|
|
|
case FORMATTED_STREAM:
|
|
case FORMATTED_SEQUENTIAL:
|
|
length = 1;
|
|
/* sf_read has already terminated input because of an '\n' */
|
|
if (dtp->u.p.sf_seen_eor)
|
|
{
|
|
dtp->u.p.sf_seen_eor = 0;
|
|
break;
|
|
}
|
|
|
|
if (is_internal_unit (dtp))
|
|
{
|
|
if (is_array_io (dtp))
|
|
{
|
|
record = next_array_record (dtp, dtp->u.p.current_unit->ls);
|
|
|
|
/* Now seek to this record. */
|
|
record = record * dtp->u.p.current_unit->recl;
|
|
if (sseek (dtp->u.p.current_unit->s, record) == FAILURE)
|
|
{
|
|
generate_error (&dtp->common, ERROR_INTERNAL_UNIT, NULL);
|
|
break;
|
|
}
|
|
dtp->u.p.current_unit->bytes_left = dtp->u.p.current_unit->recl;
|
|
}
|
|
else
|
|
{
|
|
bytes_left = (int) dtp->u.p.current_unit->bytes_left;
|
|
p = salloc_r (dtp->u.p.current_unit->s, &bytes_left);
|
|
if (p != NULL)
|
|
dtp->u.p.current_unit->bytes_left
|
|
= dtp->u.p.current_unit->recl;
|
|
}
|
|
break;
|
|
}
|
|
else do
|
|
{
|
|
p = salloc_r (dtp->u.p.current_unit->s, &length);
|
|
|
|
if (p == NULL)
|
|
{
|
|
generate_error (&dtp->common, ERROR_OS, NULL);
|
|
break;
|
|
}
|
|
|
|
if (length == 0)
|
|
{
|
|
dtp->u.p.current_unit->endfile = AT_ENDFILE;
|
|
break;
|
|
}
|
|
|
|
if (is_stream_io (dtp))
|
|
dtp->u.p.current_unit->strm_pos++;
|
|
}
|
|
while (*p != '\n');
|
|
|
|
break;
|
|
}
|
|
|
|
if (dtp->u.p.current_unit->flags.access == ACCESS_SEQUENTIAL)
|
|
test_endfile (dtp->u.p.current_unit);
|
|
}
|
|
|
|
|
|
/* Small utility function to write a record marker, taking care of
|
|
byte swapping and of choosing the correct size. */
|
|
|
|
inline static int
|
|
write_us_marker (st_parameter_dt *dtp, const gfc_offset buf)
|
|
{
|
|
size_t len;
|
|
GFC_INTEGER_4 buf4;
|
|
GFC_INTEGER_8 buf8;
|
|
char p[sizeof (GFC_INTEGER_8)];
|
|
|
|
if (compile_options.record_marker == 0)
|
|
len = sizeof (GFC_INTEGER_4);
|
|
else
|
|
len = compile_options.record_marker;
|
|
|
|
/* Only CONVERT_NATIVE and CONVERT_SWAP are valid here. */
|
|
if (dtp->u.p.current_unit->flags.convert == CONVERT_NATIVE)
|
|
{
|
|
switch (len)
|
|
{
|
|
case sizeof (GFC_INTEGER_4):
|
|
buf4 = buf;
|
|
return swrite (dtp->u.p.current_unit->s, &buf4, &len);
|
|
break;
|
|
|
|
case sizeof (GFC_INTEGER_8):
|
|
buf8 = buf;
|
|
return swrite (dtp->u.p.current_unit->s, &buf8, &len);
|
|
break;
|
|
|
|
default:
|
|
runtime_error ("Illegal value for record marker");
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
switch (len)
|
|
{
|
|
case sizeof (GFC_INTEGER_4):
|
|
buf4 = buf;
|
|
reverse_memcpy (p, &buf4, sizeof (GFC_INTEGER_4));
|
|
return swrite (dtp->u.p.current_unit->s, p, &len);
|
|
break;
|
|
|
|
case sizeof (GFC_INTEGER_8):
|
|
buf8 = buf;
|
|
reverse_memcpy (p, &buf8, sizeof (GFC_INTEGER_8));
|
|
return swrite (dtp->u.p.current_unit->s, p, &len);
|
|
break;
|
|
|
|
default:
|
|
runtime_error ("Illegal value for record marker");
|
|
break;
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
/* Position to the next (sub)record in write mode for
|
|
unformatted sequential files. */
|
|
|
|
static void
|
|
next_record_w_unf (st_parameter_dt *dtp, int next_subrecord)
|
|
{
|
|
gfc_offset c, m, m_write;
|
|
size_t record_marker;
|
|
|
|
/* Bytes written. */
|
|
m = dtp->u.p.current_unit->recl_subrecord
|
|
- dtp->u.p.current_unit->bytes_left_subrecord;
|
|
c = file_position (dtp->u.p.current_unit->s);
|
|
|
|
/* Write the length tail. If we finish a record containing
|
|
subrecords, we write out the negative length. */
|
|
|
|
if (dtp->u.p.current_unit->continued)
|
|
m_write = -m;
|
|
else
|
|
m_write = m;
|
|
|
|
if (write_us_marker (dtp, m_write) != 0)
|
|
goto io_error;
|
|
|
|
if (compile_options.record_marker == 0)
|
|
record_marker = sizeof (GFC_INTEGER_4);
|
|
else
|
|
record_marker = compile_options.record_marker;
|
|
|
|
/* Seek to the head and overwrite the bogus length with the real
|
|
length. */
|
|
|
|
if (sseek (dtp->u.p.current_unit->s, c - m - record_marker)
|
|
== FAILURE)
|
|
goto io_error;
|
|
|
|
if (next_subrecord)
|
|
m_write = -m;
|
|
else
|
|
m_write = m;
|
|
|
|
if (write_us_marker (dtp, m_write) != 0)
|
|
goto io_error;
|
|
|
|
/* Seek past the end of the current record. */
|
|
|
|
if (sseek (dtp->u.p.current_unit->s, c + record_marker) == FAILURE)
|
|
goto io_error;
|
|
|
|
return;
|
|
|
|
io_error:
|
|
generate_error (&dtp->common, ERROR_OS, NULL);
|
|
return;
|
|
|
|
}
|
|
|
|
/* Position to the next record in write mode. */
|
|
|
|
static void
|
|
next_record_w (st_parameter_dt *dtp, int done)
|
|
{
|
|
gfc_offset m, record, max_pos;
|
|
int length;
|
|
char *p;
|
|
|
|
/* Zero counters for X- and T-editing. */
|
|
max_pos = dtp->u.p.max_pos;
|
|
dtp->u.p.max_pos = dtp->u.p.skips = dtp->u.p.pending_spaces = 0;
|
|
|
|
switch (current_mode (dtp))
|
|
{
|
|
/* No records in unformatted STREAM I/O. */
|
|
case UNFORMATTED_STREAM:
|
|
return;
|
|
|
|
case FORMATTED_DIRECT:
|
|
if (dtp->u.p.current_unit->bytes_left == 0)
|
|
break;
|
|
|
|
if (sset (dtp->u.p.current_unit->s, ' ',
|
|
dtp->u.p.current_unit->bytes_left) == FAILURE)
|
|
goto io_error;
|
|
|
|
break;
|
|
|
|
case UNFORMATTED_DIRECT:
|
|
if (sfree (dtp->u.p.current_unit->s) == FAILURE)
|
|
goto io_error;
|
|
break;
|
|
|
|
case UNFORMATTED_SEQUENTIAL:
|
|
next_record_w_unf (dtp, 0);
|
|
break;
|
|
|
|
case FORMATTED_STREAM:
|
|
case FORMATTED_SEQUENTIAL:
|
|
|
|
if (is_internal_unit (dtp))
|
|
{
|
|
if (is_array_io (dtp))
|
|
{
|
|
length = (int) dtp->u.p.current_unit->bytes_left;
|
|
|
|
/* If the farthest position reached is greater than current
|
|
position, adjust the position and set length to pad out
|
|
whats left. Otherwise just pad whats left.
|
|
(for character array unit) */
|
|
m = dtp->u.p.current_unit->recl
|
|
- dtp->u.p.current_unit->bytes_left;
|
|
if (max_pos > m)
|
|
{
|
|
length = (int) (max_pos - m);
|
|
p = salloc_w (dtp->u.p.current_unit->s, &length);
|
|
length = (int) (dtp->u.p.current_unit->recl - max_pos);
|
|
}
|
|
|
|
if (sset (dtp->u.p.current_unit->s, ' ', length) == FAILURE)
|
|
{
|
|
generate_error (&dtp->common, ERROR_END, NULL);
|
|
return;
|
|
}
|
|
|
|
/* Now that the current record has been padded out,
|
|
determine where the next record in the array is. */
|
|
record = next_array_record (dtp, dtp->u.p.current_unit->ls);
|
|
if (record == 0)
|
|
dtp->u.p.current_unit->endfile = AT_ENDFILE;
|
|
|
|
/* Now seek to this record */
|
|
record = record * dtp->u.p.current_unit->recl;
|
|
|
|
if (sseek (dtp->u.p.current_unit->s, record) == FAILURE)
|
|
{
|
|
generate_error (&dtp->common, ERROR_INTERNAL_UNIT, NULL);
|
|
return;
|
|
}
|
|
|
|
dtp->u.p.current_unit->bytes_left = dtp->u.p.current_unit->recl;
|
|
}
|
|
else
|
|
{
|
|
length = 1;
|
|
|
|
/* If this is the last call to next_record move to the farthest
|
|
position reached and set length to pad out the remainder
|
|
of the record. (for character scaler unit) */
|
|
if (done)
|
|
{
|
|
m = dtp->u.p.current_unit->recl
|
|
- dtp->u.p.current_unit->bytes_left;
|
|
if (max_pos > m)
|
|
{
|
|
length = (int) (max_pos - m);
|
|
p = salloc_w (dtp->u.p.current_unit->s, &length);
|
|
length = (int) (dtp->u.p.current_unit->recl - max_pos);
|
|
}
|
|
else
|
|
length = (int) dtp->u.p.current_unit->bytes_left;
|
|
}
|
|
|
|
if (sset (dtp->u.p.current_unit->s, ' ', length) == FAILURE)
|
|
{
|
|
generate_error (&dtp->common, ERROR_END, NULL);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
|
|
/* If this is the last call to next_record move to the farthest
|
|
position reached in preparation for completing the record.
|
|
(for file unit) */
|
|
if (done)
|
|
{
|
|
m = dtp->u.p.current_unit->recl -
|
|
dtp->u.p.current_unit->bytes_left;
|
|
if (max_pos > m)
|
|
{
|
|
length = (int) (max_pos - m);
|
|
p = salloc_w (dtp->u.p.current_unit->s, &length);
|
|
}
|
|
}
|
|
size_t len;
|
|
const char crlf[] = "\r\n";
|
|
#ifdef HAVE_CRLF
|
|
len = 2;
|
|
#else
|
|
len = 1;
|
|
#endif
|
|
if (swrite (dtp->u.p.current_unit->s, &crlf[2-len], &len) != 0)
|
|
goto io_error;
|
|
|
|
if (is_stream_io (dtp))
|
|
dtp->u.p.current_unit->strm_pos += len;
|
|
}
|
|
|
|
break;
|
|
|
|
io_error:
|
|
generate_error (&dtp->common, ERROR_OS, NULL);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Position to the next record, which means moving to the end of the
|
|
current record. This can happen under several different
|
|
conditions. If the done flag is not set, we get ready to process
|
|
the next record. */
|
|
|
|
void
|
|
next_record (st_parameter_dt *dtp, int done)
|
|
{
|
|
gfc_offset fp; /* File position. */
|
|
|
|
dtp->u.p.current_unit->read_bad = 0;
|
|
|
|
if (dtp->u.p.mode == READING)
|
|
next_record_r (dtp);
|
|
else
|
|
next_record_w (dtp, done);
|
|
|
|
if (!is_stream_io (dtp))
|
|
{
|
|
/* keep position up to date for INQUIRE */
|
|
dtp->u.p.current_unit->flags.position = POSITION_ASIS;
|
|
dtp->u.p.current_unit->current_record = 0;
|
|
if (dtp->u.p.current_unit->flags.access == ACCESS_DIRECT)
|
|
{
|
|
fp = file_position (dtp->u.p.current_unit->s);
|
|
/* Calculate next record, rounding up partial records. */
|
|
dtp->u.p.current_unit->last_record =
|
|
(fp + dtp->u.p.current_unit->recl - 1) /
|
|
dtp->u.p.current_unit->recl;
|
|
}
|
|
else
|
|
dtp->u.p.current_unit->last_record++;
|
|
}
|
|
|
|
if (!done)
|
|
pre_position (dtp);
|
|
}
|
|
|
|
|
|
/* Finalize the current data transfer. For a nonadvancing transfer,
|
|
this means advancing to the next record. For internal units close the
|
|
stream associated with the unit. */
|
|
|
|
static void
|
|
finalize_transfer (st_parameter_dt *dtp)
|
|
{
|
|
jmp_buf eof_jump;
|
|
GFC_INTEGER_4 cf = dtp->common.flags;
|
|
|
|
if ((dtp->common.flags & IOPARM_DT_HAS_SIZE) != 0)
|
|
*dtp->size = (GFC_INTEGER_4) dtp->u.p.size_used;
|
|
|
|
if (dtp->u.p.eor_condition)
|
|
{
|
|
generate_error (&dtp->common, ERROR_EOR, NULL);
|
|
return;
|
|
}
|
|
|
|
if ((dtp->common.flags & IOPARM_LIBRETURN_MASK) != IOPARM_LIBRETURN_OK)
|
|
return;
|
|
|
|
if ((dtp->u.p.ionml != NULL)
|
|
&& (cf & IOPARM_DT_HAS_NAMELIST_NAME) != 0)
|
|
{
|
|
if ((cf & IOPARM_DT_NAMELIST_READ_MODE) != 0)
|
|
namelist_read (dtp);
|
|
else
|
|
namelist_write (dtp);
|
|
}
|
|
|
|
dtp->u.p.transfer = NULL;
|
|
if (dtp->u.p.current_unit == NULL)
|
|
return;
|
|
|
|
dtp->u.p.eof_jump = &eof_jump;
|
|
if (setjmp (eof_jump))
|
|
{
|
|
generate_error (&dtp->common, ERROR_END, NULL);
|
|
return;
|
|
}
|
|
|
|
if ((cf & IOPARM_DT_LIST_FORMAT) != 0 && dtp->u.p.mode == READING)
|
|
{
|
|
finish_list_read (dtp);
|
|
sfree (dtp->u.p.current_unit->s);
|
|
return;
|
|
}
|
|
|
|
if (is_stream_io (dtp))
|
|
{
|
|
if (dtp->u.p.current_unit->flags.form == FORM_FORMATTED)
|
|
next_record (dtp, 1);
|
|
flush (dtp->u.p.current_unit->s);
|
|
sfree (dtp->u.p.current_unit->s);
|
|
return;
|
|
}
|
|
|
|
dtp->u.p.current_unit->current_record = 0;
|
|
|
|
if (!is_internal_unit (dtp) && dtp->u.p.seen_dollar)
|
|
{
|
|
dtp->u.p.seen_dollar = 0;
|
|
sfree (dtp->u.p.current_unit->s);
|
|
return;
|
|
}
|
|
|
|
if (dtp->u.p.advance_status == ADVANCE_NO)
|
|
{
|
|
flush (dtp->u.p.current_unit->s);
|
|
return;
|
|
}
|
|
|
|
next_record (dtp, 1);
|
|
sfree (dtp->u.p.current_unit->s);
|
|
}
|
|
|
|
/* Transfer function for IOLENGTH. It doesn't actually do any
|
|
data transfer, it just updates the length counter. */
|
|
|
|
static void
|
|
iolength_transfer (st_parameter_dt *dtp, bt type __attribute__((unused)),
|
|
void *dest __attribute__ ((unused)),
|
|
int kind __attribute__((unused)),
|
|
size_t size, size_t nelems)
|
|
{
|
|
if ((dtp->common.flags & IOPARM_DT_HAS_IOLENGTH) != 0)
|
|
*dtp->iolength += (GFC_INTEGER_4) size * nelems;
|
|
}
|
|
|
|
|
|
/* Initialize the IOLENGTH data transfer. This function is in essence
|
|
a very much simplified version of data_transfer_init(), because it
|
|
doesn't have to deal with units at all. */
|
|
|
|
static void
|
|
iolength_transfer_init (st_parameter_dt *dtp)
|
|
{
|
|
if ((dtp->common.flags & IOPARM_DT_HAS_IOLENGTH) != 0)
|
|
*dtp->iolength = 0;
|
|
|
|
memset (&dtp->u.p, 0, sizeof (dtp->u.p));
|
|
|
|
/* Set up the subroutine that will handle the transfers. */
|
|
|
|
dtp->u.p.transfer = iolength_transfer;
|
|
}
|
|
|
|
|
|
/* Library entry point for the IOLENGTH form of the INQUIRE
|
|
statement. The IOLENGTH form requires no I/O to be performed, but
|
|
it must still be a runtime library call so that we can determine
|
|
the iolength for dynamic arrays and such. */
|
|
|
|
extern void st_iolength (st_parameter_dt *);
|
|
export_proto(st_iolength);
|
|
|
|
void
|
|
st_iolength (st_parameter_dt *dtp)
|
|
{
|
|
library_start (&dtp->common);
|
|
iolength_transfer_init (dtp);
|
|
}
|
|
|
|
extern void st_iolength_done (st_parameter_dt *);
|
|
export_proto(st_iolength_done);
|
|
|
|
void
|
|
st_iolength_done (st_parameter_dt *dtp __attribute__((unused)))
|
|
{
|
|
free_ionml (dtp);
|
|
if (dtp->u.p.scratch != NULL)
|
|
free_mem (dtp->u.p.scratch);
|
|
library_end ();
|
|
}
|
|
|
|
|
|
/* The READ statement. */
|
|
|
|
extern void st_read (st_parameter_dt *);
|
|
export_proto(st_read);
|
|
|
|
void
|
|
st_read (st_parameter_dt *dtp)
|
|
{
|
|
library_start (&dtp->common);
|
|
|
|
data_transfer_init (dtp, 1);
|
|
|
|
/* Handle complications dealing with the endfile record. It is
|
|
significant that this is the only place where ERROR_END is
|
|
generated. Reading an end of file elsewhere is either end of
|
|
record or an I/O error. */
|
|
|
|
if (dtp->u.p.current_unit->flags.access == ACCESS_SEQUENTIAL)
|
|
switch (dtp->u.p.current_unit->endfile)
|
|
{
|
|
case NO_ENDFILE:
|
|
break;
|
|
|
|
case AT_ENDFILE:
|
|
if (!is_internal_unit (dtp))
|
|
{
|
|
generate_error (&dtp->common, ERROR_END, NULL);
|
|
dtp->u.p.current_unit->endfile = AFTER_ENDFILE;
|
|
dtp->u.p.current_unit->current_record = 0;
|
|
}
|
|
break;
|
|
|
|
case AFTER_ENDFILE:
|
|
generate_error (&dtp->common, ERROR_ENDFILE, NULL);
|
|
dtp->u.p.current_unit->current_record = 0;
|
|
break;
|
|
}
|
|
}
|
|
|
|
extern void st_read_done (st_parameter_dt *);
|
|
export_proto(st_read_done);
|
|
|
|
void
|
|
st_read_done (st_parameter_dt *dtp)
|
|
{
|
|
finalize_transfer (dtp);
|
|
free_format_data (dtp);
|
|
free_ionml (dtp);
|
|
if (dtp->u.p.scratch != NULL)
|
|
free_mem (dtp->u.p.scratch);
|
|
if (dtp->u.p.current_unit != NULL)
|
|
unlock_unit (dtp->u.p.current_unit);
|
|
|
|
free_internal_unit (dtp);
|
|
|
|
library_end ();
|
|
}
|
|
|
|
extern void st_write (st_parameter_dt *);
|
|
export_proto(st_write);
|
|
|
|
void
|
|
st_write (st_parameter_dt *dtp)
|
|
{
|
|
library_start (&dtp->common);
|
|
data_transfer_init (dtp, 0);
|
|
}
|
|
|
|
extern void st_write_done (st_parameter_dt *);
|
|
export_proto(st_write_done);
|
|
|
|
void
|
|
st_write_done (st_parameter_dt *dtp)
|
|
{
|
|
finalize_transfer (dtp);
|
|
|
|
/* Deal with endfile conditions associated with sequential files. */
|
|
|
|
if (dtp->u.p.current_unit != NULL
|
|
&& dtp->u.p.current_unit->flags.access == ACCESS_SEQUENTIAL)
|
|
switch (dtp->u.p.current_unit->endfile)
|
|
{
|
|
case AT_ENDFILE: /* Remain at the endfile record. */
|
|
break;
|
|
|
|
case AFTER_ENDFILE:
|
|
dtp->u.p.current_unit->endfile = AT_ENDFILE; /* Just at it now. */
|
|
break;
|
|
|
|
case NO_ENDFILE:
|
|
/* Get rid of whatever is after this record. */
|
|
if (!is_internal_unit (dtp))
|
|
{
|
|
flush (dtp->u.p.current_unit->s);
|
|
if (struncate (dtp->u.p.current_unit->s) == FAILURE)
|
|
generate_error (&dtp->common, ERROR_OS, NULL);
|
|
}
|
|
dtp->u.p.current_unit->endfile = AT_ENDFILE;
|
|
break;
|
|
}
|
|
|
|
free_format_data (dtp);
|
|
free_ionml (dtp);
|
|
if (dtp->u.p.scratch != NULL)
|
|
free_mem (dtp->u.p.scratch);
|
|
if (dtp->u.p.current_unit != NULL)
|
|
unlock_unit (dtp->u.p.current_unit);
|
|
|
|
free_internal_unit (dtp);
|
|
|
|
library_end ();
|
|
}
|
|
|
|
/* Receives the scalar information for namelist objects and stores it
|
|
in a linked list of namelist_info types. */
|
|
|
|
extern void st_set_nml_var (st_parameter_dt *dtp, void *, char *,
|
|
GFC_INTEGER_4, gfc_charlen_type, GFC_INTEGER_4);
|
|
export_proto(st_set_nml_var);
|
|
|
|
|
|
void
|
|
st_set_nml_var (st_parameter_dt *dtp, void * var_addr, char * var_name,
|
|
GFC_INTEGER_4 len, gfc_charlen_type string_length,
|
|
GFC_INTEGER_4 dtype)
|
|
{
|
|
namelist_info *t1 = NULL;
|
|
namelist_info *nml;
|
|
|
|
nml = (namelist_info*) get_mem (sizeof (namelist_info));
|
|
|
|
nml->mem_pos = var_addr;
|
|
|
|
nml->var_name = (char*) get_mem (strlen (var_name) + 1);
|
|
strcpy (nml->var_name, var_name);
|
|
|
|
nml->len = (int) len;
|
|
nml->string_length = (index_type) string_length;
|
|
|
|
nml->var_rank = (int) (dtype & GFC_DTYPE_RANK_MASK);
|
|
nml->size = (index_type) (dtype >> GFC_DTYPE_SIZE_SHIFT);
|
|
nml->type = (bt) ((dtype & GFC_DTYPE_TYPE_MASK) >> GFC_DTYPE_TYPE_SHIFT);
|
|
|
|
if (nml->var_rank > 0)
|
|
{
|
|
nml->dim = (descriptor_dimension*)
|
|
get_mem (nml->var_rank * sizeof (descriptor_dimension));
|
|
nml->ls = (array_loop_spec*)
|
|
get_mem (nml->var_rank * sizeof (array_loop_spec));
|
|
}
|
|
else
|
|
{
|
|
nml->dim = NULL;
|
|
nml->ls = NULL;
|
|
}
|
|
|
|
nml->next = NULL;
|
|
|
|
if ((dtp->common.flags & IOPARM_DT_IONML_SET) == 0)
|
|
{
|
|
dtp->common.flags |= IOPARM_DT_IONML_SET;
|
|
dtp->u.p.ionml = nml;
|
|
}
|
|
else
|
|
{
|
|
for (t1 = dtp->u.p.ionml; t1->next; t1 = t1->next);
|
|
t1->next = nml;
|
|
}
|
|
}
|
|
|
|
/* Store the dimensional information for the namelist object. */
|
|
extern void st_set_nml_var_dim (st_parameter_dt *, GFC_INTEGER_4,
|
|
GFC_INTEGER_4, GFC_INTEGER_4,
|
|
GFC_INTEGER_4);
|
|
export_proto(st_set_nml_var_dim);
|
|
|
|
void
|
|
st_set_nml_var_dim (st_parameter_dt *dtp, GFC_INTEGER_4 n_dim,
|
|
GFC_INTEGER_4 stride, GFC_INTEGER_4 lbound,
|
|
GFC_INTEGER_4 ubound)
|
|
{
|
|
namelist_info * nml;
|
|
int n;
|
|
|
|
n = (int)n_dim;
|
|
|
|
for (nml = dtp->u.p.ionml; nml->next; nml = nml->next);
|
|
|
|
nml->dim[n].stride = (ssize_t)stride;
|
|
nml->dim[n].lbound = (ssize_t)lbound;
|
|
nml->dim[n].ubound = (ssize_t)ubound;
|
|
}
|
|
|
|
/* Reverse memcpy - used for byte swapping. */
|
|
|
|
void reverse_memcpy (void *dest, const void *src, size_t n)
|
|
{
|
|
char *d, *s;
|
|
size_t i;
|
|
|
|
d = (char *) dest;
|
|
s = (char *) src + n - 1;
|
|
|
|
/* Write with ascending order - this is likely faster
|
|
on modern architectures because of write combining. */
|
|
for (i=0; i<n; i++)
|
|
*(d++) = *(s--);
|
|
}
|