332 lines
7.6 KiB
C
332 lines
7.6 KiB
C
/* Copyright (C) 2007-2022 Free Software Foundation, Inc.
|
|
|
|
This file is part of GCC.
|
|
|
|
GCC is free software; you can redistribute it and/or modify it under
|
|
the terms of the GNU General Public License as published by the Free
|
|
Software Foundation; either version 3, or (at your option) any later
|
|
version.
|
|
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
Under Section 7 of GPL version 3, you are granted additional
|
|
permissions described in the GCC Runtime Library Exception, version
|
|
3.1, as published by the Free Software Foundation.
|
|
|
|
You should have received a copy of the GNU General Public License and
|
|
a copy of the GCC Runtime Library Exception along with this program;
|
|
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#ifndef _SQRT_MACROS_H_
|
|
#define _SQRT_MACROS_H_
|
|
|
|
#define FENCE __fence
|
|
|
|
#if DOUBLE_EXTENDED_ON
|
|
|
|
extern BINARY80 SQRT80 (BINARY80);
|
|
|
|
|
|
__BID_INLINE__ UINT64
|
|
short_sqrt128 (UINT128 A10) {
|
|
BINARY80 lx, ly, l64;
|
|
int_float f64;
|
|
|
|
// 2^64
|
|
f64.i = 0x5f800000;
|
|
l64 = (BINARY80) f64.d;
|
|
lx = (BINARY80) A10.w[1] * l64 + (BINARY80) A10.w[0];
|
|
ly = SQRT80 (lx);
|
|
return (UINT64) ly;
|
|
}
|
|
|
|
|
|
__BID_INLINE__ void
|
|
long_sqrt128 (UINT128 * pCS, UINT256 C256) {
|
|
UINT256 C4;
|
|
UINT128 CS;
|
|
UINT64 X;
|
|
SINT64 SE;
|
|
BINARY80 l64, lm64, l128, lxL, lx, ly, lS, lSH, lSL, lE, l3, l2,
|
|
l1, l0, lp, lCl;
|
|
int_float fx, f64, fm64;
|
|
int *ple = (int *) &lx;
|
|
|
|
// 2^64
|
|
f64.i = 0x5f800000;
|
|
l64 = (BINARY80) f64.d;
|
|
|
|
l128 = l64 * l64;
|
|
lx = l3 = (BINARY80) C256.w[3] * l64 * l128;
|
|
l2 = (BINARY80) C256.w[2] * l128;
|
|
lx = FENCE (lx + l2);
|
|
l1 = (BINARY80) C256.w[1] * l64;
|
|
lx = FENCE (lx + l1);
|
|
l0 = (BINARY80) C256.w[0];
|
|
lx = FENCE (lx + l0);
|
|
// sqrt(C256)
|
|
lS = SQRT80 (lx);
|
|
|
|
// get coefficient
|
|
// 2^(-64)
|
|
fm64.i = 0x1f800000;
|
|
lm64 = (BINARY80) fm64.d;
|
|
CS.w[1] = (UINT64) (lS * lm64);
|
|
CS.w[0] = (UINT64) (lS - (BINARY80) CS.w[1] * l64);
|
|
|
|
///////////////////////////////////////
|
|
// CAUTION!
|
|
// little endian code only
|
|
// add solution for big endian
|
|
//////////////////////////////////////
|
|
lSH = lS;
|
|
*((UINT64 *) & lSH) &= 0xffffffff00000000ull;
|
|
|
|
// correction for C256 rounding
|
|
lCl = FENCE (l3 - lx);
|
|
lCl = FENCE (lCl + l2);
|
|
lCl = FENCE (lCl + l1);
|
|
lCl = FENCE (lCl + l0);
|
|
|
|
lSL = lS - lSH;
|
|
|
|
//////////////////////////////////////////
|
|
// Watch for compiler re-ordering
|
|
//
|
|
/////////////////////////////////////////
|
|
// C256-S^2
|
|
lxL = FENCE (lx - lSH * lSH);
|
|
lp = lSH * lSL;
|
|
lp += lp;
|
|
lxL = FENCE (lxL - lp);
|
|
lSL *= lSL;
|
|
lxL = FENCE (lxL - lSL);
|
|
lCl += lxL;
|
|
|
|
// correction term
|
|
lE = lCl / (lS + lS);
|
|
|
|
// get low part of coefficient
|
|
X = CS.w[0];
|
|
if (lCl >= 0) {
|
|
SE = (SINT64) (lE);
|
|
CS.w[0] += SE;
|
|
if (CS.w[0] < X)
|
|
CS.w[1]++;
|
|
} else {
|
|
SE = (SINT64) (-lE);
|
|
CS.w[0] -= SE;
|
|
if (CS.w[0] > X)
|
|
CS.w[1]--;
|
|
}
|
|
|
|
pCS->w[0] = CS.w[0];
|
|
pCS->w[1] = CS.w[1];
|
|
}
|
|
|
|
#else
|
|
|
|
extern double sqrt (double);
|
|
|
|
__BID_INLINE__ UINT64
|
|
short_sqrt128 (UINT128 A10) {
|
|
UINT256 ARS, ARS0, AE0, AE, S;
|
|
|
|
UINT64 MY, ES, CY;
|
|
double lx, l64;
|
|
int_double f64, ly;
|
|
int ey, k;
|
|
|
|
// 2^64
|
|
f64.i = 0x43f0000000000000ull;
|
|
l64 = f64.d;
|
|
lx = (double) A10.w[1] * l64 + (double) A10.w[0];
|
|
ly.d = 1.0 / sqrt (lx);
|
|
|
|
MY = (ly.i & 0x000fffffffffffffull) | 0x0010000000000000ull;
|
|
ey = 0x3ff - (ly.i >> 52);
|
|
|
|
// A10*RS^2
|
|
__mul_64x128_to_192 (ARS0, MY, A10);
|
|
__mul_64x192_to_256 (ARS, MY, ARS0);
|
|
|
|
// shr by 2*ey+40, to get a 64-bit value
|
|
k = (ey << 1) + 104 - 64;
|
|
if (k >= 128) {
|
|
if (k > 128)
|
|
ES = (ARS.w[2] >> (k - 128)) | (ARS.w[3] << (192 - k));
|
|
else
|
|
ES = ARS.w[2];
|
|
} else {
|
|
if (k >= 64) {
|
|
ARS.w[0] = ARS.w[1];
|
|
ARS.w[1] = ARS.w[2];
|
|
k -= 64;
|
|
}
|
|
if (k) {
|
|
__shr_128 (ARS, ARS, k);
|
|
}
|
|
ES = ARS.w[0];
|
|
}
|
|
|
|
ES = ((SINT64) ES) >> 1;
|
|
|
|
if (((SINT64) ES) < 0) {
|
|
ES = -ES;
|
|
|
|
// A*RS*eps (scaled by 2^64)
|
|
__mul_64x192_to_256 (AE0, ES, ARS0);
|
|
|
|
AE.w[0] = AE0.w[1];
|
|
AE.w[1] = AE0.w[2];
|
|
AE.w[2] = AE0.w[3];
|
|
|
|
__add_carry_out (S.w[0], CY, ARS0.w[0], AE.w[0]);
|
|
__add_carry_in_out (S.w[1], CY, ARS0.w[1], AE.w[1], CY);
|
|
S.w[2] = ARS0.w[2] + AE.w[2] + CY;
|
|
} else {
|
|
// A*RS*eps (scaled by 2^64)
|
|
__mul_64x192_to_256 (AE0, ES, ARS0);
|
|
|
|
AE.w[0] = AE0.w[1];
|
|
AE.w[1] = AE0.w[2];
|
|
AE.w[2] = AE0.w[3];
|
|
|
|
__sub_borrow_out (S.w[0], CY, ARS0.w[0], AE.w[0]);
|
|
__sub_borrow_in_out (S.w[1], CY, ARS0.w[1], AE.w[1], CY);
|
|
S.w[2] = ARS0.w[2] - AE.w[2] - CY;
|
|
}
|
|
|
|
k = ey + 51;
|
|
|
|
if (k >= 64) {
|
|
if (k >= 128) {
|
|
S.w[0] = S.w[2];
|
|
S.w[1] = 0;
|
|
k -= 128;
|
|
} else {
|
|
S.w[0] = S.w[1];
|
|
S.w[1] = S.w[2];
|
|
}
|
|
k -= 64;
|
|
}
|
|
if (k) {
|
|
__shr_128 (S, S, k);
|
|
}
|
|
|
|
|
|
return (UINT64) ((S.w[0] + 1) >> 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
__BID_INLINE__ void
|
|
long_sqrt128 (UINT128 * pCS, UINT256 C256) {
|
|
UINT512 ARS0, ARS;
|
|
UINT256 ARS00, AE, AE2, S;
|
|
UINT128 ES, ES2, ARS1;
|
|
UINT64 ES32, CY, MY;
|
|
double l64, l128, lx, l2, l1, l0;
|
|
int_double f64, ly;
|
|
int ey, k, k2;
|
|
|
|
// 2^64
|
|
f64.i = 0x43f0000000000000ull;
|
|
l64 = f64.d;
|
|
|
|
l128 = l64 * l64;
|
|
lx = (double) C256.w[3] * l64 * l128;
|
|
l2 = (double) C256.w[2] * l128;
|
|
lx = FENCE (lx + l2);
|
|
l1 = (double) C256.w[1] * l64;
|
|
lx = FENCE (lx + l1);
|
|
l0 = (double) C256.w[0];
|
|
lx = FENCE (lx + l0);
|
|
// sqrt(C256)
|
|
ly.d = 1.0 / sqrt (lx);
|
|
|
|
MY = (ly.i & 0x000fffffffffffffull) | 0x0010000000000000ull;
|
|
ey = 0x3ff - (ly.i >> 52);
|
|
|
|
// A10*RS^2, scaled by 2^(2*ey+104)
|
|
__mul_64x256_to_320 (ARS0, MY, C256);
|
|
__mul_64x320_to_384 (ARS, MY, ARS0);
|
|
|
|
// shr by k=(2*ey+104)-128
|
|
// expect k is in the range (192, 256) if result in [10^33, 10^34)
|
|
// apply an additional signed shift by 1 at the same time (to get eps=eps0/2)
|
|
k = (ey << 1) + 104 - 128 - 192;
|
|
k2 = 64 - k;
|
|
ES.w[0] = (ARS.w[3] >> (k + 1)) | (ARS.w[4] << (k2 - 1));
|
|
ES.w[1] = (ARS.w[4] >> k) | (ARS.w[5] << k2);
|
|
ES.w[1] = ((SINT64) ES.w[1]) >> 1;
|
|
|
|
// A*RS >> 192 (for error term computation)
|
|
ARS1.w[0] = ARS0.w[3];
|
|
ARS1.w[1] = ARS0.w[4];
|
|
|
|
// A*RS>>64
|
|
ARS00.w[0] = ARS0.w[1];
|
|
ARS00.w[1] = ARS0.w[2];
|
|
ARS00.w[2] = ARS0.w[3];
|
|
ARS00.w[3] = ARS0.w[4];
|
|
|
|
if (((SINT64) ES.w[1]) < 0) {
|
|
ES.w[0] = -ES.w[0];
|
|
ES.w[1] = -ES.w[1];
|
|
if (ES.w[0])
|
|
ES.w[1]--;
|
|
|
|
// A*RS*eps
|
|
__mul_128x128_to_256 (AE, ES, ARS1);
|
|
|
|
__add_carry_out (S.w[0], CY, ARS00.w[0], AE.w[0]);
|
|
__add_carry_in_out (S.w[1], CY, ARS00.w[1], AE.w[1], CY);
|
|
__add_carry_in_out (S.w[2], CY, ARS00.w[2], AE.w[2], CY);
|
|
S.w[3] = ARS00.w[3] + AE.w[3] + CY;
|
|
} else {
|
|
// A*RS*eps
|
|
__mul_128x128_to_256 (AE, ES, ARS1);
|
|
|
|
__sub_borrow_out (S.w[0], CY, ARS00.w[0], AE.w[0]);
|
|
__sub_borrow_in_out (S.w[1], CY, ARS00.w[1], AE.w[1], CY);
|
|
__sub_borrow_in_out (S.w[2], CY, ARS00.w[2], AE.w[2], CY);
|
|
S.w[3] = ARS00.w[3] - AE.w[3] - CY;
|
|
}
|
|
|
|
// 3/2*eps^2, scaled by 2^128
|
|
ES32 = ES.w[1] + (ES.w[1] >> 1);
|
|
__mul_64x64_to_128 (ES2, ES32, ES.w[1]);
|
|
// A*RS*3/2*eps^2
|
|
__mul_128x128_to_256 (AE2, ES2, ARS1);
|
|
|
|
// result, scaled by 2^(ey+52-64)
|
|
__add_carry_out (S.w[0], CY, S.w[0], AE2.w[0]);
|
|
__add_carry_in_out (S.w[1], CY, S.w[1], AE2.w[1], CY);
|
|
__add_carry_in_out (S.w[2], CY, S.w[2], AE2.w[2], CY);
|
|
S.w[3] = S.w[3] + AE2.w[3] + CY;
|
|
|
|
// k in (0, 64)
|
|
k = ey + 51 - 128;
|
|
k2 = 64 - k;
|
|
S.w[0] = (S.w[1] >> k) | (S.w[2] << k2);
|
|
S.w[1] = (S.w[2] >> k) | (S.w[3] << k2);
|
|
|
|
// round to nearest
|
|
S.w[0]++;
|
|
if (!S.w[0])
|
|
S.w[1]++;
|
|
|
|
pCS->w[0] = (S.w[1] << 63) | (S.w[0] >> 1);
|
|
pCS->w[1] = S.w[1] >> 1;
|
|
|
|
}
|
|
|
|
#endif
|
|
#endif
|